JPH0566517B2 - - Google Patents

Info

Publication number
JPH0566517B2
JPH0566517B2 JP62088229A JP8822987A JPH0566517B2 JP H0566517 B2 JPH0566517 B2 JP H0566517B2 JP 62088229 A JP62088229 A JP 62088229A JP 8822987 A JP8822987 A JP 8822987A JP H0566517 B2 JPH0566517 B2 JP H0566517B2
Authority
JP
Japan
Prior art keywords
tube
heat exchange
heat exchanger
heat
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62088229A
Other languages
Japanese (ja)
Other versions
JPS63254397A (en
Inventor
Mitsuhiro Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYUSEI SANGYO KK
Original Assignee
RYUSEI SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYUSEI SANGYO KK filed Critical RYUSEI SANGYO KK
Priority to JP8822987A priority Critical patent/JPS63254397A/en
Publication of JPS63254397A publication Critical patent/JPS63254397A/en
Publication of JPH0566517B2 publication Critical patent/JPH0566517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/06Heat exchange conduits having walls comprising obliquely extending corrugations, e.g. in the form of threads

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水蒸気熱交換媒体を使用して液状被熱
交換媒体に熱交換するフイン内蔵型熱交換チユー
ブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat exchange tube with built-in fins that exchanges heat with a liquid heat exchange medium using a steam heat exchange medium.

(従来技術とその問題点) 従来、化学工場、ボイラー設備および貯湯設備
において、広く第8図に示すように、内筒に蒸気
等の熱媒体を通過させ、その内筒を取り巻く液状
熱交換媒体、例えば、温水を加熱する、シエルチ
ユーブ型熱交換器が使用されているが、一般に効
率が悪く、大きな伝熱面積が必要であるため、製
造コストが高く、また、使用される熱交換媒体に
よつて通常PV値が0.04以上となるため、第一種
または第二種圧力容器対象となり、種々の法規制
により取り扱いおよびメンテナンスが面倒である
という難点がある。
(Prior art and its problems) Conventionally, in chemical factories, boiler equipment, and hot water storage equipment, as shown in Figure 8, a heat medium such as steam is passed through an inner cylinder, and a liquid heat exchange medium surrounding the inner cylinder is used. For example, shell tube heat exchangers are used to heat hot water, but they are generally inefficient and require a large heat transfer area, resulting in high manufacturing costs and problems with the heat exchange medium used. Therefore, since the PV value is usually 0.04 or more, it is subject to first-class or second-class pressure vessels, and has the disadvantage that handling and maintenance are troublesome due to various laws and regulations.

他方、エアコン用熱交換器として第9図および
第10図に示すように、フインチユーブ熱交換器
が提供されているが、熱交換媒体として液体また
は相変化する流体を使用し、チユーブ内を通過さ
せる一方、チユーブ外を通過する被熱交換媒体で
ある気体をフインを介して熱交換する形態である
ため、上記熱媒体として蒸気を用い、温水を加熱
する熱交換器としては適用できない。
On the other hand, as shown in FIGS. 9 and 10, a finch tube heat exchanger is provided as a heat exchanger for an air conditioner, but a liquid or phase-changing fluid is used as the heat exchange medium and passed through the tube. On the other hand, since it is a form in which heat is exchanged with gas, which is a heat exchange medium passing outside the tube, through fins, it cannot be applied as a heat exchanger that uses steam as the heat medium and heats hot water.

(発明の目的) 本発明は、上記従来のシエルチユーブまたは二
重管式熱交換器に代わる単純構造で、熱交換効率
の高い熱交換器を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a heat exchanger with a simple structure and high heat exchange efficiency, which can replace the conventional shell tube or double tube heat exchanger.

