WO1984000158A1 - Magnesia-carbon-silicon carbide refractory - Google Patents

Magnesia-carbon-silicon carbide refractory Download PDF

Info

Publication number
WO1984000158A1
WO1984000158A1 PCT/JP1983/000205 JP8300205W WO8400158A1 WO 1984000158 A1 WO1984000158 A1 WO 1984000158A1 JP 8300205 W JP8300205 W JP 8300205W WO 8400158 A1 WO8400158 A1 WO 8400158A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
refractory
silicon carbide
magnesia
brick
Prior art date
Application number
PCT/JP1983/000205
Other languages
French (fr)
Japanese (ja)
Inventor
Teiichi Fujiwara
Yuuji Yoshimura
Fukuichi Kitani
Tatsuhito Takahashi
Original Assignee
Nippon Kokan Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Kk filed Critical Nippon Kokan Kk
Publication of WO1984000158A1 publication Critical patent/WO1984000158A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon

Definitions

  • the present invention relates to the refractory used in the steelmaking industry, particularly in the pretreatment stage of hot metal.
  • soda ash has been used as a refining agent in the hot metal stage.
  • Magnesia (MgO) and spinel are examples of refractory materials that have high corrosion resistance to this erosion effect.
  • Parts should contain impurities.
  • the coefficient of expansion is as high as 1.40% at 100 O iC and the thermal conductivity is
  • carbon (C) or silicon carbide (SiC), or both is used as the main raw material.
  • SiC silicon carbide
  • the addition of This is due to the following reasons. That is, the carbon is usually graphite
  • the graphite has a coefficient of linear thermal expansion that is 1 / that of magnesium, as shown in Table 1.
  • Graphite belongs to the hexagonal form and has a layered structure. Bonds between carbon atoms in the plane of a regular hexagonal ring are strong covalent bonds, but bonds between layers are weak due to van der Waals bonds. Therefore, there is a characteristic that the thermal stress generated by the thermal change is reduced.
  • the coefficient of linear thermal expansion of silicon carbide is smaller than that of graphite, and its thermal conductivity is about 20 times higher than that of magnesium. Therefore, it is a refractory material with excellent heat resistance and sporting properties.
  • the present invention prevents the deterioration of refractory quality due to carbon acid by adding a specific amount of silicon carbide in a specific amount of powder together with carbon. , the total amount of that you Ru reduce the wear and tear of that by the use for the purpose, the spirit is also Ma grayed roots a plain fixture between Gune shear and vinegar pin, channel (MgO ⁇ K 2 O3) Is 6 5 ⁇
  • g to 50 to 50 micron microparticles in a magnesium carbonate or magnesium-based vinyl carbonate-based refractory formulation Is a magnesium-carbon-carbon-silicon-carbon-based refractory made by adding 2 to 15 parts by weight of silicon carbide (SiC) containing 85 or more.
  • the present invention relates to a magnesium- or magnesium-based single-pole or magnesium-based system in which magnesium or magnesium spinel is the main raw material to which carbon is added.
  • Spinel strength-The addition of a specific small amount of ultra-fine silicon carbide to the refractory of the bon type can effectively reduce carbon wear.
  • O PI IPO Spinel 3 to 20 weight carbon, and 2 to 15 weight ⁇ silicon carbide (containing more than 85 microparticles of 2 to 50 micrones) ) And 2% to 5% of resin binder is added to the mixture, and use a conventional method.
  • Refractory manufactured by kneading, molding, drying or firing To explain the behavior of SiC below, carbon (0 coexists in the refractory, and the oxygen partial pressure is 1 in an atmosphere in a brick of 1 000 to 1400 TC and in an equilibrium state. ( ⁇ 16 ⁇ 1 CP atmC0 2 minutes E 1 0 one half to one 0 one 4 atm, CO partial pressure approximately one atmosphere and Do that.
  • the oxygen partial pressure is varied in micropores which 1 0 one 5 - 1 0 S i CO decomposition in one 2 until this following hypoxic region be increased in the J? without obtaining the S i 0 2, and this with a force-size light that Ru preparative S i O gas. That S i As a result, the particle of C Response is that the cause.
  • peripheral in Mg O- S i 0 2-based refractories for example, between capital-click the scan unit to fill the full-ol scan Te La wells (pores I and 2MgO ⁇ S 1 O2 :) such as MgO of (aggregate) Densify.
  • MgO of (aggregate) Densify This densification of the matrix serves to prevent oxidation due to the operation of the carbon in the brick.
  • the matrices of the bricks are densified by the formation reaction of (1) and (2), thereby preventing oxidation of the bonfire.
  • the added SiC has a greater effect as it becomes ultra-fine powder, but when it is converted into ultra-fine particles such as 2 micron or less, it decomposes before the reaction by brick operation. In this case, the particles cannot be obtained as D, and the above-mentioned production reaction is rather suppressed.
  • Coarse particles such as 50 micron or more are hard to anti-IK. Instead, it is a harmful factor to the corrosion resistance of firebricks. Therefore, it is most desirable that the particle size distribution of silicon carbide in the present invention is 100%, which is not less than 2 micron and not more than 50 micron. Fine powders that can be obtained commercially have a particle ratio of 2 to 5 Q micron particles of about 85 to 95. However, it was confirmed that the above-mentioned effect of SiC can be exerted by using the material having the industrial particle size distribution.
  • the purpose of blending carbon (-graphite) is to improve the heat-resistant sporting properties due to its properties as described above. Brick with poor heat resistance and decarburization of working surface when added at more than 20%
  • OMPI I PO Excessive phenomena result in poor slag corrosion resistance. Further, the amount of carbon added is always larger than the amount of silicon carbide added, and it is desirable that the amount is approximately 1.5 to 2.0 times that of silicon carbide.
  • the refractory of the present invention is obtained by adding a resin binder to the raw material composition as described above, and adding a resin binder 2 to 5 in an ordinary manner.) Kneading, molding and drying by heating. It is manufactured in-depth but can also be made as a fired brick.
  • Table 2 shows the results of a comparative test in an actual furnace, which was performed by respectively lining the ⁇ -tun hot metal pretreatment furnace, dephosphorizing and desulfurizing the hot metal.
  • the refractory of the present invention has an average amount of wear (one charge of hot metal treatment) which is an index indicating the degree of achievement of prevention of oxidation of carbon in brick.
  • the amount of refractory wear converted per unit) has been significantly reduced. That is, conventional magnesium-carbon-based bricks containing SiC to prevent oxidation. Roof (conventional Italy 1) or magnesium-spinner
  • the carbon bricks (conventional example 2) had a wear of 5.0 mm and 2.8, respectively, whereas the magnesium bricks of the present invention had the same amount of wear.
  • Silica refractory bricks (Examples 1 and 2) average 2.3 ⁇
  • Magnesia spinner / carbon / carbon charcoal silica (Examples 3 and 4) average 2 ⁇ About 4 to 9 3 of conventional products

