WO1985005447A1 - Device for measuring a physical magnitude - Google Patents

Device for measuring a physical magnitude Download PDF

Info

Publication number
WO1985005447A1
WO1985005447A1 PCT/CH1985/000085 CH8500085W WO8505447A1 WO 1985005447 A1 WO1985005447 A1 WO 1985005447A1 CH 8500085 W CH8500085 W CH 8500085W WO 8505447 A1 WO8505447 A1 WO 8505447A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor element
change
light
measuring
temperature
Prior art date
Application number
PCT/CH1985/000085
Other languages
German (de)
French (fr)
Inventor
Kurd G. GRÖNINGER
Original Assignee
Thalmond Anstalt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH254184A external-priority patent/CH666752A5/en
Priority claimed from CH254084A external-priority patent/CH667533A5/en
Application filed by Thalmond Anstalt filed Critical Thalmond Anstalt
Publication of WO1985005447A1 publication Critical patent/WO1985005447A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/81Indicating humidity

Definitions

  • the invention relates to a device for measuring a physical quantity according to the preamble of claim 1.
  • a device for measuring a physical quantity according to the preamble of claim 1.
  • Such a device is e.g. known from "Laser and Optoelectronics", No. 3/1983, pages 226 to 234.
  • a temperature sensor is described which consists of an optical waveguide with atoms of rare earths doped therein, in particular neodymium and europium. The dopants can be excited to radiate luminescence by short-wave light, the intensity of which is temperature-dependent.
  • Optical fibers doped with europium and neodymium also show temperature-dependent attenuation.
  • two alternately pulsed LEDs are used, which emit at two different wavelengths.
  • the light is divided between the undoped reference fiber and the doped fiber sensor via a fiber coupler and measured with two detectors.
  • two LEDs of different wavelengths and forming the ratio you get a measurement that is independent of changes in the intensity of the LED.
  • An example is a 5% neodymium-doped optical waveguide with a length of 15 cm. With the aforementioned temperature sensors, measurements between 50 ° C and 250 ° C with a resolution of 0.1 ° C are possible.
  • the known measuring device has the major disadvantage that a complex technology is required to measure the physical quantity, here the temperature, and that the measuring range is limited to temperatures well above room temperature. In particular, measurements must either be carried out via luminescence or then two alternately pulsed LEDs with two different wavelengths are required in order to convert one to be able to carry out casual temperature measurement. Another major disadvantage is that the actual sensor is too long to be able to carry out measurements in places that are difficult to access and in a confined space. In addition, due to the measurement principle mentioned above, measurements of physical quantities other than temperature are not possible.
  • the object of the invention is therefore to provide, on the basis of a device for measuring a physical quantity of the aforementioned type, a simpler and more economical one, which is based on a measuring principle which is simultaneously suitable for many, very different physical quantities.
  • the invention has the enormous advantage that several physical quantities can now be recorded using the same measuring principle, which enables the various sensors to be integrated in a very small space.
  • This creates unprecedented possibilities for control problems, such as in the drying of bulk goods, for example animal feed, where only the detection of the relative humidity and the temperature on both the dried goods and the exhaust air results in optimal control of the drying system.
  • a fully automatic, computer-controlled process line can also require the measurement of the moisture, temperature and bulk density of the wet material entering the dryer, whereby the measured values must be recorded at the same location.
  • Another The measurement of the compressed air for the brakes of trucks represents a game. In order to achieve an optimal regulation of the compressed air, the simultaneous measurement of the relative humidity, the temperature and the pressure is absolutely necessary.
  • the invention has made it easy to measure these sizes even in the smallest of spaces and in hard-to-reach places. Further advantages of the invention result from the following description. There, the invention is explained in more detail using an example shown in the drawing. It shows:
  • Fig. 2 shows the absorption spectrum of CoCl 2 depending on the relative humidity.
  • the 1 shows a basic arrangement of a measuring device. It consists of a light source 1, a light-emitting diode, a sensor element 2 and a photo element 3.
  • the sensor element 2 is connected on one side to the light source 1 via an optical fiber 4, and on the other side to the photo element 3 via an optical fiber 4 ' , a photodiode or a phototransistor.
  • the light source 1 is mounted on a base 5, the photo element 3 on a base 5 ', and connected via a cable 6 to a voltage supply or a signal amplifier.
  • the light source 1 and the photo element 3 are coupled to the optical waveguides 4 and 4 'using a light-conducting paste 7.
  • the light source 1 should emit monochromatic light of 650 nm and the photo element 3 should be particularly sensitive to this spectral range.
  • moisture sensitive salts such as CoBr 2
  • the associated sensor element 2 preferably consists of a cylindrical body made of a water vapor permeable and hydrophobic plastic which contains one of the salts mentioned above in crystal form.
  • Another sensor element 2 consists of a cylindrical body made of a cellulose derivative such as cellulose acetate, cellulose propionate or cellulose acetate butyrate, in which one of the salts is dissolved.
  • certain dyes are also sensitive to moisture and suitable for the measuring device described.
  • the measuring method itself is based on the moisture-dependent color change of the salt.
  • this color change is a consequence of the ligand exchange on the Co 2+ ion.
  • the cobalt (II) ion is directly octahedral with the chloride.
  • the cobalt chloride with the H 2 O-coordinated complex primarily absorbs shorter wavelengths, the color lies in the red spectral range. In the dry state, light of longer wavelengths in particular is absorbed, so that the crystal assumes the complementary color blue.
  • the striking color transition is set, for example, at around 50 to 60% relative humidity.
  • the water vapor concentration in the salt is reduced by the strongly hygroscopic salts such as LiCl and M gCl 2 -.
  • the sensor element 2 can also be a film made of a water vapor-permeable and hydrophobic plastic such as propylene, or of a cellulose derivative such as paper, cellulose hydrate or cellophane, so that it can also be used at high temperatures (e.g. 200 ° C).
  • a water vapor-permeable and hydrophobic plastic such as propylene
  • a cellulose derivative such as paper, cellulose hydrate or cellophane
  • I light intensity after absorption
  • I o light intensity of the incident light
  • c concentration of the salt, here of chloride-coordinated cobalt
  • d thickness of the water vapor permeable body (film)
  • A constant of the material properties of the body permeable to water vapor
  • the constant A is also dependent on the wavelength of the incident light.
  • a logarithmic amplifier is now connected downstream of the photoelectric element 3. This amplifier is built into the base 5 'of the photodiode 3 (Fig. 1).
  • the light emitted by the light source 1 is pulse-modulated by means of a modulation circuit and converted into a DC voltage signal by a demodulation circuit after the photoelectric element 3. This ensures that the relative humidity is measured completely independently of the influence of stray light.
  • thermochromism and piezochromism
  • the dehydrodiathrone is excellent for the above measurement method to measure pressure or temperature.
  • Thermochromism has generally been found in aromatically substituted ethylenes.
  • the sensor element 2 itself consists of a heat-conducting or pressure-sensitive body in which the substances are contained.
  • thermochromic substances are known from j. Amer. chem.Soc. 76 (1954), pages 4134 to 4136. Label list

