JPH02283656A - Carbon-containing refractory - Google Patents

Carbon-containing refractory

Info

Publication number
JPH02283656A
JPH02283656A JP1103413A JP10341389A JPH02283656A JP H02283656 A JPH02283656 A JP H02283656A JP 1103413 A JP1103413 A JP 1103413A JP 10341389 A JP10341389 A JP 10341389A JP H02283656 A JPH02283656 A JP H02283656A
Authority
JP
Japan
Prior art keywords
weight
parts
refractory
graphite
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1103413A
Other languages
Japanese (ja)
Other versions
JP2633018B2 (en
Inventor
Kenji Ichikawa
健治 市川
Teiichi Fujiwara
藤原 禎一
Hideaki Nishiyama
西山 英昭
Yuji Yoshimura
裕次 吉村
Shigeo Taniguchi
谷口 重生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP1103413A priority Critical patent/JP2633018B2/en
Publication of JPH02283656A publication Critical patent/JPH02283656A/en
Application granted granted Critical
Publication of JP2633018B2 publication Critical patent/JP2633018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve oxidation resistance, spalling resistance and corrosion resistance of the title refractory by adding a specific Fe-Si alloy to a refractory aggregate consisting of graphite and refractory raw material. CONSTITUTION:100 pts.wt. refractory aggregate consisting of 3-20 pts.wt. graphite (e.g. petroleum coke) and 97-80 pts.wt. refractory raw material (e.g. magnesia) is blended with 1-6 pts.wt. Fe-Si alloy having <=0.125mm granule size and containing 15-45wt.% Fe.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭素含有耐火物の酸]ヒ防止を図り、同時に耐
久ポーリング性と耐食性を向上させたAbOz  C質
耐火物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an AbOz C refractory which is designed to prevent carbon-containing refractories from being damaged by acid] and at the same time has improved durable poling properties and corrosion resistance.

[従来の技術] 従来、溶銑取鍋、溶銑搬送用混銑車等の溶銑予備処理炉
川内張り材として高アルミナ買、AlzO、−S iC
−C質、Al2O,−スピネル−〇質及びMg0−C質
等の炭素含有耐火物が使用されている。
[Prior art] Conventionally, high alumina, AlzO, -SiC has been used as a lining material for hot metal pretreatment furnaces such as hot metal ladles and hot metal mixing cars for transporting hot metal.
Carbon-containing refractories such as -C, Al2O, -spinel-〇, and Mg0-C are used.

また、熱間吹付けによる炉の中間補修も実施されており
、炉の内張り材の使用寿命はがなり長くなっており、更
に、近年、不焼成の炭素結合れんがが熱衝撃抵抗性、ス
ラグの侵入抑制、スラグ侵入抵抗性を向上させる特性を
有するものとして好゛結果を収めている。
In addition, intermediate repairs of furnaces are being carried out by hot spraying, and the service life of furnace lining materials has been significantly extended. Good results have been achieved as a material that suppresses intrusion and improves slag intrusion resistance.

しかし、上記のような炭素含有耐火物は炭素の敢(ヒに
よって組織が劣化し、著しく強度が低下するため、炭素
の酸化を何らかの方法で防止しなければ、溶銑予備処理
炉の如く酸化や機械的衝撃を受ける炉の内張り材として
の耐用性に対する要求に対して不充分であるという問題
点があった。
However, the structure of the above-mentioned carbon-containing refractories deteriorates due to carbon oxidation, resulting in a significant decrease in strength. There was a problem in that it was insufficient to meet the requirements for durability as a furnace lining material that was subjected to physical shock.

この改善策として金属シリコン、金属アルミニウムの添
加あるいは成形圧を高め緻密化を図る等の手段によって
耐酸化性の向上を図っている。
To improve this, oxidation resistance has been improved by adding metal silicon or metal aluminum, or by increasing the molding pressure and making it denser.

例えば耐火骨材に対して30%以下の炭素を含有せしめ
てなる耐火骨材・配合物に珪素とアルミニウムを重量比
で3〜10:10〜3の割合で添加してなる耐火材料が
提唱されている(特公昭6059184号公報)。
For example, a refractory material has been proposed in which silicon and aluminum are added in a weight ratio of 3 to 10:10 to 3 to a refractory aggregate/compound containing 30% or less of carbon to the refractory aggregate. (Special Publication No. 6059184).

