WO1980000488A1 - Capteur d'energie solaire - Google Patents

Capteur d'energie solaire Download PDF

Info

Publication number
WO1980000488A1
WO1980000488A1 PCT/FR1979/000072 FR7900072W WO8000488A1 WO 1980000488 A1 WO1980000488 A1 WO 1980000488A1 FR 7900072 W FR7900072 W FR 7900072W WO 8000488 A1 WO8000488 A1 WO 8000488A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor according
exchange body
air
exchange
orifices
Prior art date
Application number
PCT/FR1979/000072
Other languages
English (en)
Inventor
R Grossin
J Pellerin
Original Assignee
Bertin & Cie
R Grossin
J Pellerin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bertin & Cie, R Grossin, J Pellerin filed Critical Bertin & Cie
Publication of WO1980000488A1 publication Critical patent/WO1980000488A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/66Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/55Solar heat collectors using working fluids the working fluids being conveyed between plates with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/60Details of absorbing elements characterised by the structure or construction
    • F24S70/65Combinations of two or more absorbing elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention is in the field of the use of solar energy, in particular the direct absorption of radiation received on a flat surface.
  • Heating the air in the premises with solar radiation is an old problem, but experience has shown that, despite many efforts, it has not yet been satisfactorily resolved, having regard to the costs of installation and maintenance.
  • the solar collector should be able to be mounted very easily on the walls of a building, should be solid and inexpensive, light if possible, should it not be able to clog or become clogged even with dusty air, and nevertheless that it preserves a maximum output for the various lighting conditions (direct, reflected or diffuse), finally that it delivers the heated air to the most favorable places for ventilation and with the minimum of loss pressure.
  • the sensor described in this patent comprises, as is common, a flat rectangular housing of which all the walls are thermally insulated, except the wall facing the light which is transparent.
  • Said housing contains parallel absorbent plates, in louver or baffle, close to each other and halfway between said transparent wall and the opposite bottom. In this way, an air flow admitted at one end of the housing near the transparent wall can pass between these plates warmed by the sun and come out hot at the other end along the opposite bottom.
  • These plates can also be reflective to infrared radiation from the side of this bottom, which reduces the heat losses from this bottom towards the transparent wall, according to a well-known effect.
  • this sensor can be integrated into a ventilation circuit which comprises, in a known manner, a heat storage device, for example in a gravel bed traversed by the hot air which leaves the sensor.
  • French patent n ° 76 21 264 - 2 358 624 describes a sensor of similar constitution, but with plates constituted by orientable absorbent and reflective lamellae.
  • the same general modes of operation and use are repeated in the present invention with improvements which contribute to better performance at a lower price and to better integration with the ventilation of a building.
  • the invention solves the problem of using solar heat at a competitive price with that of hydrocarbon combustion energy, currently the most economical means of heating.
  • the invention which also uses an ascending passage in the form of a flat housing with a transparent face and a permeable exchange body placed between the opaque bottom and the transparent wall, is characterized in that this exchange body permeable is combined with means which create a slight pressure drop regularly distributed over its surface, which also distributes the air flow over this entire surface.
  • Said means can be associated with the exchange body or be an integral part thereof.
  • the thermal convection currents of the heated air are avoided in the housing and within the exchange body.
  • Such convection currents which can occur in the embodiments mentioned above, heat the transparent wall, which considerably reduces the efficiency of the sensor in question.
  • a current of regular air going from the transparent wall towards the bottom, perpendicular on average to the permeable exchange body which thus works optimally.
  • the distribution partition is preferably placed along the exchange body opposite the bottom of the housing. In this case, it is preferably made reflective with respect to it, for example by aluminization. However, it could also be transparent and placed along the exchange body on the side of the transparent wall or even within the exchange body.
  • the exchange body is porous.
  • the solar rays which penetrate at the bottom of the pores or alveoli heat up in all its thickness this body which moreover offers a surface of exchange with the air which is maximum up to 3 or 4 times the surface of direct absorption .
  • this air being regularly sucked over the entire surface due to the above-mentioned partition wall, does not tend to emerge from the cells towards the inlet face, it therefore has very little possibility of creating convection currents between the transparent wall and said entry face of the exchange body.
