WO1983003309A1 - Dispositif de surveillance locale a radar doppler - Google Patents

Dispositif de surveillance locale a radar doppler Download PDF

Info

Publication number
WO1983003309A1
WO1983003309A1 PCT/EP1983/000069 EP8300069W WO8303309A1 WO 1983003309 A1 WO1983003309 A1 WO 1983003309A1 EP 8300069 W EP8300069 W EP 8300069W WO 8303309 A1 WO8303309 A1 WO 8303309A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillator
detector
antenna
microstrip
diode
Prior art date
Application number
PCT/EP1983/000069
Other languages
German (de)
English (en)
Inventor
GmbH Hörmann
Original Assignee
Simpson, Ian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Simpson, Ian filed Critical Simpson, Ian
Publication of WO1983003309A1 publication Critical patent/WO1983003309A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems

Definitions

  • the invention relates to a device for room surveillance by means of Doppler radar, comprising a microwave oscillator, a transceiver antenna and a detector.
  • a known device of this type ("Electronics Newspaper” Feb. 1980, p.8) contains a Gunn-Oszilla gate in cavity technology, a diode mixer and a planar transmit / receive antenna.
  • a major disadvantage of this known design is its large space requirement and weight, which is essentially due to the oscillator designed in cavity technology.
  • Another disadvantage is the considerable manufacturing costs, to which the connections to be provided between the cavity oscillator and the antenna (usually designed as hollow lines) also make a significant contribution.
  • the invention is therefore based on the object, while avoiding these disadvantages, of providing a device for space monitoring by means of Doppler radar, which is particularly simple and cost-saving
  • the oscillator, antenna, detector and the connecting lines of these elements are constructed in microstrip construction (microstrip or stripline) and are arranged on the same carrier material.
  • FIGS. 1 and 2 To explain what is to be understood in the context of the present application by "microstrip construction", reference is first made to FIGS. 1 and 2.
  • Fig.1 shows the construction method used in Anglo-American
  • insulating plates 1 and 2 which have on their outside a conductive layer 1a or 2a made of metal, which are usually at ground potential.
  • a conductor 3 in the form of a thin metal strip is sandwiched between the insulating plates 1 and 2 and serves as a microwave line.
  • FIG. 2 shows the so-called “microstrip construction”.
  • only one insulating plate 4 is provided, which is provided on one side with a conductive layer 4a, which is usually held at ground potential, and which carries the conductor 5, which is intended to guide the microwaves, on the other side.
  • microstrip design is understood to mean both the designs shown in FIGS. 1 and 2.
  • all the essential components of the device used for space monitoring namely the oscillator, antenna, detector and their connecting lines, are designed in a microstrip design and arranged on the same carrier material.
  • the insulating plate 4 in the construction according to FIG. 2) or one of the two insulating plates 1, 2 (in the construction according to FIG. 1) serves as the carrier material.
  • the oscillator contains a GaAs field-effect transistor.
  • a GaAs field-effect transistor Such an oscillator has significant advantages over a Gunn oscillator in cavity technology. It has a high efficiency and accordingly a lower power consumption. The harmonic content and the resulting signal distortion are smaller.
  • the temperature stability of a GaAs-FET oscillator in planar design can be greater than that of an oscillator in cavity technology. Weight and space requirements are much smaller.
  • Another embodiment of the device according to the invention uses an oscillator with a Gunn diode, which is likewise constructed in a microstrip design.
  • This variant also has in Ver same as an oscillator made in cavity technology, essential advantages in terms of space requirements, weight, production and operational reliability.
  • any planar antenna designed in microstrip construction can be used as an antenna within the scope of the invention.
  • a microstrip antenna In comparison to known horn antennas, such as those used in devices for space monitoring using Doppler radar, such a microstrip antenna is not only distinguished by its flat, space-saving design and particularly simple manufacture. It also has the advantage that any desired antenna characteristics can be achieved in a simple manner by appropriate design and arrangement of the individual microstrip elements. This advantage is particularly important in the case of devices for room monitoring, since a good adaptation of the antenna to the room to be monitored is of essential importance for an optimal function.
  • planar antenna designed in microstrip construction is that it is particularly simple with this construction, a circular or elliptical polarization to achieve the antenna beam. As a result, a mutual influence of devices arranged opposite one another in the space to be monitored can be reduced in a simple manner.
  • the detector of the device according to the invention which is designed in microstrip construction.
  • An expedient configuration of the invention provides that the FET-Os zillator also forms the detector.
  • Another variant uses a diode detector, in particular a Schottky junction diode, as the detector.
  • FIG. 3 shows in a very schematic form the main components of the device for space monitoring according to the invention.
  • an insulating plate 6 which corresponds to the insulating plate 2 or 4 of the embodiments according to FIGS. 1 and 2 are an oscillator 7, an antenna 8 and a connecting section 9 - all in microstrip design on the same carrier material (insulating plate 6) - arranged.