また、炭化珪素または/及び高アルミナ質原料の粗粒部
材にアルミニウム粉末10〜30%、結合粘土20〜5
0%、金属シリコンまたは/及びフェロシリコン10〜
50%及び黒鉛または/及び炭素質物O〜20%からな
る微粉部材及び有機質バインダーを添加して混練してな
る耐火性スタンプ材が提唱されている(特開昭52−9
011号公報)。
In addition, 10 to 30% of aluminum powder and 20 to 5% of bonded clay are added to the coarse grain member of silicon carbide or/and high alumina raw material.
0%, metal silicon or/and ferrosilicon 10~
A fire-resistant stamp material has been proposed, which is made by adding and kneading a fine powder member consisting of 50% and 20% of graphite or/and carbonaceous material and an organic binder (Japanese Patent Application Laid-Open No. 52-9
Publication No. 011).

更に、重量比にてM6043〜87%、黒鉛8〜42%
、SiC,SiOz、SLあるいはFe−3iからなる
珪素成分3〜12%とからなる鋳造用浸漬ノズル組成物
も提唱されている(特公昭5510340号公報)。
Furthermore, M6043-87%, graphite 8-42% in weight ratio
A casting immersion nozzle composition comprising 3 to 12% of a silicon component consisting of SiC, SiOz, SL or Fe-3i has also been proposed (Japanese Patent Publication No. 5510340).

また、β−アルミナ−炭化珪素−黒鉛を所定範囲内の配
合量で配合した耐火材料に更に金属珪素を2〜10%含
み、粒子間が炭化珪素結合もしくは炭素結合された溶鉱
炉用耐火物が提唱されている(特開昭52−76313
号公報)。
In addition, a refractory for blast furnaces has been proposed in which the refractory material is made by blending β-alumina-silicon carbide-graphite in a predetermined range and further contains 2 to 10% metallic silicon, and the particles are bonded with silicon carbide or carbon. (Japanese Patent Application Laid-Open No. 52-76313
Publication No.).

更に、炭化珪素、カーボン、耐火粘土系原料にフェロシ
リコン(Fe  Si2)を5〜50重量%添加し、こ
れをバルブ廃液、糖蜜、樹脂などの結合剤で混練した出
銑出鋼用樋用スタンプ材も公知である(特公昭50−2
4970号公報)。
Furthermore, a stamp for tap taps is made by adding 5 to 50% by weight of ferrosilicon (Fe Si2) to silicon carbide, carbon, and fireclay-based raw materials, and kneading this with a binder such as valve waste liquid, molasses, and resin. The material is also known (Special Publication No. 50-2
Publication No. 4970).

[発明が解決しようとする課題] しかし、上述のいずれのものも不焼成炭素結合れんがの
もつ上述の欠陥を根本的に改良するものではない。
[Problems to be Solved by the Invention] However, none of the above methods fundamentally improves the above-mentioned defects of unfired carbon bonded bricks.

すなわち、従来の炭素含有耐火物は黒鉛とシリコンを反
応させて粒子間を炭化珪素結合及び炭素結合としたもの
であるが、Siと黒鉛を反応させてSiCを生成せしめ
る条件としては温度と反応時間が必要である。
In other words, conventional carbon-containing refractories are made by reacting graphite and silicon to form silicon carbide bonds and carbon bonds between particles, but the conditions for reacting Si and graphite to produce SiC are temperature and reaction time. is necessary.

しかし、炭化珪素が充分形成される前のスラグとの接触
や耐火物内部で応力破壊が起こる場合が多く、期待に反
する点が多々存在する。
However, in many cases, contact with slag occurs before silicon carbide is fully formed, and stress fracture occurs inside the refractory, so there are many points that are contrary to expectations.

従って、本発明の目的は炭化珪素の生成速度を早め、し
かも強度を高めることができる炭素含有耐火物を提供す
るにある。
Therefore, an object of the present invention is to provide a carbon-containing refractory that can accelerate the production rate of silicon carbide and increase its strength.