この種熱交換チユーブとして実開昭59−139785
号に示す伝熱管が提案されている。この伝熱管は
チユーブの外部にスパイラルフインを巻いて伝熱
面積を増大させ、一方チユーブ内部は内部の流体
を攪乱するようにスパイラル状のバーを配置した
ものであるため、加熱媒体がスパイラルフインが
構成する螺旋状溝内に進入しにくく、特に水蒸気
である場合は熱効率の向上がいま一歩である。
This kind of heat exchange tube was developed in 1985-139785.
The heat exchanger tube shown in No. This heat transfer tube has a spiral fin wrapped around the outside of the tube to increase the heat transfer area, while a spiral bar is placed inside the tube to disturb the internal fluid, so the heating medium is heated by the spiral fin. It is difficult for water vapor to enter the spiral grooves that make up the structure, and it is difficult to improve thermal efficiency, especially in the case of water vapor.

(目的を達成するための構成) そこで、本発明は、二重管をなす内筒の伝熱管
の熱交換効率の高いフインとして上記スパイラル
フインの代わりに、長手方向に波形加工されたワ
イヤを螺旋状に巻回してなる波形熱交換面を利用
すると、従来のスパイラルフインと異なり、熱交
換効率の高い二重管式熱交換器が得られることを
見出して完成したもので、 「周囲に長手方向に波形加工されたワイヤを螺
旋状に巻回して波形熱交換面を形成し、内部に液
状被熱交換体を乱流状態で通過可能な伝熱管をな
す内筒と、該内筒の波形熱交換面外周を包囲する
外筒とからフイン内蔵二重管を構成してなり、該
内筒と外筒間に水蒸気熱交換媒体を通過させ、該
螺旋状フインを介して熱交換を行うようにしてな
るように構成した」ことを要旨とするフイン内蔵
型熱交換チユーブにある。
(Configuration for Achieving the Object) Therefore, in the present invention, instead of the above-mentioned spiral fins, wires corrugated in the longitudinal direction are used as fins with high heat exchange efficiency in the heat exchanger tube of the inner tube forming a double tube. The company discovered that, unlike conventional spiral fins, it was possible to obtain a double-tube heat exchanger with high heat exchange efficiency by using a corrugated heat exchange surface formed by winding the tube in the longitudinal direction. A corrugated wire is spirally wound to form a corrugated heat exchange surface, and an inner tube is formed to form a heat transfer tube that can pass through a liquid heat exchange object in a turbulent state. A double pipe with built-in fins is constructed from an outer cylinder surrounding the outer periphery of the exchange surface, and a steam heat exchange medium is passed between the inner cylinder and the outer cylinder, and heat exchange is performed via the spiral fins. This is a heat exchange tube with built-in fins that is designed to

(作用) 本発明の波形加工されたワイヤを螺旋状に巻回
して形成した波形熱交換面がスパイラルフインに
比して熱交換効率がよい原因は、スパイラルフイ
ンによつて水蒸気の伝熱管外面との直接接触が害
されず、水蒸気の伝熱管外面との接触効率が向上
するためと思われる。
(Function) The reason why the corrugated heat exchange surface formed by spirally winding the corrugated wire of the present invention has higher heat exchange efficiency than the spiral fin is that the spiral fin allows the water vapor to interact with the outer surface of the heat transfer tube. This seems to be because direct contact with the heat exchanger tube is not impaired and the contact efficiency of the steam with the outer surface of the heat transfer tube is improved.

以下、本発明を添付図面に示す具体例に基づ
き、詳細に説明する。
Hereinafter, the present invention will be described in detail based on specific examples shown in the accompanying drawings.

(実施例) 第1図は本発明に係る熱交換器の内部構成を示
す断面図で、第2図は内部伝熱管の拡大断面図、
第3図はその−線断面図、第4図は従来のス
パイラルフインを用いた内部伝熱管の拡大断面図
である。
(Example) Fig. 1 is a sectional view showing the internal structure of a heat exchanger according to the present invention, and Fig. 2 is an enlarged sectional view of an internal heat exchanger tube.
FIG. 3 is a cross-sectional view taken along the - line, and FIG. 4 is an enlarged cross-sectional view of an internal heat transfer tube using a conventional spiral fin.

図面において、熱交換器1は内筒をなす伝熱管
10を外筒20によつて包囲し、該外筒20の一
端には蒸気導入口21を、他端にはドレン導出口
22を設けてある。
In the drawing, a heat exchanger 1 includes a heat exchanger tube 10 forming an inner cylinder surrounded by an outer cylinder 20, a steam inlet 21 at one end of the outer cylinder 20, and a drain outlet 22 at the other end. be.

