WO1983002151A1 - Gilled tube construction - Google Patents

Gilled tube construction Download PDF

Info

Publication number
WO1983002151A1
WO1983002151A1 PCT/SE1981/000367 SE8100367W WO8302151A1 WO 1983002151 A1 WO1983002151 A1 WO 1983002151A1 SE 8100367 W SE8100367 W SE 8100367W WO 8302151 A1 WO8302151 A1 WO 8302151A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
heat
tube
temperature
tubes
Prior art date
Application number
PCT/SE1981/000367
Other languages
French (fr)
Inventor
Rune Andersson
Original Assignee
Rune Andersson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rune Andersson filed Critical Rune Andersson
Priority to EP19810903215 priority Critical patent/EP0096021A1/en
Priority to PCT/SE1981/000367 priority patent/WO1983002151A1/en
Publication of WO1983002151A1 publication Critical patent/WO1983002151A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element

Definitions

  • This invention relates to an apparatus with tubes, provi ⁇ ded with gills and intended for a flowing medium, in par- - ticular flue gases from a combustion process, where the gills are designed to absorb an optimal amount of heat from the gases for transmission to a heat absorbing medium, e.g. water, in the tubes.
  • a heat absorbing medium e.g. water
  • the invention relates to gilled tubes for economisers in boilers.
  • the sections at the rear end of a boiler serve to absorb the final heat energy remained in the flue gases before they leave the unit through the stack. This heat recovery is normally accomplished by preheating the feed water and/ /or the air for the burners, and in general the heat ener- gy in the flue gases below 300°- 500°C is utilized. These sections are called economiser and air heater respective ⁇ ly, and the aim is of course to lower the flue gas tempe ⁇ rature in these sections as much as possible since this will result in an improvement of the heat economy. It can be shown that a decrease of the flue gas temperature of 10 -15 C will increase the efficiency by about 1 percent ⁇ age unit. The determination of the size of the heating surfaces of economisers and air heaters will thus be an economical evaluation where the improvement of the heat economy is balanced against the cost of the increased heating surface.
  • the lower limit for the cooling of the flue gases is de ⁇ termined by the temperature where there is a risk for condensation of especially sulphuric acid on the heating surfaces.
  • the sulphuric trioxide S0 3 that is formed when the fluel is burned reacts with the water vapour H 2 0 in the gases and forms sulphuric acid H 2 S0 ⁇ ,.
  • the temperature at which this is started is called the acid dew poinu, : and its value is dependant upon the type of fluel and its composition, especially the sulphur con ⁇ tent, the combustion method, excess iar and several other factors, and it is thus difficult to give an exact value of this temperature. Normally its value is in the region between 70°-170°C.
  • the heating surfaces are normally designed to resist the corrosive attacks from condensing sulphuric acid and simi- lar products.
  • the usual method is to make the heating sur ⁇ faces in this region with a cover from cast iron outside the steel tubes.
  • the purpose of the cast iron cover is to form the corrosion resistance while the steel tube consti ⁇ tutes the pressure resisting part.
  • the contact between the cast iron shell and the steel tube must of course be very good to give a good heat transfer through the material.
  • the primary function of the heating surfaces at the rear end of the boiler is to transfer heat from the flue gases on one side of the surfaces to the feed water or the co -
  • the flanges (gills) of a heat exchanger surface serve the purpose of improving the heat transfer on the side where the heat transfer co ⁇ efficient between the flowing medium and the surface is low.
