JPS6048467B2 - Alumina-svinel-carbon refractories - Google Patents

Alumina-svinel-carbon refractories

Info

Publication number
JPS6048467B2
JPS6048467B2 JP56209960A JP20996081A JPS6048467B2 JP S6048467 B2 JPS6048467 B2 JP S6048467B2 JP 56209960 A JP56209960 A JP 56209960A JP 20996081 A JP20996081 A JP 20996081A JP S6048467 B2 JPS6048467 B2 JP S6048467B2
Authority
JP
Japan
Prior art keywords
carbon
alumina
sic
brick
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56209960A
Other languages
Japanese (ja)
Other versions
JPS58115073A (en
Inventor
福一 木谷
達人 高橋
禎一 藤原
裕次 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Shiro Renga KK
JFE Engineering Corp
Original Assignee
Shinagawa Shiro Renga KK
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Shiro Renga KK, Nippon Kokan Ltd filed Critical Shinagawa Shiro Renga KK
Priority to JP56209960A priority Critical patent/JPS6048467B2/en
Publication of JPS58115073A publication Critical patent/JPS58115073A/en
Publication of JPS6048467B2 publication Critical patent/JPS6048467B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 この発明は製鉄業特に溶銑の予備処理段階で使用される
耐火物の配合の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to the composition of refractory formulations used in the steel industry, particularly in the pretreatment stage of hot metal.

最近溶銑段階において、精練剤としてソーダ灰(Na。Recently, soda ash (Na) has been used as a scouring agent in the hot metal stage.

O0)や、融剤として螢石(CaF0)を加えた生石灰
(CaO)を用いて脱燐、脱硫を行う溶銑の予備処理法
が検討されているが、優れた精練剤であるこれらのフラ
ックスは溶銑処理炉の耐火物に対しては強力な侵蝕剤と
して作用する。この侵蝕作第1表 アルミナ・カー用に
対して高い侵蝕性を有する耐火材料としてアルミナ(A
l。
Pretreatment methods for molten pig iron are being considered, in which dephosphorization and desulfurization are performed using quicklime (CaO) containing fluorite (CaF0) and fluorite (CaF0) as a flux, but these fluxes, which are excellent scouring agents, are It acts as a strong corrosive agent for refractories in hot metal processing furnaces. Table 1: Alumina (A
l.

03)およびスピネル(MgO−Al。03) and spinel (MgO-Al.

O0)があげられる。しかしてこれ等の耐火材料の耐蝕
性を100%発揮させるためにはこれらに不純物の少い
材料を使用し特にマトリックス部に不純物を含有させな
いことが望ましいが、一方これ等を主原料とする耐火煉
瓦は使用中の熱的スポーリングに弱い即ち温度の変化に
起因する剥落現象が発生し易いという欠点を有する。
O0) can be mentioned. However, in order to fully demonstrate the corrosion resistance of these refractory materials, it is desirable to use materials with few impurities, especially not to contain impurities in the matrix part. Bricks have the disadvantage that they are susceptible to thermal spalling during use, that is, they are susceptible to flaking due to temperature changes.

たとえばアルミナについて述べると、第1表に示すよう
にその熱間線膨張率は0.86%と高いこと、および高
融点のため使用温度で液相を生成しないことから熱的ス
ポーリングを起し易い。スピネルの場合は膨張率および
融点はさら・に高くなる。ーン・炭化珪素の熱的特性 そこでこのような熱的スポーリング性を改善するために
前記主原料にカーボンCあるいは炭化珪素(SIC)も
しくは両者を添加することが行われている。
For example, regarding alumina, as shown in Table 1, its coefficient of hot linear expansion is as high as 0.86%, and because of its high melting point, it does not form a liquid phase at the operating temperature, which causes thermal spalling. easy. In the case of spinel, the expansion rate and melting point are even higher. Carbon C, silicon carbide (SIC), or both are added to the main raw material in order to improve such thermal spalling properties.