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A refractory comprising 60 to 95 wt % of magnesia or both magnesia and spinel, 3 to 20 wt % of carbon, and 2 to 15 wt % of silicon carbide in which 2 to 50 mu fine particles account for 85 % or more. This refractory prevents a decrease in the amount of contained carbon and minimizes abrasion when heated to high temperatures, because silicon carbide decomposes, when heated, to precipitate carbon which makes up for the loss of carbon in the refractory. This refractory is used for inner lining of vessels for previous treatment of molten pig iron.

Description

明 細 書  Specification
マ グ ネ シ ア一 カ ー ボ ン 一 炭珪系耐火物  Magnesia-Carbon-Carbon-silica refractories
技 術 分 野  Technical field
こ の発明は製鉄業特に溶銑の予備処理段階で使用され る耐火物の配合に関する。  The present invention relates to the refractory used in the steelmaking industry, particularly in the pretreatment stage of hot metal.
背 景 技 術  Background technology
最近は溶銑段階において精鍊剤と して、 ソ ー ダ灰  Recently, soda ash has been used as a refining agent in the hot metal stage.
(Na2 O3 ) ゃ融剤の螢石 (C a F2 ) を加えた生石炭 (C a O ) を用いて脱燐、 脱硫を行う 溶銑の予備処理が実施されつ つあ るが、 優れた精鍊剤であ る これ らの フ ラ ッ ク スはヽ (Na 2 O 3) Dephosphorization and desulfurization using raw coal (C a O) to which fluorite (C a F 2 ) as a flux is added These fluxes, which are cleansers,
溶銑処理炉の耐火物に対しては強力 ¾浸蝕剤と して作用  Strong against iron refractory furnaces. Acts as an erosion agent.
するの である。 こ の浸蝕作用に対 して高い耐食性を有す る耐火材料と してはマ グ ネ シ ア (MgO ) およ びス ピ ネ ル ' It does. Magnesia (MgO) and spinel are examples of refractory materials that have high corrosion resistance to this erosion effect.
(MgO · z 03 ) があげられる。 (MgO · z 0 3 ).
しか して上記耐火材料の耐蝕性を 1 0 0 発揮させる  However, the corrosion resistance of the above-mentioned refractory material is brought to 100.
ためには、 不純物の少い も のを使用 し特にマ ト リ ッ ク ス Use low-impurity materials, especially in the matrix
部には不純物を含有させるい よ う にする こ とが望ま しい Parts should contain impurities.
のであるが、 この よ う に して製造した耐火物は使用中の However, the refractories manufactured in this way are in use.
熱的スポー リ ン グに弱い、 即ち使用中の温度変化に よ つ Vulnerable to thermal spoiling, i.e. due to temperature changes during use
て表面き れつが発生し、 これに基因 して煉瓦の剝落現象 Cracks occur on the surface, causing the brick to fall
を発生 し易いと い う 欠点を有する。 It has the drawback that it is easy to cause cracks.
即ち第 1 表に示すよ う に マ グ ネ シ ア の熱間における線  In other words, as shown in Table 1, the hot wire of magnesium
膨張率は 1 0 0 O iC において 1. 4 0 % と高 く 熱伝導率は The coefficient of expansion is as high as 1.40% at 100 O iC and the thermal conductivity is
3. 8 と小さい、 さ らに 2 8 0 0 1C という 高融点のために 3.8 small and high melting point of 280 0 1C
ΟΜΡΙ 使用温度では液層を生成 し い こ とか ら熱的ス ポー リ ン グを起 し易いの であ る。 ス ピ ネ ル の場合はマ グネ シ ア に 比べて熱間線膨張率お よ び融点は若干低いが耐熱ス ポー ル リ ン グ性を満足するほ どの抵抗性はな い。 第 1 表 熱 的 特 性 ΟΜΡΙ At the operating temperature, the formation of a liquid layer tends to cause thermal sporting. In the case of spinel, the coefficient of linear thermal expansion and the melting point are slightly lower than those of magnesium, but there is no resistance that satisfies the heat-resistant sparkling property. Table 1 Thermal characteristics
Figure imgf000004_0001