  • the details of possible embodiments of the oscillator 7, the antenna 8 and the connecting section 9 (which can also contain a detector) are explained in more detail below with the aid of a few examples.
  • 4 shows an exemplary embodiment of the oscillator
  • a GaAs field effect transistor (FET) 10 the connections of which are designated G, D and S in the usual way.
  • the feedback takes place via a dielectric resonator 11, the dimensions of which determine the oscillator frequency.
  • the source connections S end in a piece of microstrip line, the length and impedance of which produce the optimal coupling to the resonator 11.
  • the dielectric resonator 11 is located in the vicinity of the line 12 connected to the gate connection. In this way, a feedback between source S and gate G is established.
  • the line 12 connected to the gate is terminated by an impedance formed by L 1 and R 2 , which prevents self-excitation of the FET.
  • the line 13 connected to the drain connection leads to the output.
  • C 1 is a coupling capacitor.
  • the supply voltage is supplied via a low-pass filter formed by L 2 and C 2 .
  • the inductance L 3 represents a high impedance for the oscillator frequency, so that most of the power reaches the output 14 of the oscillator via the capacitor C 1 .
  • the resistor R 1 ensures that when the bias voltage V is applied, the drain terminal D is always positively biased against the gate G. This results in a limitation of the current flowing through the drain connection when switching on.
  • FIGS. 5 and 6 A further exemplary embodiment of an oscillator 7 which can be used in the device according to the invention in a microstrip design is illustrated in FIGS. 5 and 6.
  • This oscillator uses a Gunn diode 15 which is arranged in the insulating plate 6. With their existing on the underside of the insulating plate 6 to the Gunn diode 15 is connected to a metal cap 16, which serves as a heat sink that dissipates the heat developed and at the same time produces a good ground connection of the Gunn diode.
  • the diode is supplied with power via a low-pass filter 17 implemented in printed circuit technology on the insulating plate 6.
  • the oscillator also includes a dielectric resonator 11 and a capacitor 18 which is arranged in the line 20 leading to the output 19.
  • the FET oscillator forms gate 21 is also the essential element of the detector.
  • the oscillator 21 feeds the antenna 22 with microwave power.
  • the reflected signals shifted by the Doppler frequency pass from the antenna 22 back to the oscillator 21 and cause one in the oscillator
  • FIG. 8 Another exemplary embodiment of a suitable detector is shown in FIG. 8.
  • the essential element of this detector is a diode 24, which is connected to a branch 25, via which the microwave power supplied by the oscillator 26 is divided between the two antennas 27 and 28.
  • the entire connecting lines between the oscillator 26 and the antennas 27, 28 are arranged in a microstrip design.
  • FIG. 1 Another embodiment of a detector (for generating an output signal corresponding to the difference between the transmission and reception frequency) is illustrated in FIG.
  • a Schottky junction diode 29 is used as the detector. It is connected directly to the microstrip line 30 which is connected to the antenna and the oscillator.
  • the other connection of the Schottky junction diode 29 stands out with a printed circuit led low-pass filter 31 in connection, which passes the Doppler signals, but suppresses the microwaves generated by the oscillator.
  • the double output signal can be picked up at terminals A, B.
  • An inductor 32 prevents microwaves from reaching port A and thereby impairing the efficiency of the detector.
  • Fig.10 shows an embodiment of a usable in the device according to the invention, formed in micro stripe design antenna. It is arranged on an insulating plate 33, which also forms the support for the oscillator and the detector.
  • the antenna contains two antenna elements 34, 35, which each consist of strip-like conductors pointing in the opposite direction and are fed with microwave energy via a common connection 36 from the oscillator (not shown).
  • FIG. 11 shows a further exemplary embodiment of an antenna constructed in microstrip design, in which the individual strips of the two antenna elements 37 and 38 are offset from one another by 90 °. In this way a circular polarization of the antenna beam can be achieved.
  • FIG. 12 shows an exemplary embodiment in which the components of the monitoring device are arranged in a somewhat different way on the insulating plate 39 serving as a common carrier material than in the case of
  • the oscillator 7 and the connecting section 9 (containing a detector diode and lines for power distribution) are provided approximately in the middle of the insulating plate 39.
  • An antenna 40 or 41 is arranged on each side of this circuit group, the antenna elements of these antennas being offset from one another by 90 °, so that a circular or elliptical polarization of the antenna beam can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Dans un dispositif de surveillance locale à radar Doppler, l'oscillateur, l'antenne, le détecteur et les conduites de connexion de ces éléments sont formés selon une construction en microbandes et agencés sur le même matériau de support. On obtient ainsi une construction plate et qui occupe peu de place, de fabrication simple et un appareil ayant un fonctionnement très fiable.
PCT/EP1983/000069 1982-03-12 1983-03-08 Dispositif de surveillance locale a radar doppler WO1983003309A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823209094 DE3209094A1 (de) 1982-03-12 1982-03-12 Vorrichtung zur raumueberwachung mittels doppler-radar
DEP3209094.3820312 1982-03-12