内筒伝熱管10は銅、アルミブラスまたはキユ
プロニツケル管からなり、その外周に、第2図お
よび第3図の場合は、コルゲート加工(波形加
工)し、銅ワイヤ11を溶接しつつ螺旋状に巻回
して形成された波形熱交換面12が構成されてい
るが、他方、第4図の従来の場合は銅板13を溶
接しつつ巻回して螺旋状フイン14が形成されて
いる。
The inner heat exchanger tube 10 is made of copper, aluminum brass, or Cypronickel tube, and in the case of FIGS. 2 and 3, the inner heat exchanger tube 10 is corrugated (corrugated), and a copper wire 11 is welded and wound spirally around its outer periphery. The corrugated heat exchange surface 12 is formed by turning the heat exchange surface 12, whereas in the conventional case shown in FIG. 4, the spiral fins 14 are formed by winding the copper plate 13 while welding it.

伝熱管10の内部には温水等の液状被熱交換媒
体を通過させるが、流速との関係で乱流状態で流
れるように設定される。そのため、スラリー等の
液体を流す場合は、伝熱管10の内面は平滑であ
つてもよいが、温水等の粘性の低いものは内面を
スパイラル状に形成し、乱流が得られやすいよう
にするのがよい。他方、伝熱管10と外筒20と
の波形熱交換面12が介在する間隙Mにはスチー
ム等の気体状熱媒体を通過させるように設定され
る。かかる間隙Mは波形熱交換面12の頭頂部と
外筒20の内面は出来る限り狭く設定し、スチー
ム等の気体状熱媒体が波形ワイヤ11に沿つて回
転するとともに、ワイヤの谷部を介して管長手方
向に通過するように設定するのがよい。
A liquid heat exchange medium such as hot water is passed through the heat exchanger tube 10, and is set to flow in a turbulent state depending on the flow rate. Therefore, when flowing a liquid such as slurry, the inner surface of the heat exchanger tube 10 may be smooth, but when flowing a liquid with low viscosity such as hot water, the inner surface should be formed in a spiral shape to facilitate turbulent flow. It is better. On the other hand, a gap M between the heat exchanger tube 10 and the outer cylinder 20, in which the corrugated heat exchange surface 12 is interposed, is set to allow a gaseous heat medium such as steam to pass therethrough. The gap M is set as narrow as possible between the top of the corrugated heat exchange surface 12 and the inner surface of the outer cylinder 20, so that the gaseous heat medium such as steam rotates along the corrugated wire 11 and passes through the troughs of the wire. It is best to set it so that it passes in the longitudinal direction of the pipe.

上記第3図の場合と第4図の従来例とを比較す
ると、第4図の場合は、内管と外管の間を通過す
る水蒸気はスパイラルフインの形成する螺旋状溝
の上方を通つて管円周方向に流れることになる。
これに対し、第3図の本発明の波形熱交換面12
では、螺旋状溝が形成されていないので、水蒸気
は直接伝熱管10の外面に接触し、管長手方向に
流れやすくなる。
Comparing the case shown in Fig. 3 above with the conventional example shown in Fig. 4, in the case of Fig. 4, the water vapor passing between the inner tube and the outer tube passes above the spiral groove formed by the spiral fin. It will flow in the circumferential direction of the tube.
In contrast, the corrugated heat exchange surface 12 of the present invention shown in FIG.
In this case, since no spiral groove is formed, water vapor directly contacts the outer surface of the heat exchanger tube 10 and easily flows in the tube longitudinal direction.

本発明においては、上記伝熱管10の各々を外
筒20で包囲する構成が重要で、流量に応じて第
5図に示すように、熱交換器チユーブ1を複数本
合体させるのがよく、同等の伝熱管10を使用し
ても第6図に示すように、複数本の伝熱管10を
包囲するように外筒20を形成しても所定の熱交
換効率は得られない。
In the present invention, it is important to surround each of the heat exchanger tubes 10 with an outer cylinder 20, and depending on the flow rate, it is preferable to combine a plurality of heat exchanger tubes 1 as shown in FIG. Even if heat exchanger tubes 10 are used, as shown in FIG. 6, even if the outer cylinder 20 is formed to surround a plurality of heat exchanger tubes 10, a predetermined heat exchange efficiency cannot be obtained.

