WO1983001674A1 - High frequency heating device - Google Patents

High frequency heating device Download PDF

Info

Publication number
WO1983001674A1
WO1983001674A1 PCT/JP1982/000164 JP8200164W WO8301674A1 WO 1983001674 A1 WO1983001674 A1 WO 1983001674A1 JP 8200164 W JP8200164 W JP 8200164W WO 8301674 A1 WO8301674 A1 WO 8301674A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
humidity
heating
frequency
heating device
Prior art date
Application number
PCT/JP1982/000164
Other languages
English (en)
French (fr)
Inventor
Ltd. Matsushita Electric Industrial Co.
Akihiko Ueno
Kiyoshige Watanabe
Mitsuo Akiyoshi
Kenji Watanabe
Original Assignee
Matsushita Electric Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd filed Critical Matsushita Electric Ind Co Ltd
Priority to AU83959/82A priority Critical patent/AU8395982A/en
Publication of WO1983001674A1 publication Critical patent/WO1983001674A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6482Aspects related to microwave heating combined with other heating techniques combined with radiant heating, e.g. infrared heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/642Cooling of the microwave components and related air circulation systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6458Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using humidity or vapor sensors

Definitions

  • the present invention relates to a high-frequency heating device that automates cooking by combining a micro computer and various sensors.
  • humidity sensors used in electronic ranges that detect the vapor from food and perform automatic cooking respond to water vapor, seasonings, impurities such as alcohol, etc., compared to other gas sensors. Although it has stable characteristics, the humidity sensor fluctuates as the cooking process progresses.Thus, even if changes in humidity due to steam from food can be detected, up to the specified amount could not be detected. Alternatively, if the amount of steam from the food is very small, such as when thawing, the relative humidity change rate will decrease relatively due to the increase in the ambient temperature of the humidity sensor. It was impossible to detect the amount of change.
  • the present invention by detecting the humidity while keeping the exhaust gas temperature discharged from the heating chamber constant, it is possible to accurately detect the time required to reach a constant change in relative humidity due to water vapor emitted from food.
  • the purpose of i-food is to automatically cook and automatically thaw without using special containers.
  • Another object of the present invention is to control the output of the high-frequency oscillation by intermittent control so as to uniformly heat the inside of a large food and to reduce the exhaust temperature when the high-frequency oscillator oscillates during the intermittent control.
  • the output of the heater By switching the output of the heater to a low output to keep it constant and to a high output during non-oscillation], the maximum current consumption and power consumption are suppressed to reduce the price, and furthermore, for home use
  • the purpose is to improve the usability as a configuration that can be used in the outlet.
  • Still another object of the present invention is to detect an ambient temperature at the start of cooking, and select and determine a predetermined exhaust gas control temperature based on the level of the ambient temperature. By doing it? In other words, it is necessary to control the temperature unnecessarily at a high temperature, and to reduce the waste of electric power by using an auxiliary heat source to increase the temperature of electric parts such as magnetrons.
  • the high frequency heating device of the present invention has a configuration in which a heating heater is provided near an intake port of a heating chamber, and a temperature, sensor, and humidity sensor are provided near an exhaust port.
  • the heater is controlled in accordance with the signal to keep the exhaust temperature constant, and the steam emitted from food in the atmosphere near the exhaust port is detected by a humidity sensor.
  • the time required for the relative humidity to reach a predetermined amount of change due to the steam emitted from the food is calculated by a micro-computer, and this time is determined as a function to determine the type of the food.
  • the food is cooked according to the given heating pattern, or the frozen food is thawed, so that the general food can also automatically cook the frozen food.
  • the amount of change in relative humidity can be accurately grasped, and therefore the weight and capacity of the i9 food can be known by measuring the time required to reach a preset amount of change. Therefore, using this time as a function, by preparing food according to the heating pattern for each type of food, automatic cooking with a good finished state becomes possible. Extreme hoes from the department
  • OMPI '' It also responds to changes in humidity with steam, so frozen food can be thawed well without overheating. (3)
  • the exhaust temperature constant
  • the amount of change in relative humidity due to water vapor emanating from food can be set to be large from low humidity to high humidity, and the characteristics of the amount of water vapor generated for different heating times depending on the type and weight of food are improved. It will be possible to determine.
  • FIG. 1 is an external perspective view of an automatic microwave oven showing one embodiment of the present invention
  • FIG. 2 is a front view of the operation unit
  • FIG. 3 is a plan view of the heating chamber
  • FIG. 4 is a humidity sensor.
  • FIG. 5 is a circuit diagram of the control device
  • FIGS. 6 and 7 are humidity characteristic diagrams when cooking and thawing beef.
  • FIG. 1 shows an automatic microwave oven according to an embodiment of the present invention, which is provided with an operation unit 1 and a door 2 on a front surface, and an outside air exhaust port 3 at one corner of a top plate.
  • FIG. 2 shows a front view of the operation unit 1.
  • the time is always displayed on the display unit 4.
  • Switch 5 and number key 6]? In normal cooking, select [3] high-frequency output by power key, and [3] enter the desired time with numeric key 6, then start key S Yo! ) Start cooking.
  • the keys indicated by 9 ⁇ and 1 ⁇ are an automatic cooking key controlled by a humidity sensor, which is a point of the present invention, and an automatic thawing key. By tapping these keys, D is displayed on the display unit 4.
  • the undo key shown in 1 1 is the key used to cancel cooking—or stop cooking—9 or o
  • FIG. 3 shows a plan view of the heating chamber 12 showing a flow path of the cooling air.
  • the cooling fan driven by the fan motor 13 is used for j?
  • the air cooled by the magnetron 14 passes through the heater 15, passes through the air inlet 16 of the heating cabinet 12, enters the heating cabinet 12, and is emitted from a food (not shown).
  • the water is discharged from the exhaust port 17 of the heating chamber 12 together with the generated steam, and further converged by the exhaust guide 1 s, passes through the humidity sensor 19 and the temperature sensor 2 O, and passes through the top plate of the body.
  • Figure 4 shows the humidity sensor 1 9 in which is by J configured and Re off LESSON Gerhard heater 1 9 one a and sensing element 1 9 one b ⁇ ]), sensing element 1 9 -? B surface Dirt adhering to the refrigeration heater
  • the surface temperature is raised by about 5 OO to burn off the dirt according to 19-a], and the sensor has a refresh function to keep the humidity characteristics of the detector element 19-b constant. It is.