そ こ でこ の よ う ¾熱的ス ポ ー リ ン グ性を改善するため に前記主原料に カ ー ボ ン (C)あ る いは炭化珪素 (S i C ) 、 も し く は両者を添加する こ と が従来行われている。 とれ は次の理由に よ る。 即ち カ ー ボ ンは通常グ ラ フ ア イ ト
Figure imgf000004_0001
In order to improve the thermal sparing property, carbon (C) or silicon carbide (SiC), or both, is used as the main raw material. Conventionally, the addition of This is due to the following reasons. That is, the carbon is usually graphite
( 黒鉛 ) の形で添加さ れるが、 グ ラ フ ア イ ト は第 1 表で 示すよ う に熱間線膨張率がマ グ ネ シ ア の 1 / であ 、 (Graphite), the graphite has a coefficient of linear thermal expansion that is 1 / that of magnesium, as shown in Table 1.
O PI O PI
WIPO 熱伝導率は 5 0 倍である ためマ グ ネ シ アに比べて極めて 優れた耐熱ス ポー リ ング性を有 しているか らである。 WIPO Because the thermal conductivity is 50 times, it has extremely excellent heat-resistant sporting properties as compared to magnesium.
ま たグ ラ フアイ ト は六方晶形に属 し層状構造で、 正六 角環平面内の炭素原子間の結合は強い共有結合であ るが 層間の結合がフ ァ ン デル ワ ー ス結合で弱 く、 従って層間 が滑 ]) 易いので熱変化に よって発生する熱応力を緩和す る特性を有するか らであ る。  Graphite belongs to the hexagonal form and has a layered structure. Bonds between carbon atoms in the plane of a regular hexagonal ring are strong covalent bonds, but bonds between layers are weak due to van der Waals bonds. Therefore, there is a characteristic that the thermal stress generated by the thermal change is reduced.
次に炭化珪素は第 1 表に示す よ う に熱間線膨張率はグ ラ フ ァ イ 卜 よ さ らに小さ く 、 熱伝導率 も マ グ ネ シ ア の 約 2 0 倍と高いこ とから耐熱的 ス ポー リ ン グ性に優れた 耐火材料である。  Next, as shown in Table 1, the coefficient of linear thermal expansion of silicon carbide is smaller than that of graphite, and its thermal conductivity is about 20 times higher than that of magnesium. Therefore, it is a refractory material with excellent heat resistance and sporting properties.
と こ ろが、 前記の よ う に マ グネ シ ア お よ びス ピ ネ ル の 耐熱的 ス ポー リ ン グ性を改善するためにカ ー ボ ンを添加 する と、 一方でカ ー ボ ン の酸化に よ る耐火物の劣化が問 題と るので、 カ ー ボ ン の酸化を抑制するために煉瓦組 織を徽密化するこ とが考え られるが、 前述 した よ う に グ ラ フ ァ イ ト は層間が滑 i? 易いため高 E成形に よ る緻密化 を図ろ う とする と ラ ミ ネ ー シ ョ ンが発- -生 し易い、 そこ で 成形充塡性を向上させるための結合剤や成形助剤を使用 する こ とが必要と な る。 また釉薬の よ う 酸化防止剤を 添加する方法も あるが、 何れに して も これ らの添加剤の 使用は耐火煉瓦の耐用性を低下させるので好ま し く ない。  However, as described above, when carbon is added to improve the heat-resistant sporting properties of magnesium and spinel, carbon is added on the other hand. Since the problem is the deterioration of refractories due to oxidation of bricks, it is conceivable to reduce the density of brick structures in order to suppress carbon oxidation. Since it is easy for the layers to be smooth between layers, lamination is likely to occur when trying to achieve densification by high-E molding, and molding fillability is improved there. It is necessary to use binders and molding aids for this purpose. There is also a method of adding an antioxidant such as glaze, but in any case, the use of these additives is not preferred because it reduces the durability of the refractory brick.
そこでこの様 ¾好ま し く い組織緻密化手段を と ら く て も、 カ ー ボ ン と炭化珪素 (S i C ) を 同時添加すれば 一 OMPI カ ー ボ ン の酸化防止に有効である こ とが経験的に知 られ ているの であるが、 その作用については従来解明されて いなかった。 ま た従来添加されていた炭化珪素の粒度は 1, 1 9 0〜 29 7 ミ ク ロ ン ( タ イ ラ ー標準篩の 1 4〜 4 8 メ ッ シュ ) で粗いも ので あ った。 Therefore, even if such an unfavorable structure densification method is used, the simultaneous addition of carbon and silicon carbide (SiC) will result in one OMPI. It is empirically known that it is effective in preventing the oxidation of carbon, but its action has not been elucidated. The particle size of the conventionally added silicon carbide was 1,190-297 micron (14-48 mesh of a Tiler standard sieve), which was coarse.