Publications (1)

Publication Number Publication Date
WO1983003309A1 true WO1983003309A1 (fr) 1983-09-29

Family

ID=6158112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1983/000069 WO1983003309A1 (fr) 1982-03-12 1983-03-08 Dispositif de surveillance locale a radar doppler

Country Status (3)

Country Link
EP (1) EP0102977A1 (fr)
DE (1) DE3209094A1 (fr)
WO (1) WO1983003309A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0129251A1 (fr) * 1983-06-21 1984-12-27 Siemens Aktiengesellschaft Radar Doppler à microbande
FR2575554A1 (fr) * 1984-12-28 1986-07-04 Radiotechnique Compelec Module hyperfrequence pour radar doppler dans la bande k
WO1988001062A1 (fr) * 1986-08-08 1988-02-11 Hughes Aircraft Company Emetteur-recepteur radar utilisant des formes d'onde a polarisation circulaire
EP0371346A2 (fr) * 1988-12-01 1990-06-06 TEMIC TELEFUNKEN microelectronic GmbH Dispositif de mesure des composantes de vitesse horizontale et/ou verticale d'un premier objet en mouvement relativement à un second objet
EP0638818A1 (fr) * 1993-08-09 1995-02-15 Siemens Aktiengesellschaft Module de radar du type doppler en technique microbande
WO2019120672A1 (fr) * 2017-12-20 2019-06-27 Robert Bosch Gmbh Dispositif d'émission et de réception de rayonnement électromagnétique

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821215C2 (de) * 1988-06-23 1993-11-18 Deutsche Aerospace Geschwindigkeits-Wegstrecken-Sensor für Kraftfahrzeuganordnungen
JP2003084058A (ja) * 2001-09-10 2003-03-19 Hitachi Ltd 誘電体共振器型発振器及びそれを用いた送受信モジュール