(実験例) 第1図に示す熱交換器を次のように構成し、そ
の熱交換効率を試験した。
(Experimental Example) The heat exchanger shown in FIG. 1 was constructed as follows, and its heat exchange efficiency was tested.

従来例(タイプ) 第4図に示すフインチユーブを使用 内 筒 外径15.88(板厚0.8)×全長1000mm (容積0.234m2) フイン高3.2×ピツチ12/in 外 筒 内径27.6mm 内外筒間隙 2.6mm(フインの上端から外管内面まで) 本発明例(タイプ) 第2図および第3図に示すワイヤフインチユー
ブを使用 内 筒 外径19.05(板厚0.95)×全長1000mm (容積0.17m2) ワイヤ径0.5φ(波高1.45mm) 外 筒 内径27.6mm 内外筒間隙 2.85mm(フインの上端から外管内面まで) 上記従来例及び本発明例の熱交換器に対し、次
の条件下に水とスチームを供給した。
Conventional example (type) Uses the finch tube shown in Fig. 4 Inner cylinder Outer diameter 15.88 (plate thickness 0.8) x Total length 1000 mm (Volume 0.234 m2 ) Fin height 3.2 x Pitch 12/in Outer cylinder Inner diameter 27.6 mm Gap between inner and outer cylinders 2.6 mm (From the upper end of the fin to the inner surface of the outer tube) Example of the present invention (type) Uses the wire finch tube shown in Figures 2 and 3 Inner tube Outer diameter 19.05 (thickness 0.95) x total length 1000 mm (volume 0.17 m 2 ) Wire Diameter 0.5φ (wave height 1.45mm) Outer tube Inner diameter 27.6mm Gap between inner and outer tubes 2.85mm (from the top of the fin to the inner surface of the outer tube) The heat exchangers of the conventional example and the example of the present invention were heated with water and steam under the following conditions. was supplied.

従来例(タイプ) 本発明例(タイプ) A:4500/h、13℃の水 同左 B:同上 25℃の温水 26℃ C:119.6℃、1Kg/cm2Gスチーム 同左 D:100℃、103Kg/hドレン
100℃、113Kg/h Q:54000Kcal/h 58000Kcal/h 伝熱係数 U:2300Kcal/m2h℃ 3400Kcal/m2h℃ 尚、上記熱交換器と従来の二重管式熱交換器と
の流量に対する伝熱係数の変化は第11図に示す
ようになつた。かかるグラフから明らかなよう
に、本発明に係る熱交換器においては、PV値
0.04以下の条件で伝熱係数2000Kcal/m2h℃以上
を得ることができるが、従来の熱交換器ではどん
なに流量を増加させても伝熱係数1200〜
1300Kcal/m2h℃どまりである。
Conventional example (type) Invention example (type) A: 4500/h, 13℃ water Same as left B: Same as above 25℃ hot water 26℃ C: 119.6℃, 1Kg/cm 2 G steam Same as left D: 100℃, 103Kg/ h drain
100℃, 113Kg/h Q: 54000Kcal/h 58000Kcal/h Heat transfer coefficient U: 2300Kcal/m 2 h℃ 3400Kcal/m 2 h℃ In addition, the flow rate between the above heat exchanger and the conventional double tube heat exchanger Figure 11 shows the change in the heat transfer coefficient. As is clear from this graph, in the heat exchanger according to the present invention, the PV value
It is possible to obtain a heat transfer coefficient of 2000Kcal/m 2 h℃ or higher under the conditions of 0.04 or less, but with conventional heat exchangers, the heat transfer coefficient remains 1200 or more no matter how much the flow rate is increased.
The temperature is only 1300Kcal/m 2 h℃.