これは次の理由による。即ちカーボンは (通常グラフ
ァイト (黒鉛)の形で使用されるが、グラファイトは
第1表に示すように熱間膨張率はアルミナの半分であり
、熱伝導率は2晧であるためアルミナより極めて優れた
耐熱スポーリング性を有している。またグラファイトは
六方晶形に属し層状構造て、正六角環平面内の炭素原子
間は強い共有結合であるが層間の結合はフアンデルワー
ルス結合て弱く、層間は滑り易いので熱変化によつて発
生する熱応力を緩和する特性を有するからである。また
炭化珪素は第1表に示すように、アルミナに比べて熱膨
張率はさらに小さく熱伝導率も高いことから耐熱スポー
リング性に優れた材料である。ところが、前記のように
アルミナ、スピネルの耐熱スポーリング性を改善するた
めにカーボンを添加すると、一方でカーボンの酸化によ
る耐火物の劣化が問題となるので、カーボンの酸化を抑
制するため煉瓦組織を緻密化することが考えられるが、
前述のようにグラファイトは層間が滑り易く高圧成形す
るとラミネーションが発生し易いの.で、成形充填性を
向上させるための結合剤や成形助剤を使用する方法があ
る。
This is due to the following reason. In other words, carbon is usually used in the form of graphite (graphite), but as shown in Table 1, graphite has a coefficient of thermal expansion that is half that of alumina, and a thermal conductivity of 2 K, making it extremely superior to alumina. Graphite belongs to a hexagonal crystal structure and has a layered structure, with strong covalent bonds between carbon atoms in the regular hexagonal ring plane, but weak bonds between layers due to van der Waals bonds. This is because silicon carbide is slippery and has the property of relieving thermal stress caused by thermal changes.Also, as shown in Table 1, silicon carbide has a lower coefficient of thermal expansion than alumina and a higher thermal conductivity. Therefore, it is a material with excellent heat spalling resistance. However, as mentioned above, when carbon is added to improve the heat spalling resistance of alumina and spinel, deterioration of the refractory due to oxidation of carbon becomes a problem. Therefore, it is possible to make the brick structure denser in order to suppress carbon oxidation.
As mentioned above, the layers of graphite are slippery and lamination is likely to occur when high-pressure molding is performed. There is a method of using a binder or a molding aid to improve the molding and filling properties.

また釉薬のような酸化防止剤を添加する方法もあるが、
何れにしてもこれらの添加剤の使用は耐火煉瓦の耐用性
を低下させるので好ましくない。そこでこの様な組織緻
密化の手段をとらず、カーボンと炭化珪素を同時添加す
ればカーボンの酸化防止に有効てあることが経験的に知
られているのであるが、この作用・効果については解明
されていない。
There is also a method of adding antioxidants such as glazes,
In any case, the use of these additives is undesirable because it reduces the durability of the refractory brick. Therefore, it is known from experience that adding carbon and silicon carbide simultaneously without taking such measures to densify the structure is effective in preventing oxidation of carbon, but this action and effect have not been elucidated. It has not been.

4 発明者等はこの炭化珪素(SIC)の酸化防止効果につ
いて種々実験と使用後耐火煉瓦の解析を行つた結果、ア
ルミナ、スピネルを主原料としカーボンを添加したアル
ミナ−スピネルーカーボン系耐火物に超微細の炭化珪素
を少量添加することがカーホンの酸化防止に極めて有効
であるとゆう知見を得た。
4 The inventors conducted various experiments on the anti-oxidation effect of silicon carbide (SIC) and analyzed used refractory bricks, and as a result, they found that an alumina-spinel-carbon refractory made of alumina and spinel as main raw materials and added with carbon. We have found that adding a small amount of ultrafine silicon carbide is extremely effective in preventing oxidation of carphone.

即ちこの発明は特定微粉、特定量の炭化珪素をカーボン
と同時添加することによつて、カーボンの酸化による耐
火物の品質劣化を防止し、耐火物の使用による損耗度を
減少させることを目的とし、その要旨は、アルミナ(A
l2Oa)およびスピネル((MgO−Al。
That is, the purpose of this invention is to prevent quality deterioration of refractories due to oxidation of carbon and reduce the degree of wear and tear caused by the use of refractories by simultaneously adding a specific fine powder and a specific amount of silicon carbide with carbon. , the gist of which is that alumina (A
l2Oa) and spinel ((MgO-Al.