  • This body can therefore be formed by a stack of threads or fibers, such as metallic or natural straw, felt, or a stack of layers of fabrics or nonwoven fibers. In all cases, it is necessary that the stack is thick enough to stop all direct sunlight and, of course, that the first layer at least is dark or black in color. Plates of granular material can also be used as the permeable exchange body: sand, vitrified or plastic balls, material which can be retained between screens or sieves, or agglomerated, but always porous and dark in color.
  • the exchange body in this case, but also in others, it is advantageous for the exchange body to consist of several plates placed on edge and end to end, retained by thin horizontal spacers.
  • Such spacers which can be connected to the distribution partition help to avoid convection currents within the exchange body.
  • the lightest, and therefore often preferable, exchange bodies are plates of plastic material with cells communicating with each other, for example crosslinked expanded polyurethane with open cells, of diameter greater than 0.3 mm and generally comprised between 1 and 5 mm and from 5 to 30 mm thick. It must be dark in color, at least on its face exposed to the sun.
  • the characteristic dimension of these elements should be relatively large and, preferably, between 1 and 10 mm.
  • the exchange body must have a thickness at least triple of said characteristic dimension so as not to be crossed by solar radiation.
  • the partition must have perforations of dimensions similar to this characteristic dimension. For example, it is pierced with 5 mm diameter holes in 100 mm steps. To avoid any convection along the exchange body, this partition plated along the exchange body is preferably glued to it. It can therefore support or strengthen it. It can be reduced to a layer of glue or varnish that is perforated or eliminated in places of desired diameter and pitch. Preferably, it is reflective and placed behind the exchange body.
  • the invention also includes certain details of the construction of the housing in order to best adapt it to the preceding characteristics, in particular distributed air inlets, possibilities of stacking in height of modular housings, as well as methods for integration. of these on a building facade with natural or artificial ventilation, details and methods which will appear in the description of the embodiments below, given by way of nonlimiting examples.
  • Figure 1 is a schematic vertical sectional view of an improved sensor according to the present invention.
  • Figure 2 is a shortened vertical sectional view of a sensor made in the form of stackable modules.
  • Figure 3 schematically shows a building equipped with modules according to Figure 2.
  • Figure 4 is a schematic view in vertical section of another variant of the sensor.
  • FIG. 1 shows an example of application of the invention to the sensor described with reference to FIG. 1 of the aforementioned patent n ° 76 21 264 where there is a limited ascending passage 1, on the side intended to be exposed to the sun, by a transparent wall 2.
  • the distribution partition is constituted by lamellas 3 mutually parallel and orientable, one of the faces 31 is black or dark in color while the other face 32 is clear or metallized.
  • the strips 3 carry extensions 15 which can be simple folds of these strips, at approximately right angles, their sections thus having an L shape. In practice, these strips are much closer to each other. other than the figure to ensure good heat exchange.
  • they may have a width of 50 mm and be spaced 5 mm apart, in the heating position which is shown at the top of the figure, where the end of the extensions 15 abuts against the reflective face 32.
  • These extensions in this example, therefore have a length of 5 mm, and the angle ⁇ of the lamellae 3 with the plane of the sensor is approximately 12 °.
  • the orifices 15, 16 or notches 17 may be approximately 3 mm and distributed 120 mm from each other. The end of each of said extensions abuts against the reflecting face 32, in the heating position (top of the figure).
  • the transparent wall 2 can be single-walled, and not double, as is generally practiced in absorption solar collectors to reduce the thermal losses of this wall heated by convection.
  • the air heated on the exchange body passes through it immediately, and does not come to heat the transparent wall. This is an important advantage of the invention.
  • the single wall is less expensive and absorbs thermal radiation less.
  • FIG. 2 represents a preferred embodiment in light stackable modules which can be arranged on the south facade of a building.
  • Each module or group of modules can be the same height as a floor, so as to be in harmony with the appearance of all the neighboring windows.
  • each module has a height of 2.85 m, for example.
  • the housing 20 delimiting an ascending passage 21 of thickness equal for example to 200 mm between the permeable exchange body 23 and the bottom 25, preferably heat-insulating.
  • the transparent wall 22 is mounted a little obliquely, presenting what is called a fruit in terms of architecture, so that its lower edge 26 projects outside relative to the upper edge 27 of the module placed below.
  • This rim 28 constitutes an air inlet sheltered from the rain for the air to be heated in the housing 20.
  • a distribution partition 29 pierced with holes such as 30 uniformly distributed is glued against the rear face of the exchange body
  • the transparent plate 22 which can be made of glass of low optical quality, or even of corrugated glass, is fixed by removable glazing beads 33,. with watertight seals 34, on the upper and lateral edges of the housing. At the bottom, it can be mounted in a fixed profile 331.