  • This for example, is the case with gases as compared to fluids.
  • the low heat transfer coefficient is compensa ⁇ ted through the flange arrangement by the fact that the size of the heat absorbing surface is increased.
  • the dis ⁇ advantage with a flanged surface is that the surface temperature is different in different parts of the flange, and consequently the heat transfer at the tip of the flange will be lower than at the root since the tempe- rature difference between the surounding medium and the surface is lower at the tip than at the root. This is ex ⁇ pressed in the calculations by the so-called flange effi ⁇ ciency ⁇ , which is a measure of the relation between the average surface temperature of the flange and the tempera- ture at the root.
  • the embodiment of the invention is to give a solution with respect to the design of flanged heating elements, in par ⁇ ticular elements for economisers. Before this solution is presented a detailed technical summary will be given.
  • An economiser acts in principle as a heat exchanger with the purpose to transfer heat from a gas to a liquid.
  • ⁇ t mean temperature difference between hot and cold side, °C. At a given temperature difference the heat transferred is thus determined by the product of the heat, transfer co ⁇ efficient k and the surface size A.
  • the quantity k, which a flanged heater normally is related to the total size of the outer surface, can be divided into three components as follows: a) the heat transfer from the gas to the outer surface of the tube b) the heat transmission (conduction) through the tube material from the outer to the inner surface c) the heat transfer from the inner surface of the tube to the liquid in the tube.
  • ⁇ f heat transfer coefficient between the gas and the flanged outer surface
  • J/m 2 s C ⁇ . heat transfer coefficient between the inner surface of the tube and the liquid in the tube
  • A size of the tube surface between the flanges
  • m 2 A. inner surface size
  • A outer surface size of an unflanged tube
  • m 2 6 tube thickness
  • heat conductivity of the tube material
  • J/m s C a form factor, which takes into account the curva ⁇ ture of the tube.
  • the flange efficiency ⁇ which thus is related to the heat transfer, is as mentioned before a measure of the relation between the average surface temperature of the flange and the temperature of the tube at the root of the flange, and it is an expression of the fact that the heat transmission capacity of the flange is smaller than that of the tube, measured per unit of surface area.
  • the size of the flange efficiency is depending upon the dimensions and the geometrical form of the flange, and the scope of the invention is to achieve the best efficiency by giving a formula for the geometrical form of the flange.
  • the op ⁇ timal solution can be expressed by the formula n n
  • x and y are coordinates in a right angled system
  • a and b are proportional to the outer dimensions of the flange in the x- and y-direction and n is a coefficient whose value is between
  • n should have a value between 2 and 5. Higher values than 5 gives a reduced flange efficiency and higher material consump ⁇ tion per unit area.
  • Enclosed drawing shows examples of various geometrical forms of flanges for finned and gilled tubes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Heat exchangers consisting of finned tubes especially used in combustion apparatus. According to the invention the fins have a geometrical form which is defined in the formula <IMAGE> where x and y represent Cartesian coordinates and a and b represent external dimension in respectively x- and y- direction and the exponent of power n is more than 2 but less than 5.