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

New measuring device comprised of a light source (1), a sensor element (2) and a photo-element (3). Light wave guides (4, 4') take the light to and from the sensor element (2). The sensor element (2) contains elements which go through a change of colour as a function of the physical magnitude. Due to this change of colour, it is possible to measure the change of the physical magnitude. Since this measuring principle may be applied to various physical magnitudes, it is possible to make without any particular difficulty integrated sensors enabling to simultaneously detect measuring data in the most reduced space.

Description

Vorrichtung zur Messung einer physikalischen Grösse Device for measuring a physical quantity
Die Erfindung bezieht sich auf eine Vorrichtung zur Messung einer physikalischen Grosse nach dem Oberbegriff des Patentanspruchs 1. Eine solche Vorrichtung ist z.B. bekannt aus "Laser und Optoelektronik", Nr. 3/1983, Seiten 226 bis 234. Dort wird ein Temperatursensor beschrieben, der aus einem Lichtwellenleiter mit darin dotierten Atomen der seltenen Erden, insbesondere Neodym und Europium, besteht. Die Dotierungsstoffe können durch kurzwelliges Licht zur Strahlungslumineszenz angeregt werden, deren Intensität temperaturabhängig ist. Mit Europium und Neodym dotierte Lichtwellenleiter zeigen ausserdem eine temperaturabhängige Dämpfung. Für einen derartigen Temperatursensor verwendet man zwei abwechselnd gepulste LED, die bei zwei verschiedenen Wellenlängen emittieren. Ueber einen Faserkoppler wird das Licht zwischen der undotierten Referenz-Faser und dem dotierten Fasersensor aufgeteilt und mit zwei Detektoren gemessen. Durch den Einsatz zweier LED unterschiedlicher Wellenlänge und die Verhältnis- bildung erhält man eine von Intensitätsänderungen der LED unabhängige Messung. Als Beispiel wird ein 5% Neodym dotierten Lichtwellenleiter von 15 cm Länge genannt. Mit den vorgenannten Temperatursensoren sind Messungen zwischen 50°C und 250°C mit einer Auflösung von 0,1°C möglich.The invention relates to a device for measuring a physical quantity according to the preamble of claim 1. Such a device is e.g. known from "Laser and Optoelectronics", No. 3/1983, pages 226 to 234. There, a temperature sensor is described which consists of an optical waveguide with atoms of rare earths doped therein, in particular neodymium and europium. The dopants can be excited to radiate luminescence by short-wave light, the intensity of which is temperature-dependent. Optical fibers doped with europium and neodymium also show temperature-dependent attenuation. For such a temperature sensor, two alternately pulsed LEDs are used, which emit at two different wavelengths. The light is divided between the undoped reference fiber and the doped fiber sensor via a fiber coupler and measured with two detectors. By using two LEDs of different wavelengths and forming the ratio, you get a measurement that is independent of changes in the intensity of the LED. An example is a 5% neodymium-doped optical waveguide with a length of 15 cm. With the aforementioned temperature sensors, measurements between 50 ° C and 250 ° C with a resolution of 0.1 ° C are possible.
Die bekannte Messvorrichtung hat den grossen Nachteil, dass zur Messung der physikalischen Grosse, hier die Temperatur, eine aufwendige Technik benötigt wird und zudem der Messbereich auf Temperaturen weit oberhalb Zimmertemperatur eingeschränkt ist. Insbesondere muss entweder über Lumineszenz gemessen werden oder dann sind zwei abwechselnd gepulste LED mit zwei verschiedenen Wellenlängen benötigt, um eine zuver lässige Temperaturraessung durchführen zu können. Ein anderer wesentlicher Nachteil besteht darin, dass der eigentliche Sensor eine zu grosse Länge aufweist, um an schwer zugängliche Stellen und auf engstem Raum Messungen vornehmen zu können. Aus- serdem sind aufgrund des oben erwähnten Messprinzips keine Messungen anderer physikalischen Grossen als die Temperatur möglich. Eine eingehende Recherche der auf dem Gebiet der Faseroptik bekannten Literatur hat erwiesen, dass für die Messung verschiedener physikalischen Grossen jeweils ein anderes Messprinzip angewandt werden muss, was eine Integration von Sensoren für die gleichzeitige Messung verschiedener physikalischen Grossen, wie Druck, Temperatur, Feuchte, Luftgeschwindigkeit, sehr erschwert, so nicht fast verunmöglicht. Von der anderen Seite ist eine integrierte Messung für viele prozesstechnische. Regelsysteme