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2231062A1 (fr) * 1973-05-22 1974-12-20 Tacussel Maurice
US4122449A (en) * 1976-05-17 1978-10-24 Hitachi, Ltd. Device for measuring a vehicle speed by utilizing the doppler effect
FR2386049A1 (fr) * 1977-03-30 1978-10-27 Tacussel Marc Radar miniaturise de detection de mouvement
JPS54111799A (en) * 1978-02-21 1979-09-01 Mitsubishi Electric Corp Doppler radar unit
JPS54118193A (en) * 1978-03-06 1979-09-13 Mitsubishi Electric Corp Doppler radar device
GB2040623A (en) * 1978-10-24 1980-08-28 Hitachi Ltd Microwave integrated circuit device
GB2042300A (en) * 1979-01-22 1980-09-17 Nissan Motor Short-range doppler radar system
FR2453507A1 (fr) * 1979-04-06 1980-10-31 Besse Jean Circuit d'antenne, en particulier pour radar de surveillance volumetrique
FR2476878A1 (fr) * 1980-02-25 1981-08-28 Esteban Michel Detecteur a effet doppler

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7400469U (de) * 1974-04-04 Jungblut H Elektronisches Haus- und Raumschutzgerät
US3671868A (en) * 1970-01-21 1972-06-20 Bendix Corp Superregenerative microwave receiver
FR2177564B1 (fr) * 1972-03-29 1974-08-02 Nathan Guy
FR2280240B1 (fr) * 1974-07-26 1977-01-07 Lignes Telegraph Telephon Circuit micro-onde integre a fonctions multiples
DE2638906A1 (de) * 1976-08-28 1978-03-02 Philips Patentverwaltung Ghz-antennenanlage fuer ein doppler-radar im x-band
GB1534210A (en) * 1977-11-29 1978-11-29 Standard Telephones Cables Ltd Microwave circuit
JPS5491079U (fr) * 1977-12-09 1979-06-27
DE2846705C2 (de) * 1978-10-26 1986-07-31 Hitachi, Ltd., Tokio/Tokyo Mikrowellen-Schaltungsanordnung verkoppelt mit einem Hohlleiter
DE3011238A1 (de) * 1980-03-22 1981-10-01 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Mikrowellen-sende-empfaenger, insbesondere fuer ein doppler-radar-system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2231062A1 (fr) * 1973-05-22 1974-12-20 Tacussel Maurice
US4122449A (en) * 1976-05-17 1978-10-24 Hitachi, Ltd. Device for measuring a vehicle speed by utilizing the doppler effect
FR2386049A1 (fr) * 1977-03-30 1978-10-27 Tacussel Marc Radar miniaturise de detection de mouvement
JPS54111799A (en) * 1978-02-21 1979-09-01 Mitsubishi Electric Corp Doppler radar unit
JPS54118193A (en) * 1978-03-06 1979-09-13 Mitsubishi Electric Corp Doppler radar device
GB2040623A (en) * 1978-10-24 1980-08-28 Hitachi Ltd Microwave integrated circuit device
GB2042300A (en) * 1979-01-22 1980-09-17 Nissan Motor Short-range doppler radar system
FR2453507A1 (fr) * 1979-04-06 1980-10-31 Besse Jean Circuit d'antenne, en particulier pour radar de surveillance volumetrique
FR2476878A1 (fr) * 1980-02-25 1981-08-28 Esteban Michel Detecteur a effet doppler