[課題を解決するための手段] 本発明はSiflL属と黒鉛の反応からSiCの生成I
よりFe−Si合金を使用する方が黒鉛との反応は促進
され、SiCの生成量は多くなるということを知見し、
本発明を完成するに至った。
[Means for Solving the Problems] The present invention is directed to the production of SiC from the reaction of SiflL group and graphite.
We found that using a Fe-Si alloy accelerates the reaction with graphite and increases the amount of SiC produced.
The present invention has now been completed.

即ち、本発明は黒鉛3〜20重量部及び耐火原料80〜
97重量部からなる耐火骨材100重量部に対し1〜6
重量部のFeを15〜45重量%含有するFe−3i合
金を含有してなる炭素含有耐火物に係る。
That is, the present invention uses 3 to 20 parts by weight of graphite and 80 to 80 parts by weight of refractory raw material.
1 to 6 parts by weight for 100 parts by weight of refractory aggregate consisting of 97 parts by weight
The present invention relates to a carbon-containing refractory comprising an Fe-3i alloy containing 15 to 45% by weight of Fe.

[作  用] 本発明の炭素含有耐火物の特徴とするところは、耐火原
料と黒鉛にFe−Si合金を添加することにある。これ
によって結合形態の詳細は未だ充分に明らかにされてい
ないが、酸素が乏しいと考えられる耐火物の微粉部は加
熱によってFe−3i合金と黒鉛とが反応してFe−C
系のFe、Cを生成する。また、Si−C系のβ−3i
Cを生成し、気孔率を低下させ、耐火原料と黒鉛等とが
強固な結合を形成していると考えられる。しかも、黒鉛
Fe−3i合金はSi金属の場合よりも活性でSiC生
成量が大である。
[Function] The carbon-containing refractory of the present invention is characterized by the addition of an Fe-Si alloy to the refractory raw material and graphite. As a result, although the details of the bonding form have not yet been fully clarified, the fine powder part of the refractory, which is thought to be oxygen-poor, reacts with Fe-3i alloy and graphite due to heating, resulting in Fe-C formation.
The system produces Fe and C. In addition, Si-C-based β-3i
It is thought that the refractory raw material and graphite etc. form a strong bond by producing C and lowering the porosity. Furthermore, graphite Fe-3i alloy is more active and produces a larger amount of SiC than Si metal.

まず、黒鉛とFe−3iの反応性について述べると、F
e含i22.5重量%、Si含量77.5重量%の粒度
0.149+am以下のF e −S i合金粉末とC
O量98.5%の粒度0.1471以下の黒鉛粉末をS
 i:Cモル比1;1に配合し、成形したC−Fe−S
i試料、また、Si含i99.5重電%の粒度0.14
9+a+a以下のSi金属を用い、黒鉛粉末をS i:
cモル比1:1に配合し、成形したC−9t試料をブリ
ーズ詰の還元雰囲気で加熱する6加熱後のSiC生成量
を第1表に示す。
First, regarding the reactivity of graphite and Fe-3i, F
Fe-Si alloy powder with an e content of 22.5% by weight and a Si content of 77.5% by weight with a particle size of 0.149+am or less and C
Graphite powder with a particle size of 0.1471 or less with an O content of 98.5% is
C-Fe-S blended at an i:C molar ratio of 1:1 and molded
i sample, also containing Si 99.5% heavy electric charge and particle size 0.14
Using Si metal of 9+a+a or less, graphite powder is Si:
Table 1 shows the amount of SiC produced after heating a molded C-9t sample in a reducing atmosphere of breeze packing.

東−一よ一一基 SiC生成量 削競ld峙匝 U競追が待澗 4並lか片−〇−Fe−
Si試料   1.2     6.6     7.
3C−Si試料     1.0     1.3  
   3.7注:C−3i試料1000℃/3時間のS
iC生成量を1.0として示す。
East - 1, 1, 1, 11 SiC generation amount reduction competition is 1d, U competition is waiting.
Si sample 1.2 6.6 7.
3C-Si sample 1.0 1.3
3.7 Note: C-3i sample 1000℃/3 hours S
The amount of iC produced is shown as 1.0.