von ausserordentlicher Bedeutung.The known measuring device has the major disadvantage that a complex technology is required to measure the physical quantity, here the temperature, and that the measuring range is limited to temperatures well above room temperature. In particular, measurements must either be carried out via luminescence or then two alternately pulsed LEDs with two different wavelengths are required in order to convert one to be able to carry out casual temperature measurement. Another major disadvantage is that the actual sensor is too long to be able to carry out measurements in places that are difficult to access and in a confined space. In addition, due to the measurement principle mentioned above, measurements of physical quantities other than temperature are not possible. A thorough research of the literature known in the field of fiber optics has shown that a different measuring principle must be used for the measurement of different physical quantities, which means an integration of sensors for the simultaneous measurement of different physical quantities such as pressure, temperature, humidity, air velocity , very difficult, so not almost impossible. On the other hand, there is an integrated measurement for many process engineering. Control systems of extraordinary importance.
Die Erfindung stellt sich deshalb die Aufgabe, aufgrund einer Vorrichtung zur Messung einer physikalischen Grosse der vorgenannten Art, eine einfachere und kostengünstigere anzugeben, die auf einem Messprinzip beruht, das gleichzeitig für viele, sehr verschiedene physikalische Grossen geeignet ist.The object of the invention is therefore to provide, on the basis of a device for measuring a physical quantity of the aforementioned type, a simpler and more economical one, which is based on a measuring principle which is simultaneously suitable for many, very different physical quantities.
Die Erfindung hat den enormen Vorteil, dass nunmehr mehrere physikalische Grossen mit dem gleichen Messprinzip erfasst werden können, was eine Integration der verschiedenen Sensoren auf engstem Raum erst ermöglicht. Dadurch entstehen für regeltechnische Probleme ungeahnte Möglichkeiten, wie beispielsweise in der Trocknung von Schüttgütern, z.B. Futtermitteln, wo erst die Erfassung der relativen Feuchte und der Temperatur sowohl am getrockneten Gut sowie der Abluft eine optimale Regelung der Trocknungsanlage bewirkt. An solchen Anlagen kann eine vollautomatische, rechnergesteuerte Prozessleitung auch die Messung der Feuchte, der Temperatur und des Schüttgewichts des in den Trockner eingehenden Nassgutes fordern, wobei die Messwerte unbedingt am selben Ort erfasst werden müssen. Ein anderes Bei- spiel stellt die Messung der Druckluft für die Bremsen von Lastkraftwagen dar. Um eine optimale Regelung der Druckluft zu erreichen, ist die gleichzeitige Messung der relativen Feuchte, der Temperatur und des Druckes unbedingt notwendig. Durch die Erfindung ist die Messung dieser Grossen auch auf engstem Raum und an schwer zugänglichen Stellen problemlos geworden. Weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung. Dort wird die Erfindung anhand eines in der Zeichnung dargestellten Beispeiles näher erläutert. Dabei zeigt:The invention has the enormous advantage that several physical quantities can now be recorded using the same measuring principle, which enables the various sensors to be integrated in a very small space. This creates unprecedented possibilities for control problems, such as in the drying of bulk goods, for example animal feed, where only the detection of the relative humidity and the temperature on both the dried goods and the exhaust air results in optimal control of the drying system. In such systems, a fully automatic, computer-controlled process line can also require the measurement of the moisture, temperature and bulk density of the wet material entering the dryer, whereby the measured values must be recorded at the same location. Another The measurement of the compressed air for the brakes of trucks represents a game. In order to achieve an optimal regulation of the compressed air, the simultaneous measurement of the relative humidity, the temperature and the pressure is absolutely necessary. The invention has made it easy to measure these sizes even in the smallest of spaces and in hard-to-reach places. Further advantages of the invention result from the following description. There, the invention is explained in more detail using an example shown in the drawing. It shows:
