WO1982000733A1 - Process for manufacturing chemical compound-type superconducting wires - Google Patents

Process for manufacturing chemical compound-type superconducting wires Download PDF

Info

Publication number
WO1982000733A1
WO1982000733A1 PCT/JP1981/000182 JP8100182W WO8200733A1 WO 1982000733 A1 WO1982000733 A1 WO 1982000733A1 JP 8100182 W JP8100182 W JP 8100182W WO 8200733 A1 WO8200733 A1 WO 8200733A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
metal
compound
superconducting
alloy
Prior art date
Application number
PCT/JP1981/000182
Other languages
French (fr)
Japanese (ja)
Inventor
Denki Kk Mitsubishi
Original Assignee
Imaizumi M
Yoshizaki K
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP55115712A external-priority patent/JPS5740816A/en
Priority claimed from JP56065760A external-priority patent/JPS57180805A/en
Application filed by Imaizumi M, Yoshizaki K filed Critical Imaizumi M
Publication of WO1982000733A1 publication Critical patent/WO1982000733A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn

Definitions

  • the present invention relates to a highly reliable and economical method of manufacturing a compound superconducting wire having excellent mechanical strength, and particularly to a method for applying the compound superconducting wire to a high magnetic field superconducting magnet. also Ru Nodea 0
  • the intermetallic compound superconducting wires such as 3Sn and V3Ga have a structure in which a large number of compound cores are embedded as continuous fibers in the matrix, but superconducting compounds are inherently superior.
  • the other hand you have the superconducting characteristics, essentially vulnerable], the elongation mechanical tensile force rather Nikki is N and the coercive and 0.1 ⁇ below, wire rod production for Ru fragility Jakudea in pairs to bending ⁇ ⁇
  • the winding efficiency of the coil was poor and the cooling efficiency of the liquid helium was low.
  • a large number of discontinuous superconducting compound fibers in close proximity are embedded in the matrix, and the superconducting fiber is used as the whole wire by utilizing the tunnel effect called the proximity effect or the filament effect.
  • a discontinuous fiber compound superconducting wire that is in a state is considered, but its superconducting properties Compared to the ultra-fine multi-core line of continuous fiber, very low even optimal Tsu to Nodea j commercialization Tei 3 ⁇ 4 I 0
  • OMPI For example, the following two manufacturing methods are typically considered:
  • the method of the first ⁇ dissolves and G U, N is create ⁇ with tissue scattered particulate your good beauty acicular C U parent phase, to which the wire was drawn, surface or found to diffuse s n at the final dimension, Ru method der to produce N3 ⁇ 4 3 Sn on the surface of the n 3 ⁇ 4 fibers stretched rather long o
  • the second method is to mix Konahitsuji of each single metal of N 3 ⁇ 4 and C u, after filling it into C U-based metal tube, the wire was drawn, or surface s n at the final dimensions O to form N3 ⁇ 43Sn on the surface of N fiber o
  • a large number of discontinuous compound superconductive fibers are buried in a metal wire, which has excellent mechanical ductility and good cooling efficiency.
  • the purpose is to provide a compound-based superconducting wire having excellent superconducting properties and to stably and easily manufacture it.
  • At least one of the Cu- & a alloys, Cu-alloys, Cu-alloys, and Cu-Si alloys has a parent phase of at least one kind of metal.
  • a composite multifilamentary wire having a configuration in which a large number of core wires made of any one of the metals of the Ni-based or V-series is buried is obtained. Then, after drawing the composite multifilamentary wire, the wire is cut to a length of about 1–20 pong.
  • Etc. 3 ⁇ 4 be molded by integrally with the E to make an aggregate 0
  • This assembly is formed and sintered at room temperature to about 150 ° C.
  • a wire rod containing a genus fiber structure in the matrix is obtained.
  • the above-mentioned wire is coated with these metal layers by any suitable method. O Next, the above-mentioned wire is heat-treated and the above-mentioned metal layer is diffused to obtain a superconducting material. .
  • the concentration of Sn is - 1 5 Oyo long beauty 5 0 wt or more favorable Tekidea, or C U - When using a Ga alloy. It is preferable that the concentration of, Al is 0.1-25 wt and 50 wt or more. In the case of using D and Cu alloys, the concentration of _Al is preferably 0.1-10 wt and more.
  • alloys, Cu-Sn alloys, -Ga alloys, and Gu-alloys are at least a few of the metal elements such as Pb, In, Ga, Mn, Mg, and Sn. May contain 0.1 to 50 wt. Of a kind of elemental element o
  • FIG. 1 is a cross-sectional view of a composite metal wire in an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a superconducting wire in an embodiment of the present invention before heat treatment for forming a superconducting compound
  • FIG. Fig. 4 shows the relationship between the critical current value and the strain at 4.2 K and 10 Tesla in the embodiment of Fig. 4.
  • Figs. 4 and 5 show the heat treatment for forming a superconducting compound of a superconducting wire in another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a composite metal wire according to another embodiment of the present invention.
  • the core wire (1) is N 3 ⁇ 4 der Ru equidistant ⁇ 9 Heart G U - N b double coupling a multi-core wire was drawn in diameter 0, 2 4 Komoma. At this time, the average diameter and spacing of the N 3 ⁇ 4 core wires were Q.03 and 0.015, respectively. This wire was cut to a length of about one thigh to form a short composite metal wire.
  • An aggregate of metal wires is formed and used as an extrusion bit, and the diameter of the extrusion is set to 16.0 and the extrusion temperature is set to 70 ° C by a hot extruder.
  • the critical current characteristics of the N3 ⁇ 43SII wire thus obtained were measured under various conditions in liquid helium. O The measurement was performed by applying a 10-tesla bias magnetic field to the wire. a given Geni Yo Ru strain ⁇ to S n wire but shows the RaKotsu o result in FIG. 3 curve (a). For comparison, the figure also shows the ultrafine multifilamentary fiber (curve B) measured under the same conditions and the characteristics of the discontinuous fiber wire prepared by the conventional method (curve C). According to the measurement results, the wire of the present invention showed a critical current value in strain zero that exceeded the value of the continuous fine-filament multifilamentary wire, and reduced the critical current value in strain zero. Contact was maintained at distorting the 2, Yakadea Ru c loose is reduced even when more distortion paired - way, the critical current ⁇ with FRP multifilamentary core wire strain 5% or more of a line B is suddenly
  • the critical current value of the wire of the present invention is low for all strains.
  • the wire of the present invention has a superconducting property.
  • Example 2 Was prepared in the same manner as in Example 1, about the length ⁇ - 1 0 »matrix in diameter 0.1 8 Face; ⁇ C u, 3 7 size and spacing of the mean heart N ID cord each ⁇ ⁇ door, 0.006 Micromax of short composite metal wire outer diameter 8 0 Ryu inner diameter 2 Q ⁇ , length 1 50 tO! 'of only densely packed that Ki out to C u steel container (filling of about 80% )
  • a hollow pipe with an outer diameter of 20 m and an inner diameter of 8 dragons at an extrusion ratio of 19 and an extrusion temperature of 7 (3 Q ° C) was produced by a hot pipe extruder. It was extruded into a looped.
  • a 19-core (Cu-Sn) -N3 ⁇ 4 compound multi-core fiber with N ⁇ core is O.24 TO The wire was drawn. The average diameter and spacing of the Nb cores at this time are respectively
  • This wire which was 0.03rai and 0.015 roi, was cut to a length of about 5-10m to obtain a short composite metal wire.
  • the Sn concentration of the parent phase Cu-Sn alloy in the composite metal wire was from 0.1 to 15 wt%, and from 50 to 100 wt%. It is possible to reduce the cross section later. J? Anything else could not be processed.
  • the metal core wire that Ru pressurized et al and 37 present embedded in the matrix C u or et ing Cu - N3 ⁇ 4 average of the composite multi-core wire was diameters 0.2 4 «or in drawing o this preparative-out of New 3 ⁇ 4 core The diameter and the distance between each other are 0.02 and 0.01 respectively.
  • This wire was cut to a length of 1 to 5 Mi, and the resulting -N3 ⁇ 4 short-length composite wire was cut over the entire surface including the cut portion. to I]?, about the thickness One by the can bar Le Le Electrical flashes that by the commercially available pin b-phosphate bath is found after the deposition of the C u to a thickness of about 0.
  • the wire has a structure in which N3 ⁇ 4 is stretched into a matrix mainly composed of Cu and is dispersed in a fibrous form.
  • the Cu-Nb before extrusion and the short composite wire are metallurgy.
  • a Sn rod with a diameter of I 8 mm is inserted into the hollow part of the pipe, and an outer diameter of 22 mm and an inner diameter of 21 mm are used as a diffusion barrier for Sn.
  • the outer diameter of the pipe is 33 for stability and the inner diameter is 2 3 after coating the Cu path i parts, wire which was obtained in the jar good o This was a flat rectangular wire of 0. 8 X 1.
  • 19 metal core wires (1) consisting of 19 cores are buried in a matrix consisting of Cu, and Sn is placed on this in an electric circuit.
  • the composite multifilamentary wire with a diameter of 0.28 was obtained.
  • the N 3 ⁇ 4 cores at this time (1) The average diameter and the mutual interval were 0.03 ⁇ and 0.015, respectively.
  • this core wire (1) is cut into a short composite metal wire with a length of about 13, and then the short composite metal wire is cut into an outer diameter of 20 mm.
  • the wire obtained in the above process was subjected to a heat treatment at 850 ° C for 10 minutes to form N3 ⁇ 43Sn on the surface of the N fiber.
  • the diameter and spacing of the ⁇ ⁇ -Hf alloy fibers are about 0.15 m, respectively.
  • each matrix causes the diameter and spacing of C u, 1 9 mind N 3 ⁇ 4 cords 0.0 3 beta in ⁇ , average particle size of 0.0 1 5 short composite metal wire «
  • the 4 0 im of Cu Konahitsuji by volume 7 After thorough mixing at a ratio of 1, the outer diameter 8 0 Eta, inner diameter 2 0 Eta, only tightly that Ki out to C u container made of length 1 5 0 beta filled to extrusion bi les Tsu preparative and extruded ratio Tsu by the hot pipes extruder ⁇ 9, the outer diameter 2 0 WM under the conditions of extrusion temperature 9 0 0 ° C, the hollow path Lee Bed shaped inner diameter 8 beta After extruding into a hollow part, the rod was inserted into the hollow part, and the N3 ⁇ 43A wire was formed by cold working and N3 ⁇ 45A generation heat treatment. Example also when molding without adding
  • V, wire diameter and spacing are 0.03 peng, 0.015 mm short composite metal wire, diameter 8 0 m, and extruded to a diameter of 2 5 thigh line under the condition of length 1 5 0 bar-shaped ⁇ Tsu by the hot extruder after blanking Les scan molding extrusion ratio 1 0.2 extrusion temperature 5 5 0 ° C .
  • the wire has a structure in which fibrous stretched Vs are scattered in a metallurgically integrated Cu- & a alloy matrix.
  • this wire was cold-worked and repeatedly subjected to 4 GQ ° (1 hour annealing treatment) to form a cage with a diameter of 0.3.
  • the diameter and spacing of the V fibers at this time were about 0.08 Am
  • the wire thus obtained was subjected to a heat treatment at 65 0 for 50 hours to produce V 3 G a on the surface of the V-fiber and V 3 G a
  • the critical current characteristics were measured under various conditions in liquid helium.
  • a 120-core C-N 3 ⁇ 4 multi-core wire with N cores was drawn to 0.5 OT! O
  • the average diameter of the N ⁇ core at this time was about 30 O
  • This wire was cut to a length of 10 mm or less to form a short composite wire.
  • a number of short composite wires were placed in a graphite crucible, and high-frequency in a vacuum. Dissolves, about
  • this ingot is drawn by cold working to a diameter of ⁇ 3 dragons, and a final 2 Om thick Sn is electrodeposited on the surface of the wire.
  • Heat treatment under various conditions of 0 ° C to 85 ° C and 1 to 200 hours produces N3 ⁇ 4 3 Sn on the surface of the embedded Nb core wire with an average diameter of about 0. to, 0 where N I SS n superconducting wire
  • V ' is a N 3 Sn superconducting wire and the 0 the other path Lee blanking process, but elaborate ⁇ directly Pas Lee flop shape Tsu good as etc. centrifugal mirror granulation method D, and mechanical drilling a ⁇ It can also be made into a pipe shape o
  • the matrix force was Cu-5wt% Ga, and the core force was V, and a 120-core Cu-Ga-V composite multifilamentary wire was drawn to a diameter of 0.5.
  • This wire was cut to a length of 1 O TOI or less to obtain a short composite wire.
  • a number of short composite wires were melted in a high-frequency furnace in a vacuum and mechanical vibrations were applied.
  • Example 1 2 In the Cu matrix shown in the cross section in FIG.
  • the Cu-N3 ⁇ 4 composite multi-core wire with the N3 ⁇ 4 core wire buried is made to have a diameter of 0.5 MI by wire drawing, and this wire is cut to a length of 1 O jm or less and cut short.
  • the composite wire one attracted short composite wire made by o this by the hydraulic blanking less]) was pressure at room temperature for 1 Bruno COT 2, 0 this preliminary that the molded bodies with a diameter of 9 0 m length 2 QQ Como
  • the compact was pressed in a vacuum at a melting point of the Cu matrix phase at a pressure of 0.2 ⁇ at a high temperature of 1110 ° C to produce a high-density compact. Microscopic observation revealed that the feature was dense and free of pores, and that the N N core was homogeneously dispersed in the Cu matrix phase.
  • a method in which the pre-sintered body subjected to the hydraulic pressure is heated to a temperature higher than the melting point of the parent phase to perform the melt sintering can produce the same effect as in the present embodiment.
  • N3 ⁇ 4 core of C U outside the matrix phase short composite wire embedded in at host Tsu preparative Bed Les scan size 9 Q m, to create a shaped body of an inside diameter 3 O OT, the hollow extruded City accordingly the Chi
  • a tube material with an outer diameter of 30 mm and an inner diameter of 10 TO was prepared, a Sn rod ( 3 ) was inserted in the center, and a diffusion barrier of a Ta tube (5) and a copper tube ( 2 ),
  • the cross-sectional structure is integrated with the wire, and the wire that has been reduced in cross-section to 0.5 mm in diameter is subjected to the same compound generation heat treatment as in the above example. In this case, the same current characteristics as in the above embodiment can be obtained.
  • the Cu-Ga-V composite multifilamentary wire in which 120 V cores are buried, is made 0.5 m in diameter by wire drawing.
  • a short composite wire with a length of 10 mm or less was produced by cutting this wire.
  • I a short composite wire this to the same manner as in Example 1 2 C u - 5 wt G a solidus temperature ⁇ of matrix 0 4 0.
  • the molded body 'Hiyakanmizo b Lumpur rolling and Shin The wire was drawn up to a diameter of 0.3, and & a was electrodeposited on the surface of this wire by a thickness of about 15 Am.
  • the method for producing a compound superconducting wire according to the present invention is based on N ⁇ 5A, Nb5Ga, and N3 ⁇ 45Ge, which are compound superconducting wires other than N3 ⁇ 43Sn and VSGa wires.
  • N ⁇ 5A, Nb5Ga, and N3 ⁇ 45Ge which are compound superconducting wires other than N3 ⁇ 43Sn and VSGa wires.