  • FIG. 5 shows a circuit diagram of an automatic microwave oven main body showing an embodiment of the present invention.
  • a low-voltage transformer 23 is always connected from a power plug 21 through a fuse 22. ]), Supply power to the control unit 24
  • Reference numerals 31, 32, and 33 denote a first latch switch, a second latch switch, and a short switch that move to the door 2.
  • the role is to open the fuse 2 when the first latch switch 31 is in an abnormal state such as welding, and to fuse the fuse; 22 to always make it a safe failure. is there.
  • the power relay 2 is closed while the power relay 2 is closed, and the high-pressure transformer 26 is energized.
  • the high voltage lead switch is closed or intermittent depending on the set high frequency output.
  • the temperature control relay 28 remains open, that is, the heater 15 is not energized.
  • Fig. 6 shows the humidity detection characteristics when automatic cooking is performed.
  • Humidity sensing element 19-b is sensitive to relative humidity and more than 15 O ° C. Since it exhibits negative resistance to temperature, the resistance of humidity sensing element 191-b during refresh By observing the value, this refresh temperature can be kept constant.
  • a refresh operation is performed immediately after the start, and then the humidity detection state is entered.
  • point a indicates the relative humidity of the room atmosphere, and at the same time, the temperature sensor 20) is used to read the exhaust gas temperature. Depending on the exhaust temperature read, i? The temperature of the exhaust section to be controlled is determined.
  • the necessity of keeping the exhaust part temperature high is that, first, when the relative humidity of the indoor atmosphere is high, the water vapor from food cannot be further contained. That is, the amount of change in humidity at which the state becomes saturated cannot be grasped.
  • the indoor atmosphere is 2 m2. If C, 100%, the heater 15
  • control temperature of the exhaust gas is set to four stages of 35'C and 40, 5O and 55'C in accordance with the room temperature, and the optimum value is selected from these and controlled. I have.
  • Another reason for keeping the exhaust gas temperature high is that the minimum value of relative humidity is recorded after the exhaust gas temperature starts to be controlled by the heater 15 to a certain temperature. If the temperature of the food exceeds the control temperature of the exhaust due to the rise in the temperature of the food or the temperature of the electrical components, etc. This is to increase the margin of humidity detection.
  • the 4 5 4W heater 15 -a which is the largest output among the heaters 15, and the refresh heater 19-1 a are energized, and the refresh Hash heater 1 9-a is a humidity detection element
  • the humidity detecting element 19-b exhibits a negative resistance characteristic and reaches point c when the temperature reaches 5 ° C before and after. Then, cut off the power supply to the Re full LESSON push from the heater 1 9 one a, temperature is lowered, the that the 1 5 0 or less, humidity sensing element 1 9 - atmosphere of b in a dry state and point d Reach.
  • the relative humidity from point b to point d is represented by a characteristic indicated by a straight line connecting point b and point d.
  • the atmosphere before the humidity detecting element 19-b was cooled and the 400 W heater 15-a was continuously energized to keep the exhaust temperature constant, return to point e once. J? Further, when the exhaust gas temperature starts to be controlled, the oscillation start point ⁇ is reached, the magnetron 14 starts oscillating, and starts counting the time until steam detection. From the start point a to the oscillation start point f, a continuous 400W heater 15-a is used.] 9, The arrival at the point f is accelerated. In accordance with the oscillation condition of the tron 14, the exhaust temperature is switched by the temperature control relay 2 S while switching to the 4 OOW heater 15 -a at the time of stoppage and to 1 OOW heater 15-b at the time of oscillation. Controlling. 4 f after point .0 OW l .- motor 1 5 - reason for using a can, 1 00 W heater 1 5 - b alone is inaccurate detection of humidity rather 3 ⁇ 4 sufficient ability to maintain the exhaust temperature This is to prevent this.
  • the method of detecting humidity is to memorize the minimum value of the relative humidity that occurs after the point ⁇ , and count the time required to reach a predetermined change in relative humidity. Automatic cooking is advanced based on this.
  • the characteristics of the humidity change shown in the figure are those obtained when beef was cooked for 13 ⁇ 4, 2 ⁇ , and 3 and the characteristic curves shown by g, h, and i, respectively.
  • indicates the amount of change in the relative humidity for determining the reference detection time ⁇ 1 which is a function of the heating ⁇ -gram, which depends on the type of food and the control temperature of the exhaust gas. This is because the amount of saturated water vapor differs depending on the temperature ⁇ ), and even if the same weight of water evaporates from food, the change in relative humidity varies.
  • T3 T3 time is calculated based on the detected T1 time and the U calculation method is different.
  • This is an experimental program for roast beef with a medium finish, but can be applied to various other menus using the same method; ⁇
  • the heating pattern as described above is stored for each type of cooking.
  • Fig. A shows the humidity detection characteristics when frozen beef is thawed. Up to the point f, at which the predetermined exhaust control temperature is reached by the heating heater 15 D, up to the point f, which is the same as the case of the automatic cooking described above. a is unnecessary and only 1 O OW heater 15-b is used. In the case of automatic thawing, control is performed without setting the temperature higher than the exhaust temperature detected at the start of cooking. This is because the temperature of the food is low, and the temperature of the electrical components rises before the steam is detected.], And the temperature of the exhaust section rarely rises spontaneously. This is because there is no need to lower the humidity at point].
  • a point f 1 OOW heater IS - h only perform control. Therefore, the humidity once rises to the point k, and after that, the magnet CI 14 starts oscillating from the point ⁇ .
  • the detection of the minimum value of the relative humidity is performed after the point k, and when the change amount reaches the point ⁇ , the reference detection time T 1 is obtained.
  • the temperature control relay 28 is opened, and the exhaust temperature is not controlled.
  • the set change in humidity is much smaller than in the case of automatic cooking, and therefore, it is necessary to keep the ripple of the exhaust gas temperature small.
  • a heating unit provided near the intake port is provided. Since the relative humidity is detected while the exhaust temperature is kept constant by the heat heater, it is possible to accurately determine the amount of change in humidity, and by using the humidity detection time at this time. Cooking of many types of foods ⁇ Thawing and automation from thawing to cooking are possible, and it is necessary to use a special container for labs, which impairs the appearance and taste of foods As a matter of fact, it is possible to provide an easy-to-use high-frequency heating device with the danger of cooking failure due to misuse and overheating and ignition of food.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Description