Fig. 1 eine Ausführungsform der Messvorrichtung, und1 shows an embodiment of the measuring device, and
Fig. 2 das Absorptionsspektrum von CoCl2 in Abhängigkeit der relativen Luftfeuchte.Fig. 2 shows the absorption spectrum of CoCl 2 depending on the relative humidity.
In Fig. 1 ist eine prinzipielle Anordnung einer Messvorrichtung dargestellt. Sie besteht aus einer Lichtquelle 1, eine lichtemittierende Diode, einem Sensorelement 2 und einem Photoelement 3. Das Sensorelement 2 ist auf der einen Seite über einen Lichtwellenleiter 4 mit der Lichtquelle 1 verbunden, auf der anderen Seite über einen Lichtwellenleiter 4' mit dem Photoelement 3, eine Photodiode oder ein Phototransistor. Die Lichtquelle 1 ist auf einem Sockel 5, das Photoelement 3 auf einem Sockel 5' angebracht, und über ein Kabel 6 mit einer Spannungsversorgung oder einem Signalverstärker verbunden. Die Lichtquelle 1 und das Photoelement 3 sind mit einer lichtleitenden Paste 7 an den Lichtwellenleitern 4 und 4' angekoppelt.1 shows a basic arrangement of a measuring device. It consists of a light source 1, a light-emitting diode, a sensor element 2 and a photo element 3. The sensor element 2 is connected on one side to the light source 1 via an optical fiber 4, and on the other side to the photo element 3 via an optical fiber 4 ' , a photodiode or a phototransistor. The light source 1 is mounted on a base 5, the photo element 3 on a base 5 ', and connected via a cable 6 to a voltage supply or a signal amplifier. The light source 1 and the photo element 3 are coupled to the optical waveguides 4 and 4 'using a light-conducting paste 7.
In Fig. 2 ist das Absorptionsspektrum von CoCl2 in Abhängigkeit der relativen Feuchte aufgetragen. Auf der Abszisse ist die Wellenlänge λ in nm, auf der Ordinate der Transmissionskoeffizient T in % angegeben. Die Kurve α ist bei 35 % relativer
Figure imgf000005_0001
Feuchte, die Kurve αz bei 100 % relativer Feuchte aufgenommen. Aus der Figur ist ersichtlich, dass es bei etwa 650 nm eine starke Aenderung der Absorption in Abhängigkeit der relativen Feuchte gibt. Diese Eigenschaft wird nun für die Messung ausgenutzt. Die Lichtquelle 1 sollte dazu monochromatisches Licht von 650 nm aussenden und das Photoelement 3 speziell empfindlich sein auf diesen Spektralbereich. Es gibt noch eine Reihe von anderen feuchteempfindlichen Salzen, wie z.B. CoBr2,
2 shows the absorption spectrum of CoCl 2 as a function of the relative humidity. The wavelength λ in nm is shown on the abscissa, and the transmission coefficient T in% is shown on the ordinate. The curve α is more relative at 35%
Figure imgf000005_0001
Humidity, the curve α z recorded at 100% relative humidity. From the figure it can be seen that there is a strong change in the absorption as a function of the relative at about 650 nm Moisture there. This property is now used for the measurement. For this purpose, the light source 1 should emit monochromatic light of 650 nm and the photo element 3 should be particularly sensitive to this spectral range. There are a number of other moisture sensitive salts, such as CoBr 2 ,
CoNO3, NiCl2, Ni(NO3)2, NiSO4, LaCl3, CuCl2, Cu(NO3)2,CoNO 3 , NiCl 2 , Ni (NO 3 ) 2 , NiSO 4 , LaCl 3 , CuCl 2 , Cu (NO 3 ) 2 ,
CuSO4 oder Er(NO3)3. Das zugehörige Sensorelement 2 besteht vorzugsweise aus einem zylinderförmigen Körper aus einem wasserdampfdurchlässigen und hydrophoben Kunststoff, der einen der oben genannten Salze in Kristallform enthält. Ein anderes Sensorelement 2 besteht aus einem zylinderförmigen Körper aus einem Cellulosederivat wie Celluloseacetat, Cellulosepropionat oder Celluloseacetobutyrat, in dem eines der Salze gelöst ist. Anstatt eines der Salze sind auch bestimmte Farbstoffe feuchteempfindlich und für die beschriebene MessVorrichtung geeignet.CuSO 4 or Er (NO 3 ) 3 . The associated sensor element 2 preferably consists of a cylindrical body made of a water vapor permeable and hydrophobic plastic which contains one of the salts mentioned above in crystal form. Another sensor element 2 consists of a cylindrical body made of a cellulose derivative such as cellulose acetate, cellulose propionate or cellulose acetate butyrate, in which one of the salts is dissolved. Instead of one of the salts, certain dyes are also sensitive to moisture and suitable for the measuring device described.