第1表から明らかなように、F e −S i合金がS
i金属より活性で、反応性に優れ、SiC生成量も多く
なっている。なお、一定温度で保持時間を変えても同様
にFe−8i合金の方がSiC生成量は大である。
As is clear from Table 1, the Fe-Si alloy is S
It is more active and has excellent reactivity than i-metal, and produces a larger amount of SiC. Note that even if the holding time is changed at a constant temperature, the amount of SiC produced is similarly larger in the Fe-8i alloy.

このような特性を発揮するFe−3i合金粉末としては
Fe量として15〜45重量%含有するFe−3i合金
粉末が好ましい。Fe−3i合金粉末中のFe量が45
重量%を超えるとFe=Cの生成量が増加し、黒鉛の耐
酸化性は良いが、耐食性が低下するために好ましくない
As the Fe-3i alloy powder exhibiting such characteristics, it is preferable to use a Fe-3i alloy powder containing 15 to 45% by weight of Fe. The amount of Fe in Fe-3i alloy powder is 45
If it exceeds % by weight, the amount of Fe=C produced increases, and although the oxidation resistance of graphite is good, the corrosion resistance decreases, which is not preferable.

本発明に使用するFe−3i合金粉の品質としては製鋼
用脱酸剤用として一般に市販されているものを使用する
ことができ、該合金粉末の粒度は反応性及び均一分散性
の点から0.125mm以下のものを使用するのが好ま
しい。
Regarding the quality of the Fe-3i alloy powder used in the present invention, those generally commercially available for use as deoxidizing agents for steel manufacturing can be used, and the particle size of the alloy powder is 0 from the viewpoint of reactivity and uniform dispersibility. It is preferable to use one with a diameter of .125 mm or less.

該Fe−3i合金粉末の配合割合は耐火原料及び黒鉛の
耐火骨材部100重量部に対し1〜6重量部が配合され
るものであり、該配合量が1重量部未満では添加効果が
少ないために好ましくなく、また、6重量部を超えると
耐酸化性はあるが、熱間強度が低下し、耐用性が低下す
るために好ましくない。
The blending ratio of the Fe-3i alloy powder is 1 to 6 parts by weight per 100 parts by weight of the refractory raw material and graphite refractory aggregate, and if the blending amount is less than 1 part by weight, the addition effect will be small. Moreover, if it exceeds 6 parts by weight, although oxidation resistance is achieved, hot strength decreases and durability decreases, which is undesirable.

なお、焼結助剤としてB、C,AN、A(−8i、Al
−Mgの1種または2種以上を適宜添加することができ
るが、その耐火骨材100重量部に対して配合量は6重
量部未満である。
In addition, B, C, AN, A(-8i, Al
- One or more types of Mg can be added as appropriate, but the amount blended is less than 6 parts by weight per 100 parts by weight of the refractory aggregate.

本発明に使用する耐火原料としては、マグネシア、スピ
ネル、アルミナ、シリカ、ジルコン、ジルコニア等の酸
化物や炭化珪素、窒化珪素、窒化硼素等の非酸化物を使
用することができるが、これらに特に限定されるもので
はなく、本発明の炭素含有耐火物の使用目的によって異
なるが、マグネシア、スピネル、アルミナを主体とする
ものが好ましい。
As the refractory raw material used in the present invention, oxides such as magnesia, spinel, alumina, silica, zircon, and zirconia, and non-oxides such as silicon carbide, silicon nitride, and boron nitride can be used. Although it is not limited and varies depending on the purpose of use of the carbon-containing refractory of the present invention, those mainly composed of magnesia, spinel, and alumina are preferable.