Description

Gilled tube construction
This invention relates to an apparatus with tubes, provi¬ ded with gills and intended for a flowing medium, in par- - ticular flue gases from a combustion process, where the gills are designed to absorb an optimal amount of heat from the gases for transmission to a heat absorbing medium, e.g. water, in the tubes.
In particular, but not exclusively, the invention relates to gilled tubes for economisers in boilers.
The sections at the rear end of a boiler serve to absorb the final heat energy remained in the flue gases before they leave the unit through the stack. This heat recovery is normally accomplished by preheating the feed water and/ /or the air for the burners, and in general the heat ener- gy in the flue gases below 300°- 500°C is utilized. These sections are called economiser and air heater respective¬ ly, and the aim is of course to lower the flue gas tempe¬ rature in these sections as much as possible since this will result in an improvement of the heat economy. It can be shown that a decrease of the flue gas temperature of 10 -15 C will increase the efficiency by about 1 percent¬ age unit. The determination of the size of the heating surfaces of economisers and air heaters will thus be an economical evaluation where the improvement of the heat economy is balanced against the cost of the increased heating surface.
The lower limit for the cooling of the flue gases is de¬ termined by the temperature where there is a risk for condensation of especially sulphuric acid on the heating surfaces. What happens is that the sulphuric trioxide S03 that is formed when the fluel is burned reacts with the water vapour H20 in the gases and forms sulphuric acid H2S0ι,. The temperature at which this is started is called the acid dew poinu, :and its value is dependant upon the type of fluel and its composition, especially the sulphur con¬ tent, the combustion method, excess iar and several other factors, and it is thus difficult to give an exact value of this temperature. Normally its value is in the region between 70°-170°C.
The condensation below the dew point temperature causes deposits and corrosion on the surfaces, and to avoid these problems the boiler could either be designed so that this temperature is never achieved (which results in a decrea¬ sed heat economy) or equipped with surfaces that can re¬ sist the corrosive attacks. In the former case the heating surfaces must be designed so that the exit flue gas te pe- rature exceeds the condensation level with adequate margin. It is important to notice that this condition has to be maintained at every boiler load. It is well known that the exit flue gas temperature decreases when the boiler load drops, and if the unit is to operate at various loads it is therefore necessary to have a sufficient design reserve with respect to the dew point.
When the boiler is arranged for a low gas exit temperature the heating surfaces are normally designed to resist the corrosive attacks from condensing sulphuric acid and simi- lar products. The usual method is to make the heating sur¬ faces in this region with a cover from cast iron outside the steel tubes. The purpose of the cast iron cover is to form the corrosion resistance while the steel tube consti¬ tutes the pressure resisting part. The contact between the cast iron shell and the steel tube must of course be very good to give a good heat transfer through the material.
The primary function of the heating surfaces at the rear end of the boiler is to transfer heat from the flue gases on one side of the surfaces to the feed water or the co -
OMPI WIPO bustion air on the other side of the surfaces. Within the actual; temperature region it is suitable to make the sur¬ faces with flanges or gills on the gas side since the heat transfer to a surface is lower from a gas than from a li- quid. Consequently the feed water heaters (economisers) are very often made from horisontal tubes with flanges on the outside.
From an elementary point of view the flanges (gills) of a heat exchanger surface serve the purpose of improving the heat transfer on the side where the heat transfer co¬ efficient between the flowing medium and the surface is low. This, for example, is the case with gases as compared to fluids. The low heat transfer coefficient is compensa¬ ted through the flange arrangement by the fact that the size of the heat absorbing surface is increased. The dis¬ advantage, however, with a flanged surface is that the surface temperature is different in different parts of the flange, and consequently the heat transfer at the tip of the flange will be lower than at the root since the tempe- rature difference between the surounding medium and the surface is lower at the tip than at the root. This is ex¬ pressed in the calculations by the so-called flange effi¬ ciency η, which is a measure of the relation between the average surface temperature of the flange and the tempera- ture at the root.