• 明 細 書
- 発明の名称
高周波加熱装置
技術分野 ·
本発明は、 マ イ ク ロ コ ン ピュ ー タ と、 各種セ ンサ との組み合 わせによ 調理の自動化を図った高周波加熱装置に関するもの である。
背景技術
マ イ ク ロ コ ン ピュ — -タの発展 , 低廉化 ,あるいは各種の温度 セ ンサ ,湿度セ ンサ等のセンサの開発に伴 い、 自動調理を行 ¾う ことができる電子レンジが出現し脚光を浴びている。 また 食品の仕上 ]?状態をコン ト ロ ー ルすると云った提案がなされて いる o .
中でも食品からの蒸気を検知して自動調理を行なう電子レ ン ジに使用されている湿度セ ンサは、 他のガスセ ンサに比べて水 蒸気 ¾外の調味料 , アルコー ルなどの不純物等に反応しにく く 安定した特性を有しているが、 調理の進行に伴 湿度センサ の雰囲気温度が変動するため、'食品からの蒸気による湿度の変 化は検出できても、 所定の変化量までを検出することは不可能 であった。 あるいは、 解凍の場合などの食品からの蒸気量が極 くわずか ¾場合には、 湿度セ ンサの雰囲気温度の上昇によ 相 対湿度の変化量の割合が相対的に低下するため、 やは 所定の 変化量を検出することも不可能であった。
これらの欠点を解決すベく、 食品にラッ プを施した J9、 ある いは特殊 ¾ふた付容器を用いた ]) して、 食品からの蒸気の発生 を一時抑え、 沸点間近になって、 一気に蒸気を出させてこれを 検出し制御するという方法である。 この方法では調理に手間が かかる上にラッブ等の扱いを間違えれば即、 誤動作につ ¾が]?、 また調理の仕上 状態も蒸し焼き状態となるため、 特に肉ゃケ ーキでは見栄が悪くなると云う欠点がある。 さ らには室内の雰 囲気状態が高湿度の場合に食品の水蒸気によ ]3相対湿度が飽和 すると云った現象が生じ、 湿度センサがその機能を失 い食品 の過加熱や炭化、 さ らには発火する危険性もある。 また、 冷凍 食品を解凍する場合に、 食品の一部から発生する極くわずかな 水蒸気を検出することは不可能であって、 解凍にはこの方法を 適用することができず、 したがって、 解凍加熱を湿度センサを 用いて自動解凍するこ'とができなかつ'.た。 · 発明の開示
本発明は、 加熱庫よ 排出される排気温度を一定にして湿度 検知を行るう ことによ 、 食品から発する水蒸気による相対湿 度の一定の変化量に達するまでの時間を正確に検出することに よ i?食品にラッブゃ特殊な容器を使用することなく自動調理や 自動解凍を行 う ことを目的とする。
また、 本発明の他の目的の一つは、 高周波発振を断続制御に よ 出力を調節し、 大き 食品の内部まで均一加熱を行なうと 共に、 この断続制御時の高周波発振器の発振時には排気温度を 一定にするための加熱ヒータの出力を低出力に、 非発振時には 高出力に切 ]?換えることによ ]?、 最大消費電流 · 消費電力を抑 えて価格の低廉化を図 、 更には家庭用コ ンセ ン ト で使用可能 構成として、 その使 勝手を向上させることである。
0 PI • 本発明の更に他の目的の一つは、 調理開始時の雰囲気温度を 検出して、 この雰囲気温度の高さによって予めいぐつかに定め られた排気部の制御温度を選択、 決定する構成にすることによ ]?、 むやみに高温で制御することるく、 またマグネ ト ロ ン等の 電気部品の温度上昇を補助的る熱源とすることによって電力の 浪費を軽減することである。
前記目的を達するため、 本発明の高周波加熱装置は、 加熱庫 の吸気口近傍に加熱ヒ ータを設け、 排気口近傍に温度,センサ及 び湿度センサを設ける構成と し、 前記温度センサの検出信号に 応じて前記加熱ヒータを制御して排気温度を一定に保ち、 この 排気口近傍の雰囲気中で食品よ 発する蒸気を湿度センサによ
検出するとと もに、 前記食品から発する蒸気によって、 相対 湿度が予め定められた変化量に達するまでの時間をマイク ロコ ンビュータによ 算出し、 この時間を関数と して前記食品の種 類別に定められた加熱パタ ー ンに従って前記食品を調理し、 あ るいは冷凍食品の解凍を行なう構成であ 、 一般の食品はもち ろん冷凍食品の自動加熱調理をも可能とするものである。
本発明によれば次の効果を得ることができる。
(1 ) 恒温中で相対湿度を検出することから食品からの蒸気によ