本発明の炭素含有耐火物を溶銑予備処理炉用に使用する
場合を説明すると、耐火原料としては原料自体に含有さ
れるAl2O,量が50重量%以上ならば使用すること
が可能であり、例えばボーキサ、イト、焼結アルミナ、
電融アルミナ、焼結ムライト、電融ムライト、焼結スピ
ネルであり、これらは単独で使用しても、2種以上を混
合して使用することもできる。これらの耐火原料の配合
量は60〜85重量部が好ましい。上述の耐火原料の配
合量が60重量部未満では耐食性が低下し、また、85
重量部を超えると耐久ポーリング性が低下するために好
ましくない。
To explain the case where the carbon-containing refractory of the present invention is used for a hot metal pretreatment furnace, it is possible to use Al2O as the refractory raw material if the amount of Al2O contained in the raw material itself is 50% by weight or more, for example. Bauxa, Ito, Sintered Alumina,
These are fused alumina, sintered mullite, fused mullite, and sintered spinel, and these can be used alone or in combination of two or more. The blending amount of these refractory raw materials is preferably 60 to 85 parts by weight. If the amount of the above-mentioned refractory raw material is less than 60 parts by weight, the corrosion resistance will decrease;
Exceeding the weight part is not preferable because the durable polling property is reduced.

更に、他の耐火原料としてSiCを用いることができる
が、SiCとしては純度80重量%以上のものを使用す
ることが好ましく、純度90重量%以上のものがより好
ましい。SiCの配合量は5〜20重量部が好ましい。
Further, SiC can be used as another refractory raw material, but it is preferable to use SiC with a purity of 80% by weight or more, and more preferably a purity of 90% by weight or more. The blending amount of SiC is preferably 5 to 20 parts by weight.

SiCの配合量が5重量部未満では黒鉛の酸化防止効果
が減少されるために添加効果がなく、また、20重量部
を超えると耐食性が低下するために好ましくない。
If the blending amount of SiC is less than 5 parts by weight, the antioxidant effect of graphite is reduced, so there is no addition effect, and if it exceeds 20 parts by weight, the corrosion resistance is lowered, which is not preferable.

次に、本発明の炭素含有耐火物をスライディングノズル
プレー1〜れんが用に使用する場合を説明すると、耐火
原料としては焼結アルミナ、電融アルミナ、ムライト等
が使用できる。これらの耐火原料の純度はできるだけ高
純度であることが好ましく、アルミナまたはムライトと
しての純度が98%以上であることが好ましい。
Next, the case where the carbon-containing refractory of the present invention is used for sliding nozzle play 1 to brick will be described. As the refractory raw material, sintered alumina, fused alumina, mullite, etc. can be used. The purity of these refractory raw materials is preferably as high as possible, and the purity as alumina or mullite is preferably 98% or more.

本発明に使用する黒鉛としては土状黒鉛、鱗状黒鉛等の
天然黒鉛ないし電極屑、石油コークス、カーボンブラッ
ク等の人造黒鉛が任意に使用可能であるが、不純物の少
ない石油コークスの使用が好ましい。該黒鉛の配合割合
は耐火原料と黒鉛からなる耐火骨材100重量部に対し
て5〜20重量部が好ましい。
As the graphite used in the present invention, natural graphite such as earthy graphite and scaly graphite, or artificial graphite such as electrode scrap, petroleum coke, and carbon black can be arbitrarily used, but it is preferable to use petroleum coke with few impurities. The blending ratio of the graphite is preferably 5 to 20 parts by weight based on 100 parts by weight of the refractory aggregate made of the refractory raw material and graphite.

黒鉛が5重量部未満になると、黒鉛がスラグに対して濡
れにくいという特性と耐スポール性の向上が充分発揮で
きない。逆に、20重量部を超えると、強度的にも充分
なものが望めなく、組織の緻密なものが得られ難い。
If the amount of graphite is less than 5 parts by weight, the property that graphite is difficult to wet with slag and the improvement in spall resistance cannot be sufficiently exhibited. On the other hand, if it exceeds 20 parts by weight, sufficient strength cannot be expected and it is difficult to obtain a dense structure.

本発明の炭素含有耐火物はこれらの粒度調整した耐火原
料と黒鉛及びFe−Si合金を所定の配合割合で調整し
、タール、ピッチ、フェノール樹脂、フラン樹脂などの
結合剤を加え、常法によって混練、成形し、200℃程
度に乾燥すれば、不焼成のものが得られる。また、90
0〜1500℃程度の還元雰囲気で焼成し、焼成耐火物
として使用に供することができる。
The carbon-containing refractory of the present invention is produced by adjusting the particle size-adjusted refractory raw materials, graphite, and Fe-Si alloy in a predetermined mixing ratio, adding a binder such as tar, pitch, phenolic resin, or furan resin, and then processing by a conventional method. An unfired product can be obtained by kneading, molding, and drying at about 200°C. Also, 90
It can be fired in a reducing atmosphere at about 0 to 1500°C and used as fired refractories.

