WO1982002591A1 - Heat-pulse type flow meter - Google Patents

Heat-pulse type flow meter Download PDF

Info

Publication number
WO1982002591A1
WO1982002591A1 PCT/JP1982/000017 JP8200017W WO8202591A1 WO 1982002591 A1 WO1982002591 A1 WO 1982002591A1 JP 8200017 W JP8200017 W JP 8200017W WO 8202591 A1 WO8202591 A1 WO 8202591A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
heating
flow
measured
fluid
Prior art date
Application number
PCT/JP1982/000017
Other languages
French (fr)
Japanese (ja)
Inventor
Corp Anima
Original Assignee
Togawa Tatsuo
Nemoto Tetsu
Tsubakimoto Hirohisa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP56006836A external-priority patent/JPS57120816A/en
Priority claimed from JP8614481U external-priority patent/JPS57198014U/ja
Priority claimed from JP56091259A external-priority patent/JPS57206830A/en
Priority claimed from JP56096218A external-priority patent/JPS57211015A/en
Application filed by Togawa Tatsuo, Nemoto Tetsu, Tsubakimoto Hirohisa filed Critical Togawa Tatsuo
Priority to DE19823231663 priority Critical patent/DE3231663C2/en
Publication of WO1982002591A1 publication Critical patent/WO1982002591A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/7044Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter using thermal tracers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • G01F1/6986Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters with pulsed heating, e.g. dynamic methods

Definitions

  • This invention is suitable, for example, for determining the flow rate of air or intake air, heats the fluid to be measured in pulses, and heats the heated fluid below the heating position.
  • This article relates to a hot-wire pulse flowmeter that measures the flow velocity of a fluid by Technique: A fluid to be measured is heated by a heat pulse on the upstream side in a flow tube through which the flow to be measured flows, and the heated fluid to be measured is separated from the heated volume by a predetermined distance. By measuring the time from the time of heating of the fluid to be measured to the time of detection by detecting it on the downstream side of the vine flow tube circle, the flow velocity of the fluid to be measured is measured, and based on that, the flow velocity of the fluid to be measured is measured.
  • Measurement of the flow rate of ryoton is being carried out.
  • the flow rate of the fluid to be measured is L ⁇ Zsec and the new area of the flow tube for measurement is , then the average flow of the fluid to be measured ⁇ V is given by the following equation.
  • a 3 ⁇ 4 constant-flow heat-up is installed upstream in the flow tube, and an il section WG s 1 ⁇ 2 d installed downstream of the flow tube. (cm) and T is the time required for heating the measured fluid in the heating section until the warmed measured flow in the heating section is detected, then the following equation is established.
  • fluids with various compositions are used as measuring fluids, and their flow rates vary over a wide range. It is placed under a sump and the flow rate is determined. Under these various conditions, the heating conditions of 3 ⁇ 4J ylL, during heating, change, and 3 ⁇ 4a constant temperature with respect to the measured flow. It is strange to let the heating be done. For example, if the flow velocity of the fluid to be measured increases, the amount of heat lost from the ripening cavity will increase, the resistance value of the ripening hole will decrease, and the strength of heating to the fluid to be measured will weaken. If the temperature of the part heated by the fluid to be measured in the temperature sensing part is large, it is difficult to reliably detect the heat content of the fluid to be measured.
  • An object of the present invention is to provide a pulse-type flowmeter with a wide measurement range.
  • Another object of the present invention is to provide a heat pulse type flow rate that can accurately measure even a fluid to be measured whose flow rate changes rapidly and greatly, such as exhalation and inhalation.
  • the purpose is to provide an estimate.
  • a heating element is provided in the flow tube through which the fluid to be measured flows, and a heating circuit applies a heat pulse to the heating element to heat the fluid to be measured pulsewise
  • a temperature-sensitive extractor is provided in the flow tube downstream of the heating element, and the detector detects the temperature of the heated portion of the flow to be measured. By this detection, a motion timing signal is generated, and the heating cycle is reactivated by the motion timing signal to heat the projectile. The phase of return heat for this heat source is determined, and the measured flow is measured according to this phase. is displayed on the display.
  • Heating during the S-cutting stage is applied to the developing body according to the flow velocity of the measured stream.
  • the heating element is heated at a constant cycle for preheating.
  • a heating circuit is constructed so that the heating of the fluid to be measured by the heating element remains constant regardless of its flow rate, ensuring reliable detection by the test body. made to be In addition, in order to properly detect the object to be detected, the lowest level of the output of the object to be detected is detected, and the maximum level plus a constant value is taken as the reference value.
  • Fig. 1 is a block diagram showing an example of a pulse-type flowmeter made by this research, and Fig. 2 shows another specific example of the temperature control circuit part 15 in Fig. 1.
  • FIG. 3 is a logic circuit diagram showing a specific example of the drive timing signal generation circuit 16 in FIG. 1; FIG. A graph showing the M coefficient of the initial heating period for
  • FIG. 5 shows the relational arrangement of the developing body and the detecting body when the flowmeter of the present invention is designed to be able to measure the flow in both forward and reverse directions;
  • Fig. 7 is a perspective view showing another example of the heating circuit 18
  • Fig. 8 is a plan view of Fig. 7,
  • Fig. 9 shows the measurement range.
  • FIG. 10 is a further expanded block diagram showing another embodiment of the present invention, and FIG.
  • FIG. 1 is a diagram showing the configuration of the present invention, in which a flow tube 101 to be measured is introduced into a flow tube 1:1, and an upstream portion of the flow tube 11' is supplied as required.
  • a turbulence generator 12 is provided.
  • This turbulent flow septum 12 is, for example, formed on a mesh wall with a metal wire, on an angle set against a steady flow of 101 for example. Constant flow i3 ⁇ 4 introduced into flow tube 1 1
  • 0 1 is a reverberating current and In the angle 3 ⁇ 4 plane, a certain 1? A state in which the average velocity is uniform in the plane perpendicular to the flow.
  • a heat generator 13 is stretched in the diameter direction of the flow tube 11.
  • This heating element 13 is formed of, for example, a tundus steel with a diameter of 5, and a ripening pulse for heating the subject 1 is given to the fluid 101 to be measured from this ripening body 13 . That is, a heating circuit section 14 is provided, and in this heating circuit section 14, a heating current pulse with a predetermined pulse width generated from a heating panless width setting circuit 10 is applied to a heating circuit 18.
  • the heat circuit 18 is excited by the force, and the heat generation circuit 13 connected to the excited heating circuit 18 develops and the fluid to be measured 101 is heated by this heat pulse. .
  • a temperature-sensing circuit portion 15 is provided downstream of the ripening circuit portion 14 in the flow tube 11 .
  • a detector 19 that responds to the temperature of the fluid 101 to be measured is arranged in the flow tube 11, and a temperature detector 20 is connected between the output terminals of the detector 19.
  • Amplifying circuit 21 is connected to the output terminal of this sensing circuit 20, and filter 9 is read out to the output terminal of this amplifying circuit 21 .
  • the constant current flow heated by the thermal pulse is detected as an electrical pulse by the detector 19 and the shunt circuit 20.
  • the DC component of this signal is blocked by the filter 9, and the output signal of the filter 9 is passed through the multiplication filter 21.
  • a pulse input of a predetermined value or more is applied to the output terminal of the Schmitt circuit 7 to obtain the output signal SD.
  • the drive timing generation circuit 16 is driven by this actuation signal SD, and the circuit 16 generates a body timing at a timing corresponding to the flow velocity of the fluid 101 to be measured.
  • a mining signal S ⁇ is emitted.
  • the fluid to be measured 101 is heated based on the timing signal S ⁇ between and .
  • the fluid to be measured 10 1 is heated by the heat pulse of the heating element 13, and the heated fluid to be measured reaches the flow velocity after a time corresponding to the flow velocity of the fluid. If the speed is fast, it will reach the ejected body 19 in a short time, and if it is slow, it will reach the ejected body 19 in a long time. Since it is repeated, the heating period for the heating element 13, that is, the period of the D drive timing signal S ⁇ , is shorter if the velocity of the flow 01 to be measured is faster, and longer if it is slower. By determining this phase, the flow velocity or flow rate of the fluid 101 to be measured is determined. In the state in which the flow velocity of the constant tidal current in the flow tube 11: 101 drops below a predetermined level, this ⁇ to timing signal S ⁇ has a constant return Station ⁇ 3 ⁇ 4 steady flow ⁇ 1
  • the heating element 13 is constructed so that it is maintained at a minimum of a predetermined degree of rotation even when it is in a boiling state or the flow rate is zero. For example, when measuring the flow rate of air or inhalation, the amount changes rapidly and widely over the life span, so it is necessary to deal with this sudden change in the constant flow rate. Even so, heating by heat 13 is enough to apply a sufficient 3 ⁇ 4 heat pulse to the constant fluid to enable reliable and accurate measurement. wife
  • Heating chamber 13 is provided with a means of preheating.
  • This preheating means is achieved, for example, as follows. Measurement of the measured flow of the drive timing misog signal S ⁇ A timer 4 is provided with a period slightly longer than that corresponding to the minimum flow rate. This timer 4 is triggered by a timing signal ST 3 , generates a prohibit gate signal S during the set time of the timer 4 , and outputs a prohibit gate signal S 9 to the prohibit gate signal S 9 . yo]? Close the gate of switch circuit 6. When the driving timing signal ST is applied to the timer 1 within the set time of the timer 4, the gate of the switch circuit 6 remains closed.
  • timer 4 stops generation of the gate signal S and opens the switch 3 ⁇ 4 6 G gate.
  • the O pulse is sent from the pulse generator 5 through the switch circuit 6 to the power ⁇ heat recovery 18 .
  • Counting is started by a heating pulse SH from the pulse width setting circuit 10 when the heating circuit 18 is recognized by the timing signal S ⁇ .
  • an up-down counter 24 that counts the oscillation signal of the oscillator 25 whose wave number is 20 KHz is provided in the timing generator circuit 16. It is done.
  • This up/down counter 24 counts up during the time that the heated fluid to be measured flows between the developing body 13 and the detecting body 19. , down-counting is performed by the production signal SD from the temperature sensing circuit section 15 . When this down-count number matches the final value of the up-count, this is detected by the match circuit 26, and this match detection output is used as timing. signal ST and 3 ⁇ 4.
  • a pulse width setting circuit 10 is operated at a period twice the time from heating of the fluid to be measured to detection by the detector 19, and a heating pulse SH is issued.
  • the detected object 19 causes the detection cycle to become larger than the set time of timer 4
  • the supply of the prohibition gate signal from timer 4 is stopped.
  • the gate of switch circuit 6 is opened. Therefore, in this state, a 10 Hz O pulse signal ifi switch circuit 6 is supplied from the pulse generator 5 to the pulse setting circuit 10, for example. Re No Nores!
  • a thermal panoreth SH is emitted from the setting circuit 10. The aging pulse SH is inhibited.
  • a period measurement signal is connected to the output terminal of the pulse width setting circuit 10.
  • a display 2 is connected to the output end of the local measuring circuit 3, and the measurement cycle or measurement frequency is displayed on the display 2 as a value calibrated to the flow velocity or flow rate of the fluid to be measured.
  • a starting signal is applied to the base of transistor 30 through terminal 17a, and the output of transistor 30 ]3 pulse ⁇ 'Width setting circuit 10 is driven.
  • the pulse width setting circuit 10 is formed by, for example, a monostable multi-pibrator, and adjusts the time constant of its time constant circuit 10a to adjust the pulse width of the output calothermal pulse SH. width is set.
  • This heating pulse SH is applied to the heating circuit 18, and a heating current ⁇ is applied to the heating element 13 during heating.
  • This force II heat circuit 18 is constructed, for example, as shown in FIG.
  • a series connection circuit of 3 ⁇ 4 resistances 81 and 82 is connected between the power terminal 102 and the contact.
  • the connection point of S-resistances 81 and 82 is connected to the base of transistor 83, and its emitter is connected.
  • Transistor 8 3 An S resistor 84 is connected between the collector of the power supply terminal 103 and the power supply terminal 103, and a predetermined voltage is applied to the power supply terminal 103.
  • the collector of transistor 83 is connected to the anode side of diode 85, and its negative side is connected to the base of transistor 86. .
  • a resistor 87 is connected between the base of this transistor 86 and the emitter.
  • the collector of transistor 86 is connected to the output terminal of amplifier 89 .
  • a resistor 90 is connected between the inverting input terminal of this amplifier 89 and ground, and a capacitor 88 is connected between its inverting input terminal and the output terminal of amplifier S9. .
  • the output terminal of amplifier 89 is connected to the base of transistor 91, the emitter of which is connected to the base of transistor 92. connected to The emitter of transistor 92 is connected to the emitter of transistor 86 through resistor 93 .
  • the emitter of transistor 92 is connected to the base of transistor 94, and the emitter of transistor 94 is connected to the transistor It is read directly by the emitter of data 86.
  • the collector of transistor 94 is connected to the negative terminal of booster 89 and to the collector of transistor 86 .
  • a bridge circuit 3 ⁇ 4 104 is ripened ⁇ 1 3 with the connection point between the resistor 9 ⁇ and the developing body 1 3 and the connection point between the 3 ⁇ 4 resistor 9 7 and the variable resistor 9 8 as output sources. , 3 ⁇ 4g resistance 9 5 , 9 7 , variable Resistance to 9 8! ) It is composed by ⁇ O ⁇ Heat 13 and 98 1). The connection point between the immature body 13 and the ram resistor 98 is grounded, and the terminals of the ram resistors 95 and 97 are connected to the emitter of the transistor 86.
  • connection point of heat generation & 13 and resistor 95 is increased through resistor 99: connected to the inverting input terminal of ⁇ device 89, and the connection point of resistors 97 and 98 is the non-inverting input of amplifier 89. O connected to terminal