る相対湿度の変化量を正確に把握でき、 そのため予め設定さ れている変化量に達するまでの時間を測定することによ i9食 品の重量や容量を知ることができる。 よってこの時間を関数 と して、 食品の種類別にそれぞれの加熱パターンに従って調 理することによ 仕上 状態の良好な自動調理が可能とな ¾o (2) 冷凍食品を解凍する場合に、 食品の一部から発する極くわ
■¾υκど AT
OMPI ' ず 蒸気による祖対湿度の変化にも感応するため、 冷凍食 品を過加熱すること く、 うま く解凍することができる。 (3) 排気温度を一定に保つことによ ]?、 室内の環境に左右され にく く、 吸気口に加熱ヒータを設けることから、 加熱庫内の 相対湿度を常に低く保つことができ、 食品の蒸気による結露 等による誤動作の危険性をなくすことができる。 このことは、 食品から発する水蒸気による相対湿度の変化量を低湿から高 湿まで大き ぐ設定することができ、 食品の種類や重量によつ て異なる加熱時間に対する水蒸気の発生量の特性をうま く判 別することが可能となる。
図面の簡単る説明 .
第 1 図は本発明の一実施例を示す自動電子レンジの外観斜視 図、 第 2図は同操作部の正面図、 第 3図は同加熱庫部分の平面 図、 第 4図は同湿度センサの外観斜視図、 第 5図は同制御装置 の回路図、 第 6図及び第 7図は牛肉の調理及び解凍を行なった 時の湿度特性図である。
発明を実施するための最良の形態
第 1 図において本発明の一実施例を示す自動電子レンジを示 すが前面に操作部 1 と ドア 2を備え、 天板の一隅部に外気排気 口 3を有する。 第 2図においては操作部 1 の正面図を示し、 調 理プロダラムが設定されていない状態では、 表示部 4には常時、 時刻が表示-されてお 、 この時刻表示の設定には、 クロ ックス ィ ツチ 5と、 数字キー 6によ ]?入力することができる。 通常の マ二ュ 了ル調理では、 パワーキー了によ ]3高周波出力を選択し た後、 数字キー 6によ ]3任意の時間を入力し、 ス タ ー トキー S によ!)調理を開始する。 9·及び 1 οに示すキーは、 本発明のボ イ ン ト である湿度センサ制御による自動調理キーと、 自動解凍 キーであ 、 これらのキーをタツブすることによ D、 表示部 4 に食品の種類に対応した数字、 例えば A 1 が表示され、 そのま まスタ ー トキ一 Sを押すことによ ?、 調理あるいは解凍を自動 的に行なう ことができる。 1 1 に示す取 消 しキーは、 調理を —旦停止させた ]?、 あるいはプロ グラ ムを取 ]9消すために用い るキーである o
第 3図にお て冷却風の流通経路を示す加熱庫 1 2の平面図 を示すが、 フ ァ ンモータ 1 3によって駆動する冷却フ ァ ンによ j? 、 マグネ ト ロ ン 1 4を冷却した風は、 加熱ヒータ 1 5を通過 して加熱庫 1 2の吸気口 1 6を通って加熱庫 1 2内に入 j?食品 ( 図示せず)から発'する水蒸気と共に加熱庫 1 2の排気口 1 7 から排出され、 さ らに排気ガイ ド 1 sで収束されて、 湿度セン サ 1 9 , 温度セ ンサ 2 Oを通過してボディ の天板に設けられた 外部排気口 3'よ ]5外部へ排出される。
第 4図において湿度セ ンサ 1 9を示し、 これはリ フ レ ッ シュ ヒータ 1 9 一 a と検知素子 1 9一 b とによ J?構成されて^ ])、 検知素子 1 9 - b表面に付着した汚れを リ フ レ ッ シ ュ ヒータ
1 9 - aによ 5 O Oで程度に表面温度を上昇させて汚れを焼 き切 ]?、 検知素子 1 9 - bの湿度特性を常に一定に維持する リ フ レ ツ シ ュ機能を有するものである。
第 5図において本発明の一実施例を示す自動電子レンジ本体 の回路図を示すが、 電源プラグ: 2 1 からヒ ュ ーズ 2 2を介して 低圧ト ラ ンス 2 3が常に接続されてお ]) 、 制御部 2 4に電源を
ΟΛ1ΡΙ _ " 一 一