Abstract

A process for manufacturing chemical compound-type superconducting wires, having excellent superconducting properties and mechanical properties, which comprises forming a composite metal wire by coating a core (1) of either Nb or V metal with a matrix phase (2) composed of a comparatively easily deformable metal such as Cu, Sn, Ga, Cu-Sn alloy or Cu-Ga alloy, cutting this composite metal wire to prepare short-length composite wires, heating and stretching an assembly of the latter, and further heating them.

Description

明 細 書  Specification
発明の名称  Title of invention
化合物系超電導線材の製造方法  Method for producing compound-based superconducting wire
技術分野  Technical field
本発明は機械的強度に優れた化合物系超電導線材を , 信頼性が高 く , かつ経済的に製造する 方法に関 し , 特に 高磁場超電導 マ グネ ッ ト 用線材 と して適用 し よ う と する も のであ る 0 The present invention relates to a highly reliable and economical method of manufacturing a compound superconducting wire having excellent mechanical strength, and particularly to a method for applying the compound superconducting wire to a high magnetic field superconducting magnet. also Ru Nodea 0
背景技術 Background art
¾ 3 S n , V 3 G a 等の金属間化合物超電導線材は化合 物心線が母相中に連続繊維 と して多数埋設さ れてい る構 成 と る っ ているが , 本来超電導化合物は優れた超電導特 性を持っ ている反面 , 本質的に脆弱であ ] , その伸びは 0.1 ^ 以下 と ほ と ん どる く 機械的引張力 , 曲げに対 して脆 弱であ る為線材製造ゃ コ ィ ル巻回作業上の信頼性に乏 し く , 液体ヘ リ ゥ ム に よ る 冷却効率 も 低い も のであ っ た o そ こ で こ の よ う る欠点を解消する ために , 極細かつ極近 接 した非連続の超電導化合物繊維 を多数母相 中に埋め込 み , 近接効果ゃ フ ィ ラ メ ン ト 効果 ど と いわれる ト ンネ ル効果を利用 して , 線材全体 と して超電導状態を う る非 連続繊維化合物超電導線材が考え られてい る が , その超 電導特性は連続繊維の極細多心線に比べ , 非常 に低い も のであ j 実用化に至 っ てい ¾ ぃ 0 間 The intermetallic compound superconducting wires such as 3Sn and V3Ga have a structure in which a large number of compound cores are embedded as continuous fibers in the matrix, but superconducting compounds are inherently superior. the other hand you have the superconducting characteristics, essentially vulnerable], the elongation mechanical tensile force rather Nikki is N and the coercive and 0.1 ^ below, wire rod production for Ru fragility Jakudea in pairs to bending信 頼 The winding efficiency of the coil was poor and the cooling efficiency of the liquid helium was low. O To eliminate such disadvantages, A large number of discontinuous superconducting compound fibers in close proximity are embedded in the matrix, and the superconducting fiber is used as the whole wire by utilizing the tunnel effect called the proximity effect or the filament effect. A discontinuous fiber compound superconducting wire that is in a state is considered, but its superconducting properties Compared to the ultra-fine multi-core line of continuous fiber, very low even optimal Tsu to Nodea j commercialization Tei ¾ I 0
従来の非連続繊維化合物超電導線材は N ¾ 5 S n 化合物 Conventional discontinuous fiber compound superconducting wire is N ¾ 5 Sn compound
OMPI を例に とれば代表的には次の 2 つの製法が考え られてい o OMPI For example, the following two manufacturing methods are typically considered:
その第 〗 の方法は , G U と を溶解 し , C U 母相中 に N が粒状お よ び針状に点在する組織を持つ篛塊を作 成 し , これに伸線加工を行い , 最終寸法で s n を表面か ら拡散させ , 長 く 伸ばされた N ¾ 繊維の表面に N¾ 3 Sn を生成させる方法であ る o The method of the first〗 dissolves and G U, N is create篛塊with tissue scattered particulate your good beauty acicular C U parent phase, to which the wire was drawn, surface or found to diffuse s n at the final dimension, Ru method der to produce N¾ 3 Sn on the surface of the n ¾ fibers stretched rather long o
ま た , 第 2 の方法は , N ¾ と C u の各単体金属の粉未 を混合 し , これを C U 系金属管に充てん後 , 伸線加工を 行い , 最終寸法で s n を表面か ら拡散させ , N 纖維の 表面に N¾ 3 S n を生成させる方法であ る o Also, the second method is to mix Konahitsuji of each single metal of N ¾ and C u, after filling it into C U-based metal tube, the wire was drawn, or surface s n at the final dimensions O to form N¾3Sn on the surface of N fiber o
しか し前者の方法では N ¾ の C u に対する割合を 2 5 v o 以上にする と溶解及び鏡込が難 し く 良好な超電導 特性に必要 高比率の N ¾ を含む篛塊が得 られず , 篛造 後の伸線加工 も 非常に困難であ ]9 , 超電導特性及び製造 信賴性に劣る も のであ っ た o 一方後者の方法では市販の N b 粉未では伸線加工に よ つ て繊維状と に く いために , N b およ び C u 粉未に 対 し予め表面処理を必要 とするが この表面処理は繁雑か つ困難であ , 伸線中の断線事故が多い o そのため超電 導特性及び製造信頼性に劣 も の し力 で き 力 ^ つ た o  However, in the former method, if the ratio of N¾ to Cu is 25 vo or more, it is difficult to dissolve and mirror, and a superconducting mass containing a high ratio of N¾ cannot be obtained. It is also very difficult to wire-draw after fabrication.] 9 However, the superconductivity and manufacturing reliability were inferior. O On the other hand, in the latter method, the commercially available Nb powder did not have a fibrous form due to wire-drawing. Because it is difficult to perform, surface treatment is required beforehand for Nb and Cu powder, but this surface treatment is complicated and difficult, and there are many breakage accidents during wire drawing. Deterioration in properties and manufacturing reliability
発明の開示 Disclosure of the invention
本発明は金属線中に不連続 化合物超'電導纖維が多数 埋設され , 機械的延性にす ぐれ , 冷却効率が良好でる お  According to the present invention, a large number of discontinuous compound superconductive fibers are buried in a metal wire, which has excellent mechanical ductility and good cooling efficiency.
O PI WIPO ' 、 かつ超電導特性に優れた化合物系超電導線材を提供 しそ の製造を安定にかつ容易に行 う こ と を 目 的 と す る も ので あ る 0 O PI WIPO ', The purpose is to provide a compound-based superconducting wire having excellent superconducting properties and to stably and easily manufacture it.
次に , 本発明 を説明する と , ま ず , Cu 系 , Sn 系 ,  Next, the present invention will be described. First, Cu-based, Sn-based,
Ga 系 , & e 系 , 系 , S i 系 , C u - S n 合金系 ,  Ga system, & e system, system, Si system, Cu-Sn alloy system,
C u - &a 合金系 , C u - 合金系 , C u - 合金 系 , C u - S i 合金系の う ち少 く と も いずれか一種の金 属を母相 と し , こ の母相内に 系ま たは V 系のいずれ か一種の金属 よ Ϊ) る心線を多数本埋設 した構成を有す る複合多心線を得る 。 そ して , こ の複合多心線を伸線 し た後 , こ の線 を長さ約 1 —2 0鵬程度に な る よ う 切断加工  At least one of the Cu- & a alloys, Cu-alloys, Cu-alloys, and Cu-Si alloys has a parent phase of at least one kind of metal. A composite multifilamentary wire having a configuration in which a large number of core wires made of any one of the metals of the Ni-based or V-series is buried is obtained. Then, after drawing the composite multifilamentary wire, the wire is cut to a length of about 1–20 pong.
を行っ て , 短尺複合金属線を作る ο 次に , 多数の短尺複  Ο to make a short composite metal wire ο
合線を , 金属製容器に充てんするか , あ る いは ブ レ ス加 Fill the wire into a metal container, or
ェに よ 一体的に成形加工する ¾ ど して集合体を作る 0 Etc. ¾ be molded by integrally with the E to make an aggregate 0
この集合体を , 常温か ら 1 0 5 0 °C程度の温度で成形 , 焼結  This assembly is formed and sintered at room temperature to about 150 ° C.
する力 Α , あ る は常温か ら 1 0 5 0°C程度の温度で , かつ押 Power Alpha, the Ru Oh at room temperature or al 1 0 5 0 ° C a temperature of approximately that, and press
出比 2.0 以上で押出 し加工する こ と に よ っ て複合成形体 Extruded with an output ratio of 2.0 or more to produce composite molded articles
を作 , 母相を形成する金属の一部あ る いは全部を接合 And join some or all of the metal forming the parent phase
一体化させ , その後冷間加工にて伸線加工を施 して線材 And then wire-drawing by cold working
を得る ο こ の よ う ¾加工に よ っ て , 系ま たは V 系金 Ο Depending on the processing, the series or V series
属の繊維組織が母相内 に含有さ れる線材を得る。 お , A wire rod containing a genus fiber structure in the matrix is obtained. Oh
短尺複合金属線か ら最終製品の線材を得 る手段 と しては As a means to obtain the final product wire from short composite metal wire
上記の他に 2 種類考え られる 0 ま ず 〗 つは短尺複合線を In addition to the above, there are two possible types.
溶解るつぼに入れ , 母相の金属の溶融温度 よ ] 高 く , Put in a melting crucible, and melt the metal of the parent phase.
OMPI OMPI
、 N¾ 系 ある いは V 系金属の溶融温度以下の温度に加熱 し た後 , これを铸型に鏡込んで鏡塊 とする o これを熱間 あ るいは冷間加工にて伸線加工を施 し , 線材を得る o 残 ]? の 1 つは短尺複合線を多数集めて加圧成形 し , さ らに こ の成形体を ホ ッ ト ブ レ ス等の手段に よ 母相の溶融点近 傍ま で加熱 , 加圧 して母相金属中に多数の N¾ 系 も し く は V 系心線が埋設された成形体を得る。 この成形体を熱 間 あ るいは冷間加工にて伸線加工を施 し , 線材を得る o お, 上記複合金属線や鏡塊や成形体に対 して , , After heating to a temperature below the melting temperature of the N¾ or V-based metal, it is mirrored into a mold to form a mirror block.o This is subjected to wire drawing by hot or cold working. One of the remaining methods is to collect a large number of short composite wires and press-mold them. Then, this compact is hot-pressed to a point near the melting point of the parent phase. Heating and pressurizing aside, a compact is obtained in which a large number of N¾- or V-based core wires are embedded in the matrix metal. This molded body is subjected to wire drawing by hot or cold working to obtain a wire rod.
系 , 0"a 系 , G~e 系 , Si 系 , S n 系 , - Cu系 , Ga - Cu 系 , - CU 系 , Si - CU 系 , Sn - Cu 系の金属 層 を並設 してお く か , 上記線材に これ らの金属層 を メ ッ キ どの方法にて被覆する o 次に , 上記線材を熱処理 し , 上述の金属層 を拡散させる こ と に よ 超電導鎳材を得る 。 System, 0 "a system, G ~ e system, Si system, S n type, - C u systems, Ga - Cu system, - C U-based, Si - C U-based, Sn - juxtaposed Cu-based metal layer Preliminarily, the above-mentioned wire is coated with these metal layers by any suitable method. O Next, the above-mentioned wire is heat-treated and the above-mentioned metal layer is diffused to obtain a superconducting material. .
母相の金属 と して , Cu - Sn 合金を用いる場合 , Sn の濃度は , — 1 5 およ び 5 0 wt 以上であれば好 適であ , ま た CU - Ga 合金を用いる場合. , の濃度 は , 0.1 — 2 5 wt お よ び 5 0 wt 以上であれば好適であ D , Cu 一 合金を用いる場合 , _ Al の濃度は 0.1 — 10 wt およ び 以上であれば好適であ る o さ らに , 系 , Cu - Sn 合金系 , - Ga 合金系 , Gu - 合金 系金属は , Pb , In , Ga , Mn , Mg , Sn ¾ どの金 属元素の う ち少 く と も 一種の元'素を 0.1 — 5 0 wt; 含有 し ていて も 良い o As the metal matrix, Cu - when using a Sn alloy, the concentration of Sn is - 1 5 Oyo long beauty 5 0 wt or more favorable Tekidea, or C U - When using a Ga alloy. It is preferable that the concentration of, Al is 0.1-25 wt and 50 wt or more. In the case of using D and Cu alloys, the concentration of _Al is preferably 0.1-10 wt and more. In addition, alloys, Cu-Sn alloys, -Ga alloys, and Gu-alloys are at least a few of the metal elements such as Pb, In, Ga, Mn, Mg, and Sn. May contain 0.1 to 50 wt. Of a kind of elemental element o