  • transistor 83 In the state in which a voltage is applied to input terminal 102, transistor 83 is in a continuous state, and diode 85 is therefore in a conducting state. Therefore, the transistor 86 is in a conductive state, and the base of the transistor 91 is short-circuited by this transistor 86. Since transistors 91- and 92 are in a cut-off state, power supply terminal 103, diode 85, the base of transistor 86, and the emitter are connected. A slight current flows through each arm of the bridge circuit 104 through the heat generating element 18, but the heating element 18 does not substantially generate heat.
  • the transistor 83 in the new state is turned on, and the voltage on the anode side of the diode 85 drops.
  • the output of the bridge circuit 104 is amplified by the amplifier 89.
  • the force causes transistor 91 to conduct, and transistor 91 conducts;
  • transistor 92 is in a conducting state.
  • power supply terminal 103 ?? current flows. When this current starts to flow, the heating element 13 is in a cold state and its resistance is low, so the non-reverse input side of the booster 89 is also affected by the pressure on the non-reverse input side.
  • the output voltage of amplifier 89 causes a large current to flow through transistors 91 and 92 .
  • This current increases the current flowing through the heating element 13, heating the heating element 13, increasing its resistance, and balancing the bridge circuit 104.
  • the current of the heating element 13. increases until .
  • the heat generator 13 can be heated to a predetermined temperature.
  • the cooling of the heating element 13 differs depending on the velocity of the flow to be measured. can be heated at a constant intensity.
  • transistor 94 When an overcurrent flows through transistor 92, transistor 94 conducts, reconnects transistor 91, and cuts off transistor 92. new. .,
  • the body 19 is an iTL body in which the resistance value changes by 1 degrees]), and a bridge 34 is formed with this detection point 19 as one side, and the block A ⁇ 3 ⁇ 4'!-3 device 35 is connected to the detection terminal i3 ⁇ 41 of the ridge 34.
  • the output signal S c is emitted from the amplifier 35 .
  • the detection body 19 consists of two detection bodies 19-1 and 19-2]), which, as shown in FIG. Arrayed in the direction perpendicular to the flow direction, one of the detection angles 19-1 is supplied with the measurement flow heated by the heating element 13.
  • the detected part is allowed to pass through the 19-2- part.
  • the amount of heat given by the salary to the exhaled air is given equally to both the detection bodies 19-1 and 19-2, -1, 19-2 are used for the opposite arms of the bridge 34. Therefore, it is possible to remove the influence of the amount of heat given by the human body following the flow to be measured, and to correctly discharge the passage of the heated fluid by the heating element 13.
  • 3 ⁇ 4 of output fe l 9': 1 9 - 1 1 and 1 9 - 1 2 are Corresponding to 19-1 and 19-2.
  • the detection signal Sc detected by the ⁇ circuit 20 is applied to an integration circuit 36, which is composed of a resistor 37 and a capacitor 38, and the high-frequency noise component is removed. be done.
  • the output of the integration circuit 36 is applied to a capacitor 39 to block the DC component in the detection signal Sc.
  • the detection signal Sc with the DC component blocked is amplified by amplifiers 40 and 41.
  • This amplified detection pulse S c is applied to the non-inverting input terminal of the comparator 4 2 of the temperature sensitive circuit section 1 5 .
  • the output terminal of amplifier 41 is connected to the non-inverting input terminal of comparison amplifier 43, and the cathode side of diode 44 is connected to the output terminal of comparison amplifier 43.
  • the positive side of the diode 44 is connected to one end of a capacitor 45, the other end of which is grounded.
  • the anode side of diode 44 is connected to the non-inverting input terminal of buffer circuit 46, and the non-inverting terminals of comparison amplifier 43 and buffer circuit 46 are connected to each other. be.
  • the output terminal of the buffer circuit 46 is connected through a resistor 47 to the counter input terminal of the comparator 42, and the variable terminal of the variable resistor 49 is connected to this counter input terminal. Shot through 48.
  • both ends of the variable resistor H49 are connected to an electric field.
  • the positive of diode 44 is connected to the negative 3 ⁇ 4 3 ⁇ 4 of diode 50, and this diode
  • the positive electrode side of the first electrode 50 is connected to the positive end of the Wuxing multivibrator 51 .
  • An inverse circuit 52 is connected to the output terminal of the comparator 42.
  • a heating pulse SH is applied to the input terminal of the monostable multivibrator 51. Therefore, the capacitor 45 is charged to a predetermined value through the diode 50 by the power of the multivibrator 51 for each heating pulse SH.
  • the voltage of this capacitor 45 is applied through a buffer circuit 46 to the opposite input side of the comparator 43.
  • the output of multiplier 41 the low level of detected pulse S c force not obtained is compared with the output of buffer circuit 46 by comparison amplification H43, and both The charge in capacitor 45 is discharged through diode 44 until . In this way a minimum level of increase mm4:1 is obtained at the output of the buffer circuit 46 in the absence of the detection pulse Sc. A predetermined value is added to this lowest level by the mover of the variable resistor 49 and given to the comparator 42 as this reference value. When the detection pulse S c exceeds this reference value, the output of the hysteresis amplifier 4.2 reverts to a logic high "1", which acts as the signal SD through the buffer circuit 52. is applied to terminal 105. In Fig. 2, ⁇ 4 2 is used instead of the Schmitt times 3 ⁇ 4 .7 in Fig. 1.
  • Fig. 3 shows U? — Give an example.
  • the output terminal of the NOR circuit 61 is connected to one input terminal of the N0R circuit 62 and forms a flip-flop.
  • the input terminal of the NOR circuit 63 is connected to the output terminal of a NANI circuit 64, and one input terminal of this NAND circuit 64 is grounded through a capacitor 65 and connected to a resistor. It is connected to the power supply terminal 103 via 66.
  • a start switch 67 is connected between the two poles of the capacitor 65 .
  • the output end of the NOR circuit 62 is connected to one input terminal of the NAND circuit 69 and the inversion circuit 70 through the buffer circuit 68 .
  • the other input terminal of the NAND circuit 69 is supplied with the reference signal from the terminal 25a of the generator 25.
  • the output side of the inversion circuit 7 0 is connected to one input terminal of the NAND circuit 7 1 .
  • a reference signal is applied from a terminal 25b of the oscillator 25 to another input terminal of the NAND circuit 71.
  • Each output terminal of the NAND circuits 69 and 71 is connected to each input terminal of the NOR circuit 72G.
  • Yasuko Shiniki connected up-down counters 73, 74 and 7 directly to the up-down counter 24. Two or more cowls are connected to each of the five clicks .
  • the output terminal of the impulse circuit 68 is connected to the up-count and down-count control terminals tc of the counters 73, 74 and 75, respectively.
  • the counter terminals t (3i, t02 , t03 and control) of the counters 73, 74 and 75 in the count-zero state are connected to the input of the N0R circuit 76.
  • the output terminal of this NOR circuit 76 is connected to the input terminal of the NAND circuit 64 through the NOR circuit 77.
  • the NOR circuit 76 is connected to the input terminal of the NAND circuit 64 through the NOR circuit 77. It constitutes the matching circuit 26 inside.
  • the output of D circuit 64 is applied to the base of transistor 30 in FIG. 2 through impulse circuit 107, OR circuit 108 and terminal 17a.
  • a message "f e 1" is given and a mature pulse SH is generated from the pulse width setting circuit 10. Since this carothermal pulse SH is also applied to the input terminal 106 of the N0R circuit 61, when the NOR circuit 63 is given a logical value of 1" from the NAND circuit 64, N0
  • the I value of the signal at the output terminal of the R circuit 6 2 is ⁇ 1 " and 3 ⁇ 4 j? , which is applied to the control terminal tc of each of the counters 73, 74, 75 via the buffer circuit 68 as a logic gate ⁇ 1", these counters being up-counters.
  • Each counter 73, 74, 75 is connected to terminal 25a of support H25] NAND circuit 69, N0R [3 ⁇ 472 Start counting a reference signal of, for example, 20 K 3 ⁇ 4 given via .
  • the timing signal S ⁇ is also given to the timer 4 as described above, and the driving timing signal S ⁇ is shorter than the reference period corresponding to the flow rate.
  • the pulse width setting circuit 10 is driven by the driving timing signal S ⁇ , and the period of the driving timing signal S.T becomes slightly larger than the reference period.
  • the timer 4 stops supplying the gate signal S as described above.
  • the output signal Sn of the switch circuit 6 is applied to the 0R circuit 108 as described above, and the output of the noise setting circuit 10 changes to m be moved. Therefore, even if the starting switch 67 is not provided in this example, if the power switch is turned on, the flow rate of the flow to be measured is zero, but the switch circuit 6
  • the heating element 13 is locally heated by the output.
  • Fig. 4 shows the relationship between the flow rate obtained by the hot-wire pulse flowmeter of this invention and the time from heating to detection. It is shown that In the past, the heat source 13 was periodically heated and the time from the heating to the detection by the detection body 19 was measured. In this case, it is necessary to lengthen the heating period for the heating element in order to be able to measure whether the flow velocity of the fluid to be measured is fast or slow. If so, is the measurement time longer than necessary]? Moreover, when the flow velocity changes rapidly, it is impossible to follow the change and measure it correctly. If the heating cycle is shortened, it is not possible to measure slow flow velocities.
  • the heat generator 13 is heated based on the detection output of the test body 19! ), when the flow velocity is fast, the heating period is automatically shortened, and when the flow velocity is slow, the heating period is automatically lengthened. For this reason, as shown in Fig. 4, the flow velocity (flow *)
  • can be measured, and a measured output that follows the change in flow velocity can be obtained.
  • the pulse width setting circuit 10 may be changed by detecting the S pulse Sc of the output 19.
  • the force ⁇ of the body 13 [I becomes significantly more mature]9 so that the heating 3 is heated before it cools down sufficiently.
  • This delay is equal to the time T0 required for the fluid heated by the heating element 13 to reach the detection element 19 in ifli.
  • the output reference signal of 25b is multiplied by 2, 3, or 4 times the reference signal of terminal 25a. It can also be doubled, tripled, or quadrupled.
  • this generation can provide constant heating regardless of the velocity of the flow to be measured.
  • ⁇ in 9 can be performed reliably. Due to these points, according to the present invention, it is possible to accurately determine the expiratory or inspiratory flow rate even if the air or inspiratory flow rate changes significantly during measurement.
  • the timer 4, the pulse generator 5, and the switch circuit 6 are cycled, the flow rate is below the predetermined 1' straight line, and the heating element 13 is preheated. It is possible to accurately measure the flow rate of the fluid to be measured, which is input to the , including its start-up resistance. In this respect as well, the flowmeter of this invention is suitable for measuring expiration and inspiration.
  • the detection bodies 19-1 and 19-2 it is possible to ensure detection by the detection body 19-1 regardless of changes in the ambient temperature and the temperature of the fluid to be measured. I can do and
  • FIGS. 7 and 8 show the example shown in FIGS. 7 and 8.
  • Heating collars 13a and 13b are stretched parallel to each other and substantially perpendicular to the axis.
  • the heating chambers 13a and 13b are, for example, followed by tungsten chambers with a diameter of 5 ⁇ and a length of 30 mm.
  • Both 3 ⁇ 4 3 ⁇ 4 of ⁇ 1 3 a, 1 .. 3 b are respectively holders - 1, f - 2
  • a fluid to be measured passing through the portion is heated. That is, as shown in FIG. 8, the fluid portions 111a and 111 shown in dotted green are heated by the heating plates 13a and 1.3b, respectively, and this heated The flow segment llla, 111 moves downstream in the flow tube 11 along its tube axis.
  • the flow portion 111a is the linear thermosensitive element 19a
  • the flow portions 111b are detected by the iron-shaped temperature sensing elements 19b, respectively.
  • the flow path in the flow tube 11 of 11a may be disturbed as indicated by the dotted arrow ⁇ in FIG. Due to this turbulence in the flow path, the heated flow passage portion 111a did not reach the position of the linear heating element 19a correctly, and was stuck in the pipe axis of the flow tube 11.
  • a high-speed detector 19-2 is provided further downstream of the detector 19-1. 21, these correspond to the detection bodies 19-9-2 in FIG. 9-1, an amplifier 21-1 and a shumit circuit 7-1 are provided, and a high-speed output 19-2 is provided with a temperature control circuit 20-2 and a filter 9-1. 2, an amplifier 21-1 and a Schmitt circuit 7-2 are provided.
  • Each output of the Schmitt circuits 7-2 of the low-speed temperature sensing circuit section 15-1, the Schmitt circuit section 7-1, and the high-speed temperature sensing circuit section 1-5-2 is connected to the switch. input to switch circuit 30.
  • the switch circuit 30 is created by the output of the static circuit 3. This town times 3 ⁇ 4 3 O—one input 53 ⁇ 4 A drive timing signal S ⁇ of a matching circuit 26 is applied to the terminal, and the output of a reference signal ⁇ 32 is applied to the other input terminals.
  • the period of the timing signal S ⁇ is compared with the switching period T m preset by the reference signal generator 3 2 .
  • the cut-off period Tm is used as a reference when switching between the high speed detector 19-1 and the high speed detector 19-2 according to the flow rate in the flow tube 11. .
  • the switch circuit 30 As the flow rate of the fluid in the flow tube 11 increases, the phase of the three-moving timing signal S ⁇ emitted from the coincidence circuit 26 changes to the switching period Tm! ), the switch circuit 30 is turned off by the control circuit 31, and the switch circuit 30 outputs the signal detected by the high-speed detector 19-2.
  • the output of the Beschmitt circuit 7-2 which is taken out, is supplied to the operation timing signal generating circuit 1'6.
  • control circuit 31 for example, a digital comparator is bent, and the count value immediately before the up/down counter 24 turns is counted. is given as an input to the control circuit 31, and given as a digital signal from the reference signal generator 32. It should be compared with the switching period T m obtained, and the switch circuit 30 should be switched according to the result.
  • the measurement range can be increased to that shown in Fig. 1. It is easy to see that g can be expanded.
  • the high-speed detection object 19-2 is designed as shown in Fig. 10.
  • the low-speed detecting body 19 - 1 is slightly rotated in a plane perpendicular to the tube axis of the flow tube 11 to slightly shift parallel to the ripening body 13 .