Die Messmethode selbst basiert auf dem feuchteabhängigen Farbwechsel des Salzes. Dieser Farbwechsel ist beispielsweise bei Kobaltchlorid eine Folge des Ligandenaustausches am Co2+-Ion. Bei hinreichender Anwesenheit von Wasserraolekülen ist es oktaedrisch mit dem Kobaltchlorid koordiniert, ansonsten ist das Kobalt (II)-Ion direkt oktaedrisch mit dem Chlorid koordiniert. Da das Kobaltchlorid mit dem H2O-koordinierten Komplex in erster Linie kürzere Wellenlängen absorbiert, liegt die Farbe im roten Spektralbereich. Im trockenen Zustand wird vor allem Licht längerer Wellenlängen absorbiert, so dass das Kristall die kαnplenentäre Farbe blau annimmt. Zwischen den beiden Farbzuständen gibt es viele Farbnuancen, da dem Wechsel der Koordination eine statistische Verteilung zugrunde liegt und ausserdem Mischkoordinationen mit den beiden Liganden bekannt sind. Ein ähnlicher Mechanismus der Lichtabsorption gilt auch für die anderen Salze. Die beobachtete Quellbarkeit der Folie bei sehr hohen FeuchtenThe measuring method itself is based on the moisture-dependent color change of the salt. With cobalt chloride, for example, this color change is a consequence of the ligand exchange on the Co 2+ ion. With sufficient presence of water molecules, it is coordinated octahedral with the cobalt chloride, otherwise the cobalt (II) ion is directly octahedral with the chloride. Since the cobalt chloride with the H 2 O-coordinated complex primarily absorbs shorter wavelengths, the color lies in the red spectral range. In the dry state, light of longer wavelengths in particular is absorbed, so that the crystal assumes the complementary color blue. There are many shades of color between the two color states, since the change in coordination is based on a statistical distribution and mixed co-ordinations with the two ligands are also known. A similar mechanism of light absorption applies to the other salts. The observed swellability of the film at very high humidity
- über 95 % relative Feuchte - ist ohne Einfluss auf die Messungen, da sie eine reversible und somit reproduzierbare Grosse ist. Lediglich herablaufendes Kondenswasser könnte die gleich- massige Salz-Konzentration in der Folie verändern. Durch einen Ueberzug aus einem wasserdampfdurchlässigen und hydrophoben Kunststoff wie Propylen kann jedoch verhindert werden, dass sich in der Folie freies Wasser bildet. Um einen kontinuierlichen Farbübergang über den gesamten Feuchtebereich zu erlangen, wird der augenfällige Farbübergang z.B. bei etwa 50 bis 60 % relative Feuchte gelegt. Dazu wird die Wasserdampfkonzentration im Salz durch die stark hygroskopischen Salze wie LiCl und M gCl2- herabgesetzt. Eine optimale Farbänderung bei einer relativen Feuchte von 55 % wurde erreicht mit einer Cellulose- hydratfolie (Zigarettenpapier) von 50 /um dick und einer Anfärbemischung von 71,5 Volumen-Prozent gesättigter CoCl2. 6H2O-Lösung und 28,5 Volumen-Prozent gesättigter MgCl2-Lösung.- over 95% relative humidity - has no influence on the measurements, since it is a reversible and therefore reproducible quantity. Only condensed water running down could change the uniform salt concentration in the film. However, a coating of a water vapor-permeable and hydrophobic plastic such as propylene can prevent free water from forming in the film. In order to achieve a continuous color transition across the entire moisture range, the striking color transition is set, for example, at around 50 to 60% relative humidity. For this purpose, the water vapor concentration in the salt is reduced by the strongly hygroscopic salts such as LiCl and M gCl 2 -. An optimal color change at a relative humidity of 55% was achieved with a cellulose hydrate film (cigarette paper) of 50 µm thick and a coloring mixture of 71.5 volume percent saturated CoCl 2 . 6H 2 O solution and 28.5 volume percent saturated MgCl 2 solution.
Das Sensorelement 2 kann auch eine Folie sein aus einem Wasserdampfdurchlässigen und hydrophoben Kunststoff wie Propylen, oder aus einem Cellulosederivat wie Papier, Cellulosehydrat oder Zellophan, so dass sie auch bei hohen Temperaturen (z.B. 200°C) eingesetzt werden kann.The sensor element 2 can also be a film made of a water vapor-permeable and hydrophobic plastic such as propylene, or of a cellulose derivative such as paper, cellulose hydrate or cellophane, so that it can also be used at high temperatures (e.g. 200 ° C).
Die Transmissionsänderung des Lichtes durch den Träger 2 folgt bei Abnahme der relativen Feuchte dem Lambert-Beer' sehen Gesetz:The change in transmission of the light through the carrier 2 follows the Lambert-Beer law as the relative humidity decreases:
l = lo . e - A.c.d l = l o . e - Acd
wobeiin which