OMPI お, 上述の説明において , 多数の短尺複合線にて集 合体を作る 際 , CU 系 , Cu - Sn 合金系 , Cu - Ga 合金 系 , Cu - 合金系の金属.を粉未ま たは繊維形状で添加 して も よ い o OMPI Contact, in the above description, making the current combined in a number of short composite wire, C U based, Cu - Sn alloy system, Cu - Ga alloy system, Cu -. Alloys based metal Konahitsuji or fibers O Can be added in shape o
図面の簡単る説明  BRIEF DESCRIPTION OF THE DRAWINGS
第 〗 図は本発明 の実施例に おける複合金属線の横断面 図 , 第 2 図は本発明の実施例における超電導線材の超電 導化合物生成熱処理前の横断面図 , 第 3 図は本発明の実 施例における 4.2 K , 1 0 テス ラ での歪 と 臨界電流値 と の 関係を示す図 , 第 4 図 , 第 5 図は本発明の他の実施例に おける超電導線材の超電導化合物生成熱処理前の横断面 図 , 第 6 図は本発明の他の実施例における複合金属線の 横断面図であ る ο  FIG. 1 is a cross-sectional view of a composite metal wire in an embodiment of the present invention, FIG. 2 is a cross-sectional view of a superconducting wire in an embodiment of the present invention before heat treatment for forming a superconducting compound, and FIG. Fig. 4 shows the relationship between the critical current value and the strain at 4.2 K and 10 Tesla in the embodiment of Fig. 4. Figs. 4 and 5 show the heat treatment for forming a superconducting compound of a superconducting wire in another embodiment of the present invention. FIG. 6 is a cross-sectional view of a composite metal wire according to another embodiment of the present invention.
発明 を実施する ための最良の実施例 BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1. Example 1.
第 1 図に示される よ う ¾横新面を持ち ,、母相は)力 Cu で あ i9 , 心線(1)が N ¾ であ る等間隔 〗 9 心の GU - N b 複 合多心線を直径 0, 2 4 薦ま で伸線 した。 こ の時の N ¾ 心線 の平均の径及び間隔はそれぞれ Q. 0 3 及び 0. 0 1 5 而であ つ た。 こ の線を長さ 約 1 腿に な る よ う に切断加工を行い 短尺複合金属線 と した ο 次に外径 8 0 雌 , 内径 7 2 皿 , 長 さ 〗 0 0 βの C u 製容器にその短、尺複合金属線を で き る だ け密に (充てん率約 7 Q )充てん し , さ ら に端部を真空 中で電子 ビー ム溶接 して密封する こ と に よ 短尺複合金 ,, parent phase) Oh in force Cu i9 has by cormorants ¾ horizontal new plane shown in FIG. 1, the core wire (1) is N ¾ der Ru equidistant〗 9 Heart G U - N b double coupling a multi-core wire was drawn in diameter 0, 2 4 Komoma. At this time, the average diameter and spacing of the N ¾ core wires were Q.03 and 0.015, respectively. This wire was cut to a length of about one thigh to form a short composite metal wire. Ο Next, a Cu container with an outer diameter of 80 females, an inner diameter of 72 dishes, and a length of about 0 β The short and long composite metal wires are filled as tightly as possible (filling rate of about 7 Q), and the ends are sealed by electron beam welding in a vacuum.
ΟΜΡΙ 属線の集合体を作っ て押出用 ビ レ ツ ト と し熱間押出機に よ っ て押出比 1 6.0 , 押出温度 7 0 0 °Cの条件で直径 2 0 ΟΜΡΙ An aggregate of metal wires is formed and used as an extrusion bit, and the diameter of the extrusion is set to 16.0 and the extrusion temperature is set to 70 ° C by a hot extruder.
に押出 した後 , 冷間で直径. 0.3 OT ま で伸線 した o ま た交 流 ロ スを低滅するための ッ イ ス ト 加工 も容易に行 う こ と ができ た o線 (4)の断面を顕微鏡で観察する と 金属学的に一 体化 した Cu 母相中に線長手方向に引伸ばされた N¾ 繊 維が存在する組織を持ち Ν¾ 繊維の径 と 間隔は ずれも After extrusion, cold in diameter. 0.3 OT or in drawing the o or exchanges Russia scan Tsu Lee to Teimetsu the scan door processing also easily line cormorants this and can be the o-ray (4) When the cross section is observed with a microscope, it has a structure in which N¾ fibers stretched in the longitudinal direction of the line exist in the Cu matrix, which has been metallurgically integrated.Ν¾ The diameter and spacing of the fibers may vary.
0.0 8— 0.1 2 i m であ っ た。 この線材の表面に約 厚 の S n(3)を電気 メ ツ キに よ っ て付着 した (横断面を第 2 図 に示す) 後 7 0 0 °Cで 5 0 時間の熱処理に よ っ て S n を線 内部に拡散させ , N ¾ 繊維の表面に N 3 S n を生成させ た o 0.0 8—0.1 2 im. And Tsu by the heat treatment of this S n of about thickness on the surface of the wire (3) was deposited Tsu by the electroplated tools key (the cross section shown in FIG. 2) after 7 0 0 ° C with 5 0 hours O Diffusion of Sn into the inside of the wire to form N 3 Sn on the surface of N ¾ fiber
こ う して得た N¾ 3 S II 線材について液体ヘ リ ゥ ム 中種 々 の条件で臨界電流特性を測定 した o 測定は線材に 1 0 テ ス ラ のバ イ ア ス磁場をかけ , N 3 S n 線材に Θげに ょ る歪を与えなが ら行つ o その結果を第 3 図 曲線 (A)に示 す。 この図 には比較のため同条件で測定 した巿 の連続 繊維極細多心線 (曲線 B ) , 従来法で作成 した非連続繊 維線材の特性 (曲線 C ) について も 併記 した。 この測定 結果に よ る と , 本発明の線材は歪ゼ ロ での臨界電流値は 連続辙維極細多心線を上回わ る値を示 し , かつ歪ゼ ロ で の臨界電流値を約 2 の歪ま で維持 して お , それ以上 の歪に対 して も 低下はゆる やかであ る c —方 , a線 B の 連続繊維極細多心線は歪 5 % 以上で臨界電流谊は急激 The critical current characteristics of the N¾3SII wire thus obtained were measured under various conditions in liquid helium. O The measurement was performed by applying a 10-tesla bias magnetic field to the wire. a given Geni Yo Ru strain Θ to S n wire but shows the RaKotsu o result in FIG. 3 curve (a). For comparison, the figure also shows the ultrafine multifilamentary fiber (curve B) measured under the same conditions and the characteristics of the discontinuous fiber wire prepared by the conventional method (curve C). According to the measurement results, the wire of the present invention showed a critical current value in strain zero that exceeded the value of the continuous fine-filament multifilamentary wire, and reduced the critical current value in strain zero. Contact was maintained at distorting the 2, Yakadea Ru c loose is reduced even when more distortion paired - way, the critical current谊with FRP multifilamentary core wire strain 5% or more of a line B is Suddenly
OMPI に低下 し , ま た曲線 0 の従来法の非違続繊維線材は本発 明の線材 ょ 臨界電流値がすべての歪に対 して低い o こ の よ う に本発明に よ る線材は超電導特性及び機械的特性 に優れてい る o OMPI The critical current value of the wire of the present invention is low for all strains. Thus, the wire of the present invention has a superconducting property. And excellent mechanical properties o
実施例 2.  Example 2.
実施例 1 と 同様の方法で作成 した , 長さ約 〗 — 1 0» 直径 0.1 8颜で母相;^ C u , 3 7 心の N ID 心線の平均の径 及び間隔がそれぞれ α ι扉 , 0.006 Μ の短尺複合金属線 を外径 8 0龍 内径 2 Q舰 , 長さ 1 50 TO!の' C u 製容器 にで き る だけ密に充てん して (充てん率約 8 0 % )押出 ビ レ ツ ト と し , 熱間パ イ プ押 出機に よ っ て , 押出比 1 9 , 押出 温度 7 (3 Q °Cの条件で外径 2 0 m 内径 8 龍 の中空パ イ プ状 に押出 した。 押出に よ っ て線材は C U 母相中 に N わ の引 伸ばされた繊維が点在 した組織を持 ち金属学的に一体化 する。 次に , このパ イ ブの 中空部に直径 7. 8腿 の S n 棒 を挿入 し , これに S n の拡散障壁 と して外径 2 1皿 , 内 径 2 1龍 の T a パ イ プ , 安 化のために外径 3 3 WM 内径 Was prepared in the same manner as in Example 1, about the length〗 - 1 0 »matrix in diameter 0.1 8 Face; ^ C u, 3 7 size and spacing of the mean heart N ID cord each α ι door, 0.006 Micromax of short composite metal wire outer diameter 8 0 Ryu inner diameter 2 Q舰, length 1 50 tO! 'of only densely packed that Ki out to C u steel container (filling of about 80% ) As an extrusion billet, a hollow pipe with an outer diameter of 20 m and an inner diameter of 8 dragons at an extrusion ratio of 19 and an extrusion temperature of 7 (3 Q ° C) was produced by a hot pipe extruder. It was extruded into a looped. in Tsu by the extrusion wire rod C U in the matrix phase is fibers stretched in N Wa integrating tissue blood in metallurgical lifting interspersed. Next, the path b Bed A 7.8-thigh Sn rod was inserted into the hollow part of the container, and a Ta pipe with an outer diameter of 21 plates and an inner diameter of 21 dragons was used as a Sn diffusion barrier. Outer diameter 3 3 WM Inner diameter
2 3龍 の Cu パ イ ブを被覆 した後 (横断面を第 4 図 に示す) これを一体 と して冷間伸鎳加工に よ つ て 0.8X1.6 腿 の平角 線に した o こ う して得た線材に 7 0 0 °Cで 5 0 時間の熱処 理を加え る こ と に よ っ て線中心部に配置された S N を拡 散させて繊維状に引伸ばさ れた N ¾ の表面に Nb S S n を 生成させ安定化のための C.u 層 を持つ 3 S n 超電導線 材 と し , これに液体ヘ リ ウ ム 中種 々 の条件で臨界電流特 2 3 After coating the dragon Cu Pas Lee Bed (the cross section shown in FIG. 4) o This This was in 0.8X 1 .6 thigh of the rectangular line One by the cold Shin鎳machining an integral The wire thus obtained was subjected to a heat treatment at 700 ° C for 50 hours, whereby the SN arranged at the center of the wire was diffused and stretched into a fibrous shape. and n ¾ 3 S n superconducting wire surface with a Cu layer for stabilization to generate Nb SS n of which the critical current especially in liquid f Li U beam in the seed s condition
OMPI 性を測定 した結果実施例 1 と 同様極めて良好な超電導特 性及び機械的特性が得 られた o OMPI Very good superconducting and mechanical properties were obtained as in Example 1 as a result of the measurement of the properties.o
実施例 3. Example 3.
母相 C u - T 4 t ^ S nで-あ ]? 心線が N ¾ であ る 1 9 心 の ( C u - S n) - N ¾ 複合多心線を直径 O.2 4 TOま で伸線 し た。 この時の N b 心線の平均の径及び間隔はそれぞれ  Mother phase Cu-T4t ^ Sn-?]? A 19-core (Cu-Sn) -N¾ compound multi-core fiber with N 心 core is O.24 TO The wire was drawn. The average diameter and spacing of the Nb cores at this time are respectively
0.0 3rai及び 0.0 1 5 roiであ っ た o こ の線を長さ約 5 — 1 0 m にな る よ う に切断加工を行い短尺複合金属線 と した。  This wire, which was 0.03rai and 0.015 roi, was cut to a length of about 5-10m to obtain a short composite metal wire.
この短尺複合金属線を多数集合 し , 直径 8 G vm , 長さ  A large number of these short composite metal wires are assembled, and the diameter is 8 G vm and the length is
