JPH0543658B2 - - Google Patents

Info

Publication number
JPH0543658B2
JPH0543658B2 JP63081236A JP8123688A JPH0543658B2 JP H0543658 B2 JPH0543658 B2 JP H0543658B2 JP 63081236 A JP63081236 A JP 63081236A JP 8123688 A JP8123688 A JP 8123688A JP H0543658 B2 JPH0543658 B2 JP H0543658B2
Authority
JP
Japan
Prior art keywords
weight
alumina
magnesia
carbon
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63081236A
Other languages
Japanese (ja)
Other versions
JPH01257164A (en
Inventor
Tsuneo Kitai
Toshuki Hokii
Masahito Tanaka
Takayoshi Sato
Tadaoki Hayashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP63081236A priority Critical patent/JPH01257164A/en
Publication of JPH01257164A publication Critical patent/JPH01257164A/en
Publication of JPH0543658B2 publication Critical patent/JPH0543658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐酸化性ならびに耐食性にすぐれた
炭素含有耐火物に関するものである。 〔従来技術〕 従来より、溶銑、溶鋼用容器の内張材として、
マグネシア−炭素質あるいはアルミナ−炭化珪素
−炭素質など、炭素を含有した耐火物が多用され
ている。炭素は、スラグに濡れ難く耐熱衝撃性に
すぐれている性質が有り、アルミナ、マグネシア
等の高融点の耐火性原料と組合せることで耐用性
の高い耐火物が得られている。一方、炭素は酸化
消失する欠点が有り、上記耐火物において脱炭層
が形成されると強度の低下あるいはスラグの浸潤
によつて著しく侵食が進行する。 したがつて、炭素の酸化を抑制するために従来
より種々の手段が検討され、例えば特開昭54−
163913号公報は金属を添加する方法あるいは特開
昭60−157857号公報ではガラス質成分を添加する
方法が開示されており、それぞれ効果が得られて
いるにもかかわらず次の欠点が生じてきた。 〔発明が解決しようとする課題〕 すなわち、金属を添加する方法は、金属が低融
点にもかかわらず低温では炭化物となり充分酸素
の通過を遮断できず酸化抑制効果が小さい。ま
た、高温では酸化抑制効果が得られるものの完全
には酸化防止を図ることは困難であつた。 また、ガラス質成分を添加する方法は、低温か
ら高温域にかけて煉瓦表面にガラス被膜を形成す
るためほぼ完全に酸化抑制が可能であるが、スラ
グとの接触でガラス層が溶流され易くスラグ条件
の厳しい部位では溶損が著しいという問題点があ
り、これらの改善がさらに望まれていた。 〔課題を解決する手段〕 本発明は、かかる状況に鑑み従来技術の問題点
を解決すべく種々研究検討を重ねた結果以下のよ
うな知見を得た。 (1) ガラス質成分は高温で低粘性の液相を生成し
煉瓦の表面で酸素の通過を遮断し、カーボンの
酸化を抑制することで耐スラグ性を維持する。 (2) 炭素中のマグネシアは、高温ではマグネシウ
ム蒸気となり煉瓦稼働面に移動し、表面で酸化
されて再びマグネシアとなる。 (3) ガラス質成分とマグネシアを併用すると煉瓦
稼働面で形成したガラス質成分の液相がマグネ
シア蒸気と反応し酸化防止効果を高める。特に
稼働面ではマグネシア蒸気とガラス相の反応に
より高融点のフオルステライトが形成される。
この現象は、ガラス質成分とマグネシア質成分
の相剰的作用によつてもたらされる。 (4) 塩基度の高いスラグから低いスラグの両者に
対しては、アルミナ質系、アルミナ−珪酸質
系、炭化物系、窒化物系原料が耐食性が良好で
あるが、しかし単独では耐熱スポール性が小さ
い。従つて、耐スポール性を付与するためには
炭素質原料との組合せならびに酸化雰囲気下で
の使用に際しては酸化防止剤との併用が必要で
ある。 (5) 金属アルミニウム等金属を添加すると炭素中
のマグネシアはマグネシウム蒸気になりやすく
マグネシアとガラス質成分の反応を促進する。 上述の知見に基づき本発明者等は、耐火物組成
中の炭素の酸化を抑制し、かつ耐食性について炭
素を含有した耐火物原料にガラス質材料とマグネ
シア質材料を併用することで耐酸化性、耐食性に
すぐれ、しかも耐熱衝撃性も良好な炭素含有耐火
物が得られることを確認し、本発明を完成させた
ものである。 第1項記載の炭素含有耐火物は、炭素質材料3
〜30重量%、ガラス質材料0.1〜10重量%、マグ
ネシア質材料0.1〜15重量%、残部がアルミナ質、
アルミナ−珪酸質系、炭化物系、窒化物系耐火材
料の1種あるいは2種以上からなることを特徴と
する炭素含有耐火物である。 また、第2項に記載の耐火物は、炭素質材料3
〜30重量%、ガラス質材料0.1〜10重量%、マグ
ネシア質材料0.1〜15重量%、金属材料0.1〜10重
量%残部がアルミナ質、アルミナ−珪酸質系、炭
化物系、窒化物系耐火材料の1種あるいは2種以
上からなり、更に前記の合計量の0.1〜10重量%
の金属アルミニウム、金属シリコン、金属マグネ
シウムを添加してなる炭素含有耐火物である。 本発明で用いられる炭素質材料は、天然黒鉛、
人造黒鉛、ピツチコークス、無煙炭、カーボンブ
ラツク等であり、その添加量を3〜30重量%に限
定するのは3重量%未満では炭素添加の効果が得
られず耐スポール性及び耐熱衝撃性が不充分とな
り、30重量%を超えると耐火物としての強度や耐
摩耗性が低下するからである。 ガラス質材料としては、Na2O、B2O3、P2O5
K2O、Al2O3、CaO、GeO、SiO2成分のうち2種
以上から構成される。例えば、硼珪酸ガラス、リ
ン酸ソーダガラス、珪酸ガラス等を選択使用する
ものである。その添加量を0.1〜10重量%とした
のは、0.1重量%未満では添加効果が認められず、
10重量%を超えると液相の生成量が多くなり過ぎ
耐食性及び熱間強度が低下するからである。マグ
ネシア質材料は、ガラス質材料との反応によりフ
オルステライトと低粘性のガラス相を生成させる
目的で添加するため微粉であることが好ましく、
電融マグネシア、焼結マグネシア、天然マグネシ
アあるいはマグネシアを含有する構成物、スピネ
ル等が用いられる。添加量は0.1〜15重量%好ま
しくは1〜10重量%であり、0.1重量%未満では
添加した効果が得られず、15重量%以上では添加
したマグネシアがガラス質材料と反応し、結晶化
してガラス相が形成できなくなり耐酸化性が低下
する。 アルミナ質、アルミナ−珪酸質系耐火材料とし
ては、電融アルミナ、焼結アルミナ、ボーキサイ
ト、アンダルサイトのアルミナ質、アルミナ−珪
酸質等を主成分とする合成あるいは天然原料が用
いられる。 炭化物系耐火材料としては、炭化珪素、炭化硼
素等が、窒化物系耐火材料としては、窒化珪素、
窒化硼素原料が使用される。 添加量は、アルミナ質、アルミナ−珪酸質系耐
火材料、炭化物系耐火材料、窒化物系耐火材料の
1種あるいは2種以上で、前記炭素質材料、ガラ
ス質材料、マグネシア質材料の残部である。 また、本発明では、前記炭素含有耐火物に更に
マグネシアとガラス質成分の反応促進を高めるた
め金属材料としてアルミニウム、シリコン、マグ
ネシウムの1種以上又は合金として前記炭素含有
耐火物の1〜10重量%添加するものである。その
量が1重量%未満では添加効果が期待できず、逆