  • Figure 3 is an example of the use of six heights of such boxes 20 on the facade of a seven-storey building, the ground floor not being trimmed in order to avoid damage to the sensor and to clear the display cases. commercial.
  • the ascending passages 21 extend each other with sealing to form a pipe whose lower end is closed at 211 and the upper end supplies air. warmed up a controlled mechanical ventilation circuit.
  • This circuit includes, connected at 35 to the pipe 21, a storage / heat of this air heated during the day.
  • the rejection duct 42 which is adjacent to the "storage tank 36, may include an exchanger, for example formed fins 44 to avoid cooling the air arriving through the conduit 35. These fins can be retracted to be put out of action when the solar heating is sufficient. In summer, the heated air is exhausted through an orifice
  • FIG. 4 shows another mode of application of the invention.
  • the sensor is fixed to a prefabricated hollow vertical structure 50, 51 which is then filled with gravel 52 and which simultaneously serves as an upward passage of heated air and thermal storage device.
  • the wall 50 is pierced with orifices such as 53 distributed and it constitutes by itself the distribution partition according to the invention.
  • On it are fixed horizontal spacers such as 54 which support a mesh 55 with fine wires to retain a filling of dark colored sand which constitutes the permeable exchange body.
  • the transparent plate 56 is, in this example, articulated at its upper part at 57 to facilitate its maintenance.
  • the wall 51 and the side walls have recessed moldings 58 and raised 59 on their edges to guide the stack of such sensors.
  • the gravel filling 52 is preferably done after this installation.
  • the structure 50, 51, 52 could also constitute the structure of the building, for example produced according to French patent No. 1,515,039 of the Applicant.
  • the pressure drop of the heating and ventilation circuit can be quite low, a simple static suction such as a chimney can replace the fan 43 to ensure the circulation of air. It goes without saying that the embodiments described have been given only as examples and that they could be modified, in particular by substitution of technical equivalents, without going beyond the ambit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Building Environments (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Massaging Devices (AREA)
  • Golf Clubs (AREA)

Abstract

Le capteur qui est applicable, notamment, au chauffage et a la ventilation de locaux, comporte un passage ascendant (1) en forme de boitier plat limite d'un cote par une paroi transparente (2) destinee a etre exposee au rayonnement solaire et a l'oppose, par un fond opaque. Un corps d'echange (3), permeable a l'air, est place entre le fond et la paroi (2). Ce corps d'echange est combine a des moyens (15, 16, 17) qui creent une perte de charge regulierement repartie sur sa surface afin de repartir egalement le debit d'air sur ladite surface.

Description

Capteur d'énergie solaire
La présente invention se place dans le domaine de l'utilisation de l'énergie solaire, en particulier de l'absorption directe du rayonnement reçu sur une surface plane.
Elle se place aussi dans le domaine de la construction immobilière et spécialement du chauffage et de la ventilation de locaux d'habitation ou industriels, car les capteurs en question sont particulièrement adaptés au chauffage de l'air de ventilation. Ils peuvent à ce titre faire partie d'un circuit de conditionnement de l'air.
Chauffer l'air des locaux au moyen du rayonnement solaire est un problème ancien, mais l' expérience a prouvé que, malgré de très nombreux efforts, il n'a pas été encore résolu d'une façon satisfaisante, eu égard aux coûts d'installation et d'entretien.
Il convient en particulier que le capteur solaire puisse être monté très facilement sur les parois d'un immeuble, qu'il soit solide et peu coûteux, léger si possible, qu'il ne puisse s'encrasser ou se boucher même avec de l'air poussiéreux, et néanmoins qu'il conserve un rendement maximal pour les diverses conditions d'éclairement (direct, réfléchi ou diffus), enfin qu'il délivre l'air réchauffé aux endroits les plus favorables pour la ventilation et avec le minimum de perte de pression.
Pour préciser l'état de la technique en ce sens, parmi les très nombreux systèmes de capteurs solaires, on peut se référer au brevet des E.U.A. n° 2 680 437 de E. W. MILLER. Le capteur décrit dans ce brevet comporte, comme il est courant, un boîtier plat rectangulaire dont toutes les parois sont thermiquement isolées, sauf la paroi tournée vers la lumière qui est transparente. Ledit boîtier contient des plaques absorbantes parallèles, en persienne ou en chicane, proches les unes des autres et à mi-distance de ladite paroi transparente et du fond opposé. De la sorte, un débit d'air admis à une des extrémités du boîtier près de la paroi transparente peut passer entre ces plaques réchauffées par le soleil et sortir chaud à l'autre extrémité le long du fond opposé.