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

A heat-pulse type flow meter, in which a heating line is heated in pulses, fluid to be measured passes over the heating line and is then detected downstream, the heating line is heated with a period corresponding to the flow rate of the fluid to be measured, and the heating period is measured to obtain the amount of flow. This meter has a wider measuring range than the conventional one.

Description

明 細 書 発明の名称 Description Title of invention
熱パ ル ス式流量計 Thermal pulse flow meter
一一 Eleven
技術分野 Technical field
こ の発明は例えば睜気ゃ吸気の流量の .定に適,弔 され、 被測定流体をパ ル ス的に加熟 し、 その加熟さ れた流体を前記加熱位置 よ も 下 側で孩出する こ と に よ ]5 流体の流速を測定する熱線パ ル ス流量計に 関する も のであ る。 景技 . 被測定流侓が流れる流管内の上流側に いて、 孩 測定流体を熱パルス に よ ]? 加熱 し、 こ の加熟された ¾測定流体を前記加熱位量か ら所定距離隔'つた流管 円の下流側において検出 し、 被測定流体の加熟時か ら検出時ま での時間を測定する こ と に よ ]? 、 铵測定 流体の流速を測定 し、 それに基づいて被測定流钵の 流量を測定する こ と が行われている。 こ の場合、 铵 測定流体の流量を L ^ Z sec と し、 測定用の流管の新 面積を と する と ¾測定流体の平均流^ V は次式 で与え られる。 '
Figure imgf000003_0001
流管内の上流側に設け られた ¾ ^定流 の加熟 と 、 流管の下流 ^に設け られた ®il部 W G s ½ ^ d 上 ( cm ) と し、 加熱部における ¾測定流体への加熱^ ら惑^部に ける加熟された ¾測定流^ の検岀 ま でに要する時間を T とする と次式が咸立する。
This invention is suitable, for example, for determining the flow rate of air or intake air, heats the fluid to be measured in pulses, and heats the heated fluid below the heating position. This article relates to a hot-wire pulse flowmeter that measures the flow velocity of a fluid by Technique: A fluid to be measured is heated by a heat pulse on the upstream side in a flow tube through which the flow to be measured flows, and the heated fluid to be measured is separated from the heated volume by a predetermined distance. By measuring the time from the time of heating of the fluid to be measured to the time of detection by detecting it on the downstream side of the vine flow tube circle, the flow velocity of the fluid to be measured is measured, and based on that, the flow velocity of the fluid to be measured is measured. Measurement of the flow rate of ryoton is being carried out. In this case, if the flow rate of the fluid to be measured is L^Zsec and the new area of the flow tube for measurement is , then the average flow of the fluid to be measured^V is given by the following equation. '
Figure imgf000003_0001
A ¾ constant-flow heat-up is installed upstream in the flow tube, and an il section WG s ½ d installed downstream of the flow tube. (cm) and T is the time required for heating the measured fluid in the heating section until the warmed measured flow in the heating section is detected, then the following equation is established.
T = - S · d ( sec ) (2) T = - S d ( sec ) (2)
(2)式で明 らかる よ う に ¾測定流体の流量 L ¾ W して行 く と、 これに反比例 して時間 Tが寂少 して行 く 。 従来の熱籙パ ル ス流量計に ては祓測定流 に対する力 Π熱を局期的に行っていた。 こ のため被測 定流体の流量が大幅に変化する よ う 測定系におい ては、 .加熱部にお ての被測定流侔の加熟周期の設 定が困難と ¾ る。 即ち この加熟周期を余 ]) 大 き く 設 定する と測定時間が遅 ぐ ]?、 しかも 被測定流侔の 流量の変化が速い場合に、 その変化に正確に追従 し た測定がで き ¾ く な る。 一方、 加熱局期を佘 ]? 短か く する と単位時間ごと に流管の下流側で検出 される 流体に次の時間局期に ける加熟の影尊が与え られ てその検出が不正確に る。 As is clear from the equation (2), when the flow rate of the fluid to be measured increases by L ¾ W, the time T decreases in inverse proportion to this. In the conventional hot spring pulse flow meter, the force Π heat for the measured flow was periodically measured. Therefore, in a measurement system in which the flow rate of the fluid to be measured varies greatly, it is difficult to set the heating cycle of the fluid to be measured in the heating unit. In other words, if the heating period is set too long, the measurement time will be delayed, and if the flow rate of the flow to be measured changes rapidly, the measurement can accurately follow the change. ¾ less. On the other hand, if the heating period is shortened, the fluid detected at the downstream side of the flow tube per unit time will be affected by heating in the next time period, resulting in inaccurate detection. to
一設に铵測定流体と しては各種の组成の も のが^ い られ、 その流量 も 広範囲に.わたって変ィヒ し、 さ ら に 度、 圧力 どの周画雰 S気も それぞれ各種の条 ^下に置かれて流量の ¾定が行われる。 こ の よ う ¾ 各種の条俘下にお ては加熱 ¾に ける ¾ J 疋 ylL, の加熱条^が変化 し、 ¾測定流 ^に対 して一定^度 の加熱を行わせる こ と が齄か し ぐ る。 例えば ¾測 定流体の流速が増大する と 癸熟侔か ら失われ る 熱量 が増大 し、 その発熟鎳の抵抗値が低下 し、 被測定流 体に対する加熱の強さ が弱 く る る。 感温部に いて 被測定流侔のカ B爇された部分の 度が大 き く 具 る と被測定流体の加熟郜分の検出 を確実に行 う こ と が 困難と る。 For example, fluids with various compositions are used as measuring fluids, and their flow rates vary over a wide range. It is placed under a sump and the flow rate is determined. Under these various conditions, the heating conditions of ¾J ylL, during heating, change, and ¾a constant temperature with respect to the measured flow. It is strange to let the heating be done. For example, if the flow velocity of the fluid to be measured increases, the amount of heat lost from the ripening cavity will increase, the resistance value of the ripening hole will decrease, and the strength of heating to the fluid to be measured will weaken. If the temperature of the part heated by the fluid to be measured in the temperature sensing part is large, it is difficult to reliably detect the heat content of the fluid to be measured.
こ の発明の 目 的は測定範囲が広い熟パ ル ス式流量 計を提供する こ と にあ る。 SUMMARY OF THE INVENTION An object of the present invention is to provide a pulse-type flowmeter with a wide measurement range.
この発明の他の 目 的は呼気、 吸気の よ う に流量の 変化が速 く 、 かつ大幅に変化する被測定流体で も 正 し く 測定する こ と がで き る熱パ'ル ス式流量計を提供 する こ と にあ る。 Another object of the present invention is to provide a heat pulse type flow rate that can accurately measure even a fluid to be measured whose flow rate changes rapidly and greatly, such as exhalation and inhalation. The purpose is to provide an estimate.
発明の開示 Invention disclosure
こ の発明に よれば被測定流体が流れる流管内に発 熱体が設け られ、 こ の発熱体に加熱回路 よ ]) 熱パ ル ス を与えて被測定流体をパ ル ス的に加熱 し、 その発 熱体の下流にお て上記流管内に溫度に感応する揆 出体が設け られ、 その検出体に よ ]9上記被測定流 ^ の加熟された部分の逼逼が検.出 され、 こ の検出 よ ]? 惑動タ イ ミ ン グ信号が作 られ、 その恵動タ イ ミ ン ク' 信号に よ 上記加熱回 ¾が再び. is fcされて上記発 体が加熱される。 こ の癸熱佞に対する ^返 し 熱の 局期が ^定され、 こ の 定局期に^ じて ¾測定流 ^ の流量又は流速が表示器に表示される。 According to this invention, a heating element is provided in the flow tube through which the fluid to be measured flows, and a heating circuit applies a heat pulse to the heating element to heat the fluid to be measured pulsewise, A temperature-sensitive extractor is provided in the flow tube downstream of the heating element, and the detector detects the temperature of the heated portion of the flow to be measured. By this detection, a motion timing signal is generated, and the heating cycle is reactivated by the motion timing signal to heat the projectile. The phase of return heat for this heat source is determined, and the measured flow is measured according to this phase. is displayed on the display.
こ の よ う に検出侔に よ ]? 加熱流^の通逞を検出す る と、 再び癸熱体を加'熟するため、 発熱^の加熱局 期は被測定流体の流速が速 く る る と 自勣的に短か く In this way, when the passage of the heating flow is detected, the heating element is heated again, so the flow velocity of the fluid to be measured increases during the heating phase of the heat generation. voluntarily short
¾ る ) ¾測定流侔の流速に応 じた S切 局期 の加熱が発熟体に対して行われる。 発熱^:に対する 加熱 よ ]) 、 その加熱された铵測定流体が検出体に達 する ま での時間の 2 倍を癸熟体の加熟局篛 と する こ とが好ま しい。 更に被測定流体の流量が ¾定最小値 よ ]? も 小さ く ¾ る と、 発熱体を一定周期で加熱 して 予備加熱を行 、 被測定流体が急に現われた時に、 その立上 か ら正 し く 流量を測定でき る よ う にされ る。 癸'熱体に よ る被測定流体に対する加熱はその流 量に拘わ らずほ 一定値に る よ う に発熬侔の加熱 回路が *成され、 検岀体での検出が確実に行われる よ う にされる。 ま た検出体での検出を碡実にする に は、 検出体の出力の最低 レ ベ ルを検出 し、 その最^ レベ ルに対 して一定値を加えた も のを基準値と し、 その基犟値を検出体の 力が超えた時に ¾熟流佞の 通逼を検出する よ う にする。 更に局园温 ¾の変化や 被劉定流体自体の 度に影響されるい よ う に、 これ ら 度に対 して感通するが、 加熱流侓 ¾ は逼逼 し い位置に補償^ .検出 ^:を設けて加熟流^:部分の逼 過を 51実に検出で き る よ う に れる。 図面の簡単 ¾説明 3) Heating during the S-cutting stage is applied to the developing body according to the flow velocity of the measured stream. For heat generation, it is preferable to allow twice the time for the heated measurement fluid to reach the detection body as the ripening stage. Furthermore, when the flow rate of the fluid to be measured becomes smaller than the constant minimum value, the heating element is heated at a constant cycle for preheating. To be able to measure the flow rate correctly. A heating circuit is constructed so that the heating of the fluid to be measured by the heating element remains constant regardless of its flow rate, ensuring reliable detection by the test body. made to be In addition, in order to properly detect the object to be detected, the lowest level of the output of the object to be detected is detected, and the maximum level plus a constant value is taken as the reference value. When the force of the detected object exceeds the basic value, it is made to detect the movement of the mature flow. In addition, as it is affected by changes in local temperature and the temperature of the fluid itself to be regulated, it is sensitive to these temperatures, but the heat flow is compensated for in tight positions. ^: is provided so that the excess of the heating flow ^: can be detected in fact. Brief description of the drawing ¾
第 1 図は こ の癸钥に よ る熟パ ル ス式流量計の—例 を示すブロ ッ ク 図、 第 2 図は第 1 図中の惑温回路部 1 5 その :他の具体例を示す接続図、 第 3 図は第 1 図 中の,駆動タ イ ミ グ信号癸生回路 1 6 の具 例を示 す論理回路図、 第 4 図は この発明に よ る流量計にお ける流量に対する加熱局期の M係を示すグ ラ フ、 第Fig. 1 is a block diagram showing an example of a pulse-type flowmeter made by this research, and Fig. 2 shows another specific example of the temperature control circuit part 15 in Fig. 1. FIG. 3 is a logic circuit diagram showing a specific example of the drive timing signal generation circuit 16 in FIG. 1; FIG. A graph showing the M coefficient of the initial heating period for
5 図は こ の発明の流量計を正逆両方向の流れに対 し て測定でき る よ う に した場合の発熟体と 検出体と の 関係配置を示す図、 第 6 図は第 1 図中の加熱回路 1 8 の具体例を示す接続図、 第 7 図は発熱侔及び検出体 - の他の例を示す斜視図、 第 8 図は第 7 図の平面図、 第 9 図は測定範囲を更に広げた こ の発明の他の実施 例を示すブロ ッ ク 図、 苐 1 0 図は第 9 図に用い られ る発熱体及び検出俘の好ま しい配置を示す斜視図で る。 Fig. 5 shows the relational arrangement of the developing body and the detecting body when the flowmeter of the present invention is designed to be able to measure the flow in both forward and reverse directions; Fig. 7 is a perspective view showing another example of the heating circuit 18, Fig. 8 is a plan view of Fig. 7, Fig. 9 shows the measurement range. FIG. 10 is a further expanded block diagram showing another embodiment of the present invention, and FIG.
癸明を実施する ための最良の形態 Best Mode for Carrying Out Clarity
第 1 図は この発明の構成を示す図で、 流管 1 : 1 内 に被測定流倖 1 0 1 が導入され、 . こ の流管 1 1 '内の 上流側部に必要に応 じて乱流 ·発生体 1 2 が設け られ る。 こ の乱流癸生体 1 2 は例えば ¾渕定流 : 1 0 1 の流れに置角 靣上に、 金属線で メ ッ シュ祆に ·形成 された も のであ る。 流管 1 1 に導入される 被 i¾定流 FIG. 1 is a diagram showing the configuration of the present invention, in which a flow tube 101 to be measured is introduced into a flow tube 1:1, and an upstream portion of the flow tube 11' is supplied as required. A turbulence generator 12 is provided. This turbulent flow septum 12 is, for example, formed on a mesh wall with a metal wire, on an angle set against a steady flow of 101 for example. Constant flow i¾ introduced into flow tube 1 1
0 1 は一設 は響流であってその流れ方向に直 角 ¾面内で、 或る 1?^ 7 す 0 ο し しこの導 入された層流拔の被測定流 : 1 0 1 は乱流発生 :1 2 に よ ]? 乱流と ]? 、 流れに直角る面内で一様る平均 速度を有する状態にる る。 0 1 is a reverberating current and In the angle ¾ plane, a certain 1? A state in which the average velocity is uniform in the plane perpendicular to the flow.
流管 1 1 内にお ^て こ の乱流癸生 1 2 の下流 1¾ に発熱侔 1 3 が流管 1 1 の直径方向に張 ]? わたされ る。 こ の発熱体 1 3 は例えば直径 5 の タ ン ダステ ン籙で形成され、 こ の発熟体 1 3 か ら被 1 を加熱する熟パ ルスが被測定流体 1 0 1 に与え られ る。 即ち発熱回路部 1 4 が設け られ 、 この発熱回路 部 1 4 では加熱.回路 1 8 に対 して加 ¾パノレス幅設定 回路 1 0 か ら発生 した所定ノ、 ル ス幅の加熱用電流パ ルス に よって力 [I熱回路 1 8 が励 され、 励起された 加熱回路 1 8 に接続された発熱偉 1 3 が発熟して被 測定流体 1 0 1 がこ の熱パルス に よつて加熟される。 In the flow tube 11 downstream of the turbulent flow 12, a heat generator 13 is stretched in the diameter direction of the flow tube 11. This heating element 13 is formed of, for example, a tundus steel with a diameter of 5, and a ripening pulse for heating the subject 1 is given to the fluid 101 to be measured from this ripening body 13 . That is, a heating circuit section 14 is provided, and in this heating circuit section 14, a heating current pulse with a predetermined pulse width generated from a heating panless width setting circuit 10 is applied to a heating circuit 18. The heat circuit 18 is excited by the force, and the heat generation circuit 13 connected to the excited heating circuit 18 develops and the fluid to be measured 101 is heated by this heat pulse. .