Based upon the equation for the temperature distribution in the flange material it is possible to derive certain basical expressions for the flange efficiency. A characte¬ ristic feature of these expressions is that the thickness and the height of the flange as well as the geometrical form of the flange are basic components of the equations. Both the dimension and the form of the flange are thus of great importance for the heat transfer.
By choosing a circular flange form (seen in the direction of the axis of the tube) the highest possible flange ef¬ ficiency but the lowest value of "the heat surface size is obtained. The other extreme is a flange with a rectan¬ gular form. This flange form gives the smallest flange efficiency but on the contrary the heat surface size is the largest possible within the available space. With re¬ spect to the cost it is of course desirable to choose a flange form which gives the highest possible heat trans¬ fer in relation to the material consumption and it is therefore important to find a flange form that gives an optimal value with regard to this.
Another advantage with gilled tubes in the heat exchang¬ ing surfaces is that the volume will be much smaller com¬ pared to units without flanges or gills. This means that the investment will be smaller. The fact that the size of the heat exchanger surfaces are smaller also gives lower pressure drops on the gas side as well as on the water side in an economiser, and this results in significant savings in both installation and working costs for the fans and feed water pumps.
The embodiment of the invention is to give a solution with respect to the design of flanged heating elements, in par¬ ticular elements for economisers. Before this solution is presented a detailed technical summary will be given.
An economiser acts in principle as a heat exchanger with the purpose to transfer heat from a gas to a liquid. The heat quantity that is transferred can be expressed by the equation q = k-A-Δt where k = heat transfer coefficient, J/m2 s C A = heating surface, m2
Δt= mean temperature difference between hot and cold side, °C. At a given temperature difference the heat transferred is thus determined by the product of the heat, transfer co¬ efficient k and the surface size A. The quantity k, which a flanged heater normally is related to the total size of the outer surface, can be divided into three components as follows: a) the heat transfer from the gas to the outer surface of the tube b) the heat transmission (conduction) through the tube material from the outer to the inner surface c) the heat transfer from the inner surface of the tube to the liquid in the tube.
The following equation can be derived for the quantity k, where the three components above are represented by the three terms on the right hand side:
+ β-
Figure imgf000007_0001
where αf = heat transfer coefficient between the gas and the flanged outer surface, J/m2 s C α. = heat transfer coefficient between the inner surface of the tube and the liquid in the tube,
J/m2 s °C η = flange efficiency Af = flanged surface size, m2
A = size of the tube surface between the flanges, m 2 A = total outer surface size (= Af+A ) , m2 A. = inner surface size, m2
A = outer surface size of an unflanged tube, m2 6 = tube thickness, λ = heat conductivity of the tube material, J/m s C a = form factor, which takes into account the curva¬ ture of the tube. The flange efficiency η, which thus is related to the heat transfer, is as mentioned before a measure of the relation between the average surface temperature of the flange and the temperature of the tube at the root of the flange, and it is an expression of the fact that the heat transmission capacity of the flange is smaller than that of the tube, measured per unit of surface area. The size of the flange efficiency is depending upon the dimensions and the geometrical form of the flange, and the scope of the invention is to achieve the best efficiency by giving a formula for the geometrical form of the flange. The op¬ timal solution can be expressed by the formula n n
where x and y are coordinates in a right angled system, a and b are proportional to the outer dimensions of the flange in the x- and y-direction and n is a coefficient whose value is between
2 = circle and co = square.
Calculations have shown that the coefficient n should have a value between 2 and 5. Higher values than 5 gives a reduced flange efficiency and higher material consump¬ tion per unit area. Enclosed drawing shows examples of various geometrical forms of flanges for finned and gilled tubes.