発 明 の 開 示  Disclosure of the invention
こ の発明は、 特定微紛の特定量の炭化珪素を カ ー ボ ン と同時添加する こ と によ って、 カ ー ボ ン の酸ィヒに よ る耐 火物の品質劣化を防止し、 使用に よ る損耗度を減少させ る こ と を 目的と し、 その要旨はマ グ ネ シ ア単味も し ぐ は マ グネ シア と ス ピ ネ ル (MgO · K 2 O3 ) の合量が 6 5〜 The present invention prevents the deterioration of refractory quality due to carbon acid by adding a specific amount of silicon carbide in a specific amount of powder together with carbon. , the total amount of that you Ru reduce the wear and tear of that by the use for the purpose, the spirit is also Ma grayed roots a plain fixture between Gune shear and vinegar pin, channel (MgO · K 2 O3) Is 6 5 ~
9 5重量 と カ ー ボ ン が 3〜 2 0 重量? g か ら ¾ る マ グ ネ シ ァ ー カ ー ボ ン も しく はマ グ ネ シ ア ー ス ビ ネ ル ー カ ー ボ ン系の耐火物配合に、 2〜 5 0 ミ ク ロ ン の微粒子を 8 5 以上含む炭化珪素 (S iC ) を 2〜 1 5 重量 添加 した 配合か ら るマ グネ シ ァ ー カ ー ボ ン一炭珪系耐火物であ る。 この発明はマ グ ネ シ アま たはマグネ シアー ス ピ ネ ル を主原料と しこれにカ ー ボ \を添加 したマ グ ネ シ ア一 力 一ボ ン系ま たは マ グネ シ ア ー ス ピ ネ ル一 力 — ボ ン系の 耐 火物に、 超微粉の炭化珪素の特定した少量を添加 したの でカ ー ボ ン の損耗を効果的に押える こ とができ る も の で o 発明を実施するため の最良の形態 9 5 weight and carbon weight 3 ~ 20? g to 50 to 50 micron microparticles in a magnesium carbonate or magnesium-based vinyl carbonate-based refractory formulation Is a magnesium-carbon-carbon-silicon-carbon-based refractory made by adding 2 to 15 parts by weight of silicon carbide (SiC) containing 85 or more. The present invention relates to a magnesium- or magnesium-based single-pole or magnesium-based system in which magnesium or magnesium spinel is the main raw material to which carbon is added. Spinel strength-The addition of a specific small amount of ultra-fine silicon carbide to the refractory of the bon type can effectively reduce carbon wear. BEST MODE FOR CARRYING OUT THE INVENTION
6 0 〜 9 5 重量 の マ グネ シア も し く は マ グネ シ ア と  60 to 95 weight of Magnesia or Magnesia
O PI IPO ス ピ ネ ル と、 3 〜 2 0 重量 の カ ー ボ ン と、 2〜 1 5 重 量 ^ の炭化珪素 ( 2 〜 5 0 ミ ク ロ ン の微粒子が 8 5 以 上含有されている も の ) と を配合 し、 これに レ ジ ン系パ イ ンダーを外掛 2〜 5 % 添加 し、 常法に よ ]? 混練、 成形、 乾燥も し く は焼成 して製造された耐火物の使用高温下に おける 前記 S i C の挙動について説明する と、 耐火物中 に カ ー ボ ン (0が共存 し、 1 000〜 1 400 TC の煉瓦内雰囲 気中かつ平衡状態では酸素分圧は 1 (Γ16 〜 1 CP atmC02 分 Eは 1 0一2 〜 1 0一4 atm, CO 分圧はほぼ 1 気圧と な る。 酸素分圧は微細気孔中で変動するがこれが 1 0一5 〜 1 0一2 ま で上昇して も これ以下の低酸素域では S i C O 分解は S i 02 とは J? 得ず、 S i O ガス と る る こ と力 判 明 した。 即ち S i C の粒子は 結果的にその表面で次の反 応が生ずるの である。 O PI IPO Spinel, 3 to 20 weight carbon, and 2 to 15 weight ^ silicon carbide (containing more than 85 microparticles of 2 to 50 micrones) ) And 2% to 5% of resin binder is added to the mixture, and use a conventional method. ?? Refractory manufactured by kneading, molding, drying or firing To explain the behavior of SiC below, carbon (0 coexists in the refractory, and the oxygen partial pressure is 1 in an atmosphere in a brick of 1 000 to 1400 TC and in an equilibrium state. (Γ 16 ~ 1 CP atmC0 2 minutes E 1 0 one half to one 0 one 4 atm, CO partial pressure approximately one atmosphere and Do that. the oxygen partial pressure is varied in micropores which 1 0 one 5 - 1 0 S i CO decomposition in one 2 until this following hypoxic region be increased in the J? without obtaining the S i 0 2, and this with a force-size light that Ru preparative S i O gas. That S i As a result, the particle of C Response is that the cause.