1 5 0腿 の棒状に ブ レ ス成形 した後 , 静水圧押出機に よ つ て押出比 〗 0. 2 押出温度 3 50での押出条件で直径 2 5 mm の線に押出 した o 押出 に よ っ て線材は金属学的に一体化 した C U - S n 合金母相 中に繊維状に引伸ばされた ¾ が 点在 した組緣を持つ o 次に この線材に拡散障壁 と して外 径 2 7 mm , 内径 2 ら舰 の T a パ イ ブ , 安定化のために外 径 3 4腿 , 内径 2 8 雌 の C U パイ プを被覆 して これを一 体 と して冷間加工 と 4 (3 (3 °C , 1 時間の焼鈍処理を く !) 返 す こ と に よ っ て直径 0. 5 MI の線材 と した 0 こ う して得た 線材に 7 0 0 °C , 5 0 時間の熱処理を加える こ と に よ っ て 繊維状に引伸ばされた N ¾ の表面に N 3 S n を生成させ 安定化のための C ' 層 を持つ N¾ 3 Sn 超電導鎳材 と し , これに液体ヘ リ ゥ ム 中種 々 の条件で臨界電流特性を測定 した結果実施例 1 — 2 と 同様極めて良好る超電導特性 と 機械的特性が得 られた n After blanking Les scan molding 1 5 0 thigh bar-shaped, the o extrusion was extruded to a line of diameter 2 5 mm in extrusion conditions at the extrusion ratio〗 0.2 extrusion temperature 3 50 One by the hydrostatic extruder Tsu and wire rods C U integrated in metallurgical - outside diameter as the S n alloy matrix ¾ was stretched fibrous while has a Kumi緣interspersed o then a diffusion barrier on the wire 2 7 mm, T a path i blanking of internal diameter 2 et舰, outer diameter 3 4 thigh for stabilization between the inner diameter 2 8 and therewith an body covering the C U pipes of female cold working and 4 (3 (3 ° C, 1 hour of annealing Ku!) returns to this and in Tsu by the diameter 0.5 to 5 MI wire 0 obtained by cormorants this was a wire of 7 0 0 ° C, 5 the heat treatment of the 0 hour is added Tsu by the and this argument stretched on the surface of the n ¾ to generate n 3 S n and N¾ 3 S n superconducting鎳材with C 'layer for stabilization fibrous , This is a liquid medium The critical current characteristics were measured in the same way, and as in Examples 1-2, very good superconducting and mechanical properties were obtained.
OMPIOMPI
WIPO . お本実施例につ て , 複合金属線における母相の Cu - Sn 合金の S n 濃度は 0. 1 — 1 5 w t ま での も の , 5 0—〗 0 0 w t ま での も のが後の断面縮少加工が可能で あ j? それ以外の も のは加工で き な か っ た。 WIPO. In this example, the Sn concentration of the parent phase Cu-Sn alloy in the composite metal wire was from 0.1 to 15 wt%, and from 50 to 100 wt%. It is possible to reduce the cross section later. J? Anything else could not be processed.
実施例 4  Example 4
か ら る る 金属心線を C u か ら な る母相に 37 本埋設 した Cu - N¾ 複合多心線を直径 0.24 «ま で伸線 した o こ の と き の Ν ¾ 心線の平均径お よ び相互の間隔はそれぞれ 0.0 2 お よ び 0.0 1 蔵 であ る。 この線を長さ 1 — 5 Miに る よ う に切断加工を行い , 得 られた - N¾ 短尺複合線 の切断部分 を含む全面に 口 ッ セ ル塩系の市販の無電気銅 めっ き 浴に よ ]? , C u を約 0. 5 ^in の厚さ に付着させた後 さ らに市販の ピ ロ リ ン酸浴に よ る バ レ ル電気めつ き に よ つ て約 の厚さ に C U - 8 w t % S n の合金めつ き を施 した 0 次に , 外径 8 G龍 , 内径 2 0 m , 長さ 1 5 Q の C u 製 '容器にで き る だけ密に充項 して , 押出 し ビ レ ツ ト と,し , 熱間パ イ プ押出機に よ っ て押出比 ί 9 , 押出温度 7 0 0 °Cの条件で外径 2 G « , 内径 8 腿 の中空パ イ ブ状に 押出 した。 押出 しに よ っ て線材は C u を主体 と する母相 中に N ¾ が引伸ばされて繊維状 と して分散 した組織 と な , 押出 し前の Cu - Nb,短尺複合線は金属学的に一体化 する 0 次に , パ イ ブの 中空部分に 直径 I 8 mm の S n 棒を 揷入 し , こ れに S n の拡散障壁 と して外径 2 2 « , 内径 2 1 顺 の パ イ ブ , 安定ィヒのため に外径 3 3纖 , 内径 2 3 の Cu パ イ ブを被覆 した後 , これを一体 と して冷 間伸線加工に よ っ て 0. 8 X 1. 6 rot の平角線 と した o この よ う に して得た線材に 7 0 Q °Cて' 5 0 時間の熱処理を加える こ と に よ っ て線中心部に配置された S n を拡散させ , 繊 維状に引 き 伸ばされた N ¾ の非連続繊維の表面に ¾3S II を生成させて安定化のため C U 層 を持つ N¾ 3 S n 超電導 線材を作成 し , これを 4.2 K の液体ヘ リ ウ ム 中において 種 々 の条件で臨界電流特性を測定 した結果 , 実施例 〗 と 同様極めて良好な超電導特性 と機械的特性が得 られた o 実施例 5 The metal core wire that Ru pressurized et al and 37 present embedded in the matrix C u or et ing Cu - N¾ average of the composite multi-core wire was diameters 0.2 4 «or in drawing o this preparative-out of New ¾ core The diameter and the distance between each other are 0.02 and 0.01 respectively. This wire was cut to a length of 1 to 5 Mi, and the resulting -N¾ short-length composite wire was cut over the entire surface including the cut portion. to I]?, about the thickness One by the can bar Le Le electrical flashes that by the commercially available pin b-phosphate bath is found after the deposition of the C u to a thickness of about 0. 5 ^ in in the C U - 8 0 to facilities the-out alloy flashing of wt% S n Next, the outer diameter 8 G dragon, inner diameter 2 0 m, just by Ki out to C u made 'container length 1 5 Q-tight and Takashiko to, extrusion City and bi-les Tsu DOO, then, extrusion ratio Tsu by the Netsukanpa Lee flop extruder I 9, the outer diameter 2 G «under the conditions of extrusion temperature 7 0 0 ° C, the inner diameter 8 It was extruded in the shape of a hollow thigh tube. By extrusion, the wire has a structure in which N¾ is stretched into a matrix mainly composed of Cu and is dispersed in a fibrous form. The Cu-Nb before extrusion and the short composite wire are metallurgy. Next, a Sn rod with a diameter of I 8 mm is inserted into the hollow part of the pipe, and an outer diameter of 22 mm and an inner diameter of 21 mm are used as a diffusion barrier for Sn. The outer diameter of the pipe is 33 for stability and the inner diameter is 2 3 after coating the Cu path i parts, wire which was obtained in the jar good o This was a flat rectangular wire of 0. 8 X 1. 6 rot in Tsu by the cold HazamaShinsen processed an integral By applying a heat treatment at 70 Q ° C for 50 hours, the Sn located at the center of the line is diffused, and the N¾ non-continuous fiber stretched into a fibrous form is obtained. by generating a ¾ 3 S II on the surface to create a N¾ 3 S n superconducting wire having a C U layer for stabilization, the critical current at the species' s condition in which the 4.2 liquid f Li c in beam of K As a result of measuring the characteristics, very good superconducting characteristics and mechanical characteristics were obtained as in Example II.
第 1 図に示す よ う に , N ¾ か ら成る 金属心線(1)を , C か ら成る母相 )に 〗 9 本埋設 して Cu 一 N¾ 複合多心線を 得 , こ の複合多心.線を 0. 1 8 ま で伸線 した o この と き の N 心線(1)の平均径及び間隔は 0.0 2 m と 0.0 1 OTIであ つ た。 次に , この心線(1) を長さ が約 1 — 1 5 ratにる る よ う に切断加工 して短尺複合金属線に した後 こ の短尺複合金 属線を集めて プ レス加工を行い , 直径 3 0 W!L , 長さ 3 0 0 ∞の棒状体を得た o 次に , この棒状体を真空中 8 Q 0での 温度にて 3 Q 分間焼結 して多孔質成形 ¾を形成 し , こ の 成形体を約 5 G (3 °Cに保持 した S n 浴中に 5 分間浸漬する こ と に よ っ てその内部に Sn(3)を浸透させ , 更に この成形 体に外径 3 4 ηπ , 内径 3 2 »の T a パイプ (5)を被覆する と 共に この T a パ イ ブ上に安定化を 目 的 と して外径 5 0 m 内径 3 5 腿 の C u パイブ )を被覆 し (横断面を第 5 図に示 As shown in Fig. 1, Nine metal core wires (1) were buried in a matrix (C) consisting of〗 9 pieces to obtain a Cu-N 多 composite multifilamentary wire. heart. line the average size and spacing of 0.1 8 or in drawing the o this city-out of N core wire (1) has one der 0.0 2 m and 0.0 1 OTI. Next, this core wire (1) is cut into a short composite metal wire so as to have a length of about 1 to 15 rat, and then the short composite metal wire is collected and pressed. performed, diameter 3 0 W! L, length 3 0 0 ∞ obtain a rod-shaped body of the o then, the porous molded ¾ and baked 3 Q min sintering at a temperature in a vacuum 8 Q 0 the rod-like body The molded body was immersed in a Sn bath maintained at about 5 G (3 ° C) for about 5 minutes to allow Sn (3) to penetrate into the molded body, and further to the molded body. outer diameter 3 4 ηπ, inner diameter 3 2 »T a pipe (5) having an outer diameter of 5 0 m internal diameter 3 5 thigh to the covering both stabilized on the T a path Lee Bed as a purpose the C u (The cross section is shown in Fig. 5).
ΟΜΡΙ WIPO す) , 冷間にて縮径加工を行る い直径 5 の鎳材を得 た。 この伸線工程においては断線が全 く 生ぜず , ま た こ の得 られた線材の断面を顕微鏡で観察 した と こ ろ , 線長 手方向に引伸ばさ れて形成された N ¾ , C u , S nの各繊維 は混在 した状態で線材を構成 していた o ΟΜΡΙ WIPO Be), to obtain a鎳材of Gyoru have diameters 5 the diameter reduction at cold. In this wire drawing process, no breaks occurred, and when the cross section of the obtained wire was observed with a microscope, it was found that N ,, Cu, Each fiber of Sn formed a wire in a mixed state o
最後に , 以上の工程にて得た線材に 8 0 0 °Cで 2 0 分間 熱処理を施 こ し , N ¾ 繊維の表面に N ¾ 3 S n を生成させ て N ¾ S S n 化合物超電導線材を製造 した o Finally, more and facilities this heat treatment 2 0 minutes to the resulting wire rod at 8 0 0 ° C at step, the by generating the N ¾ 3 S n on the surface of the N ¾ fibers N ¾ SS n compound superconducting wire O manufactured
この得 られた超電導線材を , 液体ヘ リ ゥ ム 中に種 々 の 条件で臨界電流値を測定 した と こ ろ , '実施例 1 と 同様極 めて良好な超電導特性及び機械的特性が得 られた o 実施例 6  When the critical current value of the obtained superconducting wire was measured in liquid helium under various conditions, extremely good superconducting properties and mechanical properties were obtained as in Example 1. O Example 6
,第 6 図に示す よ う に , か ら成る 金属心線(1)を , C u か ら成る母相 ) に 1 9 本埋設 し , こ の上に S n は)を電気 メ ツ キにて付着させる こ と に よ ] 直径 0.2 8職 の複合多心 線を得た o こ の と き の N ¾ 心線(1)平均径及び相互間隔は それぞれ 0.0 3 β と 0. 0 1 5 で あ っ た o 次に , こ の心線(1) を長さが約 1 3 «に な る よ う に切断加工 して短尺複合 金属線に した後 これ ら短尺複合金属線を外径 2 0 « , 内 径 1 8 薦 , 長さ 1 0 0'0 鲰の T a く イ ブに約 7 0 % の充項 率にて充¾する と 共に こ の T a パ イ ブを外径 3 2 舊 , 内 径 2 2 龍 の安定化を 目 的 と した C u パ イ プに揷入 し , 冷 間にて縮径加工 を行 う こ と に よ ] 直径 0. 5 龍 の籙材を得 た 0 この伸線工程に おい ては断線が全 く 生ぜず , ま た こ の得 られた線材の断面を顕微鏡で観察 した と こ ろ , 線長 手方向に引伸ばされて形成された N ¾, C u , S nの各繊維 は混在 した状態で線材を搆成 し , N ¾ 繊維の径 と 相互間 はいずれ も 0. 1 — 0. 3 i m であ っ た。 As shown in Fig. 6, 19 metal core wires (1) consisting of 19 cores are buried in a matrix consisting of Cu, and Sn is placed on this in an electric circuit. The composite multifilamentary wire with a diameter of 0.28 was obtained. The N ¾ cores at this time (1) The average diameter and the mutual interval were 0.03β and 0.015, respectively. Next, this core wire (1) is cut into a short composite metal wire with a length of about 13, and then the short composite metal wire is cut into an outer diameter of 20 mm. «, Inner diameter 18 recommended, Ta 0 length of 100 0'0 mm is filled at a filling rate of about 70 %, and at the same time, this Ta pipe 3 2 An old, inner diameter of 22 dragons should be introduced into a Cu pipe with the aim of stabilization, and the diameter should be reduced in the cold.] A 0.5-dragon-diameter lumber was obtained. 0 In this wire drawing process, no wire breakage occurred. When the cross section of the obtained wire was observed with a microscope, the N¾, Cu, and Sn fibers formed by stretching in the longitudinal direction of the wire were combined to form a wire in a mixed state. The diameter of the N 繊 維 fiber and the distance between them were 0.1-0.3 im.
最後に , 以上の工程にて得た線材に 850 °Cで 1 0 分間 熱処理を施 し , N 繊維の表面に N¾ 3 S n を生成させて  Finally, the wire obtained in the above process was subjected to a heat treatment at 850 ° C for 10 minutes to form N¾3Sn on the surface of the N fiber.