O。)原料の一種または2種を80〜95重量%と、カ
ーボン3〜15重量%および2 〜30ミクロンの微粒
子が85%以上である炭化珪素(SiC)を2〜5重量
%を含むことを特徴とするアルミナ−スピネルーカーボ
ン系耐火物にある。先ずSiCの高温下における挙動に
ついて述べると、耐火煉瓦中にカーボンCが共存し、1
000〜1400℃の煉瓦内雰囲気中でかつ平衡状態で
、酸素分圧は10−”゜〜10−゛゜atm)CO。
O. ) 80 to 95% by weight of one or two kinds of raw materials, 3 to 15% by weight of carbon, and 2 to 5% by weight of silicon carbide (SiC), of which 85% or more is fine particles of 2 to 30 microns. It is an alumina-spinel-carbon based refractory. First, to discuss the behavior of SiC at high temperatures, carbon C coexists in refractory bricks, and 1
In the atmosphere inside the brick at 000 to 1,400°C and in an equilibrium state, the oxygen partial pressure is 10-'' to 10-atm) CO.

分圧は10−2 〜10−゜atmNc0分圧はほぼ1
気圧である。酸素分圧は微細気孔中で変動するものであ
るが、10−”〜10−゜atmまで上昇しても、これ
以下の低酸素域ではSiCの分解はSiO。とはなり得
ずSiOガスとなることが判明した。即ちSICの粒子
は結果的にその表面で次の反応を生ずる。SlCfCO
=SIO↑+f この反応はSiOガスの発生と同時にCの沈積をともな
う。
Partial pressure is 10-2 ~ 10-゜atmNc0 partial pressure is approximately 1
It is atmospheric pressure. Oxygen partial pressure fluctuates in micropores, but even if it rises to 10 to 10 atm, in the low oxygen range below this, SiC will not decompose into SiO gas. It was found that the SIC particles eventually undergo the following reaction on their surface: SlCfCO
=SIO↑+f This reaction accompanies the generation of SiO gas and the deposition of C.

そこで消費されるCOは、煉瓦の稼動状況下でスラグ中
のFeOや精練剤のソーダ灰(Na2CO。)が煉瓦中
のカーボンCと反応することによつて生ずるもので、換
言すれば稼動中表面から酸化損耗されたカーボンはSi
Cの分解反応によつて、煉瓦中で再析出されるのである
。さらに上記反応で生成するSiOガスは煉瓦中の酸素
分圧の高い位置でSiOになり、これが煉瓦骨材のAl
’。
The CO consumed there is generated when FeO in the slag and soda ash (Na2CO), a scouring agent, react with carbon C in the bricks under the operating conditions of the bricks. The carbon that has been oxidized and lost from Si
It is reprecipitated in the brick by the decomposition reaction of C. Furthermore, the SiO gas generated in the above reaction becomes SiO at a location where the oxygen partial pressure is high in the brick, and this becomes SiO in the brick aggregate Al.
'.

0。0.

の周辺でAl。O3−SlO2系化合物例えばムライト
(3Ae203・2Si02)等となつて気孔を埋め、
マトリックス部を緻密化する。このマトリックスの緻密
化が煉瓦中カーボンの酸化防止の働きをするのてある。
以上SiCの働きをまとめると次の様になる。
Al around. O3-SlO2-based compounds such as mullite (3Ae203.2Si02) fill the pores,
Densify the matrix part. This densification of the matrix works to prevent the oxidation of carbon in bricks.
The functions of SiC can be summarized as follows.

1 カーボンのフィードバック機構 煉瓦の稼動表面でのカーホンの酸化損耗の結果煉瓦中に
COガスが生じ、SICと反応してSIClモルに対し
て2モルのCが析出して組織が緻密化する。
1 Carbon Feedback Mechanism As a result of oxidative wear of carphone on the operating surface of the brick, CO gas is generated in the brick, which reacts with SIC to precipitate 2 moles of C per mole of SIC1, resulting in a densified structure.

2 新化合物の生成 もう一つの反応生成物であるSiOガスは煉瓦気孔中て
SIO。
2 Generation of new compounds SiO gas, another reaction product, is SIO in the brick pores.

となり、Al。O。原料の表面でAl。O。−SIO。
系化合物を生成し気孔を埋める。3 煉瓦中カーホンの
酸化防止 2の化合物生成は気相から固相の生成反応であり、マト
リックスが緻密化し、これによつてカーボンの酸化防止
が図られる。
So, Al. O. Al on the surface of the raw material. O. -SIO.
Generates system compounds and fills the pores. 3. Preventing oxidation of carphone in bricks The production of the compound in 2 is a reaction from a gas phase to a solid phase, and the matrix becomes dense, thereby preventing the oxidation of carbon.