Ces plaques peuvent en outre être réfléchissantes au rayonnement infrarouge du côté de ce fond, ce qui diminue les déperditions thermiques de ce fond en direction de la paroi transparente, selon un effet bien connu.
Enfin, ce capteur peut être intégré à un circuit de ventilation qui comporte de façon connue un dispositif de stockage de chaleur, par exemple dans un lit de gravier traversé par l'air chaud qui sort du capteur.
Le brevet français n° 76 21 264 - 2 358 624 décrit un capteur de constitution analogue, mais avec des plaques constituées par des lamelles absorbantes et réfléchissantes orientables. Les mêmes modes généraux de fonctionnement et d'utilisation sont repris dans la présente invention avec des perfectionnements qui concourent à un meilleur rendement à un moindre prix et à une meilleure intégration à la ventilation d'un immeuble. Ainsi, l'invention résout-elle le problème d'utilisation de la chaleur solaire à un prix compétitif avec celui de l'énergie de combustion des hydrocarbures, actuellement jusqu'ici le plus économique des moyens de chauffage. Pour ce faire, l'invention, qui utilise aussi un passage ascendant en forme de boîtier plat avec une face transparente et un corps d'échange perméable placé entre le fond opaque et la paroi transparente, se caractérise en ce que ce corps d'échange perméable est combiné à des moyens qui créent une légère perte de charge régu- lierement répartie sur sa surface, ce qui répartit également le débit d'air sur l'ensemble de cette surface.
Lesdits moyens peuvent être associés au corps d'échange ou faire partie intégrante de celui-ci.
En pratique, il semble que le meilleur moyen de répartition selon l'invention consiste en une cloison imperméable avec quelques orifices répartis et qui est appliquée sur toute la surface du corps d'échange. On dénommera cette cloison ci-après : cloison de répartition. On pourrait toutefois ménager de tels orifices dans le corps d'échange lui-même.
Grâce à l'invention, on évite dans le boîtier et au sein du corps d'échange les courants de convection thermique de l'air échauffé. De tels courants de convection, qui peuvent se produire dans les réalisations rappelées plus haut viennent réchauffer la paroi transparente, ce qui diminue énormément le rendement du capteur en question, Selon l'invention, au contraire, on obtient dans le boîtier un courant d'air régulier allant de la paroi transparente vers le fond, perpendiculairement en moyenne au corps d'échange perméable qui travaille ainsi de façon optimale. La cloison de répartition est placée de préférence le long du corps d'échange en vis-à-vis du fond du boîtier. En ce cas, elle est de préférence rendue réfléchissante en vis-à-vis de celui-ci, par exemple par alumi- nisation. Cependant, elle pourrait aussi être transparente et placée le long du corps d'échange du côté de la paroi transparente ou même au sein du corps d'échange.
Enfin, elle pourrait être partie intégrante de celui-ci qui serait par exemple constitué d'une tôle per-forée ou d'une tôle déployée à très faible perméabilité. Ce ne serait pas cependant une solution optimale, car la surface d'échange avec l'air d'une telle tôle, même gaufrée, serait seulement égale ou de peu supérieure à la surface d'absorption des rayonnements. Elle serait donc surchauffée, ce qui donnerait des pertes par convection et par réémission thermique.
Aussi, et selon un second aspect de l'invention, il est préférable que le corps d'échange soit poreux. De cette façon les rayons solaires qui pénètrent au fond des pores ou alvéoles réchauffent dans toute son épaisseur ce corps qui offre de plus une surface d'échange avec l'air qui est maximale jusqu'à 3 ou 4 fois la surface d'absorption directe. En outre, cet air étant aspiré régulièrement sur toute la surface du fait de la susdite cloison de séparation, n'a pas tendance à ressortir des alvéoles vers la face d'entrée, il a donc très peu de possibilité de créer des courants de convection entre la paroi transparente et ladite face d'entrée du corps d'échange.