層を有する N b 3 S n 化合物超電導線材を製造 した o こ の得 られた超電導線材を , 液体ヘ リ ゥ ム 中において 種 々 の条件で臨界電流値を測定 した と こ ろ , 実施例 〗 と 同様 , 極めて良好る超電導特性及び機械的特性が得 られ ft o N b 3 S n compound superconducting wire o this of the obtained superconducting wire was produced, this filtrate and was subjected to measurement of a critical current value at the species' s condition in the liquid F Li © in-time having a layer, and examples〗 Similarly, very good superconducting and mechanical properties are obtained, and ft o
実施例 7 Example 7
母相力; C u ― 1 0 w t S n であ j? 'll、線が N b - 4 w t H f であ る 1 9 心の ( C u - S n - G a ) - ( N ¾ - H f ) 複合多 心線 と平均径 0. 1 m , 長さ 3 mm O C u -- 1 5 w t 合金 の繊維を直径 0.1 2 ま で伸鎳 した。 こ の時の 心 線の径及び間隔はそれぞれ 0.0 1 5 皿及び G.008 TOTであ つ ± o こ の線を長さ 1 — 5 鸸に る よ う に切断加工を行い 短尺複合金属線 と した。 短尺複合金属線を多数本油圧ブ レス で予備成形 して , さ ら に直径 3 0 mm , 長さ 1 0 G -の 棒状に 9 50 °C真空中でホ ッ ト ブ レ ス に よ っ て違続的に焼 結 した o こ の処理に よ っ て金属学的に一体化 した C U - S n .合.金及-び- u Q a 合金母相中に纖維状に引伸ばされ た N ¾ - 合金が点在 した組織が得 られる 0 次に これを Matrix force;? C u - 1 0 wt S n der j 'll, lines N b - 4 wt H f der Ru 1 9 hearts (C u - S n - G a) - (N ¾ - H f) composite multi-core wire with an average diameter of 0.1 1 m, length 3 mm OC u - and 1 5 wt fiber diameter 0.1 alloy 1 2 or in Shin鎳. At this time, the diameter and interval of the core wire are 0.015 dish and G.008 TOT, respectively. ± o This wire is cut to a length of 1-5 mm, and the wire is cut with a short composite metal wire. did. A large number of short composite metal wires were preformed with a hydraulic press, and then formed into a rod with a diameter of 30 mm and a length of 10 G- by hot pressing in a vacuum at 950 ° C.違続to C U was in Tsu by the sintered o this process is integrated in the metallurgical - S n Go gold及-.. beauty - was stretched to纖維like to u Q a alloy matrix phase N ¾ - this then 0 tissues alloy interspersed obtain
O PI 冷間加工 と 4 0 0 °C , 1 時間の焼鈍処理を く ]? 返す と と に よ っ て直径 3 の線材 と したが , こ の線材における O PI Cold working and annealing at 400 ° C for 1 hour were repeated to form a wire with a diameter of 3.
Ν ΐί - H f 合金繊維の径 と 間隔はそれぞれ約 0.1 5 m と 約  The diameter and spacing of the Ν の -Hf alloy fibers are about 0.15 m, respectively.
0.0 8 A m で あ っ た。 こ う して得た線材について 7 5 0 °C ,  It was 0.08 Am. The wire obtained in this way was set at 750 ° C,
5 0 時間の熱処理を加え N ¾ - H f 合金繊維の表面に (N¾ - Hf ) 5 Sn を生成させ , 液体ヘ リ ウ ム 中種 々 の バ イ ア ス 磁界の も と での臨界電流を測定 した o その結果 , H f 及 び を添加 しな い線材に比べ 1 2 テ ス ラ 以上の高磁場 で約 2 0 臨界電流密度が向上 した o Heat treatment for 50 hours generates (N¾-Hf) 5Sn on the surface of the N¾-Hf alloy fiber, and the critical current under various bias magnetic fields in liquid helium is increased. measured o As a result, H f及beauty 1 2 Te scan la or more high magnetic field as compared to the addition Shinano have wire about 2 0 critical current density is improved o
実施例 8  Example 8
実施例 1 と 同様の方法で作成 した長さ 約 1 » , 直径 Length approx. 1 », diameter created in the same way as in Example 1
0.2 4鲰で母相が C u , 1 9 心の N ¾ 心線の径及び間隔せ それぞれ 0.0 3 β , 0.0 1 5 «の短尺複合金属線 と平均粒径 0.2 4 each matrix causes the diameter and spacing of C u, 1 9 mind N ¾ cords 0.0 3 beta in鲰, average particle size of 0.0 1 5 short composite metal wire «
4 0 im の Cu 粉未を容積で 7 : 1 の割合で充分混合 した 後 , 外径 8 0 Η , 内径 2 0 Η , 長さ 1 5 0 βの C u 製容器 にで き る だけ密に充てん して押出 ビ レ ツ ト と し熱間パイ プ押出機に よ っ て押出比 〗 9 , 押出温度 9 0 0 °Cの条件で 外径 2 0 WM , 内径 8 βの 中空パ イ ブ状に押出 しえ後 , 中 空部に 棒を揷入 し , 冷間加工 と N¾ 5 A 生成熱処理 に よ っ て N¾ 3 A 線材 と した o こ の よ う に複合金属線に C u 系金属粉未を添加 し成形 した場合において も 実施例 The 4 0 im of Cu Konahitsuji by volume 7: After thorough mixing at a ratio of 1, the outer diameter 8 0 Eta, inner diameter 2 0 Eta, only tightly that Ki out to C u container made of length 1 5 0 beta filled to extrusion bi les Tsu preparative and extruded ratio Tsu by the hot pipes extruder〗 9, the outer diameter 2 0 WM under the conditions of extrusion temperature 9 0 0 ° C, the hollow path Lee Bed shaped inner diameter 8 beta After extruding into a hollow part, the rod was inserted into the hollow part, and the N¾3A wire was formed by cold working and N¾5A generation heat treatment. Example also when molding without adding
1 と 同様冷間加工性 も 良好で超電導特性に優れた化合物 系超電導線材が得 られた 0  A compound superconducting wire with good cold workability and excellent superconductivity was obtained as in 0.
実施例 9 Example 9
OMPIOMPI
WIPO 実施例 1 と 同様の方法で作成 した長さ 1 — 5 憩 , 直径 WIPO Length created in the same manner as in Example 1 1-5 breaks, diameter
0.2 4 amで母相力; C u - 1 8 w t G a であ ]} , 1 9 、の V 、 線の径及び間隔がそれぞれ 0.0 3鵬 , 0.0 1 5 鸸の短尺複合 金属線を , 直径 8 0 m , 長さ 1 5 0の棒状に ブ レ ス成形 した後熱間押出機に よ っ て押出比 1 0.2押出温度 5 5 0 °Cの 条件で直径 2 5 腿 の線に押出 した。 押出 に よ っ て線材は 金属学的に一体化 した C u - & a 合金母相中に繊維状に引 伸ばされた V が点在 した組織を持つ。 さ らに この線材を 冷間加工 と 4 G Q ° ( , 1 時間の焼鈍処理を く 返すこ と に よ っ て直径 0. 3 籠と したが , この時の V 繊維の径 と 間隔 はそれぞれ約 0. 0· 0 8 A m であ っ た o こ う して得た 線材について 6 5 0でで 5 0 時間の熱処理を施 して V 繊維 の表面に V 3 G a を生成させ V 3 G a 超電導線材 と し , 液体 ヘ リ ゥ ム 中種 々 の条件で臨界電流特性を測定 した結果, The matrix force at 0.24 am; Cu-18 wtG a]]}, 19, V, wire diameter and spacing are 0.03 peng, 0.015 mm short composite metal wire, diameter 8 0 m, and extruded to a diameter of 2 5 thigh line under the condition of length 1 5 0 bar-shaped Tsu by the hot extruder after blanking Les scan molding extrusion ratio 1 0.2 extrusion temperature 5 5 0 ° C . By extrusion, the wire has a structure in which fibrous stretched Vs are scattered in a metallurgically integrated Cu- & a alloy matrix. In addition, this wire was cold-worked and repeatedly subjected to 4 GQ ° (1 hour annealing treatment) to form a cage with a diameter of 0.3. The diameter and spacing of the V fibers at this time were about 0.08 Am The wire thus obtained was subjected to a heat treatment at 65 0 for 50 hours to produce V 3 G a on the surface of the V-fiber and V 3 G a As a superconducting wire, the critical current characteristics were measured under various conditions in liquid helium.
N b 3 Sn 線材 と 同様超電導特性及び機械的特性に極めて 優れた V 3 S n 線材が得 られた 0 N b 3 Sn wires the same superconducting properties and excellent V 3 S n wire mechanical properties were obtained 0
実施例 1 0 Example 10
第 〗 図に示さ れる よ う る横断面を持ち , 母相が C u で  It has a cross section as shown in Fig. 2 and the parent phase is Cu.
Ό , 心線が N ¾ であ る 120 心の C ひ - N ¾ 複合多心線を 直径 0. 5 OT!ま で伸線 した o こ の時の N ¾ 心線の平均径は 約 3 0 ΑΠ1 であ っ た o この線を長さ 1 0 丽以下にる る よ う に切新加工を行い短尺複合線 と した ο 次に , 多数の短尺 複合線を黒鉛るつぼに入れ , 真空中で高周波溶解 し , 約  120, a 120-core C-N ¾ multi-core wire with N cores was drawn to 0.5 OT! O The average diameter of the N 心 core at this time was about 30 O This wire was cut to a length of 10 mm or less to form a short composite wire. Ο Next, a number of short composite wires were placed in a graphite crucible, and high-frequency in a vacuum. Dissolves, about
1 3 0 0 °Cで金型に篛込み , 直径 8 0 wm , 長さ 5 0 Q の篛  Insert into mold at 130 ° C, with diameter of 80 wm and length of 50 Q
OMPI OMPI
、 塊 と した o この錡塊における N ¾ の容量比は C U に対 し て約 5 0 v o ^ % であ !) , 従来の方法の約' 2 倍であ っ た。 ま た , 鏡塊の重量は約 2 2 .1 ^であ ]? , 従来の CU と N を アーク溶解 して得 られる鏡-塊の重量比で約 〗 0 倍以上で あ る。 溶解中 N ¾ は心線形状を保ち CU と Ν¾ は後の加工 性を阻害する よ う な反応を全 く 起 こさ る か っ た o ま た , 溶解 , 铸造に特殊 装置や工夫は必要では る く , 一般の C u 合金 と 同様の方法設備で行 う こ と がで き た ο この発 明の方法に よ る と , さ ら に大 き 錡塊を得 る こ と はるつ ぼ及び錡型の寸法を選択する こ と に よ 容易に可能であ る。 こ の铸塊の横断面 , 縦断面を観察する と Cu と の 比重はそれぞれ 8. 9 3 , 8. 6 と あ ま J 差 が いため重力偏 析 も おこ らず , N¾ の心線 と CU の母相 と の混合状態は均, O The volume ratio of N に お け る in this mass is approximately 50 vo ^% with respect to C U ! ), Which was about twice that of the conventional method. Also, the weight is approximately 2 2.1 ^ der of Kagamikatamari]?, Ah Ru about〗 0 times in a weight ratio of Kagamikatamari obtained a conventional C U and N arc melting. During melting, N ¾ maintained the core shape and C U and Ν¾ did not cause any reaction that would hinder the later processability. O No special equipment or device was required for melting and forming. Therefore, according to the method of the present invention, it is possible to obtain even larger lumps by using the crucible and the method according to the present invention. It is easily possible by selecting the size of the mold. Observation of the cross section and vertical section of this ingot shows that the specific gravity of Cu is 8.93 and 8.6, respectively, and there is a large difference between them, so that gravity segregation does not occur, and the N¾ core and C U The mixed state of the mother phases and of
—であ つ 7C o - 次に , こ の銬塊を冷間加工に よ , 直径 α 3 龍ま で伸 線 し , 線の表面に終 2 O m厚の S n を電着 した後 , 6 0 0 °C— 8 5 0 °C , 1 — 2 0 0時間の種 々 の条件で熱処理を施 し 埋設された平均直径約 0. 〗 m の Nb 心線の表面に N¾ 3 S n を生成さ せ , Nわ S S n 超電導線材 と した 0 -7C o-Next, this ingot is drawn by cold working to a diameter of α3 dragons, and a final 2 Om thick Sn is electrodeposited on the surface of the wire. Heat treatment under various conditions of 0 ° C to 85 ° C and 1 to 200 hours produces N¾ 3 Sn on the surface of the embedded Nb core wire with an average diameter of about 0. to, 0 where N I SS n superconducting wire
この他に , 鐃塊をパ イ ブ押出す る こ と に よ っ て , 外径  In addition, by extruding the cylindrical mass, the outer diameter is reduced.
3 0 MM , 内径 〗 0 龍 の管 と し , 中心に S n を揷入 しさ ら に外側に安定化のための C u パイ ブ , 拡散障壁の T a パ イ ブを被覆 した後 , これを一体 と して , 直径 0. 5 舰ま で 伸線 した o これにつ て も 前記 と 同様の条件で熱処理を  A 30 MM tube with an inner diameter of approximately 0 dragons. After inserting Sn at the center, covering the Cu tube for stabilization on the outside and the Ta tube for the diffusion barrier, As a whole, the wire was drawn to a diameter of 0.5 mm. O This was also heat treated under the same conditions as above.
O PI O PI