SICの分解反応はル種類位あるが、以上説明した条件
下において前記の反応機構が進行することが頭微鏡検査
その他組織のミクロ的解析によつて明らかとなつた。
Although there are several types of SIC decomposition reactions, it has been clarified by microscopic examination of the head and other microscopic analyzes of tissues that the reaction mechanism described above proceeds under the conditions described above.

また骨材がアルミナの場合は勿論スピネルもしくはスピ
ネルと共存の場合も同様に成り立つことがわかつた。以
上の解析結果によつて、SIC添加によるマトリックス
の強化、カーボンの酸化防止はその添加量によるのでは
なくSIC粒子の総比表面積に比例するとの結論に達し
た。
It was also found that the same holds true not only when the aggregate is alumina, but also when it coexists with spinel or spinel. Based on the above analysis results, it was concluded that the strengthening of the matrix and the prevention of carbon oxidation by adding SIC do not depend on the amount added, but are proportional to the total specific surface area of the SIC particles.

従つて、添加するSICの粒度は微粉である程効果は大
きいので2 〜30ミクロンの微粒子が100%である
微粉を使用することが最も望ましいのであるが、現在工
業的に入手し得る微粉は2 〜30ミクロンの粒子の割
合が85%以上93%程度までであり、このような粒度
でも充分前述のSiCの効果が発揮できることを確認し
た。
Therefore, the finer the particle size of the SIC to be added, the greater the effect, so it is most desirable to use a fine powder that is 100% fine particles of 2 to 30 microns, but the currently industrially available fine powder is 2. It was confirmed that the ratio of particles of ~30 microns was about 85% to 93%, and that even with such a particle size, the above-mentioned effects of SiC could be sufficiently exhibited.

また2ミクロン未満の如き超微粒子は前述したような煉
瓦稼動後の反応に至る以前に分解して粒子であり得ない
ので少い程よい。また30ミクロンを越えるような粗い
粒子は反応し難くなり同時に耐火煉瓦の耐蝕性に対して
有害要因となるので少い程よい。またSiCの添加量は
、煉瓦全量に対して2重量%未満では、この発明の前記
したような効果は発揮てきず。
Further, ultrafine particles of less than 2 microns are decomposed and cannot become particles before the reaction occurs after the bricks are operated as described above, so the smaller the number, the better. Further, coarse particles exceeding 30 microns are difficult to react with and at the same time are harmful to the corrosion resistance of refractory bricks, so the smaller the better. Further, if the amount of SiC added is less than 2% by weight based on the total amount of bricks, the above-described effects of the present invention cannot be achieved.

またm重量%を添加すると煉瓦の耐蝕性が低下してくる
ことが判明したので、SiCの添・加量は5重量%以下
が最も望ましい。カーボン(グラファイト)の添加の目
的は前述したように耐熱スポーリング性の向上にあるが
、3.0重量%未満の少量では耐熱スポール性に乏しい
煉瓦となり、またカーボンを15重量%を越えてフ添加
すると稼動表面の脱炭現象が増加してスラグに対する耐
蝕性が低下する。
It has also been found that the corrosion resistance of bricks decreases when m weight % is added, so the most desirable amount of SiC to be added is 5 weight % or less. As mentioned above, the purpose of adding carbon (graphite) is to improve heat spalling resistance, but if it is added in a small amount less than 3.0% by weight, the resulting brick will have poor heat spalling resistance, and if it exceeds 15% by weight, it will result in a brick with poor heat spalling resistance. When added, the decarburization phenomenon on the working surface increases and the corrosion resistance against slag decreases.

なおりーホンの添加量は炭化珪素の添加量の1.5〜2
.0倍程度に多くする方が望ましい。次にこの発明の耐
火煉瓦と従来のアルミナーカ5−ボンー炭化珪素系煉瓦
を2卯屯溶銑予備処理炉にライニングし、主に溶銑の脱
燐、脱硫処理をした場合の実施例の結果を第2表に示す
The amount of Naorihon added is 1.5 to 2 times the amount of silicon carbide added.
.. It is preferable to increase the number to about 0 times. Next, the results of the example in which the refractory brick of the present invention and the conventional alumina 5-bon silicon carbide brick were lined in a 2-ton hot metal pretreatment furnace, and the hot metal was mainly subjected to dephosphorization and desulfurization treatment, are shown in the second example. Shown in the table.