On peut donc constituer ce corps par un empilage de fils ou fibres, tel que de la paille métallique ou naturelle, du feutre, ou un empilage de couches de tissus ou de fibres non tissées. Dans tous les cas, il est nécessaire que l'empilage soit assez épais pour arrêter tous les rayons solaires directs et, naturellement, que la première couche au moins soit de couleur foncée ou noire. On peut aussi utiliser comme corps d'échange perméable des plaques de matériau granulaire : sable, billes vitrifiées ou en matériau plastique, matériau qui peut être retenu entre des grillages ou tamis, ou bien aggloméré, mais toujours poreux et de couleur foncée.
En particulier, dans ce cas, mais aussi dans d'autres, on a intérêt à ce que le corps d'échange soit constitué de plusieurs plaques placées sur chant et bout à bout, retenues par des intercalaires minces horizontaux. De tels intercalaires qui peuvent être reliés à la cloison de répartition contribuent à éviter des courants de convection au sein du corps d'échange.
Les corps d'échange les plus légers, et par là souvent préférables, sont des plaques en matériau plastique à alvéoles communiquant entre eux, par exemple du polyuréthane réticulé expansé à cellules ouvertes, de diamètre supérieur à 0,3 mm et compris en général entre 1 et 5 mm et d'une épaisseur de 5 à 30 mm. Il doit être de couleur foncée, tout au moins sur sa face exposée au soleil.
Il a été trouvé par la Demanderesse que, dans les divers cas ci-dessus de constitution du corps d'échange avec des éléments en fils ou fibres, granules, alvéoles, la dimensioncaractéristique de ces éléments (largeur ou diamètre des fibres ou fils, diamètre des granules ou alvéoles) doit être relativement grande et, de préférence, comprise entre 1 et 10 mm.
En effet, des éléments plus petits auraient leurs interstices vite colmatés par les poussières de l'air, et des éléments plus grands nécessiteraient des corps d'échange trop épais donc chers et lourds. Ill pourraient de plus être le siège de mouvement de convection interne. La Demanderesse a trouvé que le corps d'échange doit avoir une épaisseur au moins triple de ladite dimensioncaractéristique pour ne pas être traversé par le rayonnement solaire.
Pour les mêmes raisons, la cloison de répartition doit comporter des perforations de dimensions analogues à cette dimensioncaractéristique. Par exemple, elle est percée de trous de diamètre 5 mm au pas de 100 mm. Pour éviter toute convection le long du corps d'échange, cette cloison plaquée le long du corps d'échange est de préférence collée sur celui-ci. Elle peut de ce fait le supporter ou le renforcer. Elle peut se réduire en une couche de colle ou de vernis perforée ou éliminée aux endroits de diamètre et de pas voulus. De préférence, elle est réfléchissante et placée derrière le corps d'échange.
Elle peut aussi être une pellicule transparente sur la face avant de celui-ci, exposée au soleil. Dans ce cas, la pression de l'air sur elle suffit à l'appliquer étroitement sur le corps d'échange. Mais elle constitue alors un certain obstacle au rayonnement, surtout après un certain temps de service, par accumulation de poussière ou vieillissement. Aussi, cette solution n'est-elle pas recommandée en général.
L'invention comporte aussi certains détails de la constitution du boîtier pour l'adapter au mieux aux caractéristiques précédentes, en particulier des entrées d'air réparties, des possibilités d'empilement en hauteur de boîtiers modulaires, ainsi que des procédés pour l'intégration de ceux-ci sur une façade d'immeuble avec ventilation naturelle ou artificielle, détails et procédés qui apparaîtront dans la description des modes de réalisation ci-après, donnés à titre d'exemples non limitatifs.
La figure 1 est une vue schématique en coupe verticale d'un capteur perfectionné selon la présente invention. La figure 2 est une vue en coupe verticale raccourcie d'un capteur réalisé sous la forme de modules empilables.
La figure 3 montre schématiquement un immeuble équipé de modules selon la figure 2. La figure 4 est une vue schématique en coupe verticale d'une autre variante de capteur.