V'. 施 し , N 3 Sn 超電導線材 と した 0 この他パ イ ブ製造法 と しては , 遠心鏡造法 どに よ っ て直接パ イ プ形状に篛 込んだ D , 篛塊を機械穿孔加工に よ っ てパ イ ブ形状にす る こ と も でき る o V '. And facilities, is a N 3 Sn superconducting wire and the 0 the other path Lee blanking process, but elaborate篛directly Pas Lee flop shape Tsu good as etc. centrifugal mirror granulation method D, and mechanical drilling a篛塊It can also be made into a pipe shape o
上記 2 種の線材につ て液体ヘ リ ゥ ム 中種 々 の条件で 臨界電流特性を測定 した o 結果 , 実施例 〗 と 同様極めて 良好 超電導特性 と機械的特性が得 られた o  The critical current characteristics of the above two types of wires were measured under various conditions in liquid helium. O As a result, very good superconductivity and mechanical characteristics were obtained as in Example II.
実施例 1 1 Example 1 1
母相力; C u - 5 w t % G a であ , 心線力; V であ る 1 20 心 の C u - G a - V 複合多心線を直径 0. 5 ま で伸線 した。  The matrix force was Cu-5wt% Ga, and the core force was V, and a 120-core Cu-Ga-V composite multifilamentary wire was drawn to a diameter of 0.5.
この線を長さ 1 O TOI以下に る よ う に切断加工を行い , 短尺複合線 と した o 次に , 多数の短尺複合線を真空中高 周波炉で溶解 し機械的振動を加え が ら , 铸造を行っ てThis wire was cut to a length of 1 O TOI or less to obtain a short composite wire. O Next, a number of short composite wires were melted in a high-frequency furnace in a vacuum and mechanical vibrations were applied. Go
C u - G a 合金を母相 と し V 心線が多数埋設された組織を 持つ篛塊を得た。 溶湯に機械的振動を加えたの で N ¾ 心 線 と C u - CJ a 母相の混合状態は非常に均一であ っ た 0 こ の鐃塊を熱間加工 ( 2 0 0で— 5 0 0 °C ) 及び冷間加工 , 軟 化焼鈍処理を く 返 して直径 0. 3 鲰ま で伸線 し , 線の表 面に d a を塗布 した後 6 2 0 °C , 5 0 時間の V S G a 生成熱 処理を施 して V 5 G a 超電導線材 と した o この鎳犲につ て も 種々 の条件で超電導特性の測定を行っ たが , 実施例 Using the Cu-Ga alloy as a parent phase, a lump having a structure in which a large number of V-core wires are embedded was obtained. N ¾ cord with the addition of mechanical vibration to molten metal and C u - CJ a mixed state of the mother phase is a 0 this鐃塊was Tsu der very uniform hot working (2 0 0 - 5 0 0 ° C) and repeated cold working and soft annealing, wire drawing up to 0.3 mm in diameter, apply da on the surface of the wire, and apply VSG at 60 ° C for 50 hours. a V5 Ga superconducting wire after heat treatment was applied. o Superconducting properties were measured under various conditions.
1 と 同様良好 結果が得 られた o  Good results were obtained as in o
実施例 1 2 第 1 図の横断面に示さ れる C u 母相の中に 〗 2 0 本の Example 1 2 In the Cu matrix shown in the cross section in FIG.
OMPI WIPO N ¾ 心線が埋設さ れた C u - N ¾ 複合多心線を , 伸線加工 に よ っ て直径 0. 5 MI と し , こ の線材を長さ 1 O jm以下切 断 して短尺複合線を作成 した o こ の短尺複合線 を集めつ 油圧 ブ レス に よ ]) 室温で 1 ノ COT2で加圧 し , 直径 9 0 m 長さ 2 Q Q薦の成形体 と した 0 こ の予備成形体を真空中に おいて C u 母相の溶融点 よ ]9 高 1 1 1 0 °C で 0. 2 ^ の圧力で加圧 して , 高密度の成形体を作成 した o こ の成 形体は顕微鏡観察の結果 , 気孔がな く 高密度でかつ N ¾ 心線が C u 母相の かに均質に分散さ れてい る こ と が確 認された o OMPI WIPO The Cu-N¾ composite multi-core wire with the N¾ core wire buried is made to have a diameter of 0.5 MI by wire drawing, and this wire is cut to a length of 1 O jm or less and cut short. the composite wire one attracted short composite wire made by o this by the hydraulic blanking less]) was pressure at room temperature for 1 Bruno COT 2, 0 this preliminary that the molded bodies with a diameter of 9 0 m length 2 QQ Como The compact was pressed in a vacuum at a melting point of the Cu matrix phase at a pressure of 0.2 ^ at a high temperature of 1110 ° C to produce a high-density compact. Microscopic observation revealed that the feature was dense and free of pores, and that the N N core was homogeneously dispersed in the Cu matrix phase.
つ ぎに こ の成形体を冷間鍛造に よ っ て直径 3 0 難の棒 状に加工 し , ついで冷間線引加工に よ ]9 直径 0. 3 »ま で 伸線 した。 伸線加工'中 , C U 母相 中の N ¾ 心線は一様に 変形を う け , 伸線の方向に沿っ て引伸ばされる o こ の線 材の表面に第 2 図に示す よ う に約 2 0 iin厚さ の S n を電 着 した後 6 0 0 °C— 8 5·0 °C , 1 ― 200 時間の種 々 の条件で 熱処理を施 し , C u 母相中に埋設さ れた平均直径約 0. 0 9 m の N 心線の表面に Sn の固体拡散に よ っ て N¾ 5 S n を生成させ , Nb 3 S n 化合物超電導線材を作製 した o こ の線材について も , 実施例 1 と 同様の 良好 特性が得 ら れた。 こ の実施例において , Nlo 心線を CU 母相に埋設 し た短尺複合線を ホ ッ ト ブ レ ス に よ 母相金属の溶融点 よ 高い 1 1 1 Q °Cで加圧する工程は , かな らず し も 本実施 例に よ る方法にか ぎる も の ではる く , C U 母相の溶融点 以下 1 G Q °Cか ら溶融点以上 〗 Q G °Cの温度領域で加圧する こ と , 一定圧力下で前記温度領域の ヒ ー ト サ イ ク ルを与 えて加圧成形する方法 , も:し く は油圧 ブ レ ス した予備焼 結体を母相の溶融点以上に加熱 して溶融焼結を行 う 方法 ¾ ど も 本実施例 と 同様の効果を生 じる も のであ る o Next, this compact was formed into a rod shape with a diameter of 30 by cold forging, and then drawn by cold drawing.] 9 It was drawn to a diameter of 0.3 ». During wire drawing 'Remind as in Figure 2 to C U N ¾ cord in the matrix is only cormorants uniformly deformed, the surface of the wire of o this to be stretched along the direction of drawing about 2 0 iin thickness S n after the electrodeposition 6 0 0 ° C- 8 5 · 0 ° C, 1 to - to facilities heat-treated at 200 hours species' s condition, embedded in C u matrix phase has been an average diameter of about 0. 0 9 m in Tsu by the Sn solid diffuse to the surface of the n core wire to produce a N¾ 5 S n, the n b 3 S n compounds superconducting wire o this wire was prepared Also, the same good characteristics as in Example 1 were obtained. In an embodiment of this, process of pressurizing the Nlo cores in C U E mother short composite wire embedded in the phase Tsu preparative Bed Les scan high by the melting point of the matrix metal by the 1 1 1 Q ° C is Kana Razz Mr. also rather Haru data of Gill or the method by that in the present embodiment, the melting point of C U matrix Below 1 GQ ° C to above the melting point〗 Pressing in a temperature range of QG ° C and applying a heat cycle in the above temperature range under a constant pressure and press forming. Alternatively, a method in which the pre-sintered body subjected to the hydraulic pressure is heated to a temperature higher than the melting point of the parent phase to perform the melt sintering can produce the same effect as in the present embodiment.
ま た , N¾ 心線を CU 母相に埋設 した短尺複合線を ホ ッ ト ブ レ ス で外径 9 Q m , 内径 3 O OTの成形体を作成 し, しかる の ちに 中空押出 しに よ っ て外径 3 0 mm , 内径 1 0 TOの管材を作成 し , 中心に Sn棒 (3)を揷入 し , 外側に T a チューブ (5)の拡散障壁 と 安定化の銅チューブ (2)を配置 し , 第 4 図の よ う ¾断面構成 と ¾ し これを一体 と して直径 0. 5 ∞ま で断面縮小加工を実施 した線材について , 上記実施 例 と 同様の化合物生成熱処理を行 っ た場合 も 上記実施例 と 同様の電流特性がえ られる o Also, N¾ core of C U outside the matrix phase short composite wire embedded in at host Tsu preparative Bed Les scan size 9 Q m, to create a shaped body of an inside diameter 3 O OT, the hollow extruded City accordingly the Chi Thus, a tube material with an outer diameter of 30 mm and an inner diameter of 10 TO was prepared, a Sn rod ( 3 ) was inserted in the center, and a diffusion barrier of a Ta tube (5) and a copper tube ( 2 ), And as shown in Fig. 4, the cross-sectional structure is integrated with the wire, and the wire that has been reduced in cross-section to 0.5 mm in diameter is subjected to the same compound generation heat treatment as in the above example. In this case, the same current characteristics as in the above embodiment can be obtained.
実施例 1 3 Example 13
'― C u - 5 w t 母相のな;^に V 心鎳 1 20 本が埋設され た C u - G a - V 複合多心線を伸線加工に よ っ て直径 0. 5 m と し , こ の線材を切断加工に よ っ て長さ 1 0 鲰以下の 短尺複合線を作製 した。 こ の短尺複合線を実施例 1 2 と 同様の方法に よ C u - 5 w t G a 母相の固相温度 〗 0 4 0 。( か ら液相温度 1 0 7 Q 3Cの固液共存領域でホ ッ ト ブ レ ス に よ 加圧 して成形体を作製 した。 この成形体'を冷間溝 ロ ール圧延 と伸線に よ っ て直径 0. 3 ま で伸線 し , この 線材の表面に & a を厚さ 約 1 5 Am電着 し のち, 6 2 0°Cで '-Cu-5 wt In the mother phase; the Cu-Ga-V composite multifilamentary wire, in which 120 V cores are buried, is made 0.5 m in diameter by wire drawing. A short composite wire with a length of 10 mm or less was produced by cutting this wire. I a short composite wire this to the same manner as in Example 1 2 C u - 5 wt G a solidus temperature〗 of matrix 0 4 0. (To prepare a pressurized et liquid phase temperature 1 0 7 Q 3 C of the solid-liquid coexisting region E Tsu preparative blanking and by pressing the record scan by molding. The molded body 'Hiyakanmizo b Lumpur rolling and Shin The wire was drawn up to a diameter of 0.3, and & a was electrodeposited on the surface of this wire by a thickness of about 15 Am.
OMPI 5 0 時間の V 5 (Ja 生成熱処理を施 して V 3 G a 化合物超電 導線を作製 した o こ の線材について種々 の条件下で超電 導特性を測定 した結果 , 実 β例 〗 と 同様良好る特性が得 られる こ と を確認 した ο OMPI 5 0 h V 5 (J a product heat treatment facilities to V 3 G a compound than electrodeposition wire of o this of manufacturing a lead results of measurement of the superconducting properties under various conditions for a, the actual β Example〗 It has been confirmed that good characteristics can be obtained ο
上記実施例の かで , 多数の短尺複合線を集めて成形 体を構成する工程に おいて , C u 系 , A 系 , G a 系 , & e 系 , S i 系 ., S n 系 , C u - Α ·^ 系 , C u - G a 系 , C u - (J e 系, C u - S n 系 , C u - S i 系の金属粉あ るいは金属 繊維を添加する こ と や , 心線に使用する高融点成分であ る N ¾ , あ るいは V に Ti , Ta , Hf , Zr を添加する こ と どに よ つ て特性の改善を 図る こ と ど も 有効る工業 的手段であ る 0 ま た , 本発明 に よ る化合物超電導線材の 製造方法は N¾ 3 Sn , V S Ga 線材以外の化合物超電導線 材であ る N¾ 5 A , N b 5 G a , N ¾ 5 G e , Y 5 At , V3S i  In the above embodiment, in the process of forming a molded body by collecting a large number of short composite wires, Cu system, A system, Ga system, & e system, Si system, Sn system, C system The addition of metal powder or metal fiber of u-Α · ^ system, Cu-Ga system, Cu- (Je system, Cu-Sn system, Cu-Si system, An industrial means that is effective in improving the characteristics by adding Ti, Ta, Hf, and Zr to N¾ or V, which is the high melting point component used in the core wire. In addition, the method for producing a compound superconducting wire according to the present invention is based on N 化合物 5A, Nb5Ga, and N¾5Ge, which are compound superconducting wires other than N¾3Sn and VSGa wires. , Y 5 At, V3S i
どの製造に対 して も 適用で き る も ので あ る 。  It can be applied to any manufacturing.
OMPI OMPI