に10重量%以上では使用中に金属とカーボンが反
応し、膨張が過大となり煉瓦に亀裂が生じ強度や
耐食性が低下する。 本発明の炭素含有耐火物は、通常不焼成煉瓦と
して使用するものであるが、焼成しても焼成中に
ガラス質材料とマグネシア質材料の併用効果によ
る耐酸化性と耐食性の向上が得られるため焼成煉
瓦としても使用することができる。また、不定形
耐火物としても不焼成と同様の効果が得られるの
で不定形耐火物にも適用することが可能であるこ
とは云うまでもない。 〔実施例〕 以下、実施例について説明する。 第1表に示す配合割合により本発明品、比較品
及び従来品についてそれぞれの配合物を混合、混
練した後、常法により並形形状にプレス成形した
ものを250℃で24時間乾燥し、これを50×50×50
mmに切出し供試体とした。このようにして得られ
た供試体を電気炉中で16時間焼成(1000℃、1200
℃及び1400℃の3種類)後、取出し切断して酸化
脱炭層の厚さをそれぞれ測定した。 耐食性については、前記と同様にして得た供試
体を回転侵食法により1500℃で5時間、侵食剤
(高炉スラグ30%銑鉄20%)を用いて侵食試験を
行い試験後の溶損寸法を測定した。 上記の結果から明らかなように本発明品は従来
品に比し耐酸化性が格段に向上するだけでなく耐
食性も10〜30%向上した。
[Industrial Application Field] The present invention relates to a carbon-containing refractory having excellent oxidation resistance and corrosion resistance. [Prior art] Traditionally, it has been used as a lining material for containers for hot metal and molten steel.
Refractories containing carbon, such as magnesia-carbonaceous or alumina-silicon carbide-carbonaceous, are often used. Carbon has the property of being difficult to wet with slag and having excellent thermal shock resistance, and by combining it with refractory raw materials with high melting points such as alumina and magnesia, highly durable refractories can be obtained. On the other hand, carbon has the disadvantage that it disappears by oxidation, and when a decarburized layer is formed in the above-mentioned refractory, corrosion progresses significantly due to a decrease in strength or infiltration of slag. Therefore, in order to suppress carbon oxidation, various means have been studied in the past.
Publication No. 163913 discloses a method of adding a metal, and Japanese Patent Application Laid-Open No. 157857/1986 discloses a method of adding a glassy component, but although each method has been effective, the following drawbacks have occurred. . [Problems to be Solved by the Invention] In other words, in the method of adding metal, although the metal has a low melting point, it becomes a carbide at low temperatures and cannot sufficiently block the passage of oxygen, resulting in a small oxidation suppressing effect. Furthermore, although an oxidation inhibiting effect can be obtained at high temperatures, it has been difficult to completely prevent oxidation. In addition, the method of adding glassy components forms a glass film on the brick surface in the low to high temperature range, making it possible to almost completely suppress oxidation. There is a problem that melting loss is significant in areas with severe conditions, and further improvements in these areas have been desired. [Means for Solving the Problems] In view of the above circumstances, the present invention has been made through various research studies to solve the problems of the prior art, and as a result, the following knowledge has been obtained. (1) The glassy component generates a low-viscosity liquid phase at high temperatures, blocks the passage of oxygen on the surface of the brick, and maintains slag resistance by suppressing carbon oxidation. (2) At high temperatures, magnesia in carbon becomes magnesium vapor and moves to the working surface of the brick, where it is oxidized and becomes magnesia again. (3) When a glassy component and magnesia are used together, the liquid phase of the glassy component formed on the working surface of the brick reacts with the magnesia vapor, increasing the antioxidant effect. In particular, in terms of operation, forsterite with a high melting point is formed by the reaction between magnesia vapor and the glass phase.