La figure 1 montre un exemple d'application de l'invention au capteur décrit en référence de la figure 1 du brevet n° 76 21 264 précité où l'on retrouve un passage ascendant 1 limité, du côté destiné à être exposé au soleil, par une paroi transparente 2. La cloison de répartition est constituée par des lamelles 3 parallèles entre elles et orientables dont l'une des faces 31 est noire ou de couleur sombre tandis que l'autre face 32 est claire ou métallisée. Selon l'invention, les lamelles 3 portent des prolongements 15 qui peuvent être de simples pliures de ces lamelles, à peu près à angle droit, leurs sections ayant ainsi une forme de L. En pratique, ces lamelles sont beaucoup plus rapprochées les unes des autres que sur la figure afin d'assurer un bon échange thermique. Par exemple, elles peuvent avoir une largeur de 50 mm et être distantes de 5 mm, dans la position d'échauffement qui est représentée en haut de la figure, où l'extrémité des prolongements 15 vient buter contre la face réfléchissanté 32. Ces prolongements, dans cet exemple, ont donc une longueur de 5 mm, et l'angle α des lamelles 3 avec le plan du capteur est environ 12°. Les orifices 15, 16 ou échancrures 17 peuvent être d'environ 3 mm et répartis à 120 mm les uns des autres. L'extrémité de chacun desdits prolongements vient buter contre la face réfléchissante 32, dans la position d'échauffement (haut de la figure).
Des trous tels que 16 pratiqués dans les lamelles et leurs prolongements et/ou des échancrures d'extrémité telles que 17 créent une perte de charge répartie sur la surface des lamelles et permettent donc de répartir également le débit d'air star l'ensemble du corps d'échange- que forment celles-ci. On remarquera que la paroi transparente 2 peut être à simple paroi, et non pas double comme l'on pratique généralement dans les capteurs solaires à absorption pour diminuer les pertes thermiques de cette paroi chauffée par convection. Ici l'air échauffé sur le corps d'échange le traverse aussitôt, et ne vient pas réchauffer la paroi transparente. C'est un avantage important de l'invention. En outre, la paroi unique est moins coûteuse et absorbe moins le rayonnement thermique.
La figure 2 représente un mode préféré de réalisation en modules empilables légers pouvant être disposés en façade sud de bâtiment. Chaque module ou groupe de modules peut être de même hauteur qu'un étage, de façon à être en harmonie d'aspect avec l'ensemble des fenêtres voisines. Ici, chaque module possède une hauteur de 2,85 m, par exemple.
Il comporte un boîtier 20 délimitant un passage ascendant 21 d'épaisseur égale par exemple à 200 mm entre le corps d ' échange perméable 23 et le fond 25 de préférence calorifuge. Devant le corps d'échange, qui est formé d'une plaque de polyurethane expansé perméable à l'air, ayant par exemple 12 mm d'épaisseur et disposée verticalement, la paroi transparente 22 est montée un peu obliquement, présentant ce qui est dénommé un fruit en terme d'architecture, de sorte que son bord inférieur 26 déborde à l'extérieur relativement au bord supérieur 27 du module placé en dessous.
Ce rebord 28 constitue une entrée d'air abritée de la pluie pour l'air à réchauffer dans le boîtier 20.
Conformément à l'invention, une cloison de répartition 29 percée d'orifices tels que 30 uniformément répartis est collée contre la face arrière du corps d'échange
23 et ce jusqu'à toucher les parois latérales du boîtier pour éviter tout passage d'air autrement qu'à travers ladite cloison.
On remarquera que la plaque transparente 22, qui peut être en verre de basse qualité optique, ou même en verre ondulé, est fixée par des parecloses démontables 33,. avec joints étanches 34, sur les bords supérieurs et latéraux du boîtier. En bas, elle peut être montée dans un profil fixe 331.
La figure 3 est un exemple d'utilisation de six hauteurs de tels boîtiers 20 en façade d'un bâtiment de sept niveaux, le rez-de-chaussée n'étant pas garni afin d'éviter des dommages au capteur et de dégager les vitrines commerciales.
Les passages ascendants 21 se prolongent les uns les autres avec étanchéité pour former une conduite dont l'extrémité inférieure est fermée en 211 et l'extrémité supérieure alimente en air. réchauffé un circuit de ventilation mécanique contrôlée.
Ce circuit comporte, raccordé en 35 à la conduite
Figure imgf000010_0001
21 , un stockage/de la chaleur de cet air réchauffé pendant la journée.