− 侘11i夕ψH÷ ″Gll 第2表から明らかな様に、この発明の耐火煉瓦は、煉瓦
中にカーホンの酸化防止の達成度を表す平均損耗量即ち
溶銑処理1チャージ毎に換算した煉瓦の損耗量は頗しく
減少した。
− 11i ψH ÷ ″Gll As is clear from Table 2, the refractory brick of the present invention has an average loss amount representing the degree of achievement of oxidation prevention of carbon in the brick, that is, the amount of loss of the brick calculated for each charge of hot metal treatment. The amount of wear and tear has decreased significantly.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナ(Al_2O_3)およびスピネル(Mg
O・Al_2O_5)原料の一種または2種を80〜9
5重量%と、カーボン3〜15重量%および2〜30ミ
クロンの微粒子が85%以上である炭化珪素(SiC)
を2〜5重量%を含むことを特徴とするアルミナ−スピ
ネル−カーボン系耐化物。
1 Alumina (Al_2O_3) and spinel (Mg
O・Al_2O_5) One or two kinds of raw materials are 80 to 9
Silicon carbide (SiC) with 5% by weight, 3 to 15% by weight of carbon, and 85% or more of fine particles of 2 to 30 microns.
An alumina-spinel-carbon-based chemical resistant material containing 2 to 5% by weight of
JP56209960A 1981-12-28 1981-12-28 Alumina-svinel-carbon refractories Expired JPS6048467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56209960A JPS6048467B2 (en) 1981-12-28 1981-12-28 Alumina-svinel-carbon refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209960A JPS6048467B2 (en) 1981-12-28 1981-12-28 Alumina-svinel-carbon refractories

Publications (2)

Publication Number Publication Date
JPS58115073A JPS58115073A (en) 1983-07-08
JPS6048467B2 true JPS6048467B2 (en) 1985-10-28

Family

ID=16581515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209960A Expired JPS6048467B2 (en) 1981-12-28 1981-12-28 Alumina-svinel-carbon refractories

Country Status (1)

Country Link
JP (1) JPS6048467B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6341986A (en) * 1985-10-07 1987-04-09 Dresser Industries Inc. Refractory composition having high alkali resistance
JP3528948B2 (en) * 1995-07-28 2004-05-24 Jfeスチール株式会社 Ladle for vacuum refining

Also Published As

Publication number Publication date
JPS58115073A (en) 1983-07-08

Similar Documents

Publication Publication Date Title
JPH0352428B2 (en)
CN112645698A (en) Aluminum titanium silicon carbide composite refractory castable for iron-making blast furnace
JPS6048467B2 (en) Alumina-svinel-carbon refractories
JP2002020177A (en) High-silicon carbide-containing castable refractory
JPS593068A (en) Magnesia-carbon-silicon carbide refractories
JP2556416B2 (en) Casting material for blast furnace gutter
JPH04231371A (en) Carbon-containing refractory
JPH07267719A (en) Alumina-magnesia-carbon brick
US499248A (en) Basic lining
JP3076848B2 (en) Refractory composition using SiC raw material
JPH02141480A (en) Castable refractory
JPH08119719A (en) Brick containing carbon and aluminum silicon carbide
JP3176836B2 (en) Irregular refractories
JP2922998B2 (en) Irregular refractories for blast furnace gutters
JPS6033782B2 (en) Refractories for hot metal pretreatment
JPH03205347A (en) Magnesia-carbon brick
JPH0524911A (en) Graphite-containing mgo-cao based refractories
CN112759405A (en) Aluminum titanium silicon carbide composite refractory shaped product for iron-making blast furnace
JP2004123449A (en) Carbon-containing basic brick
JPH02283656A (en) Carbon-containing refractory
JPS62197360A (en) Refractories for lining
JPS6047224B2 (en) Manufacturing method for carbon-silicon carbide refractories
JPH03153563A (en) Magnesia-carbon brick
JP2002087889A (en) Low heat conductive carbon-containing refractory
JPH0543658B2 (en)