This phenomenon is brought about by the mutual action of the vitreous component and the magnesia component. (4) Alumina-based, alumina-silicate-based, carbide-based, and nitride-based raw materials have good corrosion resistance for both slag with high basicity and slag with low basicity. small. Therefore, in order to impart spalling resistance, it is necessary to use it in combination with a carbonaceous raw material, and when using it in an oxidizing atmosphere, it is necessary to use it in combination with an antioxidant. (5) When metals such as metallic aluminum are added, magnesia in carbon tends to turn into magnesium vapor, promoting the reaction between magnesia and glassy components. Based on the above findings, the present inventors suppressed the oxidation of carbon in the refractory composition and improved the corrosion resistance by using a glassy material and a magnesia material together in the refractory raw material containing carbon. The present invention was completed by confirming that a carbon-containing refractory having excellent corrosion resistance and thermal shock resistance can be obtained. The carbon-containing refractory described in item 1 is a carbonaceous material 3
~30% by weight, vitreous material 0.1-10% by weight, magnesia material 0.1-15% by weight, balance alumina,
This carbon-containing refractory is characterized by being made of one or more of alumina-silicate, carbide, and nitride refractories. Further, the refractory described in item 2 is a carbonaceous material 3
~30% by weight, glass material 0.1-10% by weight, magnesia material 0.1-15% by weight, metal material 0.1-10% by weight the remainder is alumina, alumina-silicate, carbide, and nitride refractory materials. Consisting of one or more types, and further 0.1 to 10% by weight of the total amount of the above
It is a carbon-containing refractory made by adding metal aluminum, metal silicon, and metal magnesium. The carbonaceous materials used in the present invention include natural graphite,
Artificial graphite, pitch coke, anthracite, carbon black, etc. are added, and the amount added is limited to 3 to 30% by weight.If it is less than 3% by weight, the effect of carbon addition cannot be obtained, resulting in insufficient spall resistance and thermal shock resistance. This is because if the content exceeds 30% by weight, the strength and abrasion resistance of the refractory will decrease. Glassy materials include Na 2 O, B 2 O 3 , P 2 O 5 ,
It is composed of two or more of K 2 O, Al 2 O 3 , CaO, GeO, and SiO 2 components. For example, borosilicate glass, sodium phosphate glass, silicate glass, etc. are selectively used. The reason for setting the amount of addition to 0.1 to 10% by weight is that if it is less than 0.1% by weight, no effect is observed.
This is because if it exceeds 10% by weight, the amount of liquid phase produced will be too large, resulting in a decrease in corrosion resistance and hot strength. The magnesia material is preferably a fine powder because it is added for the purpose of producing forsterite and a low-viscosity glass phase by reaction with the glass material.