また、タイプ(スパイラルフインを用いた場
合)よりもタイプ(コルゲート加工したワイヤ
を使用した場合)の方が高い伝熱係数が得られる
ことがわかる。
It can also be seen that a higher heat transfer coefficient can be obtained with the type (when corrugated wire is used) than with the type (when spiral fin is used).

(適用例) 第7図に示す給湯システムに上記本発明に係る
熱交換器を使用する場合は次のように構成する。
(Application Example) When the heat exchanger according to the present invention is used in the hot water supply system shown in FIG. 7, it is configured as follows.

図面において、貯湯槽とスチーム加熱式熱交換
器とは分離され、貯湯槽は非圧力容器に構成さ
れ、電気防食GPが施されるとともに圧力計PIに
て槽内圧力を検出し、自動空気抜弁AEを介して
一定のゲージ圧以下に保持される一方、熱交換器
は上記フィン内蔵式熱交換チユーブを使用し、
PV値0.04以下に設定され、循環容量に応じて第
5図に示すように、複数本束ねて使用される。
In the drawing, the hot water storage tank and the steam heating heat exchanger are separated, and the hot water storage tank is configured as a non-pressure container, is given cathodic protection, has a pressure gauge PI to detect the pressure inside the tank, and is equipped with an automatic air vent valve. While the pressure is maintained below a certain gauge pressure through the AE, the heat exchanger uses the above-mentioned finned heat exchange tube,
The PV value is set to 0.04 or less, and multiple pieces are used in bundles, as shown in Figure 5, depending on the circulation capacity.

該貯湯槽と熱交換器とは循環ポンプPを介して
連結され、温度計TIにより貯湯槽内の湯温を測
定し、所定温度下限以下になると、循環ポンプP
を作動させ、熱交換器の熱交換チユーブ内筒10
に循環水を供給するとともに、外筒20と空間に
スチームを供給して内筒を乱流状態で通過する循
環水を昇温した後、貯湯槽に戻すことによつて、
貯湯槽内の温水温度を所定温度に設定でき、温水
を給湯することができるようになつている。
The hot water storage tank and the heat exchanger are connected via a circulation pump P, and a thermometer TI measures the temperature of the hot water in the hot water storage tank, and when the temperature falls below a predetermined lower limit, the circulation pump P
the heat exchange tube inner cylinder 10 of the heat exchanger.
By supplying circulating water to the tank and supplying steam to the outer cylinder 20 and the space to raise the temperature of the circulating water that passes through the inner cylinder in a turbulent state, the water is returned to the hot water storage tank.
The temperature of hot water in the hot water storage tank can be set to a predetermined temperature, and hot water can be supplied.

上記システムにおいて、水頭圧と蒸気圧との関
係をみると、第12図に示す関係がみられ、通常
使用されるスチーム圧(0.5Kg/cm2以下)では、
水頭圧20Kg/cm2近くまで、PV値0.04以下の熱交
換器を設定可能であるから、200m近くの超高層
ビルの屋上から循環水を供給するようにしても圧
力容器対象外に設計することができる。
In the above system, when we look at the relationship between water head pressure and steam pressure, we see the relationship shown in Figure 12. At the steam pressure normally used (0.5Kg/cm 2 or less),
Since it is possible to set up a heat exchanger with a PV value of 0.04 or less at a water head pressure of nearly 20 kg/cm 2 , even if circulating water is supplied from the roof of a skyscraper nearly 200 m high, it is not designed to be a pressure vessel. I can do it.