I = Lichtintensität nach Absorption Io = Lichtintensität des eingestrahlten Lichtes c = Konzentration des Salzes, hier von chloridkoordiniertem Kobalt d = Dicke des wasserdampfdurchlässigen Körpers (Folie) A = Konstante der Materialeigenschaften des wasserdampfdurchlässigen KörpersI = light intensity after absorption I o = light intensity of the incident light c = concentration of the salt, here of chloride-coordinated cobalt d = thickness of the water vapor permeable body (film) A = constant of the material properties of the body permeable to water vapor
Die Konstante A ist ebenfalls abhängig von der Wellenlänge des eingestrahlten Lichtes. Um eine lineare Funktion zwischen dem Farbwechsel und der relativen Feuchte zu erhalten, ist nun dem photoelektrischen Element 3 ein logarithmischer Verstärker nachgeschaltet. Dieser Verstärker ist in den Sockel 5' der Photodiode 3 (Fig. 1) eingebaut. Es ist jedoch auch eine andere Bauweise des Messgerätes, als in Fig. 1 dargestellt ist, möglich. Dazu wird das von der Lichtquelle 1 ausgestrahlte Licht mittels einer Modulationsschaltung pulsmoduliert, und mit einer Demodulationsschaltung nach dem photoelektrischen Element 3 in ein Gleichspannungssignal umgesetzt. Dadurch wird erreicht, dass die relative Feuchte vollkommen unabhängig von StörlichtEinflüssen gemessen wird. Auch in diesem Fall ist es zweckmässig, die Schaltungen in Form von integrierten Schaltungen in den Sockel 5' oder 5' der Lichtquelle 1 oder des Photoelementes 3 einzubauen. Dies ermöglicht eine sehr kompakte Bauweise, so dass das Messgerät auch bei sehr engen Raumverhältnissen problemlos einsetzbar ist.The constant A is also dependent on the wavelength of the incident light. In order to obtain a linear function between the color change and the relative humidity, a logarithmic amplifier is now connected downstream of the photoelectric element 3. This amplifier is built into the base 5 'of the photodiode 3 (Fig. 1). However, a different construction of the measuring device than that shown in FIG. 1 is also possible. For this purpose, the light emitted by the light source 1 is pulse-modulated by means of a modulation circuit and converted into a DC voltage signal by a demodulation circuit after the photoelectric element 3. This ensures that the relative humidity is measured completely independently of the influence of stray light. In this case too, it is expedient to install the circuits in the form of integrated circuits in the base 5 'or 5' of the light source 1 or the photoelement 3. This enables a very compact design, so that the measuring device can be used without problems even in very confined spaces.
Es gibt jedoch auch Stoffe, wie das Dehydrodianthrons, die ihre Farbe in Abhängigkeit des Druckes oder der Temperatur ändern. Eine ausführliche Beschreibung über die sogenannte Thermochromie und Piezochromie ist zu finden in Angew. Chemie, 70. Jahrg. 1958, Nr. 1 Seiten 14 bis 20, weshalb hier nicht weiter darauf eingegangen wird. Wie aus diesem Artikel folgt, ist das Dehydrodiathron ausgezeichnet für die oben angegebene Messmethode geeignet, um Druck oder Temperatur zu messen. Allgemein hat man Thermochromie bei aromatisch substituierten Aethylenen gefunden. Das Sensorelement 2 selbst besteht in diesen Fällen aus einem wärmeleitenden oder druckempfindlichen Körper, in dem die Stoffe enthalten sind.However, there are also substances such as dehydrodianthrone that change color depending on pressure or temperature. A detailed description of the so-called thermochromism and piezochromism can be found in Angew. Chemistry, 70th year 1958, No. 1 pages 14 to 20, which is why it is not discussed further here. As follows from this article, the dehydrodiathrone is excellent for the above measurement method to measure pressure or temperature. Thermochromism has generally been found in aromatically substituted ethylenes. In these cases, the sensor element 2 itself consists of a heat-conducting or pressure-sensitive body in which the substances are contained.
Weitere thermochrome Stoffe sind bekannt aus j. Amer. chem.Soc. 76 (1954), Seiten 4134 bis 4136. BezeichnungslisteOther thermochromic substances are known from j. Amer. chem.Soc. 76 (1954), pages 4134 to 4136. Label list
1. Lichtquelle1. Light source
2. Sensorelement2. Sensor element
3. Photoelement 4,4'. Lichtwellenleiter 5,5'. Sockel3. Photo element 4,4 '. Optical fiber 5.5 '. base
6. Kabel6. Cable
7. lichtleitende Paste7. light-conducting paste
α1 , α2 Transmissionskurven α 1 , α 2 transmission curves