S i C + C O = S i O † + 2 G  S i C + C O = S i O † + 2 G
こ こで消費される C 0 は、 煉瓦の稼動状況下でス ラ グ中 O F e 0ゃ精鍊剤の ソ ー ダ灰 (Na2 C03 ) が煉瓦中の 力 一ボ ン (C) と反応する こ とに よ って生 じた も ので、 上記反 応式に よ って S i O ガ ス の発生 と同時に C の沈積を と も う 。 換言すれば煉瓦稼動中にその表面から酸化損耗さ れた力-一 ボ ンは、 同時に S i C の分解反応に作用 して煉 瓦中にさ らに再析出 されるのである。 C 0 consumed in here, the soda ash scan lag in OF e 0 Ya rectification鍊剤under operating conditions of bricks (Na 2 C0 3) force in brick Ichibo down (C) and the reaction Therefore, according to the above reaction formula, C is deposited at the same time as the generation of SiO gas. In other words, the force-bons, which were oxidized and worn from the surface during the operation of the brick, simultaneously act on the decomposition reaction of SiC and are re-precipitated in the brick.
さ らに上記反応で生成する S i 0 ガ スは煉瓦気孔中の 酸素分圧の高い位置で S i 02 に な !) 、 これが煉瓦主原料 Furthermore, the S i 0 gas generated by the above reaction becomes S i 0 2 at the position of high oxygen partial pressure in the pores of the brick! ) This is the main material of the brick
O PI  O PI
、Z 垂 ό , Z hanging ό
( 骨材 ) の MgO の周辺で Mg O— S i 02 系耐火物例えばフ オル ス テ ラ イ ト ( 2MgO · S 1 O2 :) 等と って気孔を 埋め マ ト リ ッ ク ス部を緻密化する。 こ の マ ト リ ッ ク ス の緻密 化が煉瓦中の カ ー ボ ン の稼動に よ る 酸化を防止する働 き をする の であ る。 The peripheral in Mg O- S i 0 2-based refractories for example, between capital-click the scan unit to fill the full-ol scan Te La wells (pores I and 2MgO · S 1 O2 :) such as MgO of (aggregate) Densify. This densification of the matrix serves to prevent oxidation due to the operation of the carbon in the brick.
以上 S i C 微粉の働き を ま と める と 次の様に な る。  The following summarizes the functions of the SiC fine powder.
① カ ー ボ ン の フ ィ ー ド バ ッ ク機構  ① Carbon feedback mechanism
煉瓦の稼動表面での 力 一 ボ ン の酸化損耗の結果煉瓦中 に C 0 ガ ス が生 じ、 これが煉瓦中の S i C と反応 して S I C 1 モ ル に対 して 2 モ ル の C が再析出 して組織が緻密 化する。  As a result of oxidizing wear of the bonbon on the working surface of the brick, C0 gas is generated in the brick, which reacts with SiC in the brick and reacts with 2C of C per 1M of SIC. Reprecipitates and the structure becomes dense.
② 新化合物の生成  ② Generation of new compounds
も う 1 つ の S i C 反応物生成物であ る S i 0 ガ スは煉 瓦気孔中で S i 02 と ¾ J? 、 M g 0 原料粒子の表面で MgO — S i 02 系化合物 ( 耐火物 ) を生成 し気孔を埋める。 S i 0 2 and ¾ J also cormorants one S i C reaction products der Ru S i 0 gas in practitioners tile pores? , MgO at the surface of M g 0 material particles - fill S i 0 generated pores of 2 compounds (refractory).
③ 煉瓦中 カ ー ボ ン の酸化防止  ③ Prevention of oxidation of carbon in brick
①お よ び②の生成反応に よって煉瓦の マ ト リ ッ ク スが 緻密化 しこれに よ って 力 一ボ ン の酸化防止.が図 られる。  The matrices of the bricks are densified by the formation reaction of (1) and (2), thereby preventing oxidation of the bonfire.