Claims

請 求 の 範 囲  The scope of the claims
(1) b 系又は V 系のいずれかの金属心線を , 容易に変 形加工で き る 金属か ら成る母相に埋設 して複合線を得 る工程 と , この複合線を切断加工 して得た短尺複合線 を多数集めて成形加工 して N ¾ 系又は V 系の金属か ら 成る繊維組緣を含有する線材を得る工程 と , この線材 に熱処理を施 こ して超電導化合物を生成する工程 と を 含む こ と を特徵 とする化合物系超電導線材の製造方法。 (1) A process to obtain a composite wire by embedding a metal core wire of either b-system or V-system in a matrix made of a metal that can be easily deformed, and cutting this composite wire. Collecting and forming a large number of short composite wires obtained in this way to obtain a wire rod containing a fiber braid composed of N¾-based or V-based metal, and subjecting this wire to heat treatment to produce a superconducting compound A method for producing a compound-based superconducting wire, comprising the steps of:
(2) 上記母相は CU 系 , Sn系 , 系 , Ge 系 , A 系, Si 系 , C u - S n 合金系 , C u _ G a 合金系 , G u - d e 合金 系 , c u - A 合金系 , C u - S i 合金系の う ちの少 く と も 一種以上の金属か ら成る こ と を特徵 と する特許請 求の範囲第 1 項に記載の化合物系超電導線材の製造方 は) 上記母相 と して用いる C u - S ii 合金系 , C u - G a 合 金系 , C u - G e 合金系 , C u - A 合金系 , C u - S i 合 金系の金属は C u 饞度が 8 0 — 9 9. であ'る こ と を 特徵 とする特許請求の範囲第 2 項記載の化合物系超電 導線材の製造方法 o (2) the matrix phase C U based, Sn-based, system, Ge-based, A type, Si-based, C u - S n alloy systems, C u _ G a alloy system, G u - de alloy systems, cu - The method for producing the compound superconducting wire described in item 1 of the patent request, which is characterized in that at least one of the A alloy system and the Cu-Si alloy system is made of at least one metal, ) used in the above mother phase C u - S ii alloy systems, C u - G a alloy system, C u - G e alloy systems, C u - a alloy systems, C u - S i alloys based metal is C u饞度8 0 -. 9 9 process for the preparation of a compound based greater electrostatic conductor material claims second term according to Toku徵the this Ru der 'o
(4) 上記母相に In , P¾ , Mn , Sn , Ga , Al , Mg ど を単体あ る いは合金 と して添加する こ と に よ 機械的 性質 も し く は超電導特性を改善する こ と を特徵 とする 特許請求の範囲第 2 項記載の化合物系超電導線材の製 造方法 o (5) 特許請求の範囲第 〗 項記載の方法において , N ¾ 系 ま たは V 系の金属か ら成る繊維組織を含有する線材の 少 く と も 一部に S n系, 'G a系, Ge系, 系 , S i系 , S n - C u 合金系 , G a - C u 合金系 , G e - C u 合金系 , A - C u 合金系 , S i - C u 合金系の う ちいずれか一種 以上の金属層が密着構成されている こ と を特徵 と する 化合物系超電導鎳材.の製造方法 o (4) By adding In, P¾, Mn, Sn, Ga, Al, Mg, etc. to the above matrix as a simple substance or as an alloy, mechanical properties or superconducting properties can be improved. And a method for producing a compound superconducting wire according to claim 2. (5) In the method described in Claim (2), at least a part of a wire rod containing a fiber structure composed of an N¾-based or V-based metal is Sn-based or 'Ga-based. , Ge-based, Si-based, Sn-Cu-based, Ga-Cu-based, Ge-Cu-based, A-Cu-based, Si-Cu-based A method for producing a compound-based superconducting material characterized in that at least one kind of metal layer is formed in close contact.
(6) 上記母相 と して.用い る S n - C u 合金系 , G a - C u 合 金系 , G e - C u 合金系 , A - C U 合金系 , S i - C u 合 金系の金属は C u 濃度カ 0 — 5 0 w t であ る こ と を 特徵 とする特許請求の範囲第 2 項記載の化合物系超電 導線材の製造方法。 . C u alloy system, G a - - (6) above parent phase and to S n of Ru with C u alloy system, G e - C u alloy system, A - C U alloy system, S i - C u if 3. The method for producing a compound-based superconducting wire according to claim 2, wherein the gold-based metal has a Cu concentration of 0 to 50 wt .
(7) 13 系ま たは V 系の金属か ら な る锇維組綠を.含有す る線材は , 短尺複合線か ら ¾ る成形体に常温か ら 1 050 °〇ま で の範囲 の温度で断面縮少加工を施 し , そ の後冷間にて断面縮少加工を施 して得 る こ と を特徴 と する特許請求の範囲第 〗 項に記載の化合物系超電導線 材の製造方法 o  (7) The wire rod containing a fiber composed of a 13 series or V series metal can be used to form a compact consisting of a short composite wire in the range of room temperature to 1050 ° C. The method for producing a compound-based superconducting wire according to claim 6, wherein the cross-sectional reduction is performed at a temperature, and then the cross-sectional reduction is performed in a cold state. Method o
(8) N ¾ 系 ま たは V 系の金属か ら ¾ る繊維組織を含有す る線材は , 短尺複合線に粉未あ る いは繊維状の母相を 構成する いずれかの金属を少 ¾ く と も 1 種以上添加 し て形成する こ と を特徴 と する特許請求の範囲第 1 項に 記載の化合物系超電導線材の製造方法 o  (8) A wire rod containing a fibrous structure composed of N-type or V-type metal should be prepared by reducing the amount of any metal that forms the powdery or fibrous matrix in the short composite wire. A method for producing a compound superconducting wire according to claim 1, characterized in that the compound superconducting wire is formed by adding at least one or more kinds.
(9) N ¾ 系又は V 系のいずれかの金属心鎳を , 容易 に変 形加工で き る 金属か ら ¾ る母相に埋設 して複合線を得 る工程 と , この複合線を切断加工 した後再び成形加工 して多孔質成形体を得る工程と , この多孔質成形体に 溶融状態の S n 又は S n - C u 合金或いは d a 又は G a (9) Either the N N or V metal core can be easily changed. A step of obtaining a composite wire by embedding it in a matrix formed of a metal that can be formed, a step of cutting the composite wire and forming it again to obtain a porous formed body, molten body S n or S n - C u alloy or da or G a
- C U 合金 , 又は G e - C u 合金 , 又は A i - 合金 , S i 又は S i - C u 合金の う ち少な く と も い ずれか 1 種の金属を浸透させた後断面縮少加工 と熱処 理を施 こす工程 と を含む こ と を特徵 とする化合物系超 電導線材の製造方法 o - C U alloys, or G e - C u alloys, or A i - alloys, S i or S i - sectional scaled down after impregnated with C u Had the Hare Chi least for the alloys Zureka one metal A method for producing a compound superconducting wire characterized by including a process and a step of performing a heat treatment o
αο 上記多孔質成形体を得る工程は , 切断 した複合線を 集めて プ レ ス加工 し , 1 5 0— 1 0 5 0 °Cで焼結 して成る こ と を特徵 と する特許請求の範囲第(9)項に記載の化合 物系電導線材の製造方法。 . αΰ Ν ¾ 系ま たは V 系のいずれかの金属心線を容易に変 形加工で き る 金属か ら る母相に埋設 して複合線を得 る工程 と , こ の複合線を切断加工 して得た短尺複合線 の少な く と も 切断部分に変形加工が容易な 金属を付着 させる工程 と , この短尺複合線を多数集めて成形加工 して Ν ¾ 系ま たは V 系の金属か ら る鑌維組赣を含有 する線材を得る工程 と , この線材に熱処理を施 して超 電導化合物を生成する工程 と を含む こ と を特徵 と する 化合物系超電導線材の製造方法 ο αο The step of obtaining the porous molded body is characterized in that the cut composite wire is collected, pressed, and sintered at 150 ° C to 150 ° C. The method for producing a compound-based conductive wire according to item (9). A process to obtain a composite wire by embedding a metal core wire of either αΰ ΰ 系 system or V system in a parent phase made of metal that can be easily deformed, and cutting this composite wire Attach metal that can be easily deformed to at least the cut part of the short composite wire obtained by processing, and collect and form a large number of these short composite wires to form Ν- or V-based metal. A method for producing a compound-based superconducting wire characterized by including a step of obtaining a wire containing the fiber assembly and a step of subjecting the wire to heat treatment to form a superconducting compound.
&2) 母稆お よ び短尺複合線の切断部分に付着する 金属 と して , C u 系 , S n 系 , G a 系 , G e 系 , A _ 系 , S i 系 , S n - C u 合金系 , G a - C u 合金系 , G θ - C u 合金系 , A ^ - C ii 合金系 , S i - C u 合金系の う ち少 く と も 1 種以上の金属を; ¾いる こ と を特徴 と する特許 請求の範囲第 αΐ)項記載の化合物系超電導線材の製造方 法 ο & 2) as a metal to adhere to the cut portion of the mother稆your good beauty short composite wire, C u system, S n system, G a system, G e system, A _ system, At least some of Si-based, Sn-Cu-based, Ga-Cu-based, Gθ-Cu-based, A ^ -Cii-based, and Si-Cu-based The method for producing a compound-based superconducting wire according to claim αΐ), characterized in that it comprises one or more metals.
(L3) 超電導化合物を生成する ため の熱処理は , 5 (3 0— 1 0 5 fl °Cの温度で行る う こ と を特徴 と する特許請求の 範囲第(11)項に記載の化合物系超電導線材の製造方法 o  (L3) The compound system according to claim (11), wherein the heat treatment for forming the superconducting compound is performed at a temperature of 5 (30-105 fl ° C). Superconducting wire manufacturing method o
U 超電導化合物の高融点成分で あ る N 系ま たは V 系  U High melting point component of superconducting compounds N-based or V-based
のいずれかの金属心線を , 容易 に変形加工で き る 金属 か ら る母相に埋設 して複合線を得る工程 と , こ の複 合線を切断加工 じた後再び集合する工程 と , 集合体を 母相金属の融点以.上でかつ心線金属の融点以下の温度 で溶解 して鐃塊を得る工程 と銬塊を断面縮少加工する こ と に よ つ て線材を得る工程 と 線材に熱処理を施すェ 程 と を含む こ と を特徵 とする化合物系超電導鎳材の製 造方法 o  A step of embedding one of the metal core wires in a matrix made of a metal that can be easily deformed to obtain a composite wire, a step of cutting the composite wire and then reassembling the composite wire; Melting the aggregate at a temperature above the melting point of the parent metal and below the melting point of the core metal to obtain a cylindrical mass, and a process to obtain a wire by reducing the cross section of the mass. A method of manufacturing a compound superconducting material characterized by including a step of subjecting a wire to heat treatment.