流管 1 1 内に ^て こ の発熟回路部 1 4 の下流側 には感温回路部 1 5 が設け られる。 感温回路部 1 5 に いては被測定流体 1 0 1 の温度に応答する検岀 体 1 9 が流管 1 1 内に配され、 検出 1 9 の出力端 子間に惑温回路 2 0 が接続さ-れ、 この感^回路 2 0 の 岀カ端には増幅回路 2 1 が接続されて、 こ の増幅 回路 2 1 の出力端にフ ィ ル タ ー 9 が妄読される c F] 記熱パ ル ス で加熱された ¾ ^定流侓は検出侓 1 9 及 び惑 回路 2 0 に よ '電気パルス と して 岀 さ こ のノ、' ノレ ス は フ ィ ル タ ー 9 に よ ]9 その直流分か- ίΙΜ止 さ れ、 フ ィ ル タ ー 9 の出 力信号は増 回諮 2 1 を経 て シユ ミ ッ ト 回路 7 に与え られ、 所定値以上のパ ル ス入力に対 して シユ ミ ッ ト 回路 7 の出 力端か ら作勣 信号 S D が得 られる。 A temperature-sensing circuit portion 15 is provided downstream of the ripening circuit portion 14 in the flow tube 11 . In the temperature sensing circuit section 15, a detector 19 that responds to the temperature of the fluid 101 to be measured is arranged in the flow tube 11, and a temperature detector 20 is connected between the output terminals of the detector 19. Amplifying circuit 21 is connected to the output terminal of this sensing circuit 20, and filter 9 is read out to the output terminal of this amplifying circuit 21 . The constant current flow heated by the thermal pulse is detected as an electrical pulse by the detector 19 and the shunt circuit 20. The DC component of this signal is blocked by the filter 9, and the output signal of the filter 9 is passed through the multiplication filter 21. A pulse input of a predetermined value or more is applied to the output terminal of the Schmitt circuit 7 to obtain the output signal SD.
. こ の作動信号 S D に よ って駆動タ イ ミ ン グ発生回 路 1 6 が駆動され、 被測定流体 1 0 1 の流速に対応 したタ イ ミ ングで回路 1 6 か ら躯勣タ イ ミ ン グ信号 S τ が発せ られる。 と の驟勣タ イ ミ ン グ信号 S τ 基づ て'被測定流体 1 0 1 が加熱される。 The drive timing generation circuit 16 is driven by this actuation signal SD, and the circuit 16 generates a body timing at a timing corresponding to the flow velocity of the fluid 101 to be measured. A mining signal S τ is emitted. The fluid to be measured 101 is heated based on the timing signal S τ between and .
従つ て.被測定流体 1 0 · 1 が発熱体 1 3 の熱パ ル ス に よ ]? 加熱され、 その加熱された被測定流侔はその 流体の流速に対応 した時間の後、 つま 流速が速け れば短時間で、 遅ければ長 時間で撿出体 1 9 に到 達 し、 こ の検出に も と ずき 再び発熱钵 1 3 が加熱さ れ、 こ の よ う ¾ こ とが繰返されるため、 癸熱体 1 3 に対する加熱周期、 つま D 駆動タ イ ミ ン グ信号 S τ の周期は、 被測定流 0 1の流速が速ければ短か く 、 遅ければ長い も の と る。 こ の局期を剡定する こ と に よ ]) 被測定流体 1 0 1 の流 '速乃至流量を ilij定する。 流管 1 1 内の被潮定流 ^: 1 0 1 の流速が所定笸以下 に低下 している ^態では、 こ の ΙΪ toタ イ ミ ン グ信号 S τ に 関係に一定の ^ 返 し局^で ¾ 定流 ^ 1 Therefore, the fluid to be measured 10 1 is heated by the heat pulse of the heating element 13, and the heated fluid to be measured reaches the flow velocity after a time corresponding to the flow velocity of the fluid. If the speed is fast, it will reach the ejected body 19 in a short time, and if it is slow, it will reach the ejected body 19 in a long time. Since it is repeated, the heating period for the heating element 13, that is, the period of the D drive timing signal Sτ, is shorter if the velocity of the flow 01 to be measured is faster, and longer if it is slower. By determining this phase, the flow velocity or flow rate of the fluid 101 to be measured is determined. In the state in which the flow velocity of the constant tidal current in the flow tube 11: 101 drops below a predetermined level, this ΙΪto timing signal Sτ has a constant return Station ^ ¾ steady flow ^ 1
0 1 が加熟され、 ^つて流管 1 1 内の流^が非 i¾定 抉態又は流量ゼ ロ で も 癸熱体 1 3 は最低所定 1谊直度 に保持される よ う 構成がと られている。 例えば睜 気や吸気 ¾ どの流量測定に際 してはその ^量が寿間 に対 して急漦に且つ広範園で変化する ため、 こ の急 激 ¾被 定流律の流量の変化に対 しても 熱 1 3 に よ る加熱に よって充分 ¾熱パ ル スを 定流体に 印加 して確実に して正確る測定を可能 とする。 つま0 1 is aged and the flow in tube 1 1 is non-constant. The heating element 13 is constructed so that it is maintained at a minimum of a predetermined degree of rotation even when it is in a boiling state or the flow rate is zero. For example, when measuring the flow rate of air or inhalation, the amount changes rapidly and widely over the life span, so it is necessary to deal with this sudden change in the constant flow rate. Even so, heating by heat 13 is enough to apply a sufficient ¾ heat pulse to the constant fluid to enable reliable and accurate measurement. wife
]5 加熱侔 1 3 には予備加熱の手段が付加されている。 ]5 Heating chamber 13 is provided with a means of preheating.
こ の予備加熱手段は例えば次の よ う に して達成さ れる。 駆動タ イ ミ ソグ信号 S τ の被測定流侔の測定 最小流.量に対応 した周期.よ ^ も.僅か長い設定時間の タ イ マー 4 が設け られる。 こ のタ イ マー 4 は 勣タ イ ミ ン グ信号 S T に よ ]3 羅勣され、 そのタ イ マー 4 の設定時間の間禁止ゲー ト 信号 S を発生 し、 その 禁止ゲー ト 信号 S 9 に よ ]? ス ィ ッ チ回路 6 のゲー ト を閉 じる。 タ イ マ一 4 の設定時間内に駆 ft タ イ ミ ン グ信号 S T がタ イ マ一 に与え られて る場合は、 ス ィ ッ チ回路 6 のゲー ト は閉 じたま ^ であ る。 しか しタ イ マー 4 力 ftされた後に、 .その タ イ マー設定 時間を経過 しても 次の愿勋タイ ミ ン グ信号 S τ がタ イ マ一 4 に与え られるい と、 タ イ マー 4 はゲー ト -信 号 S の発生を停止 してス ィ ツ チ回 ¾ 6 G ゲー ト を 開 く 。 こ の狖態ではパ ル ス癸生器 5 か ら O パ ル スが ス ィ ツ チ回路 6 を 量 じて力 Π熱回 ¾ 1 8 へ^铨される c 加熱回路. 1 8 が, 勣 タ イ ミ ン ク'信号 S τ に よ ]} 認 ¾されてい る時にパ ル ス幅設定回路 1 0 か らの加熱 パ ル ス S H に よ って計数が開始され、 例えは'発提局 波数が 2 0 K Hzの発振器 2 5 の発振信号を計数する ア ッ プ ダ ウ ン カ ウ ン タ 2 4 力 勣タ イ ミ ン グ 生回 路 1 6 に設け られて い る。 こ の ア ッ プダ ウ ン カ ウ ン タ 2 4 は加熱された被測定流体が発熟体 1 3 と 検出 体 1 9 と の間を流れる時間の間ア ッ プ カ ウ ン ト を行 い、 感温回路部 1 5 か らの作勣信号 S D に よ ってダ ゥ ン カ ウ ン ト を行 う 。 こ の ダ ウ ン カ ウ ン ト 数が、 前 記ア ッ プカ ウ ン ト の最終値に一致する と、 これが一 致回路 2 6 で検出され、 こ の一致検出 出力が 勣タ イ ミ ン グ信号 S T と ¾ る。 This preheating means is achieved, for example, as follows. Measurement of the measured flow of the drive timing misog signal Sτ A timer 4 is provided with a period slightly longer than that corresponding to the minimum flow rate. This timer 4 is triggered by a timing signal ST 3 , generates a prohibit gate signal S during the set time of the timer 4 , and outputs a prohibit gate signal S 9 to the prohibit gate signal S 9 . yo]? Close the gate of switch circuit 6. When the driving timing signal ST is applied to the timer 1 within the set time of the timer 4, the gate of the switch circuit 6 remains closed. However, after timer 4 has finished, even if the timer setting time has elapsed, if the next desired timing signal Sτ is not given to timer 4, the timer 4 stops generation of the gate signal S and opens the switch ¾ 6 G gate. In this state, the O pulse is sent from the pulse generator 5 through the switch circuit 6 to the power Π heat recovery 18 . Counting is started by a heating pulse SH from the pulse width setting circuit 10 when the heating circuit 18 is recognized by the timing signal Sτ. For example, an up-down counter 24 that counts the oscillation signal of the oscillator 25 whose wave number is 20 KHz is provided in the timing generator circuit 16. It is done. This up/down counter 24 counts up during the time that the heated fluid to be measured flows between the developing body 13 and the detecting body 19. , down-counting is performed by the production signal SD from the temperature sensing circuit section 15 . When this down-count number matches the final value of the up-count, this is detected by the match circuit 26, and this match detection output is used as timing. signal ST and ¾.
こ の よ う に して検出体 1 9 に よ る検出局期がタ イ - マ ー 4 の設定時間 よ ]? も 小さい間は、 翦動タ イ ミ ン グ信号 S τ に よ って加熱パ ル ス幅設定回路 1 0 が、 被測定流体の加熱か ら検出侔 1 9 での検出 ま での時 間の 2 倍の周期で惠動され、 加熱パ ル ス S H が発せ られる。 しか し検出体 1 9 に よ る.検出周期が タ イ マ 一 4 の設定時間 よ ]? も 大 き く -る る と タ イ マ ー 4 か ら の禁止ゲー ト 信号 の供給が停止され、 ス ィ ッ チ 回路 6 の ゲー ト が開かれる。 従って こ の状態ではパ ル ス発生器 5 か らは例えば 1 0 Hz O パ ル ス信号 ifi ス ィ ツ チ回路 6 を , gて パ ル ス 設定回路 1 0 与え ら れヽ ノ ノレ ス !^設定回路 1 0 か らは方 Π熱パノレ ス S H が 発せ られる。 加熟パ ル ス S H は禁止ゲー ト 回路 1 0 一 G に よ ア ッ ブ ダ ウ ン カ ウ ン タ 2 4 へ の供袷は阻 止 « レ 0 o In this way, while the detection period by the detection object 19 is smaller than the set time of the timer 4, the object is heated by the motion timing signal Sτ. A pulse width setting circuit 10 is operated at a period twice the time from heating of the fluid to be measured to detection by the detector 19, and a heating pulse SH is issued. However, when the detected object 19 causes the detection cycle to become larger than the set time of timer 4, the supply of the prohibition gate signal from timer 4 is stopped. The gate of switch circuit 6 is opened. Therefore, in this state, a 10 Hz O pulse signal ifi switch circuit 6 is supplied from the pulse generator 5 to the pulse setting circuit 10, for example. Re No Nores! A thermal panoreth SH is emitted from the setting circuit 10. The aging pulse SH is inhibited.
パ ル ス幅設定回路 1 0 の出力端に、 周期測定回諮 A period measurement signal is connected to the output terminal of the pulse width setting circuit 10.
3 が接続され、 局期測定回路 3 の出力端に表示器 2 が接続され、 表示器 2 には測定周期又は測定周波数 が、 被測定流体の流速或は流量に校正した値で表示 される ο 3 is connected, and a display 2 is connected to the output end of the local measuring circuit 3, and the measurement cycle or measurement frequency is displayed on the display 2 as a value calibrated to the flow velocity or flow rate of the fluid to be measured.
次に各部の具体例を説明する。 苐 2 図に示すよ う に測定時に いては端子 1 7 a を通 じて始動信号が' ト ラ ン ジス タ 3 0 のベ ー ス-に与え られ、 ト ラ ン ジス タ 3 0 の出力に よ ]3 パ ル ^ '幅設定回路 1 0 が駆動さ れる。 パ ル ス幅設定回路 1 0 は例えば単安定マ ルチ パ イ ブ レ一 タ に よ 禱成され、 その時定数回络 1 0 a の時定数を調整 して出力カロ熱パ ル ス S H の パ ル ス幅 が設定される。 こ の加熱パ ル ス S H が加熱回路 1 8 に与え られてその発熱体 1 3 に薛時的に加熟電流が ΣΛΪ れ る。 Next, specific examples of each part will be described. 2. During measurement, as shown in Fig. 2, a starting signal is applied to the base of transistor 30 through terminal 17a, and the output of transistor 30 ]3 pulse ^ 'Width setting circuit 10 is driven. The pulse width setting circuit 10 is formed by, for example, a monostable multi-pibrator, and adjusts the time constant of its time constant circuit 10a to adjust the pulse width of the output calothermal pulse SH. width is set. This heating pulse SH is applied to the heating circuit 18, and a heating current ΣΛΪ is applied to the heating element 13 during heating.
こ の力 II熱回路 1 8 は例えば第 6 図に示す よ う に構 成される。 人力端子 1 0 2 と接 ¾ と の間に ¾抗 8 1 及び 8 2 の.直列接続回络が接続される。 S抗 8 1 と 8 2 の接続点は ト ラ ン ジ ス タ 8 3 の ベ ー ス に接続さ れ、 そのエ ミ ッ タ は接 ¾される。 ト ラ ン ジ ス タ 8 3 の コ レ ク タ と 電源端子 1 0 3 と の間に S抗 8 4 が接 続され、 こ の電源端子 1 0 3 には所定電压、 例えは'This force II heat circuit 18 is constructed, for example, as shown in FIG. A series connection circuit of ¾ resistances 81 and 82 is connected between the power terminal 102 and the contact. The connection point of S-resistances 81 and 82 is connected to the base of transistor 83, and its emitter is connected. Transistor 8 3 An S resistor 84 is connected between the collector of the power supply terminal 103 and the power supply terminal 103, and a predetermined voltage is applied to the power supply terminal 103.
3 0 V が印加さ れる。 ト ラ ン ジ ス タ 8 3 の コ レ ク タ にはタ'ィ オー ド 8 5 の陽極側が接続さ れ、 その陰 ¾ 側は ト ラ ン ジ ス タ 8 6 の ベ ー ス に接続される 。 こ の ト ラ ン ジ ス タ 8 6 のベ ー ス と ェ ミ ッ タ 間には抵抗 8 7 が接統される。 ト ラ ン ジ ス タ 8 6 の コ レ ク タ は増幅 器 8 9 の出力端子に接続される。 こ の増幅器 8 9 の 反転入力端子と アース間には抵抗 9 0 が接続され、 ま たその反転入力端子 と増幅器 S 9 の出力端子 と の 間に コ ン デ ン サ 8 8 が-接続される。 増幅器 8 9 の出 力端子は ト ラ ン ジ ス タ 9 1 のベースに接続され、 こ の ト ラ ン ジ ス タ 9 1 の ェ ミ ッ タ は ト ラ ン ジ ス タ 9 2 のベ ー ス に接続される。 ト ラ ン ジ ス タ 9 2 のエ ミ ッ タ は抵抗 9 3 を介 して ト ラ ン ジ ス タ 8 6 の ェ ミ ッ タ に接続.される。 更に ト ラ ン ジ ス タ 9 2 のェ ミ ッ タ は ト ラ ン ジ ス タ 9 4 のベ ー ス に接続され、 ト ラ ン ジ ス タ 9 4 の ェ ミ ッ タ は ト ラ ン ジ ス タ 8 6 の ェ ミ ッ タ に 接読される。 ト ラ ン ジ ス タ 9 4 の コ レ ク タ は増 '信器 8 9 の岀カ端子に接続され、 '又 ト ラ ン ジ ス タ 8 6 の コ レ ク タ に接続される。 30 V is applied. The collector of transistor 83 is connected to the anode side of diode 85, and its negative side is connected to the base of transistor 86. . A resistor 87 is connected between the base of this transistor 86 and the emitter. The collector of transistor 86 is connected to the output terminal of amplifier 89 . A resistor 90 is connected between the inverting input terminal of this amplifier 89 and ground, and a capacitor 88 is connected between its inverting input terminal and the output terminal of amplifier S9. . The output terminal of amplifier 89 is connected to the base of transistor 91, the emitter of which is connected to the base of transistor 92. connected to The emitter of transistor 92 is connected to the emitter of transistor 86 through resistor 93 . Further, the emitter of transistor 92 is connected to the base of transistor 94, and the emitter of transistor 94 is connected to the transistor It is read directly by the emitter of data 86. The collector of transistor 94 is connected to the negative terminal of booster 89 and to the collector of transistor 86 .