[実 施 例] 次に、本発明の炭素含有耐火物を実施例により具体的に
説明する。
[Examples] Next, the carbon-containing refractories of the present invention will be specifically explained with reference to Examples.

実施例1 第2表に重量部で示す配合割合をもつ配合物をレゾール
型フェノール樹脂4重量部と共に混練し、1000 k
W/ a@’の成形圧で230xl 14x65wnの
定形に成形してから200℃で5時間乾燥した。
Example 1 A compound having the proportions shown in parts by weight in Table 2 was kneaded with 4 parts by weight of a resol type phenolic resin, and 1000 k
It was molded into a regular shape of 230xl 14x65wn using a molding pressure of W/a@' and dried at 200°C for 5 hours.

得られた不焼成炭素含有耐火物の特性を第2表に併記す
る。第2表から明らかなように、本発明品は比鮫品に比
し、曲げ強度、弾性率が高く優れている。
The properties of the obtained unfired carbon-containing refractory are also listed in Table 2. As is clear from Table 2, the products of the present invention are superior in bending strength and elastic modulus to the products made by Hisame.

次に、本発明品3と比較品1を200トン溶銑予備処理
炉に内張すし、主に溶銑の脱硫、脱燐処理した場合、S
i金属を添加した比較品1の損耗量100に対し、本発
明品3は85であり、実炉における損耗量を減少される
ことが可能となった。
Next, inventive product 3 and comparative product 1 were lined in a 200-ton hot metal pretreatment furnace, and when the hot metal was mainly desulfurized and dephosphorized, S
Compared to Comparative Product 1 containing i-metal, the loss was 100, whereas Product 3 of the present invention had a loss of 85, making it possible to reduce the loss in an actual furnace.

実施例2 第3表に重壁部で示す配合割合をもつ配合物をレゾール
型フェノール樹脂4重量部と共に混練し、1000 k
y/ cm2の成形圧で230X114X65a+mの
定形に成形してから200℃で5時間乾燥した。
Example 2 A compound having the compounding ratio shown in the heavy wall portion in Table 3 was kneaded with 4 parts by weight of resol type phenolic resin, and the mixture was kneaded to 1000 k
It was molded into a regular shape of 230x114x65a+m with a molding pressure of y/cm2, and then dried at 200°C for 5 hours.

得られた不焼成炭素含有耐火物の特性を第3表に併記す
る。第3表から明らかなように、本発明品は比較品に比
し、曲げ強度、弾性率が高く優れている。
The properties of the obtained unfired carbon-containing refractory are also listed in Table 3. As is clear from Table 3, the products of the present invention are superior to the comparative products in terms of bending strength and elastic modulus.

[発明の効果] 耐火原料と黒鉛にFe−Si合金を添加し、SiC生成
によって炭素含有耐火物は曲げ強さ、弾性率は大きくな
り、耐酸化性、耐食性は向上する。
[Effects of the Invention] By adding an Fe-Si alloy to the refractory raw material and graphite, the bending strength and elastic modulus of the carbon-containing refractory increases due to SiC generation, and the oxidation resistance and corrosion resistance are improved.

Claims (3)