Claims

Patentansprüche Claims
1. Vorrichtung zur Messung einer physikalischen Grosse mit mindestens einer Lichtquelle (1), die monochromatisches Licht im sichtbaren Bereich erzeugt, einem Sensorelement (2), das sich zwischen mindestens zwei Lichtwellenleitern (4,4') befindet, und mindestens einem Photoelement (3), d a d u r c h g e k e n n z e i c h n e t, dass das Sensorelement (2) eine Farbänderung in Abhängigkeit von der physikalischen Grosse erfährt, derart, dass die Intensitätsänderung des monochromatischen Lichtes ein Mass ist für die Aenderung der physikalischen Grosse.1. Device for measuring a physical quantity with at least one light source (1) that generates monochromatic light in the visible range, a sensor element (2) that is located between at least two optical fibers (4, 4 '), and at least one photo element (3 ), characterized in that the sensor element (2) experiences a color change depending on the physical size, such that the change in intensity of the monochromatic light is a measure of the change in the physical size.
2. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass das Sensorelement (2) aus einem wasserdampfdurchlässigen Körper besteht, in dem Salze oder Farbstoffe gelöst sind, die in Abhängigkeit der Feuchte oder der Wasseraktivität eine Farbänderung erfahren.2. Device according to claim 1, so that the sensor element (2) consists of a water-vapor-permeable body in which salts or dyes are dissolved, which undergo a color change depending on the moisture or water activity.
3. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass das Sensorelement (2) aus einem wärmeleitenden Körper besteht, in dem Stoffe gelöst sind, die in Abhängigkeit der Temperatur eine Farbänderung erfahren.3. Device according to claim 1, so that the sensor element (2) consists of a thermally conductive body in which substances are dissolved which undergo a color change depending on the temperature.
4. Vorrichtung nach Anspruch 1 , d a d u r c h g e k e n n z e i c h n e t, dass das Sensorelement (2) aus einem druckempfindlichen Körper besteht, in dem Farbstoffe gelöst sind, die in Abhängigkeit des Druckes eine Farbänderung erfahren. 4. The device according to claim 1, characterized in that the sensor element (2) consists of a pressure-sensitive body in which dyes are dissolved, which experience a change in color depending on the pressure.
5. Vorrichtung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, dass der Körper aus einem wasserdampfdurchlässigen und hydrophoben Kunststoff oder aus einem Cellulosederivat besteht, und das feuchteempfindliche Salz aus einem der Salze CoCl2, CoBr2, CoNO3, NiCl2, Ni(NO3)2,5. The device according to claim 2, characterized in that the body consists of a water vapor permeable and hydrophobic plastic or of a cellulose derivative, and the moisture-sensitive salt from one of the salts CoCl 2 , CoBr 2 , CoNO 3 , NiCl 2 , Ni (NO 3 ) 2 ,
NiSO4, LaCl3, CuCl2, Cu(NO3)2, CuSO4 oder Er (NO3)3 besteht.NiSO 4 , LaCl 3 , CuCl 2 , Cu (NO 3 ) 2 , CuSO 4 or Er (NO 3 ) 3 .
6. Vorrichtung nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass der Körper aus einem wärmeleitenden und hydrophoben Kunststoff und der temperaturabhängige Stoff aus Co(NO3)2. 2 Hexamethylentramin. 10 H2O oder aus Dehydrodianthron oder Diflavyen besteht.6. The device according to claim 3, characterized in that the body made of a heat-conducting and hydrophobic plastic and the temperature-dependent material made of Co (NO 3 ) 2 . 2 hexamethylenetramine. 10 H 2 O or consists of dehydrodianthrone or diflavyen.
7. Vorrichtung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, dass der druckempfindliche Körper aus einem plastischen und lichtdurchlässigen Kunststoff besteht und dass der Farbstoff aus einem piezochromen, aromatisch substituierten Aethylen besteht. 7. The device according to claim 4, that the pressure-sensitive body consists of a plastic and translucent plastic and that the dye consists of a piezochromic, aromatically substituted ethylene.
PCT/CH1985/000085 1984-05-24 1985-05-21 Device for measuring a physical magnitude WO1985005447A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH254184A CH666752A5 (en) 1984-05-24 1984-05-24 Optical gauge for physical measurement
CH254084A CH667533A5 (en) 1984-05-24 1984-05-24 Optical gauge for physical measurement
CH2540/84-9 1984-05-24
CH2541/84-0 1984-05-24

Publications (1)

Publication Number Publication Date
WO1985005447A1 true WO1985005447A1 (en) 1985-12-05

Family

ID=25690711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1985/000085 WO1985005447A1 (en) 1984-05-24 1985-05-21 Device for measuring a physical magnitude

Country Status (2)

Country Link
EP (1) EP0183734A1 (en)
WO (1) WO1985005447A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005103A1 (en) * 1986-02-12 1987-08-27 Soundek Oy Fibre-optic thermometer or temperature alarm device
EP0263805A2 (en) * 1986-10-10 1988-04-13 AVL Medical Instruments AG Sensor element for ascertaining the concentrations of substances
DE29607239U1 (en) * 1996-04-23 1996-06-05 J & M Analytische Mess- und Regeltechnik GmbH, 73431 Aalen Capillary holder
WO2002044712A1 (en) * 2000-12-01 2002-06-06 Levosil S.P.A. Humidity paper indicators with coloured support