抵抗 9 δ と 発熟体 1 3 と の接繞点 と、 ¾抗 9 7 と 可変抵抗 9 8 と の接続点 と を出力靖子 と する プ リ ッ ジ回 ¾ 1 0 4 が癸熟^ 1 3 、 ¾g抗 9 5 , 9 7 、 可変 抵抗 9 8 に よ !) 構成され Ό O ~熱侔 1 3 及び g抗 98 に よ 1) 禱成される。 癸熟体 1 3 及び笾抗 9 8 の接続 点は接地され、 笾抗 9 5 , 9 7 の接,読点は ト ラ ン ジ ス タ 8 6 の ェ ミ ッ タ に接続される。 発熱 & 1 3 及び 抵抗 9 5 の接続点は抵抗 9 9 を介 して増: ϋ器 8 9 の 反転入力端子に接続され、 抵抗 9 7 , 9 8 の接読点 は増幅器 8 9 の非反転入力端子に接続される O A bridge circuit ¾ 104 is ripened ^ 1 3 with the connection point between the resistor 9 δ and the developing body 1 3 and the connection point between the ¾ resistor 9 7 and the variable resistor 9 8 as output sources. , ¾g resistance 9 5 , 9 7 , variable Resistance to 9 8! ) It is composed by ΌO ~ Heat 13 and 98 1). The connection point between the immature body 13 and the ram resistor 98 is grounded, and the terminals of the ram resistors 95 and 97 are connected to the emitter of the transistor 86. The connection point of heat generation & 13 and resistor 95 is increased through resistor 99: connected to the inverting input terminal of ϋ device 89, and the connection point of resistors 97 and 98 is the non-inverting input of amplifier 89. O connected to terminal
入力端子 1 0 2 に加 ヽ ノレ スが与え られ ¾い ^態 では ト ラ ン ジ ス タ 8 3 は連 ί¾Π"拔態にあ ])、 従ってダ ィ オ ー ド 8 5 が導通状態にあるために ト ラ ン ジ ス タ 8 6 は導通狖態 と つている。 こ の ト ラ ン ジ ス タ 86 に よ ]) ト ラ ン ジス タ 9 1 のべ一スが短絡されて ^る ため ト ラ ン ジ ス タ 9 1 -, 9 2 は遮断状態にあ るので 電源端子 1 0 3 、 タ'ィ オ ー ド 8 5 、 ト ラ ン ジ ス タ 86 のべ一 ス、 ェ ミ ッ タ を介 してブ リ ッ ジ回络 1 0 4 の 各臃に僅かに電流が流れるが発熱体 1 8 は実質的に は発熱 し い。 In the state in which a voltage is applied to input terminal 102, transistor 83 is in a continuous state, and diode 85 is therefore in a conducting state. Therefore, the transistor 86 is in a conductive state, and the base of the transistor 91 is short-circuited by this transistor 86. Since transistors 91- and 92 are in a cut-off state, power supply terminal 103, diode 85, the base of transistor 86, and the emitter are connected. A slight current flows through each arm of the bridge circuit 104 through the heat generating element 18, but the heating element 18 does not substantially generate heat.
入力端子 1 0 2 に加 ノレ ス が与え られる と蘧新 ^態にあ る ト ラ ン ジ ス タ 8 3 が尋: iS し、 ダ イ オ ー ド 8 5 の陽極側の電圧が低下するために ト ラ ン ジ ス タ 8 6 が適新状態にな る ο ト ラ ン ジ ス タ 8 6 ^mm^ 態に る る と ブ リ ッ ジ回路 1 0 4 の出力が増幅器 8 9 で増幅され、 その岀カに よ ]5 ト ラ ン ジ ス タ 9 1 導 通拔態 と 、 ト ラ ン ジ ス タ 9 1 の導通;こ よ って ト ラ ン ジ ス タ 9 2 が導通状態 と 。 ト ラ ン ジ ス タ 9 2 が導通状態 と る る と 電源端子 1 0 3 よ ]? ト ラ ン ジ ス タ 9 2、 S抗 9 3 を介 して プ リ ッ ジ回路 1 0 4 へ電 流が流される。 こ の電流が流れ初めた時は発熱侔 1 3 は冷えた拔態にあってその抵抗値が低いため、 増 ® 器 8 9 の反 ¾入力側 よ ]? も 非反 入力側の '鼋圧,が可 成 ]? 高 く 、 増幅器 8 9 の 出 力電圧に よ っ て ト ラ ン ジ ス タ 9 1 , 9 2 に大 き 電流が流される。 こ の電流 に よ って癸熱侔 1 3 を流れる電流が増加 し、 癸熟侔 1 3 が加熱され、 その抵抗値が増大 して行 く プ リ ッ ジ回路 1 0 4 が平衡す.る ま で発熱体 1 3. の電流が 増加する。 こ の よ う に して発熱侔 1 3 を所定温度に 発熱させる こ と ができ る。 つま ]? 被測定流侓の流速 に よ ]? 発熱体 1 3 の冷却され方がこ と なる が、 第 6 図の構成に よ U 被測定流侔の流速に拘わ らず核剽定 流体を一定の強さで加熱する こ とがで き る。 When a voltage is applied to the input terminal 102, the transistor 83 in the new state is turned on, and the voltage on the anode side of the diode 85 drops. When the transistor 86 is in the normal state, the output of the bridge circuit 104 is amplified by the amplifier 89. , the force causes transistor 91 to conduct, and transistor 91 conducts; When transistor 92 is in a conducting state. When transistor 92 is in a conductive state, power supply terminal 103 ?? current flows. When this current starts to flow, the heating element 13 is in a cold state and its resistance is low, so the non-reverse input side of the booster 89 is also affected by the pressure on the non-reverse input side. , is high, and the output voltage of amplifier 89 causes a large current to flow through transistors 91 and 92 . This current increases the current flowing through the heating element 13, heating the heating element 13, increasing its resistance, and balancing the bridge circuit 104. The current of the heating element 13. increases until . In this manner, the heat generator 13 can be heated to a predetermined temperature. In other words, the cooling of the heating element 13 differs depending on the velocity of the flow to be measured. can be heated at a constant intensity.
¾ お ト ラ ン ジス タ 9 2 に過電流が流れる と、 ト ラ ン ジス タ 9 4 が導通 して ト ラ ン ジ ス タ 9 1 を連新 し、 ト ラ ン ジ ス タ 9 2 を遮新する。 . , ¾ When an overcurrent flows through transistor 92, transistor 94 conducts, reconnects transistor 91, and cuts off transistor 92. new. .,
癸熱侓 1 3 が加熟される と,その時に発 ^ ^: 1 3 部 分を流れる ¾測定流体が加熟される。 こ の加熟され た ^ 定流^が^ 体 1 9 ¾分を通通する と、 When the temperature rise 1 3 is heated, then the measured fluid flowing through the ignited 1 3 part is heated. As this heated ^constant flow^ passes through 19 ¾ of a body,
? 1 9 が加熱され、 それが されるつ ^岀 ^: 1 9 及ひ'惑 ϋ回 ¾· 2 0 は第 2 ; ;て示す よ う *成される 2 筷岀体 1 9 は l度に よ ]) 笾抗値が変化する {¾ ¾ iTL 体であ ]?、 こ の検出侔 1 9 を一辺とする ブ リ ッ ジ 34 が ¾成され、 そのブ リ ッ ジ 3 4 の検出端子 i¾1に ί¾ '!-3 器 3 5 が接続される。 癸熱体 1 3 に よ ]? ΙΠΙ熱された 被測定流体が挨出体 1 9 を逼逼する と、 茯 m ^ 1 9 が加熟されてプ リ ッ ジ 3 4 が不平衡 mに ¾ 、 増 幅器 3 5 か ら挨出信号 S c が発せ られる。 ?19 is heated, and when it is heated: 19 and ϋ times 20 are second; The body 19 is an iTL body in which the resistance value changes by 1 degrees]), and a bridge 34 is formed with this detection point 19 as one side, and the block A ί¾'!-3 device 35 is connected to the detection terminal i¾1 of the ridge 34. When the fluid to be measured which is heated by the heating body 13 pulls the discharge body 19, the body 19 is heated and the bridge 34 becomes unbalanced m. , the output signal S c is emitted from the amplifier 35 .
第 1 図に示 した実施例では検出体 1 9 は 丄 , 2 の検出体 1 9 - 1 , 1 9 - 2 か らる ]) 、 これ らは m 5 図に示すよ う に被測定流体の流れ方向 と直角方 向に配列され、 その一方の検出侓 1 9 - 1 には癸熱 体 1 3 に よ ]? 加熱された拔測定流侔が通逼するが、 被測定流体のその加熱された部分は検出侔 1 9 - 2- 部分を通過 し ¾ よ う にされる。 例えば睜気の測定 を行 う 場合に、 呼気に対 して人俸か ら与え られる熱 量は検出体 1 9 - 1 , 1 9 - 2 の両者に等 し く 与え られ、 筷出体 1 9 - 1 , 1 9 - 2 はブ リ ツ ジ 3 4 の 対向ア ー ム に用い られる。 よつ ·て被測定流侓に ¾ し て人侔か ら与え られる熱量の影 ¾を除去 して発熱体 1 3 に よ る加熟流体の通過を正 し く 挨出で き る。 In the embodiment shown in FIG. 1, the detection body 19 consists of two detection bodies 19-1 and 19-2]), which, as shown in FIG. Arrayed in the direction perpendicular to the flow direction, one of the detection angles 19-1 is supplied with the measurement flow heated by the heating element 13. The detected part is allowed to pass through the 19-2- part. For example, in the case of air measurement, the amount of heat given by the salary to the exhaled air is given equally to both the detection bodies 19-1 and 19-2, -1, 19-2 are used for the opposite arms of the bridge 34. Therefore, it is possible to remove the influence of the amount of heat given by the human body following the flow to be measured, and to correctly discharge the passage of the heated fluid by the heating element 13.
ぉ睜気及び吸気をそれぞれ狻立分齄 して ¾ Μζ. ~3 Ό 合には、 第 5 図に示す よ う に癸熱侓 1 3 を んで m 側に二組の 体 1 9 , 1 9 'を配設すれば よ い。 When the air and intake air are separated from each other by ¾ Μζ. ~ 3 Ό, as shown in Fig. 5, two sets of bodies 19, 19 ' should be placed.
出 fe l 9'の ¾ : 1 9 - 1 1 , 1 9 - 1 2 はそれぞ れ檢出侔 1 9 - 1 , 1 9 - 2 と 対応する も のである。 第 2 図の説明に戻って惑 ϋ回路 2 0 で検出 された 検出信号 S c は抵抗 3 7 と コ ンデンサ 3 8 と よ ]? る積分回路 3 6 に与え られ、 高周波の雜音成分が除 去される。 積分回路 3 6 の出力は コ ン デ ン サ 3 9 に ,与え られて検出信号 S c 中の直流分が阻止される。 直流分が阻止された検出信号 S c が増幅器 4 0 , 4 1 に よ ]? 増幅される。 こ の増幅された検出パルス S c は感温回路部 1 5 の比較器 4 2 の非反転入力端子に 与え られる。 ¾ of output fe l 9': 1 9 - 1 1 and 1 9 - 1 2 are Corresponding to 19-1 and 19-2. Returning to the description of FIG. 2, the detection signal Sc detected by the ϋ circuit 20 is applied to an integration circuit 36, which is composed of a resistor 37 and a capacitor 38, and the high-frequency noise component is removed. be done. The output of the integration circuit 36 is applied to a capacitor 39 to block the DC component in the detection signal Sc. The detection signal Sc with the DC component blocked is amplified by amplifiers 40 and 41. This amplified detection pulse S c is applied to the non-inverting input terminal of the comparator 4 2 of the temperature sensitive circuit section 1 5 .
一方増幅器 4 1 の出力端.子は比較増幅器 4 3 の非 反転入力端子に接続され、 比較増幅器 4 3 の出力端 子にはダイ オー ド 4 4 の陰極側が接続される。 ダイ 才一 ド 4 4 の陽極側は コ ン デ ン サ 4 5 の一端に接続 され、 こ の コ ンデ ン サ 4 5 の他端は接地さ れる。 タ- イ オー ド 4 4 の陽極側はパ ッ フ ァ回路 4 6 の非反転 入力端子に接続され、 比較増幅器 4 3 と バ ッ フ ァ回 路 4 6 と の非反転端子が互に接続される。 バ ッ フ ァ 回路 4 6 の出力端は抵抗 4 7 を通 じて比較器 4 2 の 反耘入力端子に接続され、 こ の反 ¾入力端子には可 変抵抗器 4 9 の可変端子が抵抗 4 8 を介 して接銃さ れ る。 図に示 して いが可変 ¾抗 H 4 9 の両 i 間は 電镙に接続されてい る。 タ' ィ ォ ー ド 4 4 の 陽^ に はダ イ オ ー ド 5 0 の陰 ¾ ¾\が接^され、 こ の ダ イ ォ 一 ド 5 0 の陽極側は阜安定マ ル チバイ ブ レ ー タ 5 1 の岀カ端に接続される。 比較器 4 2 の 力靖には反 ¾回路 5 2 が接続されてい る。 単安定マ ルチ バ イ ブ レー タ 5 1 の入力端子には加熱パ ル ス S H が与え ら れている。 って加熟パ ル ス S H ご と にマ ル チバ イ ブ レー タ 5 1 の ¾力に よ ダイ オ ー ド 5 0 を通 じて コ ンデ ンサ 4 5 は所定僮に充電される。 こ の コ ン デ ン サ 4 5 の電圧はバ.ッ フ ァ回路 4 6 を通 じて比較増 寝器 4 3 の反 ¾入力側に与え られている。 増 葛器4 1 の出力:^検出パ ル ス S c 力 得 られてい な 低レ ベ ル とパ ッ フ ァ回路 4 6 の出力とが比較増.幅 H 4 3 で比 較され、 その両者が一 ¾するま でコ ン デ ン サ 4 5 の 電荷がダ イ オ ー ド 4 4 を通 じて放電する。 こ の よ う に して検出パ ル ス S c が存在 し い拔態に ける増 m m 4: 1 の最低レ ベ ル がバ ッ フ ァ回路 4 6 の出力側 に得 られる。 こ の最低レベ ル に対 し、 所定値が可変 笾抗器 4 9 の可動子よ 加算され、 こ の基準値 と し て比較器 4 2 に与え られる。 検出パ ル ス S c がこの 基準値を越える と、 比絜増幅器 4. 2 の出力が反 ¾し て高論理 " 1 " と ]? 、 これが緩衝回路 5 2 を違 じ て作 ft信号 S D と して端子 1 0 5 に S力さ れる。 第 2 図では^ 1 図中 の シ ユ ミ ッ 卜 回 ¾ .7 の代 ]5 比較 ϋ 4 2 が用い られている。 On the other hand, the output terminal of amplifier 41 is connected to the non-inverting input terminal of comparison amplifier 43, and the cathode side of diode 44 is connected to the output terminal of comparison amplifier 43. The positive side of the diode 44 is connected to one end of a capacitor 45, the other end of which is grounded. The anode side of diode 44 is connected to the non-inverting input terminal of buffer circuit 46, and the non-inverting terminals of comparison amplifier 43 and buffer circuit 46 are connected to each other. be. The output terminal of the buffer circuit 46 is connected through a resistor 47 to the counter input terminal of the comparator 42, and the variable terminal of the variable resistor 49 is connected to this counter input terminal. Shot through 48. Although not shown in the figure, both ends of the variable resistor H49 are connected to an electric field. The positive of diode 44 is connected to the negative ¾ ¾ of diode 50, and this diode The positive electrode side of the first electrode 50 is connected to the positive end of the Wuxing multivibrator 51 . An inverse circuit 52 is connected to the output terminal of the comparator 42. A heating pulse SH is applied to the input terminal of the monostable multivibrator 51. Therefore, the capacitor 45 is charged to a predetermined value through the diode 50 by the power of the multivibrator 51 for each heating pulse SH. The voltage of this capacitor 45 is applied through a buffer circuit 46 to the opposite input side of the comparator 43. The output of multiplier 41: the low level of detected pulse S c force not obtained is compared with the output of buffer circuit 46 by comparison amplification H43, and both The charge in capacitor 45 is discharged through diode 44 until . In this way a minimum level of increase mm4:1 is obtained at the output of the buffer circuit 46 in the absence of the detection pulse Sc. A predetermined value is added to this lowest level by the mover of the variable resistor 49 and given to the comparator 42 as this reference value. When the detection pulse S c exceeds this reference value, the output of the hysteresis amplifier 4.2 reverts to a logic high "1", which acts as the signal SD through the buffer circuit 52. is applied to terminal 105. In Fig. 2, ϋ 4 2 is used instead of the Schmitt times ¾ .7 in Fig. 1.