• 供給している -0 制御部 2 4の入出力関係は、 電子レンジの非使 用時に時刻を表示した!)、 調理時に調理内容や調理の残 時間 等を表示する表示部 4、 時刻設定や調理メニ ュ ー , 調理時間を 入力するためのキー ボー ド 2 5、 排気口 1 ァ近傍の排気部温度 を検出するための温度セ ンサ 2 0、 排気部湿度を検出するため の湿度検知素子 1 9 - b、 湿度検知素子 1 9 - b の汚れを取 除くためのリ フ レ ッ シュ ヒータ 1 9一 a、 加熱ヒータ " I 5や高 圧ト ラ ンス 2 6等への電源を開閉するパ ワ ーリ レー 2 7、 排気 部温度を一定に保っため温度セ ンサー 2 0の信号に応じて加熱 ヒータ " 1 5を断続制御するための温調リ レー 2 8、 マグネ ト ロ ン 1 4の発振状況によ ]?、 加熱ヒータ 1 5の出力を制御するた め、 4 0 0 W ヒ ータ 1 5 — a と l O O W ヒータ 1 5 — bを切換 える加熱ヒ ータ切換えリ レー 2 9、 マグネ ト ロン " 1 4の発振を 断続し、 高周波出力を制御する高圧リ ー ドス ィ ッ チ 3 0、 その 他、 調理の終了を報知した D、 入力の状況を知らせるためのブ ザ— (図示せず)等、 これらをすベて制御部 2 4内のマイクロ コ ン ピュ ー タによ 制御を行なう。
また、 3 1 , 3 2 , 3 3はドア 2に違動する第 1 ラッチスイ ツ チ ,第 2 ラ ツチス ィ ツチ及びシ ョ 一 ト ス ィ ツチであ 、 シ ョ ー ト スイ ッチ 3 3の役割は第 1 ラ ッチスィ ッチ 3 1 が溶着等の異 常状態に ¾つた時に ド了 2を開いた場合、 ヒ ュ ーズ; 2 2を溶断 して常に安全側故障とするためのものである。 マグネ ト 口ン 14 の電源としては高圧ト ランス 2 6の二次側の高電圧をコンデン サ 3 4 , ダイ オー ド 3 5で半波倍電圧整流し、 高圧リ ー ドス ィ5 ツチ 3 Oを介して供給している。 • マ ニ ュ アルで行なう調理では、 - キ— ボー ド 2 5から高周波出 力と調理時間を入力すると、 表示部 4に調理時間が表示され、 ス タ ー ト キ— 8を押すことによつて表示部 4の調理時間は力ゥ' ン ト ダ ウ ンを行なう と共に、 パワ ー リ レー 2 ァが閉路され、 高 圧ト ラ ンス 2 6に通電される。 高圧リ ー ドス イ ツチは設定され た高周波出力に応じて閉路あるいは断続する。 この場合、 温調 リ レー 2 8は開路のまま、 即ち加熱ヒータ 1 5には通電されな い。 但し、 湿度セ ンサ 1 9には汚れを蓄積させる ために、 周 期的に リ フ レ ツ シ ュ ヒータ 1 9一 aに通電してリ フ レ ッ シ ュ動 作を行なう。
以下、 本自動電子レンジの動作につき説明する。
• 第 6図に、 自動調理を行 った場合の湿度検知特性を示す。
湿度検知素子 1 9 - bは相対湿度に感応すると共に、 1 5 O °C 以上の.温度に対して負抵抗特性を示すため、 リ フ レ ッ シュ時の 湿度検知素子 1 9一 bの抵抗値をみることによってこのリ フ レ ッ シュ温度を一定に保つことができる。 自動調理や自動解凍の 場合にはス タ ー ト直後に リ フ レ ツ シ ュ動作を行. い、 その後、 湿度検出状態にはいる。 第6図において、 ス タ ー ト時の a点で は室 の雰囲気の相対湿度を示し、 同時に温度セ ンサ 2 0によ i)排気部温度を読み取る。 この読み取った排気部温度によ i?、 制御すべき排気部温度を決定するわけである。 排気部温度を高 く維持する必要性は、 まず室内の雰囲気の相对湿度が高湿-の場 合に、 食品からの水蒸気をさらに含み得ないからである。 即ち 飽和状態とな 、 湿度の変化量をつかむことができ い。 例え ば室内の雰囲気が 2 〇 。C , 1 0 0 %であった場合に、 ヒータ 15
3 Kど 4 ΟΛ ΡΙ _ 一 によって 5 O 'Cまで加熱すれば、 相対湿度は約 2 O とな 、 このためにさらにァ 0 /m 3 を含有させることができ食品から 発生する水蒸気の 7 O m3 までを湿度セ ンサ 1 9は検出する ことができる。 しかし室内の雰囲気温度が低い場合に、 常に排 気温度を例えば 5 O °Cまで上昇させることは加熱ヒータ 1 5の 能力的な問題や、 ある はマグネ ト ロ ン 1 4の発振時にマグネ ト ロ ン と加熱ヒータとを合計した最大消費電力を抑えなければ ならず、 加熱ヒータ 1 5の出力を 1 O O Wに落とすため、 その 温度 5 Oでを低出力で維持することがむずかしく、 また、 電力 の浪費を押えるという観点から、 室内の雰囲気に応じて排気の