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1295920A (en) * 1970-01-27 1972-11-08
FR2436368A1 (en) * 1978-09-15 1980-04-11 Asea Ab OPTICAL FIBER MEASURING DEVICE
GB2052731A (en) * 1979-06-21 1981-01-28 Spirig Ernst Temperature responsive device
JPS56112609A (en) * 1980-02-11 1981-09-05 Toshiba Corp Measuring device for pressure and temperature
JPS56112636A (en) * 1980-02-12 1981-09-05 Toshiba Corp Optical humidity sensor
GB2082765A (en) * 1980-08-21 1982-03-10 Standard Telephones Cables Ltd Optical/pressure switch
DE3241261A1 (en) * 1982-11-09 1984-05-10 Rolf 6100 Darmstadt Neusel Process and arrangement for measuring humidity
GB2129128A (en) * 1982-10-28 1984-05-10 Atomic Energy Authority Uk Moisture detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1295920A (en) * 1970-01-27 1972-11-08
FR2436368A1 (en) * 1978-09-15 1980-04-11 Asea Ab OPTICAL FIBER MEASURING DEVICE
GB2052731A (en) * 1979-06-21 1981-01-28 Spirig Ernst Temperature responsive device
JPS56112609A (en) * 1980-02-11 1981-09-05 Toshiba Corp Measuring device for pressure and temperature
JPS56112636A (en) * 1980-02-12 1981-09-05 Toshiba Corp Optical humidity sensor
GB2082765A (en) * 1980-08-21 1982-03-10 Standard Telephones Cables Ltd Optical/pressure switch
GB2129128A (en) * 1982-10-28 1984-05-10 Atomic Energy Authority Uk Moisture detector
DE3241261A1 (en) * 1982-11-09 1984-05-10 Rolf 6100 Darmstadt Neusel Process and arrangement for measuring humidity

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Electronic Engineering, Vol. 55, No. 676, April 1983, London (GB) Short Notice: "Fibre Optic Temperature Gauge", see page 21 *
IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-30, No. 4, April 1982, K. KYUMA: "Fiber-Optic Instrument for Temperature Measurement" pages 522-525, see page 522, figure 1 *
PATENTS ABSTRACTS OF JAPAN, Vol. 5, No. 185, 25 November 1981, page P-91 (857) & JP, A, 56112636 (Tokyo Shibaura Denki) 5 September 1981, see the whole article *
PATENTS ABSTRACTS OF JAPAN, Vol. 5, No. 185, 25 November 1981, see page P-91, (857) & JP, A, 56112609 (Tokyo Shibaura Denki) 5 September 1981, see the whole article *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005103A1 (en) * 1986-02-12 1987-08-27 Soundek Oy Fibre-optic thermometer or temperature alarm device
US4906107A (en) * 1986-02-12 1990-03-06 Soundek Oy Fibre-optic thermometer or temperature alarm device
EP0263805A2 (en) * 1986-10-10 1988-04-13 AVL Medical Instruments AG Sensor element for ascertaining the concentrations of substances
EP0263805A3 (en) * 1986-10-10 1989-04-19 Avl Ag Sensor element for ascertaining the concentrations of substances
DE29607239U1 (en) * 1996-04-23 1996-06-05 J & M Analytische Mess- und Regeltechnik GmbH, 73431 Aalen Capillary holder
WO2002044712A1 (en) * 2000-12-01 2002-06-06 Levosil S.P.A. Humidity paper indicators with coloured support

Also Published As

Publication number Publication date
EP0183734A1 (en) 1986-06-11

Similar Documents

Publication Publication Date Title
DE60013258T2 (en) FIBER OPTIC SENSOR WITH PHOTOCHROMATIC CONVERTER AND METHOD FOR ITS APPLICATION
DE2723183C3 (en) Test equipment for determining hemoglobin in a blood sample
DE3319526C2 (en) Arrangement with a physical sensor
WO1997024606A1 (en) Optical temperature sensors and optical-chemical sensors with optical temperature compensation
DE4128846C2 (en) Integrated optical fabric sensor
DE2812872A1 (en) SPECTROPHOTOMETER
DE102006001642B4 (en) Oxygen sensor and measuring method
DE4345151A1 (en) Device for colorimetric gas detection in composite film construction with capillaries
DE3832185A1 (en) Humidity (moisture) sensor and measuring arrangement for the measurement of humidity
DE3239092A1 (en) COMPOSITION FOR DETECTING HYDRIDE GAS
DE69311740T2 (en) LOW OXYGEN PERMEABILITY DISPLAYING SYSTEM
WO1985005447A1 (en) Device for measuring a physical magnitude
WO2005056391A2 (en) Packaging
DE2133797A1 (en) Polymer discolouration measurement - during flow by optical absorption to detect quality defects
DE2355148C3 (en) Device for investigating the composition of a flowing fluid
EP0091046B1 (en) Measuring device for physical values
DE2550420A1 (en) OPTICAL ANALYSIS EQUIPMENT AND METHOD OF ANALYSIS
EP0193036B1 (en) Use of an optical filter with a reversible change of colour
DE3204146A1 (en) Method of measuring the composition and local concentration of substances at surfaces
CH667533A5 (en) Optical gauge for physical measurement
AT506177B1 (en) OPTICAL SENSOR
CH665718A5 (en) DEVICE FOR DETECTING GAS WITH A SENSOR CONTAINING AT LEAST ONE METAL OXIDE.
DE19942317A1 (en) Moisture determination, useful for solids, liquids and gases, is characterized by contacting the material with a water insoluble polymer matrix containing a dyestuff and measuring its spectrum.
DE3042535C2 (en) Device for detecting fluorescence
CH666752A5 (en) Optical gauge for physical measurement

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP US

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB IT LU NL SE