第 3 図にア ッ プ ダ ウ ン カ ウ ン タ 2 4 の H fe叵 ¾の U? ^ —例を示す。 第 2 図中の比較器 4 2 の出力作動信号 S D は N O R回路 6 0 の入力端子に与え られ、 N O R回路 6 0 は N O R回路 6 1 と 共に フ リ ッ ブ フ ロ ッ ブを禱成 している。 N O R回路 6 1 の 出力端子は N 0 R回路 6 2 の一つ の入力端子に接続され る と共に フ リ ッ プ フ ロ ッ プを禧成 して る。 N O R 回路 6 3 の入力端子には N A N I)回路 6 4 の出 力端子が接続さ れ、 この N AND回路 6 4 の一つの入力端子は コ ンデ ンサ 6 5 を通 じて接地される と共に抵抗 6 6 を介 し て電源端子 1 0 3 に接続される。 コ ン デ ン サ 6 5 の 両極間にはス タ ー ト ス ィ ツ チ 6 7 が接続されている。 N O R回路 6 2 の出力端は緩衝回路 6 8 を逼 じて N A N D回路 6 9 の一つの入力端子及び反耘回路 7 0 に接続される。 N A N D回路 6 9 の他の入力端子に は発 器 2 5 の端子 2 5 a か ら基準信号が与え られ てい る。 反 ¾回路 7 0 の出力側は N A N D 回路 7 1 の一つの入力端子に接続される。 こ の N A N D回路 7 1 の他の入力端子には発搌器 2 5 の端子 2 5 b か ら基準信号が与え られる。 N A N D 回路 6 9 及び 71 のそれぞれの出 力 ¾子は N O. R回路 7 2 Gそれぞれ の入力端子に接続される。 こ の N O R回 7 2 の岀 力靖子はア ッ プダ ウ ン カ ウ ン タ 2 4 を禱 する直歹 ϋ に接続された ア ッ プダ ウ ン カ ウ ン タ 7 3 , 7 4 及び 7 5 のク e ッ ク ¾子にそれぞれ接 される つ 又 カ ウ し . ン タ 7 3 , 7 4 及び 7 5 のそれぞれのア ッ プカ ウ ン ト 及びダ ウ ン カ ウ ン ト 制御靖子 t c には 衝回路 68 の出 力端子が接続されている。 Fig. 3 shows U? — Give an example. The output activation signal SD of comparator 42 in FIG. there is The output terminal of the NOR circuit 61 is connected to one input terminal of the N0R circuit 62 and forms a flip-flop. The input terminal of the NOR circuit 63 is connected to the output terminal of a NANI circuit 64, and one input terminal of this NAND circuit 64 is grounded through a capacitor 65 and connected to a resistor. It is connected to the power supply terminal 103 via 66. A start switch 67 is connected between the two poles of the capacitor 65 . The output end of the NOR circuit 62 is connected to one input terminal of the NAND circuit 69 and the inversion circuit 70 through the buffer circuit 68 . The other input terminal of the NAND circuit 69 is supplied with the reference signal from the terminal 25a of the generator 25. The output side of the inversion circuit 7 0 is connected to one input terminal of the NAND circuit 7 1 . A reference signal is applied from a terminal 25b of the oscillator 25 to another input terminal of the NAND circuit 71. Each output terminal of the NAND circuits 69 and 71 is connected to each input terminal of the NOR circuit 72G. In this NOR circuit 72, Yasuko Shiniki connected up-down counters 73, 74 and 7 directly to the up-down counter 24. Two or more cowls are connected to each of the five clicks . The output terminal of the impulse circuit 68 is connected to the up-count and down-count control terminals tc of the counters 73, 74 and 75, respectively.
カ ウ ン タ 7 3 , 7 4 及び 7 5 の各カ ウ ン ト ゼ ロ 態の 岀カ端子 t (3 i , t 0 2 , t 0 3及び制 ]端子が N 0 R 回路 7 6 の入力端子にそれぞれ接続される。 こ の N O R回路 7 6 の出力端子は N O R回路 7 7 を介 して N AND回路 6 4 の池の入力端子に接読されている。 N O R回路 7 6 は第 1 図中の一致回路 2 6 を構成 し て る。 The counter terminals t (3i, t02 , t03 and control) of the counters 73, 74 and 75 in the count-zero state are connected to the input of the N0R circuit 76. The output terminal of this NOR circuit 76 is connected to the input terminal of the NAND circuit 64 through the NOR circuit 77. The NOR circuit 76 is connected to the input terminal of the NAND circuit 64 through the NOR circuit 77. It constitutes the matching circuit 26 inside.
始勣時においてはス ィ .ツ チ 6 7 が投入され、 NAN At the beginning, Switch 67 was put in, and NAN
D回路 6 4 の出力は '毅衝回 路 1 0 7 、 O R回路 1 0 8、 端子 1 7 a を通 じて第 2 図中の ト ラ ン ジ スタ 3 0 のベー スに対 して始勣信 "f e 1 "が与え られて パ ル ス幅設定回路 1 0 か らカ卩熟パ ル ス S H が発せ ら れる。 こ のカロ熱パ ル ス S H が N 0 R 回 路 6 1 の 入力端子 1 0 6 に も 与え られる ので、 N O R 回路 63 に N AND回路 6 4 か ら論理値 1 "が与え られる と、 N 0 R回路 6 2 の出力端子の信号の I 涅値が β 1 " と ¾ j? 、 これが緩衝回路 6 8 を介 して各カ ウ ン タ 73 , 7 4 , 7 5 の制御端子 t c に論理爐《 1 " と して 与え られ、 これ ら カ ウ ン タ は ア ッ プ カ ウ ン ト 態に ¾ る 。 各カ ウ ン タ 7 3 , 7 4 , 7 5 は、 癸援 H 2 5 の端子 2 5 a よ ]? N A N D回路 6 9 、 N 0 R [ ¾72 を介 して与え られる例えば 2 0 K ¾の基準信号をァ ッ ブ カ ウ ン ト し始め る 。 The output of D circuit 64 is applied to the base of transistor 30 in FIG. 2 through impulse circuit 107, OR circuit 108 and terminal 17a. A message "f e 1" is given and a mature pulse SH is generated from the pulse width setting circuit 10. Since this carothermal pulse SH is also applied to the input terminal 106 of the N0R circuit 61, when the NOR circuit 63 is given a logical value of 1" from the NAND circuit 64, N0 The I value of the signal at the output terminal of the R circuit 6 2 is β 1 " and ¾ j? , which is applied to the control terminal tc of each of the counters 73, 74, 75 via the buffer circuit 68 as a logic gate <<1", these counters being up-counters. Each counter 73, 74, 75 is connected to terminal 25a of support H25] NAND circuit 69, N0R [¾72 Start counting a reference signal of, for example, 20 K ¾ given via .
¾測定流体に与え られた熱パルスが検出体 1 9 で 検出 されて、 緩衝回路 5 2 か ら作動信号 S D が発せ られる と、 こ の作勣信号 S D は端子 1 0 5 を通 じて N O R 回路 6 0 に与え られる。 然る時には N O R 回 路 6 1 の出力が * 1 " と これが N O R 回路 62 に与え られてその出力端子の信号の論理値は " 0 " と る る。 よ って锾衝回路 6 8 の出力は 0 " と ]3 各カ ウ ン タ 7 3 , 7 4 , 7 5 はダ ウ ン .カ ウ ン ト 状態 に ]? 、 これ ら 力 ·ゥ ン タ は発振器 2 5 の端子 2 5 b よ ]5 N A N D 回路 7 1 、 N O R回路 7 2 を介 して与 え られる基準信号をダ ウ ン カ ウ ン ト する。 ¾ When a heat pulse given to the fluid to be measured is detected by the detection body 19 and an actuation signal SD is issued from the buffer circuit 52, this actuation signal SD is sent through the terminal 105 to the NOR circuit Given to 60. At that time, the output of the NOR circuit 61 is "*1" and this is applied to the NOR circuit 62, and the logic value of the signal at its output terminal is "0". 0 " and ]3 Each counter 73 , 74 , 75 is in a down counting state ] , these counters are connected to terminal 25 b of oscillator 25 ] 5 NAND circuit 71 and NOR circuit 72 to down-count the reference signal provided.
こ の ダ ウ ン カ ウ ン ト に て、 すでに ア ッ プ カ ウ ン ト した計数値が計数され尽 して出 力端子 t Q 1 ,t0 2 , t 0 3 の信号がすべて論理値 β 0 " と る と、 タ' ゥ ン カ ウ ン ト 時は剞御端子 t c の信号 も 論理値 " 0 " と なって るので、 これが N O R 回路 7 6 で検知さ れ N O R 回路 7 6 の出 力端に駆動タ イ ミ ン ク'信号 S T が現われる。 こ の駆 ¾タ イ ミ ング信号 S τ は N 0 R 回路 7 7 を通 じて NAN D回路 6 4 に与え ら れ、 従つ て再び癸熱 3 の加熱 と、 カ ウ ン タ 2 4 の ア ッ プ カ ウ ン ト 勣作 と が闘始され、 前述の こ と が操迗され る。 こ の操返 し局期は、 ¾ 定流^の 速に対応 レ 端子 2 5 a , 2 5 b の基準信号の局 ¾数が 1 =J― D - 合は発熟侔 1 3 で加熟された流^が検出体 1 9 に到 達する ま での時間の 2 倍と な る。 こ の場合は回路 69 , 7 0 , 7 1 , 7 2 を省 して一方の端子 2 5 a の 基準信号を カ ウ ン タ 2 4 へ直接供給すれば よ い。 ΙΪ ft? タ イ ミ ン グ信号 S τ 、 又は加熱パ ル ス S H の局期 が剷定回路 3 ( 第 1 図 )'で測定され、 被 、:-定流侓の 流遝又は流量力 表示器 2 に表示される。 During this down-counting, the count values that have already been incremented are exhausted, and the signals at the output terminals tQ1 , t02 , and t03 all become the logic value β 0", the signal at the control terminal tc also becomes a logic value "0" during the turn count, so this is detected by the NOR circuit 76 and the output of the NOR circuit 76 A drive timing signal ST appears at the end of the drive timing signal ST.This drive timing signal Sτ is applied to the NAND circuit 64 through the N0R circuit 77, and thus again The heating of heat 3 and the up-count operation of counter 24 are started, and the above-mentioned operations are performed. Corresponds to flow speed If the number of stations of the reference signal at terminals 25a and 25b is 1 =J-D-, the time taken for the flow heated in 13 to reach the detection object 19 is 2 doubled. In this case, the circuits 69, 70, 71 and 72 can be omitted and the reference signal of one terminal 25a can be supplied directly to the counter 24. ΙΪft? The timing signal Sτ, or the phase of the heating pulse SH, is measured by the regulator circuit 3 (Fig. 1)', which indicates the flow rate or force of the constant flow. displayed in instrument 2.
翦 タ イ ミ ング信号 S τ は先に述べた よ う に タ イ マ ー 4 に も与え られ駆動タ イ ミ ング信号 S τ カ /Jヽ 流量に対応する基準周期 よ 1) も小さ 間は駆勣タ イ ミ ン グ信号 S τ に よってパ ル ス幅設定回路 1 0 が駆 動され、 羅動タ イ ミ ン グ信号 S .T の周期が基準局期 よ ]? も僅かに大き く る る と、 前述の よ う に タ イ マ 一 4 はゲー ト 信号 S の供給を停止する。 こ の^:態で は前述の よ う にス ィ ツチ回路 6 の出力信号 S n が 0 R回路 1 0 8 に与え られてそ.の出力に よ ]) ノ ノレ ス 設定回路 1 0 が m動される。 従ってこの ^では起動 ス ィ ツ チ 6 7 を設けない場合で も.電源ス ィ ツ チを才 ン にする と、 被測定流侓の流-量がゼ π で も ス ィ ッ チ 回路 6 の出力に よ ]? 発熱体 1 3 は局期的に加熱され る つ こ の よ う に タ イ マ ー 4 、 パ ル ス 生 ϋ 5 、 ス ィ ツ チ回路 6 を設ける場合は第 3 図に いて s 6 6 , コ ン デ ン サ 6 5 、 ス イ ッ チ 6 7 、 回路 6 4 緩 衝 回 路 1 0 7 を省略 して N O R 回 ¾ 7 6 の出 力 側を N 0 I 回路 6 3 、 0 R 回路 1 0 S の各入力 側に 直接接続すれば よ い。 ま た苐 3 図に て N O R 回 路 6 0 , 6 1 を省略 して端子 1 0 5 の信号 S D を N O R 回路 6 2 へ供絵する よ う に して も よ い こ と は明 らかで る。 迦The timing signal S τ is also given to the timer 4 as described above, and the driving timing signal S τ is shorter than the reference period corresponding to the flow rate. The pulse width setting circuit 10 is driven by the driving timing signal Sτ, and the period of the driving timing signal S.T becomes slightly larger than the reference period. Then, the timer 4 stops supplying the gate signal S as described above. In this state, the output signal Sn of the switch circuit 6 is applied to the 0R circuit 108 as described above, and the output of the noise setting circuit 10 changes to m be moved. Therefore, even if the starting switch 67 is not provided in this example, if the power switch is turned on, the flow rate of the flow to be measured is zero, but the switch circuit 6 The heating element 13 is locally heated by the output. s66, capacitor 65, switch 67, circuit 64 It suffices to omit the buffer circuit 107 and connect the output side of the NOR circuit 76 directly to each input side of the N0I circuit 63 and the 0R circuit 10S. Also, it is clear that the NOR circuits 60 and 61 may be omitted in FIG. be.
第 4 図は こ の発明の熱線パ ル ス流量計で得 られた 流量 と加熱時か ら検出時ま での時間 と の関係を示 す も ので、 広い流量について直籙性がき わめて良好 であ る こ と が示されている。 従来に ては癸熱侔 1 3 を周期的に加熱 し、 その加熱か ら検出体 1 9 で の検出ま での時間を測定 していた。 この場合に い て被測定流体の流速が速い場合 も 遅 場合 も 測定で き る よ う にするためには発熱体に対する加熱周期を 長 く する必要があ ]? 、 流速の速い も のに対 しては測 定時間が必要以上に長 く か ]? 、 しか も 流速の変化 が速い場合は、 その変化に追従 して正 し く 測定する こ と はで き るい。 加熱周期を短か く する と 遅い流速 の測定を行 う こ と がで き ない。 Fig. 4 shows the relationship between the flow rate obtained by the hot-wire pulse flowmeter of this invention and the time from heating to detection. It is shown that In the past, the heat source 13 was periodically heated and the time from the heating to the detection by the detection body 19 was measured. In this case, it is necessary to lengthen the heating period for the heating element in order to be able to measure whether the flow velocity of the fluid to be measured is fast or slow. If so, is the measurement time longer than necessary]? Moreover, when the flow velocity changes rapidly, it is impossible to follow the change and measure it correctly. If the heating cycle is shortened, it is not possible to measure slow flow velocities.
しか し、 こ の発明に いては検岀体 1 9 の検出 出 力 を基に して発熱俘 ·1 3 を加熱する よ う に してお !)、 流速が速い場合は加熱局期が自 動的に Sか く 、 流速が遅い場合は加熱局期が自 動的に長 く る。 こ のため第 4 図に示 した よ う に い ¾ 〇流速 ( 流 *) However, in this invention, the heat generator 13 is heated based on the detection output of the test body 19! ), when the flow velocity is fast, the heating period is automatically shortened, and when the flow velocity is slow, the heating period is automatically lengthened. For this reason, as shown in Fig. 4, the flow velocity (flow *)
^ を測定する こ とがで き、 かつ流速変化に対 して これ と追従 した測定出力 を得る こ と カ で き る。 ^ can be measured, and a measured output that follows the change in flow velocity can be obtained.
上述に いて屋動タ イ ミ ン グ信号 S τ の代 ]? 出侔 1 9 の検 S パ ル ス S c に よ ]? パ ル ス幅設定回路 1 0 を 勣 して も よ 。 こ の場合流速が速い と、 力 ϋ 熟体 1 3 の力 [I熟局期が著 し く Sか く る ]9 、 加熱 3 が充分冷却 しない う ちに加熱される よ う に ¾ る こ 、 検出体 1 9 における検出パ ル ス S c を正 し \ こ とが困難と る。 こ の よ う な こ ^:が生 じ ¾い よ う に する には検出パ ル ス S c を得てか ら癸熱体 1 3 を再 び加熱するま での時間を遅 らせばよい。 その遅れを 一定時間 と して も 流量測定を行 う こ とがで き るが、 前述の実旎例に示した よ う に この遅れ時間 も、 流量 ( 流速 ) と対応させる と、 測定回路 3 に よ る流量 ( 流速 ) の測定演算が簡単にるる。 この遅れを刖: ifliで は発熱体 1 3 で加熱された流体が検出体 1 9 に達す る ま での時間 T 0 と等 し く したが、 第 3 図中の凳握 器 2 5 の端子 2 5 b の出力基準信号を、 端子 2 5 a の基準信号に対 し局期を 2 倍、 3.倍、 4 倍 • · · O よ う にする こ と に よ ]5、 遅れ時間を T Q の 2 倍、 3 倍、 4 倍 と る こ と も でき る。 In the above description, instead of the motor timing signal Sτ, the pulse width setting circuit 10 may be changed by detecting the S pulse Sc of the output 19. In this case, if the flow velocity is high, the force ϋ of the body 13 [I becomes significantly more mature]9, so that the heating 3 is heated before it cools down sufficiently. , it is difficult to correct the detection pulse S c in the detection object 19 . In order to prevent such a phenomenon from occurring, it is necessary to delay the time from obtaining the detection pulse S c to reheating the heating element 13. . It is possible to measure the flow rate using the delay as a constant time. Calculation of flow rate (flow velocity) is easy. This delay is equal to the time T0 required for the fluid heated by the heating element 13 to reach the detection element 19 in ifli. The output reference signal of 25b is multiplied by 2, 3, or 4 times the reference signal of terminal 25a. It can also be doubled, tripled, or quadrupled.