Electrofused magnesia, sintered magnesia, natural magnesia or a composition containing magnesia, spinel, etc. are used. The amount added is 0.1 to 15% by weight, preferably 1 to 10% by weight. If it is less than 0.1% by weight, the added effect cannot be obtained, and if it is more than 15% by weight, the added magnesia will react with the glassy material and crystallize. Glass phase cannot be formed and oxidation resistance decreases. As the alumina and alumina-silicate type refractory materials, synthetic or natural raw materials whose main components are fused alumina, sintered alumina, bauxite, andalusite alumina, alumina-silicate, etc. are used. Examples of carbide-based refractory materials include silicon carbide and boron carbide; examples of nitride-based refractory materials include silicon nitride,
A boron nitride raw material is used. The amount added is one or more of alumina, alumina-silicate refractory material, carbide refractory material, and nitride refractory material, with the remainder being the carbonaceous material, vitreous material, and magnesia material. . In addition, in the present invention, in order to further promote the reaction between magnesia and glassy components in the carbon-containing refractory, one or more of aluminum, silicon, and magnesium as a metal material or an alloy of 1 to 10% by weight of the carbon-containing refractory may be used. It is added. If the amount is less than 1% by weight, no effect can be expected, while if it is more than 10% by weight, the metal and carbon will react during use, resulting in excessive expansion and cracking of the bricks, resulting in a decrease in strength and corrosion resistance. The carbon-containing refractory of the present invention is normally used as an unfired brick, but even if it is fired, it can improve oxidation resistance and corrosion resistance due to the combined effect of glassy material and magnesia material during firing. It can also be used as fired brick. It goes without saying that the present invention can also be applied to monolithic refractories since the same effects as unfired ones can be obtained as monolithic refractories. [Example] Examples will be described below. After mixing and kneading the inventive product, comparative product, and conventional product according to the compounding ratios shown in Table 1, the products were press-molded into a regular shape using a conventional method and dried at 250°C for 24 hours. 50×50×50
A specimen was cut into mm. The specimen thus obtained was fired in an electric furnace for 16 hours (1000°C, 1200°C).
℃ and 1400℃), the samples were taken out and cut, and the thickness of the oxidized decarburized layer was measured. Regarding corrosion resistance, the specimen obtained in the same manner as above was subjected to an erosion test at 1500℃ for 5 hours using an erosion agent (30% blast furnace slag, 20% pig iron) using the rotary erosion method, and the erosion dimensions were measured after the test. did. As is clear from the above results, the products of the present invention not only have significantly improved oxidation resistance but also corrosion resistance by 10 to 30% compared to conventional products.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明品である供試材No.1と従来品No.17との煉
瓦を溶銑予備処理混銑車へ左右対称に内設し、実
稼働を行い耐用性を比較したところ450チヤージ
後の溶損量は、本発明品は従来品に較べ約20%少
なくなり、上記混銑車の耐久性が向上し、その工
業的効果は顕著であつた。
Bricks of test material No. 1, which is the product of the present invention, and bricks of conventional product No. 17 were installed symmetrically inside a hot metal pretreatment mixing car, and the bricks were actually operated and their durability was compared. The amount was reduced by about 20% in the product of the present invention compared to the conventional product, and the durability of the above-mentioned pig iron mixing vehicle was improved, and its industrial effects were remarkable.