こ で、 S i C の分解反応は 1 0 種類位あ る が、 以上 説明 した条件下では前記 した反応機構が進行する こ とが 顕微鏡検査その他組織の ミ ク π 的解析に よ って明 らか と なった。 ま た原科骨材がマ グ ネ シ ア の場合は勿論、 マ グ ネ シ ァ と ス ピ ネ ル が共存の場合 も 同様に成 立つこ と カ わかった。  Here, there are about 10 types of SiC decomposition reactions, but it is clear from microscopic inspection and other microscopic analysis of tissues that the above-mentioned reaction mechanism proceeds under the conditions described above. It became. In addition, it was found that the same holds true when both magnesium and spinel coexist, as well as when the raw aggregate is magnesium.
OMfl OMfl
, WIPO 、 以上の解析結果に よ って、 S i C の添加に よ る マ ト リ ッ ク ス の強化ひいては カ ー ボ ン の酸化防止はその添加量 に よ るのでは く S i C 粒子の総比表面積に比例する と の結論に達 した。 , WIPO, According to the above analysis results, the enhancement of the matrix by the addition of SiC and the prevention of carbon oxidation are not dependent on the added amount but on the total ratio of SiC particles. We concluded that it is proportional to the surface area.
- 従って添加する S i C は超微粉にる るに従って効果は 大き いの であ る が、 2 ミ ク ロ ン以下の如き 超微粒子に る と煉瓦稼動に よ る反応に至る以前に分解 して しま って 粒子であ D 得ず前述の生成反応はかえつて抑制される。 ま た 5 0 ミ ク ロ ン以上の如き粗い粒子は反 IK し難 く ¾ i? 、 かえって耐火煉瓦の耐食性に対 して有害要因と ¾ る。 従 つてこ の発明における炭化珪素の粒度分布は 2 ミ ク ロ ン 以上 5 0 ミ ク ロ ン以下の も のカ 1 0 0 % であ る こ とが最 も 望ま しいのであ るが、 現在工業的に入手し得る微粉は、 2 〜 5 Q ミ ク ロ ン の粒子の割合は 8 5 〜 9 5 程度ま で である。 しか しこの工業的粒度分布の も の を使用 して充 分前述の S i C の効果が発揮で き る こ と を確認 した。  -Therefore, the added SiC has a greater effect as it becomes ultra-fine powder, but when it is converted into ultra-fine particles such as 2 micron or less, it decomposes before the reaction by brick operation. In this case, the particles cannot be obtained as D, and the above-mentioned production reaction is rather suppressed. Coarse particles such as 50 micron or more are hard to anti-IK. Instead, it is a harmful factor to the corrosion resistance of firebricks. Therefore, it is most desirable that the particle size distribution of silicon carbide in the present invention is 100%, which is not less than 2 micron and not more than 50 micron. Fine powders that can be obtained commercially have a particle ratio of 2 to 5 Q micron particles of about 85 to 95. However, it was confirmed that the above-mentioned effect of SiC can be exerted by using the material having the industrial particle size distribution.
次に S i C の添加量は、 煉瓦配合全量において 2 %以 下ではこ の発明の前記 した よ う ¾効果は発揮で き ず、 ま 1 5 %以上添加する と煉瓦の耐蝕性がむ しろ低下 して く る こ とが判明 した。  Next, if the added amount of SiC is less than 2% in the total amount of the brick, the above-mentioned effect of the present invention cannot be exhibited, and if the added amount is more than 15%, the corrosion resistance of the brick becomes insufficient. It was found that it was decreasing.
さて、 カー ボ ン (- グ ラ フ ア イ ト ) を配合する 目 的は前 述 したよ う にその性状か ら耐熱スポー リ ン グ性の向上に あるが、 3. 0 % 以下の少量では耐熱ス ポー ル性に乏 しい 煉瓦と な 、 ま た 2 0 %以上添加する と稼動表面の脱炭  The purpose of blending carbon (-graphite) is to improve the heat-resistant sporting properties due to its properties as described above. Brick with poor heat resistance and decarburization of working surface when added at more than 20%