ま た苐 6 図について説 ¾ した よ う に、 こ の発 ^で は被測定流侓の流速に らず一定の加熱を l定 lL ^に与える こ とがで き る ため、 検岀 ^ 1 9 での ^ を確実に行 う こ と がで き る。 これ らの点 よ こ の発 明に よれば呼気や吸気の流量剡定において、 睜気ゃ 吸気の流量が測定中 に大幅に変化 して も こ れを正 し く 剠定で き る。 ま たタ イ マー 4 、 パ ル ス癸生器 5 、 ス ィ ツ チ回路 6 を利周 し、 流量が所定 1'直以下に い て加熱体 1 3 は予備加熱さ れている ため、 急に入力 された被測定流体の流量を、 その立上 ]? 荐性を も 含 めて正 し く 測定する こ と がで き る。 こ の点 も こ の発 明の流量計は呼気や吸気の測定に適する。 同様に検 出体 1 9 - 1 , 1 9 - 2 を用いて周 S葸度や、 被測 定流体の温度の変 に拘わ らず検出体 1 9 - 1 での 検出を確実にする こ と がで き る。 In addition, as explained in Fig. 6, this generation can provide constant heating regardless of the velocity of the flow to be measured. ^ in 9 can be performed reliably. Due to these points, according to the present invention, it is possible to accurately determine the expiratory or inspiratory flow rate even if the air or inspiratory flow rate changes significantly during measurement. In addition, the timer 4, the pulse generator 5, and the switch circuit 6 are cycled, the flow rate is below the predetermined 1' straight line, and the heating element 13 is preheated. It is possible to accurately measure the flow rate of the fluid to be measured, which is input to the , including its start-up resistance. In this respect as well, the flowmeter of this invention is suitable for measuring expiration and inspiration. Similarly, by using the detection bodies 19-1 and 19-2, it is possible to ensure detection by the detection body 19-1 regardless of changes in the ambient temperature and the temperature of the fluid to be measured. I can do and
外部振動 どに よ 流管 1 1 内 を流れる被測定流 体 1 0 1 が振動する と、 被測定流体 1 0 1 の加熱さ れた部分を検出体 1 9 で検出する こ と が ¾難に る こ とがある。 この よ う ¾問題を く すため には例え は'第 7 図及び第 8 図に示す よ う にすれば よ い。 即ち 流体 1 0 1 が流される例えば内径 3 3 、 全長 1 2 のァク リ ル製の流管 1 1 内に いて乱 ^癸生^: 1 2 の下流側において、 流管 1 1 ·の管軸にほ 直角 に互 に平行 して加熱鍰 1 3 a , 1 3 b が張設される。 こ の加熱戀 1 3 a , 1 3 b は例えば直径 5 ^ 、 長さ 3 0 雄 の タ ン グ ス テ ン戀が后 い られ、 こ の ! § 1 3 a , 1 .. 3 b の両 ¾ ¾はそれぞれ保持具 - 1 , f - 2 When the fluid to be measured 101 flowing in the whirl tube 11 vibrates due to external vibrations, etc., it becomes difficult to detect the heated portion of the fluid to be measured 101 with the detection body 19. sometimes In order to alleviate such a problem, it would be better to use the example shown in FIGS. 7 and 8. FIG. That is, turbulence occurs in, for example, acrylic flow tube 11 having an inner diameter of 33 and a total length of 12, in which fluid 101 is flowed; Heating collars 13a and 13b are stretched parallel to each other and substantially perpendicular to the axis. The heating chambers 13a and 13b are, for example, followed by tungsten chambers with a diameter of 5^ and a length of 30 mm. Both ¾ ¾ of § 1 3 a, 1 .. 3 b are respectively holders - 1, f - 2
■¾υ丄 及び - 3 , ? - 4 に よ ]) 流管 1 1 の管壁に固定さ れる o 雨カロ熱籙 1 3 a , 1 3 b の間隔は互に これ ら 加熱籙 1 3 a , 1 3 b に よ ]? 流俸 1 0 1 か ·加熱され る部分 1 1 1 b が最大限に接近する よ う にされる。 こ の方 !3熱線 1 3 a , 1 3 b に対 して発熟 回路部 1 4 ( 第 1 図 ) が共通に接銃される ¾υ丄 and - 3 , ? - 4 ]) Fixed to the tube wall of the flow tube 11 o The distance between the rain calorie hot pots 13 a and 13 b The salary 101 or the heated part 111b is brought as close as possible. On this side, the maturing circuit section 14 (Fig. 1) is commonly connected to the heating wires 13a and 13b.
力。熟線 1 3 a , 1 3 b に対 して流体 1 0 1 の下 側に いて、 例えば加熱籙 1 3 a , 1 3 b か ら 4 〜 Power. It is on the lower side of the fluid 101 with respect to the hot wire 13a, 13b, for example, from the heating wire 13a, 13b to 4 ~
1 4 舰 ¾度難れた位置に互に平行に籙状感 'JUL ^r¾ i 1 9 a , 1 9 ¾ が張設される o -t^ i¾ ¾. ¾ "T" 1 9 a , 1 9 b は例ぇ 直径 5 ヽ 長さ 3 0 纖 タ ン ダス テ ン籙が用い られ、 それそれの両端部が係持具 ^ - 5 , ^ — 6 及び - 7 , ^ 一 8 に よ ]? 流管 1 1 の管壁 に固定され 3 o ^拔 溫素子 1 9 a , 1 9 b に対 し て苐 1 図について述べた感溫回路 2 0 が各別に接続 され、 これ らの検出パル ス S c の論理和が と りれる α カロ熱ノヽ'ル ス S H に よ ]? 加熱鎳 1 3 a , 1' 3 b が発 熱される と、 こ の時カロ熟籙 1 3 a , 1 3 b 部分を通 過する被測定流体が加熱される。 即ち、 第 8 図に示 すよ う に、 加熱籙 1 3 a , 1 .3 b に よ ]? それぞれ点 綠で示す流体部分 1 1 1 a , 1 1 1 熱され、 こ の加熟された流 晋ϊ分 l l l a , 1 1 1 は流管 1 1 内をその管軸に沿つて下流飼に移動 して行 く 。 1 4 ⅰ ⋅ 'JUL ^r¾ i 1 9 a , 1 9 ¾ are stretched parallel to each other o -t^ i¾ ¾. ¾ "T" 1 9 a , 1 For 9b, for example, a 5mm diameter and 30mm length tundus steel is used, and each end is fitted with a retainer ^-5, ^-6 and -7, ^-8]? The temperature sensing circuits 20 described with reference to FIG. When the heating irons 13a and 1'3b are heated by the α carothermal node S H which can be logically summed with S c , at this time, the caro ripening 13a and 13b are heated. A fluid to be measured passing through the portion is heated. That is, as shown in FIG. 8, the fluid portions 111a and 111 shown in dotted green are heated by the heating plates 13a and 1.3b, respectively, and this heated The flow segment llla, 111 moves downstream in the flow tube 11 along its tube axis.
ιτπ: の流れが正常でその流 に乱れが ¾ と 流 ? 部分 1 1 1 a , 1 1 1 b がそれぞれ籙 ; 丁 1 9 a 及び 1 9 b の位置を逼逼する の で、 流 ^:部分 1 1 1 a は線状感温素子 1 9 a で、 又流 部分 1 1 1 b は鐃状感温素子 1 9 b でそれぞれ検出 され る。 例え ば流管 1 1 に与え られる外部捱動 ど何 らかの外部 要因或は流体 自 体の温度変化に伴 う 乱流の発生に 基づ く 流体の乱れ どの内部.要因に よ 流体部分 1 1 1 a の流管 1 1 内の流路が第' 8 図に点緩矢 Φで示 すよ う に乱れる こ と があ る。 こ の流路,の乱れに よ つ て、 加熟された流侔部分 1 1 1 a が線状慼温素子 1 9 a の位置に正 し く 到達せず、 流管 1 1 の管軸に直 角方向にずれて、 籙状感温素子 1 9 a に よ っては検 出不可能或は検出出 力が極めて小さる も の と る る。 こ の よ う 場合において も 、 第 7 図及び第 8 図の例 では加熱された流体部分 1 1 1 a は第 8 図 に示す よ う に、 線状感温素子 1 9 b に よ って検出 さ れる こ と に ¾ る。 従って流管 1 1 内の流路の乱れに よ って加 熱された被測定流体が籙状感温素子の位置に いて 流管 1 1 の管韜に直角方向にずれを生 じて も、 検岀 惑度が低下する こ と く 高感.度の検出が可能 と るる。 こ の例に いては、 加熱 及び籙状惑温素子をそれ ぞれニ本づつ、 互に平行 張設 したが、 ^熱籙及び 線状惑葸素子の少 く と も 一方について ¾教設けれ ぱ ょ く 、 えば加熱 が一本で、 ¾ ^惑 ^素子が三 c:.:?i ^設け られた搆成と して も よ Is the flow of ιτπ: normal and the flow is turbulent ¾? Since the portions 111a and 111b occupy the positions of the tiles 19a and 19b respectively, the flow portion 111a is the linear thermosensitive element 19a, Further, the flow portions 111b are detected by the iron-shaped temperature sensing elements 19b, respectively. Fluid turbulence caused by external factors, such as external vibration applied to the flow tube 11, or turbulent flow caused by temperature changes in the fluid itself. The flow path in the flow tube 11 of 11a may be disturbed as indicated by the dotted arrow Φ in FIG. Due to this turbulence in the flow path, the heated flow passage portion 111a did not reach the position of the linear heating element 19a correctly, and was stuck in the pipe axis of the flow tube 11. It is assumed that it is shifted in the right angle direction and cannot be detected by the raven-shaped temperature sensing element 19a or that the detection output is extremely small. Even in such a case, in the examples of FIGS. 7 and 8, the heated fluid portion 111a is detected by the linear thermosensitive element 19b as shown in FIG. It depends on what is being done. Therefore, even if the fluid to be measured, which is heated by the turbulence of the flow path in the flow tube 11, is positioned at the position of the tiger-shaped temperature sensing element and is displaced in the direction perpendicular to the flow tube 11, High-sensitivity detection is possible without reducing detection sensitivity. In this example, two heating elements and two worm-like heating elements were stretched in parallel with each other. A battery, for example, a single heater and three heating elements. ^ Even as a set rule
免に述べた よ う に こ の発明の流量計に よれば、 ¾ の熟パ ル ス方式の も の と比敦 して大!雷る流量変化 に対 して も 測定で さ る。 し;^し更に測定範圏を広げ るには低遝流量续と i i s:续と に分割 して ^定す れば' よ ^。 その伊 を第 9 図に不 " 5 O 9 12^に いて 第 1 図 と対応する部分には同一符号を付けてある ^ 発熱体 1 3 の下流側に低速度用検出侔 1 9 丄 ex け られ、 その検出体 1 9 - 1 の更に下流倒に高速度 用検出侔 1 ·9 - 2 が設け られ 。 低; & 検出侓 1 9. - 1 は検出体 1 9 - 1 1 , 1 9 一 2 1 よ 、 これ らは第 1 図中の検出体 1 9 一 9 - 2 と対 応 し、 検出体 1 9 - 1 に感温回路 2 0 - 1 が接続さ- れ、 更に フ ィ ル タ 9 - 1 、 増幅器 2 1 - 1 ヽ シ ユ ミ ッ ト 回路 7 - 1 が設け られる。 同様に高速度用揆出 侔 1 9 - 2 に惑温回路 2 0 - 2 、 フ ィ ル タ 9 - 2 、 増幅器 2 1 - 1 、 シ ュ ミ ツ ト 回路 7 - 2 が設けられ Ο As mentioned above, according to the flow meter of the present invention, it is possible to measure a large change in flow rate in comparison with the medium pulse type flow meter. However, in order to further widen the measurement range, it is necessary to divide it into low-voltage flow rate and i i s: . The parts corresponding to those in FIG. 1 are denoted by the same reference numerals in FIG. A high-speed detector 19-2 is provided further downstream of the detector 19-1. 21, these correspond to the detection bodies 19-9-2 in FIG. 9-1, an amplifier 21-1 and a shumit circuit 7-1 are provided, and a high-speed output 19-2 is provided with a temperature control circuit 20-2 and a filter 9-1. 2, an amplifier 21-1 and a Schmitt circuit 7-2 are provided.
, 低速度用惑温回路部 1 5 - 1 、 シュ ミ ッ ト 回铬 7 一 1、 高速度用感温回路部 1- 5 - 2 の シユ ミ ッ ト 回 路 7 一 2 の各出力はス ィ ツ チ回路 3 0 に入力されて い-る。 Each output of the Schmitt circuits 7-2 of the low-speed temperature sensing circuit section 15-1, the Schmitt circuit section 7-1, and the high-speed temperature sensing circuit section 1-5-2 is connected to the switch. input to switch circuit 30.
ス ィ ツ チ回路 3 0 は靜 j篛回铬 3 の出力に よ 切 眷ぇ創 ¾される。 こ の 街回 ¾ 3 O—つの入力 5¾ 子には一致回路 2 6 の駆動タ イ ミ. ン グ信号 S τ が与 え られ、 他の入力端子には基準信号癸生 ϋ 3 2 の 出 力が与え られている。 制御回路 3 1 においては ¾勣 タ イ ミ ン グ信号 S τ の周期が、 基準信号発生器 3 2 で予め設定された切換周期 T m と 比敦される。 切摸 局期 T m は流管 1 1 内の流量に対応 して侄速度周検 出体 ·1 9 - 1 及び高速度用検出体 1 9 一 2 を切換え て使用する場合の基準 と される。 一 :回路 2 6 か ら 発せ られる缀勳タ イ ミ ン グ信号 S τ の周期が切換局 期 T m よ ]? 大 き い間は低速度 ^検出体 1 9 - 1 で検 出 される信号を取出すべ く シュ ミ ッ ト 回路 7 - 1 の 出力作動信号 S D Iがス ィ ツ チ回路 3 0 か ら取 ]5 出さ れて羅勣タ イ ミ ン グ信号発生回路 1 6 へ供給される。 The switch circuit 30 is created by the output of the static circuit 3. This town times ¾ 3 O—one input 5¾ A drive timing signal S τ of a matching circuit 26 is applied to the terminal, and the output of a reference signal ϋ 32 is applied to the other input terminals. In the control circuit 3 1 , the period of the timing signal S τ is compared with the switching period T m preset by the reference signal generator 3 2 . The cut-off period Tm is used as a reference when switching between the high speed detector 19-1 and the high speed detector 19-2 according to the flow rate in the flow tube 11. . 1: Low speed while the period of the timing signal Sτ emitted from the circuit 26 is larger than the switching period Tm ^Signal detected by the detector 19-1 The output activation signal SDI of the Schmitt circuit 7-1 is taken out from the switch circuit 30 to be taken out and supplied to the Rao timing signal generator circuit 16.
流管 1 1 内の流体の流量が増大 し一致回路 2 6 か ら発せ られる ¾動タ イ ミ ン グ信号 S τ の局期が切換 周期 T m よ !)小さ く る と制御回路 3 1 に よ ]? ス ィ ツ チ回路 3 0 が切眷え られて、 ス ィ ッ チ回路 3 0 は 高速度用検出体 1 9 ― 2 で検出 される信号を取出す ベ く シユ ミ ッ ト 回路 7 - 2 の出力.作動信号 S D 2を^ 動 タ イ ミ ン グ信号発生回路 1 '6 へ供給する。 As the flow rate of the fluid in the flow tube 11 increases, the phase of the three-moving timing signal Sτ emitted from the coincidence circuit 26 changes to the switching period Tm! ), the switch circuit 30 is turned off by the control circuit 31, and the switch circuit 30 outputs the signal detected by the high-speed detector 19-2. The output of the Beschmitt circuit 7-2 , which is taken out, is supplied to the operation timing signal generating circuit 1'6.
¾ ぉ制 回路 3 1 と しては例えは'デ ジ タ ル の比較 器を屈い、 ア ッ プダ ウ ン カ ウ ン タ 2 4 がタ- ゥ ン カ ウ ン 卜 する直前の計數値を制 ¾回路 3 1 の入力 と して 与え、 基準信号発生器 3 2 か ら デ ジ タ ル值 と して与 えた切換周期 T m と比敦 し、 その結果に応 じてス ィ ツ チ回路 3 0 を切替え制街する よ う にすれば よい。 As the control circuit 31, for example, a digital comparator is bent, and the count value immediately before the up/down counter 24 turns is counted. is given as an input to the control circuit 31, and given as a digital signal from the reference signal generator 32. It should be compared with the switching period T m obtained, and the switch circuit 30 should be switched according to the result.
以上の よ う に低速度用感温回路部 1 5 - 1 と、 高 速度用感温回路部 1 5 - 2 と を設ける こ と に よ 第 1 図に示 した も の よ ]? も 測定範 gを広げる こ とがで き る こ と は容易に.理辫で き よ う。 ¾ 低逐度^検出 侔 1 9 - 1 及び高速度 ^検出侓 1 9 - 2 に ける各 検出感度をそろえるために、 1 0 図に示す よ う に 高速度用検出体 1 9 - 2 は発熟体 1 3 .と 平 行 に 設け、 低速度用検出体 1 9 - 1 は流管 1 1 の管軸と 直角 面内で僅か回動させて、 発熟体 1.3に対し僅か 平行'をずらすと よ 。 As described above, by providing the low-speed temperature sensing circuit section 15-1 and the high-speed temperature sensing circuit section 15-2, the measurement range can be increased to that shown in Fig. 1. It is easy to see that g can be expanded. In order to match the detection sensitivities of the low-sequence detection angle 19-1 and the high-speed detection angle 19-2, the high-speed detection object 19-2 is designed as shown in Fig. 10. Provided in parallel with the ripening body 13 , the low-speed detecting body 19 - 1 is slightly rotated in a plane perpendicular to the tube axis of the flow tube 11 to slightly shift parallel to the ripening body 13 . and