(発明の効果) 以上の説明で明らかなように、本発明によれ
ば、周囲に長手方向に波形加工されたワイヤを螺
旋状に巻回して波形熱交換面を形成し、内部に液
状被熱交換体を乱流状態で通過可能な伝熱管をな
す内筒と、該内筒の波形熱交換面外周を包囲する
外筒とからフイン内蔵二重管を構成してなり、該
内筒と外筒間に水蒸気熱交換媒体を通過させ、該
螺旋状フインを介して熱交換を行うようにしてな
るように構成したので、上記従来のシエルチユー
ブまたは二重管式熱交換器と同等の単純な構造
で、しかもスパイラルフインを使用する場合より
も熱交換効率の高い熱交換器を安価に提供するこ
とができる(第11図参照)。
(Effects of the Invention) As is clear from the above description, according to the present invention, a wire corrugated in the longitudinal direction is spirally wound around the periphery to form a corrugated heat exchange surface, and a liquid heat exchange surface is formed inside. A double tube with built-in fins is constructed of an inner tube that forms a heat transfer tube that can pass through the exchanger in a turbulent state, and an outer tube that surrounds the outer periphery of the corrugated heat exchange surface of the inner tube. Since the steam heat exchange medium is passed between the cylinders and heat exchange is performed through the spiral fins, the heat exchanger is as simple as the conventional shell tube or double tube heat exchanger described above. It is possible to provide a heat exchanger with a structure and higher heat exchange efficiency at a lower cost than when using a spiral fin (see FIG. 11).

また、本発明に係る熱交換器を使用すれば、超
高層ビルにおける給湯システムにおいても、PV
値0.04以下で、所定の熱交換効率を達成すること
ができるので、圧力対象外となり、製造における
認可申請、設置届け他煩雑な手続、毎年の官庁検
査を必要とせず、また、分割搬入が可能となり、
いかなる狭少な場所にも設置可能となるので、利
用価値頗る大である。
Furthermore, if the heat exchanger according to the present invention is used, PV
Since it is possible to achieve the specified heat exchange efficiency with a value of 0.04 or less, it is not subject to pressure, and there is no need for manufacturing approval applications, installation notifications, or other complicated procedures, and annual government inspections, and it can be delivered in parts. Then,
Since it can be installed in any narrow space, it has great utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る熱交換器の内部構成を示
す断面図で、第2図は内部伝熱管の拡大断面図、
第3図はその−線断面図、第4図は従来のス
パイラルフインを使用した内部伝熱管の拡大断面
図、第5図は第1図に示す熱交換チユーブを複数
本合体させた熱交換器を示す正面図、第6図は伝
熱管は同一であるが、外筒内に複数本の伝熱管を
配設する場合の内部構成を示す断面図、第7図は
本発明に係る熱交換チユーブを使用した圧力容器
対象外給湯システムのフローを示す概要図、第8
図は従来の熱交換器内蔵型の貯湯槽を示す正面
図、第9図および第10図はエアコン用フインチ
ユーブ式熱交換器の概要を示す斜視図、第11図
は本発明に係る熱交換チユーブと従来の熱交換器
との流量変化に対する伝熱係数変化を示す比較グ
ラフ、第12図は本発明に係る熱交換チユーブを
使用した場合の水頭圧とスチーム蒸気圧との関係
を示すグラフである。 1……熱交換チユーブ、10……内筒伝熱管、
12および14……螺旋状フイン、20……外
筒。
FIG. 1 is a sectional view showing the internal structure of the heat exchanger according to the present invention, and FIG. 2 is an enlarged sectional view of the internal heat exchanger tube.
Fig. 3 is a cross-sectional view taken along the - line, Fig. 4 is an enlarged sectional view of an internal heat exchanger tube using a conventional spiral fin, and Fig. 5 is a heat exchanger that combines multiple heat exchange tubes shown in Fig. 1. 6 is a cross-sectional view showing the internal configuration when a plurality of heat transfer tubes are arranged in the outer cylinder, although the heat exchange tubes are the same, and FIG. 7 is a heat exchange tube according to the present invention. Schematic diagram showing the flow of a hot water supply system not subject to pressure vessels using
The figure is a front view showing a conventional hot water storage tank with a built-in heat exchanger, Figures 9 and 10 are perspective views showing an outline of a finch tube heat exchanger for air conditioners, and Figure 11 is a heat exchange tube according to the present invention. FIG. 12 is a graph showing the relationship between water head pressure and steam vapor pressure when the heat exchange tube according to the present invention is used. . 1... Heat exchange tube, 10... Inner cylinder heat exchange tube,
12 and 14... spiral fins, 20... outer cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1 周囲に長手方向に波形加工されたワイヤを螺
旋状に巻回して波形熱交換面を形成し、内部に液
状被熱交換体を乱流状態で通過可能な伝熱管をな
す内筒と、該内筒の波形熱交換面外周を包囲する
外筒とからフイン内蔵二重管を構成してなり、該
内筒と外筒間に水蒸気熱交換媒体を通過させ、該
螺旋状フインを介して熱交換を行うようにしてな
るように構成したことを特徴とするフイン内蔵型
熱交換チユーブ。
1. An inner cylinder having a corrugated heat exchange surface formed by winding a wire corrugated in the longitudinal direction in a spiral manner, and forming a heat transfer tube capable of passing a liquid heat exchange object in a turbulent state inside; A double pipe with built-in fins is constructed from an outer cylinder surrounding the outer periphery of the corrugated heat exchange surface of the inner cylinder, and a steam heat exchange medium is passed between the inner cylinder and the outer cylinder, and heat is transferred through the spiral fins. A heat exchange tube with built-in fins, characterized in that it is configured to perform exchange.
JP8822987A 1987-04-09 1987-04-09 Built-in fan type heat exchange tube Granted JPS63254397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8822987A JPS63254397A (en) 1987-04-09 1987-04-09 Built-in fan type heat exchange tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8822987A JPS63254397A (en) 1987-04-09 1987-04-09 Built-in fan type heat exchange tube