【特許請求の範囲】[Claims] 1.黒鉛3〜20重量部及び耐火原料80〜97重量部
からなる耐火骨材100重量部に対し1〜6重量部のF
eを15〜45重量%含有するFe−Si合金を含有し
てなる炭素含有耐火物。
1. 1 to 6 parts by weight of F per 100 parts by weight of refractory aggregate consisting of 3 to 20 parts by weight of graphite and 80 to 97 parts by weight of refractory raw materials.
A carbon-containing refractory comprising an Fe-Si alloy containing 15 to 45% by weight of e.
2.黒鉛3〜20重量部、アルミナ60〜85重量部及
びSiC5〜20重量部からなる耐火骨材100重量部
に対し1〜6重量部のFeを15〜45重量%含有する
Fe−Si合金を含有してなる溶銑予備処理炉用炭素含
有耐火物。
2. Contains an Fe-Si alloy containing 1 to 6 parts by weight of Fe in an amount of 15 to 45% by weight based on 100 parts by weight of refractory aggregate consisting of 3 to 20 parts by weight of graphite, 60 to 85 parts by weight of alumina, and 5 to 20 parts by weight of SiC. A carbon-containing refractory for hot metal pretreatment furnaces.
3.黒鉛3〜20重量部、アルミナ75〜90重量部及
びムライト5〜15重量部からなる耐火骨材100重量
部に対し1〜6重量部のFeを15〜45重量%含有す
るFe−Si合金を含有してなるスライディングノズル
プレート用炭素含有耐火物。
3. An Fe-Si alloy containing 1 to 6 parts by weight of Fe in an amount of 15 to 45 parts by weight per 100 parts by weight of a refractory aggregate consisting of 3 to 20 parts by weight of graphite, 75 to 90 parts by weight of alumina, and 5 to 15 parts by weight of mullite. A carbon-containing refractory for sliding nozzle plates.
JP1103413A 1989-04-25 1989-04-25 Carbon containing refractories Expired - Lifetime JP2633018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1103413A JP2633018B2 (en) 1989-04-25 1989-04-25 Carbon containing refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1103413A JP2633018B2 (en) 1989-04-25 1989-04-25 Carbon containing refractories

Publications (2)

Publication Number Publication Date
JPH02283656A true JPH02283656A (en) 1990-11-21
JP2633018B2 JP2633018B2 (en) 1997-07-23

Family

ID=14353362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103413A Expired - Lifetime JP2633018B2 (en) 1989-04-25 1989-04-25 Carbon containing refractories

Country Status (1)

Country Link
JP (1) JP2633018B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672764A (en) * 1992-08-24 1994-03-15 Tokyo Yogyo Co Ltd Plate brick for slide gate
JP2009242183A (en) * 2008-03-31 2009-10-22 Kurosaki Harima Corp Refractory for sliding nozzle plate and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614061A (en) * 1979-07-17 1981-02-10 Shinagawa Refract Co Ltd Graphite base casting nozzle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614061A (en) * 1979-07-17 1981-02-10 Shinagawa Refract Co Ltd Graphite base casting nozzle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672764A (en) * 1992-08-24 1994-03-15 Tokyo Yogyo Co Ltd Plate brick for slide gate
JP2009242183A (en) * 2008-03-31 2009-10-22 Kurosaki Harima Corp Refractory for sliding nozzle plate and its manufacturing method

Also Published As

Publication number Publication date
JP2633018B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
US5925585A (en) Materials formed by refractory grains bound in a matrix of aluminum nitride or sialon containing titanium nitride
US5318933A (en) Carbon-containing carbon bonded refractories with improved physical properties
JPH0196070A (en) Unfixed shape refractory to be used for spout for molten metal
CN1108212C (en) Slide sprue brick containg sialon
JP2617086B2 (en) Silicon carbide casting material
JPH02283656A (en) Carbon-containing refractory
JP2003171170A (en) Magnesia-carbon brick
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JPH05262559A (en) Unburned carbon-containing brick
KR960015652B1 (en) Composition of mud
JPH02285014A (en) Mud material for tap hole of blast furnace
JP2004083365A (en) Process for producing aluminum nitride-bonded refractory brick
JP3201678B2 (en) High spalling resistant magnesia carbonaceous brick and method for producing the same
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPH0925160A (en) Production of carbon-containing refractory
JPS59146975A (en) Plate refractories for sliding nozzle
JPH0578180A (en) Carbon fiber-containing refractory
JPH03141152A (en) Carbon-containing unburned refractory brick
JP2004196578A (en) Magnesia-graphite brick
JPS6395157A (en) Manufacture of silicon carbide-carbon base brick for ore reduction furnace wall
JP3201679B2 (en) High spalling resistant magnesia carbon brick and its manufacturing method
JPH0632649A (en) Carbon-containing refractory
JPH05319902A (en) Carbon-containing basic refractory
JPH0380154A (en) Carbon brick
JP2002068850A (en) High alumina brick for ladle for high alloy steel and production method thereof