Claims

請求の範囲 The scope of the claims
1. 被測定流体が流される流管 と、 その流管内に設 け られ、 被測定流体を加熟する癸熱^ と、 その発熱 体をパ ル ス的に発熱させる加熱回路と 、 上記流管内 にお て上記発熱体 よ も 上記被劉定流钵の流れ ο 下流に設け られ、 温度変化に応答する検出体 と 、 そ の検出体を上記被測定流体の加熱された部分が通過 するのを検出する感温回路 と、 その感蒽回络の検出 出力に よ 上記加熱回路に対する恵動タ イ ミ ン グ信 号を発生する駆動タ イ ミ ン グ信号発生回路 と、 上記 発熱体に対する発熱周期を測定 して上記被測定流体 の流量又は流速を得る測定回路と を具備する熱パ ル ス式流直 IT 0 1. A flow tube through which the fluid to be measured flows, a heating element provided in the flow tube for heating the fluid to be measured, a heating circuit for pulsatingly heating the heating element, and the inside of the flow tube. A detection body provided downstream of the heating element in the flow of the constant flow iron to respond to temperature changes, and detecting passage of the heated portion of the fluid to be measured through the detection body A temperature sensing circuit, a driving timing signal generating circuit that generates a timing signal for the heating circuit by the detection output of the sensing circuit, and a heating period for the heating element is measured. and a measuring circuit for obtaining the flow rate or flow velocity of the fluid to be measured by
2. 上記羅勣タ イ ミ ン グ信号発生回路は カ ウ ン タ を 僱ぇ、 上記発熱体に対する加熟 よ ]? 基準信号を計 ¾ し、 上記感温回路よ ]3 検出 出力が得 られる時点ま での計 数値 と 同一値だけ更に計数 した時点に上記累勣タ ィ ミ ン グ信号を発生する 回路そあ る特許請求の範固第 1 項記載の熱パ ル ス式流量計。 2. The above-mentioned Luo-sheng timing signal generation circuit has a counter, which heats up the above-mentioned heating element, measures a reference signal, and obtains a detection output from the above-mentioned temperature-sensing circuit. The thermal pulse flowmeter according to claim 1, further comprising a circuit for generating the cumulative timing signal at the time when the same value as the count value up to the time is further counted.
o 3. 上言己 カ ウ ン タ は一つ の ァ .ッ ブタ - ゥ ン カ ウ ン タ で あって、 上記加熱に よ ] ア ッ プカ ウ ン ト を開始 し、 上記惑温回路の検出に よ その カ ウ ン タ を ダ ウ ン 力 ゥ ン ト 状態 と し、 前の ダ ウ ン カ ウ ン ト に おい て カ ウ 4 ン タ の計数 ίίがゼ ロ に った ^点を 出 して上記 Ι o 3. The upper counter is an up-counter, which starts up-counting due to the above heating and detects the above temperature circuit. Then put the other counter into the down count state, and indicate the point where the count ίί of the counter reached zero in the previous down count. Ι above
C ?I 動タ イ ミ ン グ信号を発生する特 rr の Ξ第 2 項 記载の熟ハ' ル ス式 C?I The mature Hals formula in the second term of the special rr that generates the dynamic timing signal
4. 測定最返流量と ^!応する 記駆 ft タ ィ ミ ング信 号の局期 よ も長い周期のパルスを発生するパ ノレ ス 発生器と、 上記葸動タ イ ミ ン グ信号が所定期間得 ら れ ¾ こ と を検岀する手段と、 その所定期間得 られ い こ と の検出出力に よ ]? 制御されて上言己 ' ノレ ス 発 生器のパ ル スを上記加熟回路へ 勣タ イ ミ ン グ信号 と して俟給する ス ィ ツ チ回路と を具備する 許 Iff の範囲第 1 項記載の熱パノレ ス式流宣計。 4. Measure return flow rate and ^! A panoreth generator that generates a pulse with a period longer than the local period of the corresponding driving timing signal and a detection that the above-mentioned percussive timing signal is obtained for a predetermined period. The pulse of the self-less generator is controlled by the means for slowing down and the detection output of the failure to be obtained for a predetermined period of time, and the pulse of the self-less generator is sent to the above-mentioned aging circuit as a timing signal. 2. The thermal panorless flow meter of claim 1, wherein the range of allowable Iff comprises a switch circuit supplied as a
5. 上記所 期間、 羅動タ イ ミ ン グ信号が得 られる こ と を挨出する手段は上記駆勣タ イ ミ ン グ信号に よ 羅勣さ-れる タ イ マーであ る特許請求の範囲第 4 項 §匚 ¾¾の熱パノレ ス 式 ΪΤΕ篁 5†。 5. According to the claim, the means for indicating that the driving timing signal is obtained for the predetermined period is a timer controlled by the driving timing signal. Thermal panoreth formula ΪΤΕ篁5† in the fourth term of the range §匚 ¾¾.
6. 上記カロ熟回路には上記被測定流侔の条伴に拘 ら ずほ ゝ'一定の強さで被測定流体を加熱する定加熱手 段が設け られて る特許請求の範园第 1 項記載の熟 ル ス 式流量 σ i o 6. The heating circuit is provided with constant heating means for heating the fluid to be measured at a constant strength regardless of the conditions of the fluid to be measured. σ i o
7. 上 =3 体は温度に よ 抵抗-値が高 ぐ ¾ ^ f ¾ ο 籙ょ ¾ ) 上記定加熱手段は上記発熱 に ける 電圧降下 と基準電圧と を比較 して両者が一 する よ う に上記癸熱侓を流れる電流を制街する手 7. Above = 3 The resistance value of the body increases depending on the temperature. to control the current flowing through the above heat wave
T ST Wm求の範园第 6 項記載の熟パ ル ス式 ^ :! o T ST Wm equation of the 6th term of the formula ^ : ! o
8. 上 定加熱手段は上記癸熟侓を含む^抗 ブ リ ッ ?、 A ジ回路と、 その廷抗 ブ リ ッ ジ回路の出 力を増幅する 差動増幅回路と、 その差動増禱回路の出 力に よ 創 御され、 上記抵抗 ブ リ ッ ジ回路に対する電流铬に直 列に揷入された可変ィ ン ピ 一 ダ ン ス素子と よ る8. The above constant heating means includes the above-mentioned anti-bridging? , A. A bridge circuit, a differential amplifier circuit that amplifies the output of the resistance bridge circuit, and the output of the differential amplifier circuit creates a current to the resistor bridge circuit. by a variable impedance element inserted in series
5 特許請求の範囲第 7 項記載の熱パ ル ス式流 p I o 5 Thermal pulse type flow pIo described in claim 7
9. 上記流管内に上記被測定流侔の加熟さ れた部分 と接触 し い よ う に設け られ、 温度変化に応答 し、 上記検出侔と 同様の変化特性を も つ補償用検出体 と、 その補償用検出体に よ J?上記検出钵の温度変動を楠 慣する補償手段と を傭えた特許請求の範苣第 1 項記 載の熱パ ル ス式流量計。 · 9. a compensating detector mounted in said flow tube in contact with said heated portion of said flow to be measured, responsive to temperature changes, and having a change characteristic similar to said detector; , and a compensating means for adjusting the temperature fluctuation of the detected iron by means of the compensating detection body. ·
10. 上記検出体及び上記補償用検 έίί侓は共に感温廷 抗体であ ]?、 上記補償手段は これ ら検出体及び補償 用検出体を対向ア ー ム に も つ抵抗ブ リ ッ ジ回路であ る特許請求の範囲第 9 項記載の熱パ ル ス式流量計。 10. Both the detection body and the compensating detection body are temperature sensitive antibodies, and the compensation means is a resistance bridge circuit having the detection body and the compensation detection body on opposite arms. The thermal pulse flowmeter according to claim 9, which is
1 1. 上記感温回路は上記検出体 よ ]) 得 られ る電気信 号の最低レ ベ ルを検出する手段と、 その検出 した最 低レベ ルに一定 レ ベ ルを加えて基準 レベ ル と する手 段 と、 その基準 レ ベ ル と上記検出'侔 よ ]) の電気信号 o と を比黎 して後者が大に つ'た こ と に よ 上記 ¾潮 定流体の加熱された部分が檢出侔を通過 した と 検 S する比敦器と を具 '慮する特許請 の範囲箅 1 項記 ¾ め熟パ ル ス式流量計。 1 1. The temperature sensing circuit is the detection body]) means for detecting the lowest level of the obtained electrical signal, and adding a constant level to the detected lowest level to obtain the reference level. By means of the means for controlling and the increase of the latter in comparison with the electrical signal o of the reference level and the above detection, the heated portion of the above-mentioned tidal constant fluid becomes A pulse-type flowmeter as recited in claim 1, comprising a rhinostat that is verified to have passed inspection.
4 12. 上記流管内に い て上記検 ¾体 よ も 更に下 側に設け られ、 瘟度変化に応答する第 2 の 、岀侔と、 その第 2 の検出体を上記 ¾測定流侓の加熱された 分が逼逼するのを検出する第 2 の惑温回路と、 こ の 第 2 の感温回.路又は上記惑温回路の何れかの検出岀 力を上記.駆 »タ イ ミ ン グ信号発生回路へ供袷する切 眷回路と を具備する特許請求の範固第 1 項記載の熱 パ ル ス式流量計。 4 12. Further below the test object in the flow tube A second temperature sensing circuit is provided on the side and detects a reduction in the heated portion of the measured flow, the second sensing element of which is responsive to changes in temperature. and a switching circuit for supplying the detection force of either the second temperature sensing circuit or the temperature sensing circuit to the driving timing signal generating circuit. The thermal pulse flowmeter according to paragraph 1 of paragraph 1.
13. 上記駆動タ イ ミ ン グ信号の局期と設定 した周期 と を比較して前者が後者よ D も 短か く る る c _t nCt 13. Comparing the period of the drive timing signal and the set period, the former is shorter than the latter by D. c_t nCt
2 の惑温回路の検出出力を上記駆勣タ イ ミ ング信号 発生回路へ供給する よ う に上記切眷回路を制 する 制御回路を備えた卷許請求の範园第 1 2 項記載の熟 パ ル ス式流量計。 2. The device according to claim 12, further comprising a control circuit for controlling the cut-off circuit so as to supply the detection output of the temperature control circuit (2) to the drive timing signal generation circuit. Pulse flow meter.
14. 検出侔は第 2 の検出侓 よ ) も検出感度が下げ ら れている特許請求の範园苐 i 2 項又は第 1 3 項記载 の熱パ ル ス式流量計。 14. The thermal pulse flowmeter of claim i2 or claim 13, wherein the detector has a reduced detection sensitivity (than the second detector).
15. 上記癸熱体及び上記検出体はそれそ'れ 拔体を して ]) .、 これ ら籙状体はほ 平行に配さ れ、 かつ 上記癸熱体は複数のほ 平行る線.状俘が被測定流体 の Iれ方向 と ほ ^直角方向に配列されてい る特許請 求の範园第 1 項乃至第 1 1 項の何れかに記載 した熱 パ ル ス式 ft 。 15. The heating element and the detecting element are parallel bodies, respectively, and the heating elements are arranged substantially parallel, and the heating element is a plurality of substantially parallel lines. The heat pulse type ft according to any one of Claims 1 to 11, wherein the states are arranged in a direction substantially perpendicular to the direction of the fluid to be measured.
1 6. 上記癸熱体及び上記検出侓はそれぞれ互にほ 平行 した議拔侔を して ]; 、 こ の^ 侔 ;-÷· '- v、 S. ί= 1 6. The heating element and the detection angle are arranged in parallel with each other.
C:.:FI した複数の篛^侔が ¾測定流侔の流れ方向にほ '直 角に配列されている特許請求の範 ^第 1 項乃至第 11 項の何れかに記載 した熟パ ル ス : ^ ^直 δ丁 。 C:.:FI The pulse according to any one of Claims 1 to 11 , in which a plurality of troughs are arranged substantially perpendicular to the flow direction of the measured flow: δ.
17. 上記流管内にお い て上記発熟侓に対 し上記検出 体 と反対側に設け られ、 温度変化に応答する第 2 の 検出侔を含む特許請求の範园第 1 項乃至第 1 1 項の 何れかに記載 した熱パ ル ス式流直計。 17. Claims 1 to 11 including a second sensing element provided in the flow tube on the side opposite to the sensing element with respect to the developing angle and responsive to temperature changes. A thermal pulse dc meter according to any one of the preceding paragraphs.
c?-:n c?-:n
PCT/JP1982/000017 1981-01-19 1982-01-18 Heat-pulse type flow meter WO1982002591A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19823231663 DE3231663C2 (en) 1981-01-19 1982-01-18 Heat pulse type flowmeter - has detector output to vary heating and detection cycle in accordance with flow rate

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP56006836A JPS57120816A (en) 1981-01-19 1981-01-19 Heat ray pulse flowmeter
JP81/6836 1981-01-19
JP8614481U JPS57198014U (en) 1981-06-10 1981-06-10
JP81/86144 1981-06-10
JP81/91259 1981-06-12
JP56091259A JPS57206830A (en) 1981-06-12 1981-06-12 Heat pulse system flow meter
JP81/96218810622 1981-06-22
JP56096218A JPS57211015A (en) 1981-06-22 1981-06-22 Heat pulse type thermometer

Publications (1)

Publication Number Publication Date
WO1982002591A1 true WO1982002591A1 (en) 1982-08-05

Family

ID=27454582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1982/000017 WO1982002591A1 (en) 1981-01-19 1982-01-18 Heat-pulse type flow meter

Country Status (2)

Country Link
DE (1) DE3231663C2 (en)
WO (1) WO1982002591A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173461A1 (en) * 1984-08-29 1986-03-05 General Motors Corporation Thermal diffusion fluid flow sensor
US5026171A (en) * 1989-06-07 1991-06-25 Feller Murray F Apparatus for flow rate and energy transfer measurements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007057027B4 (en) * 2007-11-27 2017-12-21 Drägerwerk AG & Co. KGaA Apparatus and method for measuring the flow rate of a fluid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160069A (en) * 1974-06-17 1975-12-25
JPS522761A (en) * 1975-06-19 1977-01-10 Stockhausen Josef Method of measuring multiicomponent liquid system and apparatus thereof
JPS5259318A (en) * 1975-11-11 1977-05-16 Shinkokusai Dengiyou Kk Means for monitoing gas lines

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1913544A1 (en) * 1969-03-18 1970-10-01 Appbau Gauting Gmbh Measurement method and device for determining the flow speed and flow direction of a medium
DE1954835A1 (en) * 1969-10-31 1971-05-13 Rota App Und Maschb Dr Hennig Flow meter based on the pulse frequency method
DE2639729A1 (en) * 1976-09-03 1978-03-16 Erwin Dr Ing Scheucher Liquid flowmeter system with heating element - has thermal sensor to monitor arrival of heated slug of fluid downstream measuring station
US4237730A (en) * 1978-09-15 1980-12-09 Selas Corporation Of America Fluid velocity measurement system
DE2944979A1 (en) * 1979-11-07 1981-05-21 Wolfgang 7500 Karlsruhe Sorgatz Flow meter e.g. for engine fuel consumption rate indication - uses capacitors to periodically mark flow by polarisation or heating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160069A (en) * 1974-06-17 1975-12-25
JPS522761A (en) * 1975-06-19 1977-01-10 Stockhausen Josef Method of measuring multiicomponent liquid system and apparatus thereof
JPS5259318A (en) * 1975-11-11 1977-05-16 Shinkokusai Dengiyou Kk Means for monitoing gas lines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173461A1 (en) * 1984-08-29 1986-03-05 General Motors Corporation Thermal diffusion fluid flow sensor
US5026171A (en) * 1989-06-07 1991-06-25 Feller Murray F Apparatus for flow rate and energy transfer measurements

Also Published As

Publication number Publication date
DE3231663T1 (en) 1983-02-10
DE3231663C2 (en) 1987-09-17

Similar Documents

Publication Publication Date Title
JP2918062B2 (en) Current meter
JP2631481B2 (en) Mass flow meter and its measurement method
US4483200A (en) Thermal pulse flowmeter
JP3955747B2 (en) Flow measuring device
JPS6336443B2 (en)
JPS6135311A (en) Hot wire type flow velocity detecting device
JPS55112523A (en) Gas flow rate measuring unit
WO1982002591A1 (en) Heat-pulse type flow meter
Auerbach et al. Simulation of the thermal behaviour of thermal flow sensors by equivalent electrical circuits
JPS57163822A (en) Measuring device for air flow rate
JP4052378B2 (en) Thermal flow meter
JP3596596B2 (en) Flow measurement device
JPS6236523B2 (en)
JP3274564B2 (en) Gas flow meter
JP2582955B2 (en) Mass flow sensor
JPS58158518A (en) Device for measuring flow rate or flow speed
JPH01227016A (en) Mass flowmeter
JPH05332848A (en) Temperature measuring method
JPH0557624U (en) Flowmeter
JPS5965720A (en) Microflowmeter
JP3019009U (en) Mass flow meter
JP2831926B2 (en) Method and apparatus for measuring flow velocity
JPS59136619A (en) Vortex flowmeter
JPS5826346Y2 (en) Karman vortex flow meter or current meter
JPH07295653A (en) Mass flow controller

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): DE GB NL US

AL Designated countries for regional patents

Designated state(s): FR

RET De translation (de og part 6b)

Ref document number: 3231663

Country of ref document: DE

Date of ref document: 19830210

WWE Wipo information: entry into national phase

Ref document number: 3231663

Country of ref document: DE