Publications (2)

Publication Number Publication Date
JPS63254397A JPS63254397A (en) 1988-10-21
JPH0566517B2 true JPH0566517B2 (en) 1993-09-21

Family

ID=13937035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8822987A Granted JPS63254397A (en) 1987-04-09 1987-04-09 Built-in fan type heat exchange tube

Country Status (1)

Country Link
JP (1) JPS63254397A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376038A1 (en) * 2002-06-24 2004-01-02 Abb Research Ltd. Heat exchanger
FI125709B (en) 2007-08-31 2016-01-15 Retermia Oy Apparatus and method for making a needle tube and needle tube
KR100891486B1 (en) * 2008-11-07 2009-04-01 황부성 A hydrogen-oxygen generating system
CN103837031A (en) * 2012-11-23 2014-06-04 宜兴市汇富机械设备有限公司 Threaded fin heat exchange tube
DE102017105254A1 (en) * 2017-03-13 2018-09-13 Schmöle GmbH Method for producing a finned tube and a heat exchanger
CN106979607B (en) * 2017-05-10 2019-07-16 安徽人人家集团有限公司 I.e. hot pressure stabilizing water heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139785U (en) * 1983-03-08 1984-09-18 三菱重工業株式会社 heat exchanger tube

Also Published As

Publication number Publication date
JPS63254397A (en) 1988-10-21

Similar Documents

Publication Publication Date Title
JP3953075B2 (en) Heat exchanger
JPS6042843B2 (en) Waste heat boiler
GB2208539A (en) Heat exchanger
US4084546A (en) Heat exchanger
CN110260687A (en) A kind of concatenated shell-and-tube heat exchanger of sheet
JPH0566517B2 (en)
AU2018382368B2 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (III)
CN108072287A (en) A kind of heat exchanger
CN108981427B (en) A kind of tubular heat exchanger
JPH0443733Y2 (en)
CN2170492Y (en) Efficient plate shell type heat exchanger
JPS61165304U (en)
CN208238608U (en) A kind of energy-saving and high efficient heat exchanger
EP3502608B1 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (iii)
WO1993012389A1 (en) Quick operating heat exchanger device
CN213901503U (en) Secondary condensation heat exchanger of gas water heating equipment
CN219640446U (en) Gas boiler
CN215572305U (en) High-efficiency heat exchanger
CN218673259U (en) Energy-saving corrosion-resistant heat exchange device
CN210833165U (en) Cooler with high heat exchange speed for chemical industry
CN216281329U (en) Steam pocket suitable for heat transfer of combination of stranded different temperature medium
CN219736085U (en) Energy accumulator
US3138199A (en) Steam generator
JP4549228B2 (en) Plate heat exchanger
CN212253810U (en) Distilled water cooler for ship storage battery water cooling system