OMPI IPO 現象が増加 し過 ぎてス ラ グに対する 耐蝕性が低下する結 果 と な る。 ま た カ ー ボ ン の添加量は炭化珪素の添加量 よ 常に多 ぐ 、 概ねその 1. 5 〜 2. 0 倍程度であ る こ とが望 ま しい。 OMPI I PO Excessive phenomena result in poor slag corrosion resistance. Further, the amount of carbon added is always larger than the amount of silicon carbide added, and it is desirable that the amount is approximately 1.5 to 2.0 times that of silicon carbide.
こ の発明の 耐火物は、 以上の よ う に構成 した原料配合 に レ ジ ン系バ イ ン ダ ー を外掛 2 〜 5 添加 し、 常法に よ ]) 混練、 成形お よ び加熱乾'深 して製造されるが焼成煉瓦 とする こ と も でき る。  The refractory of the present invention is obtained by adding a resin binder to the raw material composition as described above, and adding a resin binder 2 to 5 in an ordinary manner.) Kneading, molding and drying by heating. It is manufactured in-depth but can also be made as a fired brick.
次に こ の発明の 1†火煉瓦の実施例 と、 従来の マ グネ シ ァ ー カ ー ボ ンま たは マ グ ネ シ ア ー ス ピ ネ ル一カ ー ボ ン系 耐火煉瓦を 2 0 α 屯溶銑予備処理炉にそれぞれ ラ イ - ン グ して、 主に溶銑の脱燐、 脱硫処理を行って実炉におい て比較試験 した結果を第 2 表に示す。  Next, the embodiment of the 1 † fire brick of the present invention and the conventional magnesium carbonate or magnesium spinner-carbon-based refractory brick were used in the present invention. Table 2 shows the results of a comparative test in an actual furnace, which was performed by respectively lining the α-tun hot metal pretreatment furnace, dephosphorizing and desulfurizing the hot metal.
第 2 表か ら 明 ら か よ う に、 この 発明の耐火物は、 煉 瓦中の カ ー ボ ン の酸化防止の達成度を表す指標であ る平 均損耗量 ( 溶銑処理 1 チ ャ ー ジ毎に換算 した耐火物の損 耗量 ) は従来 よ 頗 し く 減少 した。 即ち酸化防止のため の S i C を添加 し ¾い従来の マ グ ネ シ ア 一 カ ー ボ ン系煉-. 瓦 ( 従来伊 1 ) ある いはマ グ ネ シ ア 一 ス ピ ネ ル一 カ ー ボ ン系煉瓦 ( 従来例 2 ) の損耗量がそれぞれ 5. 0 腳 、 2. 8 賺であつた-のに対 して、 こ の発明のマ グ ネ シ ア一カ ー ボ ンー炭珪系の耐火煉瓦 ( 実施例 1 お よ び 2 ) は平均 2. 3 ヽ マ グネ シ ア ー ス ピ ネ ル 一 カ ー ボ ン一炭珪系 ( 実施例 3 ぉ ょ び 4 ) は平均 2· 2 翻 で従来製品の ほぽ 6 4 〜 9 3  As can be seen from Table 2, the refractory of the present invention has an average amount of wear (one charge of hot metal treatment) which is an index indicating the degree of achievement of prevention of oxidation of carbon in brick. The amount of refractory wear converted per unit) has been significantly reduced. That is, conventional magnesium-carbon-based bricks containing SiC to prevent oxidation. Roof (conventional Italy 1) or magnesium-spinner The carbon bricks (conventional example 2) had a wear of 5.0 mm and 2.8, respectively, whereas the magnesium bricks of the present invention had the same amount of wear. Silica refractory bricks (Examples 1 and 2) average 2.3 ヽ Magnesia spinner / carbon / carbon charcoal silica (Examples 3 and 4) average 2 · About 4 to 9 3 of conventional products
OMPI a 第 2表 従来例と実施例の使用成績表 OMPI a Table 2 Usage report of conventional example and example
S
ピ521-
Figure imgf000011_0001
ネ 790 注 1 :物性値は、 1 4 0 0 1C 3 hr 加熱後
PI 521-
Figure imgf000011_0001
790 Note 1: Physical property value is 1 4 0 1 C 3 hr after heating
注 2 配合割合(重量 ) マグネシア  Note 2 Mixing ratio (weight) Magnesia
実施例 3. 68  Example 3.68
" . 7  ". 7
従来例 2. 51 Conventional example 2.51
、 平均して 8 5 % に減少した。 結果的に耐火煉瓦の耐 用命数を 1. ! 〜 1. 5 倍、 平均して約 1. 2倍に延長する こ とができ、 その工業的効果は大き い。 , On average decreased to 85%. As a result, the service life of the refractory brick is 1.! It can be extended up to 1.5 times, on average about 1.2 times, and its industrial effect is great.