(13 上記母相は C u 系 , C u - S n 系 , C u - G a 系 , C u - G e 系 , C u - A 系 , C u - S i 系金属層の う ち少 ¾ く と も 一種以上の金属か ら成る こ と を特徵 と する特許請 求の範囲第 α4)項記載の化合物系超電導線材の製造方法 o (16) 上記母相 と して用い る C u - S n 合金系 , C u - d a 合 (13 the matrix phase C u system, C u - S n system, C u - G a system, C u - G e system, C u - A system, C u - cormorants Chi small ¾ of S i based metal layer The method for producing a compound-based superconducting wire according to claim 4), which is characterized by being composed of at least one kind of metal.o (16) Cu-S used as the mother phase n alloy, Cu-da combination
金系 , C u - G e 系 , C u - A 合金系 , C u - S i 合金系 において , C の濃度力 9 0 — 9 9. 9 w ΐ で あ る こ と を Gold-based, C u - G e system, C u - A alloy system, C u - in S i alloy system, concentration force 9 0 C - and Oh Ru this at 9 9. 9 w ΐ
Ο ΡΙ IPO 特徵とする特許請求の範囲第 M項記載の化合物系超電 導線材の製造方法 ο Ο ΡΙ IPO A method for producing a compound superconducting wire according to claim M
ατ) 上記铸塊を断面縮少加工する こ と に よ つ て得た線材 の表面あ るいは内部の少 く と も 一部に該電導化合物 の低融点成分を 5 0 w t 以上含む金属層 を付着 し, 熱 処理する こ と に よ っ て , 超電導化合物を生成させる こ と を特徵 とする特許請求の範囲第 M項記載の化合物超 電導線材の製造方法 o ατ) A metal layer containing at least 50 wt% of the low melting point component of the conductive compound on the surface or at least a part of the inside of the wire obtained by reducing the cross section of the 铸 lump. The method for producing a compound superconducting wire according to claim M, wherein a superconducting compound is formed by attaching and heat-treating the compound.
as 多数の切断された複合線の集合体を溶解お よ び铸造 する工程において溶湯に超音波 も し く は機械振動を力 Π える こ と を特徵 とする特許請求の範囲第(L )項記載の化 合物超電導線材の製造方法 o as claimed in claim (L), characterized in that ultrasonic or mechanical vibration is applied to the molten metal in the step of melting and forging an aggregate of a large number of cut composite wires. Method for manufacturing compound superconducting wire o
化合物超電導物質の高融点成分であ る Ν ¾ 系ま たは V 系のいずれかの金属か ら ¾ る心線を , 容易に変形加 ェでき る 金属か ら る る母相に埋設 して複合線を得るェ 程 と , こ の複合線を切斬加工 したの ち再び集合させる 工程 と , こ の集合体を母相金属の融点近傍で加圧成形 する工程 と , こ の成形体を断面縮少加工する工程 と前 記断面縮少加工された成形体に熱処理を施す工程を含 むこ と を特徵 とする化合物系超電導線材の製造方法 ο (20) 上記変形加工容易 る金属母相は C u 系 , C α - A 系 , C u - G a 系 , C u - & e 系 , C u - S i 系 , C u - S η 系金属層 の う ち少 く と も 一種以上か ら ¾ る こ と を特徵 とする特許請求の範囲第 tt9項記載の化合物系超電導線 材の製造方法 0 A core consisting of a high-melting-point metal or a V-series metal, which is a high-melting point component of a compound superconducting substance, is embedded in a matrix of a metal that can be easily deformed. A step of obtaining the wire, a step of cutting the composite wire and then assembling it again, a step of press-forming this aggregate near the melting point of the parent metal, and a step of reducing the cross-section of the formed body. A method of manufacturing a compound superconducting wire characterized by including a step of performing a small working and a step of performing a heat treatment on the compact whose cross-section has been reduced as described above.ο (20) The metal matrix which can be easily deformed is Cu At least one of the following metal layers: C α -A system, C u -G a system, C u-& e system, C u -S i system, and C u -S η system metal layer. The compound-based superconducting wire according to claim tt9, which is characterized in that Material manufacturing method 0
(21) 上記変形加工容易る る 金属母相で C u - A ^ 系 , C U - 系 , C u - G e 系 , C u - S i 系 , C u - S n 系に い て C u 濃度カ 9 0 — 9 9.9重量パ ー セ ン ト で あ る こ と を 特徴 とする特許請求の範囲第 ¾項記載の化合物系超電 導線材の製造方法 o (21) C with a metal matrix that Ru said deforming easily u - A ^ system, C U - based, C u - G e system, C u - S i based, C u - in are in the S n system C u concentration Ca 9 0 - 9 9.9 wt path over cell manufacturing method of the compound-based than conductive wire material down preparative Oh Ru this and claims a ¾ claim wherein o
(22) 上記化合物超電導物質の高融点成分金属が変形加工 容易 な る母相金属中 に埋設された集合体の表面あ るい は内部の少 く と も 一部に , 該化合物超電導物質の低融 点成分で ある A , G a , Q θ , S i , S n の う ち少 く と も (22) At least at least a part of the surface or inside of the aggregate embedded in the parent metal in which the high melting point component metal of the compound superconducting material is easily deformed, and the low melting point of the compound superconducting material is used. At least any of the point components A, G a, Q θ, S i, and S n
—種類の成分金属を 5 G 重量パ ー セ ン ト 以上を並設さ せ., しかる の ちに熱処理に よ っ て化合物超電導物質を 生成させる こ と を特徵 とする特許請求の範囲第 9)項に 記載の化合物系超電導線材の製造方法 o — Claims 9 ) characterized in that at least 5 G weight percent of the component metals are juxtaposed, and then a compound superconducting material is formed by heat treatment. Method for manufacturing compound superconducting wire described in section o
(23) 上記化合物超電導物質の高融点成分金属が変形加工 容易な る母相金属中 に埋設された集合体を , 母相金属 の溶融点以下 1 0 0 °Cか ら溶融点 を 1 0 0 °C以上 こえない 範囲において , 一定温度 も し く は温度を変化させるカ ら加圧成形する こ と を特徵 と する特許請求の範囲第 項記載の化合物系超電導線材の製造方法 ο  (23) The assembly in which the high-melting-point component metal of the above compound superconducting material is embedded in the parent metal, which can be easily deformed, is changed from 100 ° C below the melting point of the parent metal to 100 ° C. A method for producing a compound superconducting wire according to claim 1, characterized in that the molding is carried out under a constant temperature or at a temperature that changes at a temperature within a range not exceeding ° C.
(24) · 上記化合物超電導物質の高融点成分金属が C u - A 系 , C u - G a 系 , C u - 系 , C u - S i 系 , C u - S n 系の母相金属 中に埋設された集合体を母相金属の固相 温度以上液相温度以下の固液共存状態に おい て加圧成 形する こ と を特徵 と する特許請求の範囲第 ^項記載の 化合物系超電導線材の製造方法 o (24) · The high melting point component metal of the compound superconducting material is a parent metal of Cu-A, Cu-Ga, Cu-, Cu-Si, or Cu-Sn. The aggregate buried in the solid phase is pressurized in a solid-liquid coexist The method for producing a compound superconducting wire according to claim ^, characterized in that it is shaped. O
OMPI IPO OMPI IPO
PCT/JP1981/000182 1980-08-22 1981-08-20 Process for manufacturing chemical compound-type superconducting wires WO1982000733A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP55115712A JPS5740816A (en) 1980-08-22 1980-08-22 Compound superconductive material and method of producing same
JP80/115712 1980-08-22
JP56065760A JPS57180805A (en) 1981-04-30 1981-04-30 Method of producing compound series superconductive wire material
JP81/65760810430 1981-04-30

Publications (1)

Publication Number Publication Date
WO1982000733A1 true WO1982000733A1 (en) 1982-03-04

Family

ID=26406906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1981/000182 WO1982000733A1 (en) 1980-08-22 1981-08-20 Process for manufacturing chemical compound-type superconducting wires

Country Status (1)

Country Link
WO (1) WO1982000733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983228A (en) * 1989-03-31 1991-01-08 General Electric Company Contraction pre-annealing superconducting wire for length stabilization followed by reaction annealing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522599B1 (en) * 1969-08-05 1977-01-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522599B1 (en) * 1969-08-05 1977-01-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983228A (en) * 1989-03-31 1991-01-08 General Electric Company Contraction pre-annealing superconducting wire for length stabilization followed by reaction annealing

Similar Documents

Publication Publication Date Title
KR930005895B1 (en) Powdered metal composite
USRE32178E (en) Process for producing compound based superconductor wire
JPS6331884B2 (en)
WO1982003941A1 (en) Compound-type superconductor and process for its preparation
JPS6117325B2 (en)
JP2685147B2 (en) Superconducting wire and its manufacturing method
WO1982000733A1 (en) Process for manufacturing chemical compound-type superconducting wires
JP3716304B2 (en) Manufacturing method of Nb3Ga extra fine multi-core superconducting wire
WO2003031665A2 (en) Superconductor materials fabrication method using electrolytic reduction and infiltration
JPS6116139B2 (en)
JPS63285155A (en) Oxide type superconductive material and production thereof
JP3050576B2 (en) Method for producing compound linear body
JPS625990B2 (en)
JPS639329B2 (en)
JPS58169712A (en) Method of producing composite superconductive wire
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPH09153310A (en) High-strength superconducting wire
JPH0735563B2 (en) Method for producing compound superconducting wire
JPS59198614A (en) Method of producing nb3sn superconductive wire
JPH04155714A (en) Manufacture of nb3 sn type superconducting wire material
JPS6029166B2 (en) Manufacturing method of superconducting compound wire
JPS5875874A (en) Nb3sn series superconductive material and manufacture thereof
JPS639330B2 (en)
JPH0252365B2 (en)
JPS5832308A (en) Method of producing compound series composite superconductive wire

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): DE GB US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642