¾御温度をできる限 D低い温度に設定するのが望ま しい。 本実 施例では、 室内温度に応じて、 排気の制御温度を 3 5 'C , 4 0 で , 5 O , 5 5 'Cの 4段階としこの中から最適値を選択し制 御を行なっている。 その他排気温度を高く保つ理由と して加熱 ヒータ 1 5によって排気温度をある一定温度に制御し始めてか ら、 相対湿度の最低値を記億しこれに対して、 ある一定の相対 湿度の変化量を學て食品の蒸気を検知するまでの間、 食品の温 度上昇や、 電気部品等の温度上昇によつて排気の制御温度を越 えると、 制御不能となるため、 予め排気温度を高く保ち湿度検 出の余裕度を大き くするためである。
図の調理ス タ ー ト点 a点から、 加熱ヒータ 1 5のうち大きい 出力の 4 〇 〇 W ヒータ 1 5 — a と、 リ フ レ ッ シ ュ ヒータ 1 9一 a が通電され、 リ フ レ ッ シ ュ ヒータ 1 9 - aは湿度検知素子
1 9 - bの極く近傍に一体的に設けられていることから、 湿度 検知素子 1 9 - bの雰囲気の相対湿度は急激に下が ]?、 相対湿
ΟΛΪΡΙ _ • 度が O に近 b点に達する。 雰囲気温度が 1 5 0 °Cを越える と、 湿'度検知素子 1 9 - bは負抵抗特性を示すため 5 O Oで前 後に達すると c点に至る。 その後、 リ フ レ ッ シ ュ ヒータ 19一 a への通電が断たれ、 温度が下降し、 1 5 0 以下に ると、 湿 度検知素子 1 9 - bの雰囲気は乾燥状態と d点に達する。 但し b点から d点までの相対湿度は b点と d点とを結ぶ直線で 示す特性で表わされる。 その後、 湿度検知素子 1 9 - bの雰囲 気が冷却され、 また 4 00 Wヒータ 1 5 - aが連続通電されて 排気温度が一定に制御される以前の状態.では、 一旦 e点まで戻 J?、 さ らに排気温度が制御され始めると発振開始点 ί点に達し マグネ ト ロ ン 1 4が発振を開始すると共に、 蒸気検知までの時 間のカ ウン トを開始する。 ス タ ー ト点の a点から発振開始点 f 点までは、 4 00Wヒータ 1 5 - aの連続によ ]9、 f 点への到 達を速め、 ί点以降は、 断続発振されるマグネ ト ロ ン 1 4の発 振状況に応じて、 す わち停止時には4 O O Wヒータ 1 5 - a に、 発振時には 1 O O Wヒータ 1 5 — bに切換えつつ、 温調リ レー 2 Sで排気温度を制御している。 f 点以降で4.0 O W l .— タ 1 5 — aを用いる理由は、 1 00 Wヒータ 1 5 — bだけでは 排気温度を維持するのに十分な能力が ¾く湿度の検出が不正確 に るので、 これを防止するためである。
湿 ΐの検出方法は、 ί点以降に生ずる相対湿度の最低値を記 憶し、 これに対して予め定められた相対湿度の変化量に達する までの時間をカ ウ ン ト して、 これに基づき 自動調理を進める。
図に示す湿度変化の特性は、 牛肉を 1 ¾ , 2 Κ , 3 の調理 を行るつた時のもので、 それぞれ g , h , i に示す特性曲線で
■ V REA T
0Λ1ΡΙ一 ある。 ま^ は加熱フ' πグラムの関数である基準検知時間 Ί 1 を決定するための相対湿度の変化量を示すものであって、 これ は食品の種類 ,排気の制御温度によって変わるものである。 そ れは温度によ i?飽和水蒸気量が異な Ϊ)、 食品から同じ重量の水 分が蒸発しても相対湿度に及ぼす変化量が異なるからである。
また、 図に示す如ぐ食品の重量に対する基準検知時間 T 1 は、 相対湿度の変化量〗 を大き く とるほど、 その差がはつき !)と現 われ、 また安定もするので ί点での相対湿度を常にできる限]) 低く して調理を開始することが重要である。 この様にして検出 した基準検知時間 T 1 を用 て、 例えばロ ース ト ビーフを調理 する場合の加熱プロ グラ ムは、 下記のよ うに る。 高周波出力 中出力(50〔 W)→中出力(500W)→中低出力(350W) si 時 IS] T1 → T2 → - T3 蒸気を検知するまで高周波出力を中出力 ( S O O W ) と し、 蒸 気検知後、 排気温度の制御は停止してそのままの出力で T 2 = T 1 X 2の時間、 加熱する。 T 2時間終了後、 高周波出力を中 低出力 ( 3 5 0 W') にし、 T 3時間加熱する。 T 3時間は、 検 出した T 1 時間によ U算出方法が異¾ 、 T 1 ≤ 5 (分) の時 Τ 3 = Τ 1 Χ 2 (分) と し、 Τ 1 〉5 (分) の時、 Τ 3 = 1 0 + Τ 1 X 5 (分) とする。 これは、 ロース ト ビーフをメデ ィ アム仕上げとする場合に実験的に求めたブログラ ムであるが、 同;^の手法を用いて他の種々 メニューに適用することができ、 自動調理キー Sに調理の種類別に上記の様な加熱パタ — ンが記 憶されて る。