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
19818 IEEE MTT-S International Microwave Symposium Digest, the Institute of Electrical and Electronics Engineers, 1981, New York (US), T. MORI et al.: "A 10.5 GHzMIC Direction Sensitive Doppler Module using a GaAs Fet and a Ag/Pd Thick Film", pages 319-321, see figures, 1,2; page 319, left-hand column, line 1 to right-hand column, line 45 *
Elektronik, Vol. 26, issue 4, April 1977, Munchen (DE), A. MARGANITZ: "Mikrowellen-Tachometer Misst Beruhrungslos", pages 95-98 *
PATENT ABSTRACTS OF JAPAN, Vol. 3, No. 135, 10 November 1979, page 13E150 & JP, A, 54111799 *
PATENT ABSTRACTS OF JAPAN, Vol. 3, No. 139, 13 September 1979, page 142E152 & JP, A 54118193 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0129251A1 (fr) * 1983-06-21 1984-12-27 Siemens Aktiengesellschaft Radar Doppler à microbande
FR2575554A1 (fr) * 1984-12-28 1986-07-04 Radiotechnique Compelec Module hyperfrequence pour radar doppler dans la bande k
WO1988001062A1 (fr) * 1986-08-08 1988-02-11 Hughes Aircraft Company Emetteur-recepteur radar utilisant des formes d'onde a polarisation circulaire
EP0371346A2 (fr) * 1988-12-01 1990-06-06 TEMIC TELEFUNKEN microelectronic GmbH Dispositif de mesure des composantes de vitesse horizontale et/ou verticale d'un premier objet en mouvement relativement à un second objet
EP0371346A3 (fr) * 1988-12-01 1991-03-13 TEMIC TELEFUNKEN microelectronic GmbH Dispositif de mesure des composantes de vitesse horizontale et/ou verticale d'un premier objet en mouvement relativement à un second objet
EP0638818A1 (fr) * 1993-08-09 1995-02-15 Siemens Aktiengesellschaft Module de radar du type doppler en technique microbande
US5497163A (en) * 1993-08-09 1996-03-05 Siemens Aktiengesellschaft Doppler radar module using micro-stripline technology
WO2019120672A1 (fr) * 2017-12-20 2019-06-27 Robert Bosch Gmbh Dispositif d'émission et de réception de rayonnement électromagnétique
CN111512494A (zh) * 2017-12-20 2020-08-07 罗伯特·博世有限公司 用于发送和接收电磁辐射的设备
CN111512494B (zh) * 2017-12-20 2021-09-21 罗伯特·博世有限公司 用于发送和接收电磁辐射的设备
US11579243B2 (en) 2017-12-20 2023-02-14 Robert Bosch Gmbh Device for emitting and receiving electromagnetic radiation

Also Published As

Publication number Publication date
EP0102977A1 (fr) 1984-03-21
DE3209094A1 (de) 1983-09-22

Similar Documents

Publication Publication Date Title
DE3638748C2 (fr)
DE2942035C2 (de) Einrichtung zum Empfang von Mikrowellen
DE102011005688A1 (de) Halbleiterschalter, Sende-Empfangsgerät, Sender und Empfänger
DE69216742T2 (de) Breitbandiger Übergang zwischen einer Mikrostreifenleitung und einer Schlitzleitung
DE1245444B (de) Mikrowellen-Mischstufenanordnung mit Hybride
DE102005037877A1 (de) Diodenmischer
WO1983003309A1 (fr) Dispositif de surveillance locale a radar doppler
DE2607116C2 (de) Hochfrequenzmischer mit wenigstens einem Yttrium-Eisengranat-Abstimmelement
DE1903518B2 (de) Hochfrequenzoszillator
DE60101089T2 (de) Multifunktionelle integrierte schaltungsanordnung hoher frequenz
DE102017200132A1 (de) Antennenvorrichtung mit Bonddrähten
EP0102974A1 (fr) Dispositif a radar doppler pour la surveillance locale
DE2503850A1 (de) Hohlleiterantenne mit aperturschalter
DE2253710A1 (de) Festkoerper-mikrowellenoszillator
DE1950596A1 (de) Elektronische Abstimmvorrichtung fuer elektromagnetischen Resonator
DE3833696C2 (de) Signalverarbeitungsvorrichtung und Verfahren zum Ausdehnen des flachen Frequenzgangs einer Komponente
DE19731085A1 (de) Einrichtung zum Senden und Empfangen von Radarwellen, insbesondere für einen Abstandssensor
DE69216743T2 (de) Einrichtung für in situ Ultrahochfrequenztests mit grosser Bandbreite
DE2525468C3 (de) Breitbandiger Mischer für sehr hohe Frequenzen in Streifenleitungstechnik
DE3324540C2 (de) Breitbandiger Mikrowellenverstärker
DE2541569C2 (de) Frequenzabhängiges Dämpfungsglied
DE2744862A1 (de) Hochfrequenztransformator
DE2638906A1 (de) Ghz-antennenanlage fuer ein doppler-radar im x-band
DE69121728T2 (de) Mikrowellenverbinder
DE4138782C1 (en) Direction finder antenna with adjacent passive dipole elements - has diode switch between input and output of transformer at point where balanced input voltage is zero w.r.t. earth

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): AT CH DE FR GB