Claims

請 求 の 範 囲 The scope of the claims
マ グネ シア も し く は マ グネ シ ア と ス ピ ネ ル の合量カ  Magnesia or the combined amount of magnesium and spinel
0 0 〜 9 5 重量 と、 カ ー ボ ン 力 5 〜 2 0 重量 とヽ 2 〜 5 0 ミ ク α ン の微粒子を 8 5 以上含む炭化珪素が 2 0 to 95 weight, carbon force of 5 to 20 weight, and 2 to 50 silicon carbide containing more than 85 microparticles of micro α
〜 1 5 重量 か ら な る こ と を特徴 と す る マ グ ネ シ ア 一 力 — ボ ン一炭珪系耐火物。 Magnesia is characterized by its weight of up to 15 weight.
ΟΜΡΙ ΟΜΡΙ
く « 。  «
PCT/JP1983/000205 1982-06-29 1983-06-28 Magnesia-carbon-silicon carbide refractory WO1984000158A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110652A JPS593068A (en) 1982-06-29 1982-06-29 Magnesia-carbon-silicon carbide refractories

Publications (1)

Publication Number Publication Date
WO1984000158A1 true WO1984000158A1 (en) 1984-01-19

Family

ID=14541089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1983/000205 WO1984000158A1 (en) 1982-06-29 1983-06-28 Magnesia-carbon-silicon carbide refractory

Country Status (2)

Country Link
JP (1) JPS593068A (en)
WO (1) WO1984000158A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909286A (en) * 1987-11-12 1990-03-20 Picanol N.V. Method for regulating the supply of weft thread on weaving machines, and a device which uses this method
GB2259509A (en) * 1991-09-13 1993-03-17 Radex Heraklith Fired fireproof ceramic body
EP2674407A1 (en) * 2012-06-15 2013-12-18 Refractory Intellectual Property GmbH & Co. KG Refractory ceramic formulation and brick formed therefrom
CN111348898A (en) * 2019-07-08 2020-06-30 营口石兴耐火材料科技有限公司 Method for optimizing slag corrosion resistance and penetration resistance of low-carbon magnesia carbon material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116283234A (en) * 2023-03-29 2023-06-23 安徽精公检测检验中心有限公司 Environment-friendly fireproof magnesia brick for cement kiln and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526713A (en) * 1975-07-05 1977-01-19 Kyushu Refractories Spinel refractories
JPS56145167A (en) * 1980-04-11 1981-11-11 Kurosaki Refractories Co Non-burnt refractory brick

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526713A (en) * 1975-07-05 1977-01-19 Kyushu Refractories Spinel refractories
JPS56145167A (en) * 1980-04-11 1981-11-11 Kurosaki Refractories Co Non-burnt refractory brick

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909286A (en) * 1987-11-12 1990-03-20 Picanol N.V. Method for regulating the supply of weft thread on weaving machines, and a device which uses this method
GB2259509A (en) * 1991-09-13 1993-03-17 Radex Heraklith Fired fireproof ceramic body
EP2674407A1 (en) * 2012-06-15 2013-12-18 Refractory Intellectual Property GmbH & Co. KG Refractory ceramic formulation and brick formed therefrom
WO2013185983A1 (en) * 2012-06-15 2013-12-19 Refractory Intellectual Property Gmbh & Co. Kg Refractory ceramic batch and brick produced therefrom
US9334190B2 (en) 2012-06-15 2016-05-10 Refractory Intellectual Property Gmbh & Co Kg Refractory ceramic batch and brick formed therefrom
CN111348898A (en) * 2019-07-08 2020-06-30 营口石兴耐火材料科技有限公司 Method for optimizing slag corrosion resistance and penetration resistance of low-carbon magnesia carbon material

Also Published As

Publication number Publication date
JPS593068A (en) 1984-01-09

Similar Documents

Publication Publication Date Title
CN102167569A (en) Bauxite-based nanometer composite oxide ceramic bond A1203-MgO-C unfired product and preparation method thereof
JP2015044734A (en) Cement-free refractory
CN114195529A (en) High-strength magnesium refractory mortar for refining steel ladle
JPS6343342B2 (en)
CN112645698A (en) Aluminum titanium silicon carbide composite refractory castable for iron-making blast furnace
WO1984000158A1 (en) Magnesia-carbon-silicon carbide refractory
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
CN101402527A (en) Compact aluminum silicon carbide composite material and method of manufacturing the same
JPS6119584B2 (en)
JPH11322405A (en) Low carbon refractory and its production
JP6354807B2 (en) Cast refractories for blast furnace main slag line
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JPH02141480A (en) Castable refractory
JP2922998B2 (en) Irregular refractories for blast furnace gutters
JPS593069A (en) Alumina-silicon carbide-carbon refractories
JPH07267719A (en) Alumina-magnesia-carbon brick
JPS6024072B2 (en) Blast furnace gutter material
JPS6033782B2 (en) Refractories for hot metal pretreatment
JPH06172044A (en) Castable refractory of alumina spinel
JPH04231371A (en) Carbon-containing refractory
CN116396086A (en) Environment-friendly low-carbon aluminum magnesium spinel brick and preparation method thereof
CN112759405A (en) Aluminum titanium silicon carbide composite refractory shaped product for iron-making blast furnace
JPS6048467B2 (en) Alumina-svinel-carbon refractories
JPH02283656A (en) Carbon-containing refractory
JPH05105532A (en) Refractory for vessel used in pretreating molten iron

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): AT DE FR GB

Kind code of ref document: A1

Designated state(s): AT DE FR GB