BURど 47
0ΜΡΙ ~ 第ァ図は、 冷凍牛肉の解凍を行るつた場合の湿度検知特性を 示す。 加熱ヒータ 1 5によ D、 予め定められた排気の制御温度 に達する点 f までは、 前述の自動調理の場合と同様であるが、 ί点以降、 自動解凍の場合、 4 O O Wヒータ 1 5 - aは用ぃず、 1 O OWヒータ 1 5 - bのみを使用する。 自動解凍の場合は、 調理開始時に検出した排気部温度に対して、 あま ]?高い温度設 定とせずに制御を行るう。 それは食品の温度が低いため蒸気を 検出するまでの間に電気部品の温度上昇等によ ]?、 排気部温度 が自然上昇することが少るく、 また極く微少の相対湿度変化を 検出するのみであるため、 ί点での湿度をあま ]?低くする必要 性が いからである。 しかしながら、 調理時間を短縮するため、 f 点までを 4 O O Wヒータ 1 5 - aで連続運転して到達時間を 速め、 : f 点から 1 O O Wヒータ I S — hのみで制御を行なう。 そのため、 一旦 k点まで湿度が上昇し、 その後 ί点からマグネ ト CI ン 1 4が発振を開始して るため、 その熱も加わって、 m 点に向かって定常化する。 相対湿度の最低値の検出は k点以降 で行 い、 変化量が ί点に達した時点で、 基準検知時間 T 1 を 得る。 検出後は自動調理の場合と同様、 温調リ レー 2 8を開放 し、 排気部温度の制御は行るわない。 第ァ図で明らか 様に、 設定されている湿度の変化量 】' は自動調理の場合に比べてはる かに小さ く、 それ故、 排気部温度のリ ップルを小さ く押える必 要カ'あるので、 オーバ 一 シュ 一 卜の大きい 4 0 0 Wヒータ
1 5 - aを使用することはできない。 つま j?、 自動解凍では
4 00 Wヒータ 1 5— a の断続による排気温度制御を行 ¾つた 場合、 その時に生ずる温度の リ ップルが湿度検知時間に影響を 及ぽすため、 1 O OWヒータ 1 5 — bのみとする。 この様にし て得た T 1 を用 て、 冷凍牛肉を解凍する場合の調理実験結果 から得た加熱パター ンは、 下記に示す如く である。 高周波出力 低出力( 180W)→低出力(180W)—保温出力(70W) 加熱時間 T T2 T3 f 点から蒸気検.知まで低出力 ( 1 8 O W ) で加熱し、 蒸気検知 後、 T 2あるいは T 3へと切 換わる。 T 1 が 1 5分以下では T 2を飛ばして T 3へと移 D、 保温出力 ( 7 O W ) で T 3 =T1 (分) 間、 加熱して解凍を終了する。 また Τ 1 が1 5分を越え 'る場合は、 低出力 ( 1 S OW ) のままで Τ 2 = ( Τ 1 - 1 5 ) Χ 2 (分)加熱後、 Τ 3へと移 、 保温出力 ( 7 O W ) で Τ 3 = 1 5 + ( Τ 1 - 1 5 ) Χ 2 (分 )加熱して解凍を終了する ο この手法によ ]?、 他の冷凍食品の解凍に応用できるだけでなく、
1時間を関数と して他の高周波出力と うま く組み合わせるこ とによ ]?、 解凍から調理まですベてを自動化することが可能と なる。
前述の加熱ヒ ータの能力切]?'換えは、 ト ライアツク等の制御 整流素子を用いて位相制御を行なう方法もあるが、 微視的にみ て瞬時の最大消費電力や電流を押えることが不可能であ 、 あ ま ]?好ま しい方法であるとはいえ い。 したがって本実施例の よ うに大( 4 00 W ) と小 ( 1 O O W ) との 2種を別個に設け、 切換える構成が現状では最も有利と える。
産業上の利用可能性
以上説明したように本発明によれば、 吸気口近傍に設けた加 熱ヒータによ i?排気温度を一定にして、 相対湿度を検出するた め、 正確 ¾湿度の変化量を把握することができ、 この時の湿度 検知時間を利用することによ i?、 数多 くの種類の食品の調理 · 解凍及び解凍から調理への自動化を図ることができ、 またラ ッ ブゃ特殊る容器を使用する必要が ¾いので、 食品の外観や味を 損るう ことる く、 .ある は誤使用による調理の失敗や食品の過 加熱 ·発-火等の危険性が く ¾る¾ど、 使い勝手の良い高周波 加熱装置を提供し得るものである。
■¾U REMI
ΟΛΙΡΙ _