Claims (1)

【特許請求の範囲】 1 炭素質材料3〜30重量%、ガラス質材料0.1
〜10重量%、マグネシア質材料0.1〜15重量%と、
残部がアルミナ質、アルミナ−珪酸質系、炭化物
系、窒化物系耐火材料の1種あるいは2種以上と
不可避不純物からなることを特徴とする炭素含有
耐火物。 2 炭素質材料3〜30重量%、ガラス質材料0.1
〜10重量%、マグネシア質材料0.1〜15重量%と、
残部がアルミナ質、アルミナ−珪酸質系、炭化物
系、窒化物系耐火材料の1種あるいは2種以上と
不可避的不純物からなり、更に上記の合計量に対
して0.1〜10重量%の金属アルミニウム、金属シ
リコン、金属マグネシウムの何れか1種あるいは
2種以上を添加してなることを特徴とする炭素含
有耐火物。
[Claims] 1. 3 to 30% by weight of carbonaceous material, 0.1% of vitreous material
~10% by weight, 0.1~15% by weight of magnesia material,
A carbon-containing refractory characterized in that the remainder consists of one or more of alumina, alumina-silicate, carbide, and nitride refractories and unavoidable impurities. 2 Carbonaceous material 3-30% by weight, glassy material 0.1
~10% by weight, 0.1~15% by weight of magnesia material,
The remainder consists of one or more of alumina, alumina-silicate, carbide, and nitride refractory materials and unavoidable impurities, and metal aluminum in an amount of 0.1 to 10% by weight based on the total amount above, A carbon-containing refractory characterized by adding one or more of metal silicon and metal magnesium.
JP63081236A 1988-04-04 1988-04-04 Refractory incorporating carbon Granted JPH01257164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081236A JPH01257164A (en) 1988-04-04 1988-04-04 Refractory incorporating carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081236A JPH01257164A (en) 1988-04-04 1988-04-04 Refractory incorporating carbon

Publications (2)

Publication Number Publication Date
JPH01257164A JPH01257164A (en) 1989-10-13
JPH0543658B2 true JPH0543658B2 (en) 1993-07-02

Family

ID=13740804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081236A Granted JPH01257164A (en) 1988-04-04 1988-04-04 Refractory incorporating carbon

Country Status (1)

Country Link
JP (1) JPH01257164A (en)

Also Published As

Publication number Publication date
JPH01257164A (en) 1989-10-13

Similar Documents

Publication Publication Date Title
US5212123A (en) Refractory materials formed from refractory grains bonded by a sialon matrix containing dispersed graphite and/or boron nitride particles and a process for the preparation of these materials
US4605635A (en) Carbon-containing refractory
US2364108A (en) Bonded silicon carbide refractories
JPH0352428B2 (en)
JPH0753600B2 (en) Molten steel container
JPH0196070A (en) Unfixed shape refractory to be used for spout for molten metal
KR100569209B1 (en) Magnesia-Spinel-Carbon Basic Refractory
JPH05105506A (en) Slide valve plate brick
JPH0543658B2 (en)
JP4373509B2 (en) Basic refractory
JPH0585805A (en) Carbon-containing fire-resistant material
JP2633018B2 (en) Carbon containing refractories
JP3238592B2 (en) Irregular cast refractory moldings
JP2747734B2 (en) Carbon containing refractories
JPH09278540A (en) Corrosion-and oxidation-resistant amorphous refractory material
JPS6033782B2 (en) Refractories for hot metal pretreatment
JPH02267150A (en) Carbon-containing refractory for iron melting
JPS5918174A (en) Lining material for molten metal treating vessel
JPH0283250A (en) Production of carbon-containing calcined refractory
JP2516187B2 (en) Refractory for molten steel container
JPH02267159A (en) Carbon-containing refractory for iron melting
JPH03153563A (en) Magnesia-carbon brick
JPH05319902A (en) Carbon-containing basic refractory
KR19990059266A (en) High Magnesium-Carbon Refractory
JPH0379304B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 15