Claims

C l a i
Apparatus with tubes, provided with gills and intended for a flowing medium, in particular flue gases from a com¬ bustion process, where the gills are designed to absorb an optimal amount of heat from the gases for transmission to a heat absorbing medium, e.g. water, in the tubes, whereby the geometrical form of the flanges is n n a so where x and y are coordinates in a right angled system and a and b are proportional to the outer dimensions of the flange in x- resp. y-direction, c h a r a c t e r i z e d in that the value of the coefficient n is higher than 2 but smaller than 5.
PCT/SE1981/000367 1981-12-10 1981-12-10 Gilled tube construction WO1983002151A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19810903215 EP0096021A1 (en) 1981-12-10 1981-12-10 Gilled tube construction
PCT/SE1981/000367 WO1983002151A1 (en) 1981-12-10 1981-12-10 Gilled tube construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SE1981/000367 WO1983002151A1 (en) 1981-12-10 1981-12-10 Gilled tube construction

Publications (1)

Publication Number Publication Date
WO1983002151A1 true WO1983002151A1 (en) 1983-06-23

Family

ID=20342949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1981/000367 WO1983002151A1 (en) 1981-12-10 1981-12-10 Gilled tube construction

Country Status (2)

Country Link
EP (1) EP0096021A1 (en)
WO (1) WO1983002151A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR789553A (en) * 1935-05-03 1935-10-31 Delas Improvements to finned tube heat exchangers
GB480152A (en) * 1936-07-02 1938-02-17 Economiseur Green L Improvements in tubular heat exchangers
US2161898A (en) * 1935-10-07 1939-06-13 Elmer E Ledbetter Finned tube and method for forming the same
US2557760A (en) * 1947-09-16 1951-06-19 C A Dunham Co Radiator
CH288848A (en) * 1949-09-12 1953-02-15 Kablitz Richard Tubular heat exchanger with finned tubes and steel tube core.
CH488986A (en) * 1968-01-18 1970-04-15 Sulzer Ag Heat exchanger
SE342317B (en) * 1970-12-30 1972-01-31 Gebelius Sven Runo Vilhelm
DE2048235A1 (en) * 1970-10-01 1972-04-06 Schmoele Metall R & G Heat exchanger tube
DE2303192A1 (en) * 1972-01-27 1973-08-09 Universal Oil Prod Co FIBER TUBE AND THE METHOD AND DEVICE FOR ITS PRODUCTION

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR789553A (en) * 1935-05-03 1935-10-31 Delas Improvements to finned tube heat exchangers
US2161898A (en) * 1935-10-07 1939-06-13 Elmer E Ledbetter Finned tube and method for forming the same
GB480152A (en) * 1936-07-02 1938-02-17 Economiseur Green L Improvements in tubular heat exchangers
US2557760A (en) * 1947-09-16 1951-06-19 C A Dunham Co Radiator
CH288848A (en) * 1949-09-12 1953-02-15 Kablitz Richard Tubular heat exchanger with finned tubes and steel tube core.
CH488986A (en) * 1968-01-18 1970-04-15 Sulzer Ag Heat exchanger
DE2048235A1 (en) * 1970-10-01 1972-04-06 Schmoele Metall R & G Heat exchanger tube
SE342317B (en) * 1970-12-30 1972-01-31 Gebelius Sven Runo Vilhelm
DE2303192A1 (en) * 1972-01-27 1973-08-09 Universal Oil Prod Co FIBER TUBE AND THE METHOD AND DEVICE FOR ITS PRODUCTION

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BO PIERRE: Mekanisk Varmeteori Fortsattningskurs del 1 (pages 25-41) Institutionen for mekanisk varmeteori och kylteknik at Kungliga Tekniska Hogskolan. *
N H AFGAN and E U SCHLUNDER: Heat Exchangers: Design and Theory Sourcebook (Ch. 21), published 1974 by Mc Graw-Hill Book Company. *

Also Published As

Publication number Publication date
EP0096021A1 (en) 1983-12-21

Similar Documents

Publication Publication Date Title
CN101793434B (en) Integrated flue gas condensing waste heat recovery boiler
GB2070225A (en) Gas-liquid heat exchanger
US2469635A (en) Steam boiler or the like having extended heat transfer surfaces
US3385356A (en) Heat exchanger with improved extended surface
NL8403385A (en) CONDENSATION HEATING BOILER.
JPS5572795A (en) Corrugated fin type heat exchanger
WO1983002151A1 (en) Gilled tube construction
CN201628391U (en) Integrated flue-gas condensing waste-heat recovery boiler
US3702633A (en) Gas-to-gas heat exchanger
GB2073395A (en) A heat exchanger for cooling a high temperature fluid
JPS61180855A (en) Condensation boiler
CN208205903U (en) Interior finned tube
CN2129914Y (en) U type gravity hot tube
GB1572001A (en) Dry cooling tower
JPH0566517B2 (en)
CN213021095U (en) Flue gas condensation energy-saving device
CN2370374Y (en) Plate air preheater
CN217155079U (en) Integral finned tube type radial heat pipe and economizer
KR20140100955A (en) Heat exchanger
CN210070689U (en) Composite phase change heat exchanger
CN212320502U (en) Flue gas reheater
CN216845821U (en) Pressure-adjustable separating heat exchanger
CN2446486Y (en) Spiral acupuncture radiator tube
CN107356136B (en) A kind of anti-low-temperature corrosion fume afterheat exchanger and the heat-exchange system based on the exchanger
CN106439901A (en) Drawer type air preheater

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): AT CH DE FR GB NL