Claims

• 請 求 の 範 囲
1 . 食品を収納する加熱庫と、 前記加熱庫内に高周波を給電す る高周波発振器と、 前記高周波発振器を制御するマイク ロ コ ン ピュータ一を含む制御回路と、 前記加熱庫に吸気を行なう吸気 部と排気を行なう排気部と、 前記加熱庫内の温度を設定された 温度に加熱する加熱装置と、 前記加熱庫内あるいは前記排気部 の雰囲気の温度を検知する温度センサおよび湿度を検知する湿 度センサとを傭え、 前記温度センサの検出信号によ 前記加熱 ヒータを制御して前記加熱庫内を一定温度に保持するとともに 前記湿度センサによ i?前記雰囲気中の湿度の変化量を検出して 予め定められた湿度の変化量に達するまでの時間を検知しこの 時間を闋数として前記制御回路によ D前記高周波発振器を制御 する構成と したことを特徵とする高周波加熱装置。
2 . 請求の範囲第 1 項にお て、 加熱装置を吸気口の近傍に配5 設し排気温度を一定に制御することを特徵とする高周波加熱装 . o
3 . 請求の範囲第 1 項において、 温度センサによ ]?調理開始時 - の排気部の雰囲気温度を検出し、 制御する加熱摩内の温度を段 階的に変化可能な構成と したことを特徵とする高周波加熱装置。
0 4 . 請求の範囲第 2項において、 高周波発振器等の電気部品を 冷却した冷却風をさらに加熱装置によ ]9加熱して、 吸気口よ ]? 加熱庫内へ吸気する構成と したことを特徵とする高周波加熱装 m, o
5 . 請求の範囲第 1 項または第 2項にお て、 温度センサおよ5 び湿度センサとをごく近接してかつ排気部に配設し、 排気の温 度及び湿度を検出することを特徵とする高周波加熱装置。
6 . 請求の範囲第 1 項または第 2項において、 高周波発振器は 断続制御によ 出力を制御する構成と し、 前記高周波発振器の 発振時と非発振時とにおける加熱装置の出力を変化する構成と したことを特徴とする高周波加熱装置。
7 . 請求の範囲第 1 項または第2項に いて、 湿度セ ン サは調 理開始時において リ ブレ ツ シ ュ動作した後に雰囲気の湿度を検 出することを特徵とする高周波加熱装置。
ΟΜΡΙ
、 WIPO
PCT/JP1982/000164 1981-11-06 1982-05-13 High frequency heating device WO1983001674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU83959/82A AU8395982A (en) 1981-11-06 1982-05-13 High frequency heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17883381A JPS5880427A (ja) 1981-11-06 1981-11-06 高周波加熱装置
JP56/178833811106 1981-11-06

Publications (1)

Publication Number Publication Date
WO1983001674A1 true WO1983001674A1 (en) 1983-05-11

Family

ID=16055457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1982/000164 WO1983001674A1 (en) 1981-11-06 1982-05-13 High frequency heating device

Country Status (3)

Country Link
EP (1) EP0093172A4 (ja)
JP (1) JPS5880427A (ja)
WO (1) WO1983001674A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638115A (zh) * 2014-05-16 2020-09-08 比奥利弗解决方案公司 用于自动样品解冻的系统、装置和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103103B2 (ja) * 1985-04-11 1994-12-14 松下電器産業株式会社 圧電素子センサ付き電子レンジ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369940A (en) * 1976-12-01 1978-06-21 Matsushita Electric Ind Co Ltd Cooling oven

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854024A (en) * 1974-02-01 1974-12-10 Dca Food Ind Environmental temperature control system
CH590431A5 (ja) * 1975-12-19 1977-08-15 Elektromaschinen Ag
US4162381A (en) * 1977-08-30 1979-07-24 Litton Systems, Inc. Microwave oven sensing system
JPS55119391A (en) * 1979-03-06 1980-09-13 Sharp Kk Cooking oven
JPS5691716A (en) * 1979-12-24 1981-07-24 Matsushita Electric Ind Co Ltd Automatic electronic range

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369940A (en) * 1976-12-01 1978-06-21 Matsushita Electric Ind Co Ltd Cooling oven

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
National Technical Report, Vol. 24, No. 5 (October. 1978) Matsushita Electric Industrial Co., Ltd., KANAZAWA TAKATO and Five Others "Shitsudo Kenchishiki Jido Denshi Range" p. 876-885 *
See also references of EP0093172A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638115A (zh) * 2014-05-16 2020-09-08 比奥利弗解决方案公司 用于自动样品解冻的系统、装置和方法

Also Published As

Publication number Publication date
JPS5880427A (ja) 1983-05-14
EP0093172A4 (en) 1984-04-24
EP0093172A1 (en) 1983-11-09

Similar Documents

Publication Publication Date Title
US8695487B2 (en) Cooking appliance
CN104026995B (zh) 具有气候受控温度限制器的烤箱
JPH0781713B2 (ja) 電子レンジ
JPH0230152B2 (ja)
EP2088370A1 (en) Cooking oven comprising steam generating system
WO1983001674A1 (en) High frequency heating device
JP4545717B2 (ja) 加熱調理器
JPH05203157A (ja) 電子レンジの料理制御方法
JPS5956389A (ja) 高周波加熱装置
JP2008051346A (ja) 加熱調理器
KR0139166B1 (ko) 전자레인지의 자동요리 장치 및 방법
JPH0455621A (ja) 加熱調理器
JPH0527833Y2 (ja)
JP2563622B2 (ja) 圧力加熱装置
JP3330058B2 (ja) 加熱調理器
JPS644002Y2 (ja)
JPS6243101B2 (ja)
JPH0833206B2 (ja) 調理器
JPH0247362Y2 (ja)
KR900006798B1 (ko) 전자레인지의 화재 감지방법
KR100864098B1 (ko) 전자레인지의 화재감지제어방법
KR100436264B1 (ko) 전자렌지의 취사방법
JPS5885025A (ja) 高周波加熱装置
KR101182456B1 (ko) 전자레인지의 제어방법
KR0131953B1 (ko) 전자렌지의 오동작 제어장치 및 제어방법

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU

AL Designated countries for regional patents

Designated state(s): CH DE FR GB NL SE

WWE Wipo information: entry into national phase

Ref document number: 1982901428

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1982901428

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1982901428

Country of ref document: EP