Celui-ci comporte ici deux lits de gravier superposés, traversés par l'air réchauffé par les capteurs. Ces lits sont reliés à l'arrière par un coude 37 de sorte que le conduit descendant 38 de distribution d'air chaud peut se trouver en façade, où il est souvent plus facile de le placer. Il pourrait aussi être placé latéralement le long des capteurs et même faire partie de ceux-ci comme les passages ascendants 21. Des bouches telles que 39 d'aération des locaux sont pratiquées en "ventouses" communiquant avec le conduit 38. A partir d'elles, l'air circule par les joints des portes jusqu'aux locaux de service où il est repris par des orifices d'évacuation tels que 40, collecté dans une gaine 41 et rejeté à l'atmosphère en 42 grâce à un moyen d'aspiration tel qu'un ventilateur 43.
Le conduit de rejet 42, qui est adjacent au" stockage 36, peut comporter un échangeur, par exemple formé d'ailettes 44 pour éviter de refroidir l'air arrivant par le conduit 35. Ces ailettes peuvent être escamotées pour être mises hors d'action lorsque le chauffage solaire est suffisant. En été, l'air échauffé est évacué par un orifice
45 que l'on débouche, dans le conduit 35, tandis que l'air frais est aspiré directement par un autre orifice 46 que l'on débouche, dans le conduit descendant 38, ou bien en 47 à l'entrée du dispositif de stockage 36 pour profiter de l'inertie thermique de celui-ci.
La figure 4 montre un autre mode d'application de l'invention, Le capteur est fixé sur une structure verticale creuse 50, 51 préfabriquée que l'on remplit ensuite de gravier 52 et qui sert simultanément de passage ascendant d'air réchauffé et de dispositif de stockage thermi que. A cet effet, la paroi 50 est percée d'orifices tels que 53 répartis et elle constitue par elle-même la cloison de répartition selon l'invention. Sur elle sont fixés des intercalaires horizontaux tels que 54 qui supportent un grillage 55 à fils fins pour retenir un remplissage de sable de couleur foncée qui constitue le corps d'échange perméable.
La plaque transparente 56 est, dans cet exemple, articulée à sa partie supérieure en 57 pour faciliter son entretien.
La paroi 51 ainsi que les parois latérales comportent sur leurs tranches des moulures en creux 58 et en relief 59 pour guider l'empilement de tels capteurs. Le remplissage en gravier 52 se fait de préférence après cette mise en place.
La structure 50, 51 , 52 pourrait aussi constituer la structure de l'immeuble, par exemple réalisée selon le brevet français n° 1 515 039 de la Demanderesse.
La perte de charge du circuit de chauffage et ventilation pouvant être assez faible, une simple aspiration statique telle qu'une cheminée peut remplacer le ventilateur 43 pour assurer la circulation de l'air. Il va de soi que les modes de réalisation décrits n'ont été donnés qu'à titre d'exemples et qu'on pourrait les modifier, notamment par substitution d'équivalents techniques, sans que l'on sorte pour cela du cadre de la présente invention.

Claims

REVEEDICATIONS
1. Capteur d'énergie solaire comportant un passage ascendant en forme de boîtier plat limite d'un côté par une paroi transparente destinée à être exposée au rayonnement solaire et, à l'opposé, par un fond opaque, un corps d'échange perméable à l'air étant placé entre la paroi transparente et le fond opaque, de telle sorte que l'air doive le traverser pour franchir le passage, caractérisé en ce que le corps d'échange perméable est combiné à des moyens qui créent une perte de charge régulièrement répartie sur sa surface, afin de répartir également le débit d'air sur l'ensemble de ladite surface.
2. Capteur selon la revendication 1,caractérisé en ce que lesdits moyens comportent des orifices de passage régulièrement répartis sur la surface du corps d'échange.
3. Capteur selon la revendication 2,caractérisé en ce que les orifices sont pratiqués dans le corps d'échange lui-même.
4. Capteur selon la revendication 3, dans le- quel le corps d'échange est formé de lamelles parallèles entre elles et orientables, caractérisé en ce que les lamelles ont une section sensiblement en L de façon à pouvoir se toucher les unes les autres en position d'échauffement, les orifices étant constitués par des trous et/ou des échancrures d'extrémité pratiqués dans les lamelles.
5. Capteur selon la revendication 2, caractérisé en ce que les orifices sont pratiqués dans une cloison de répartition imperméable appliquée sur toute la surface du corps d'échange.
6. Capteur selon la revendication 5, caractérisé en ce que la cloison de répartition est placée en vis-à-vis du fond du boîtier, sa face tournée vers ce fond étant réfléchissante.
7 Capteur selon la revendication 5, caractérisé en ce que la cloison de répartition est transparente et disposée du côté de la paroi transparente ou au sein du corps d'échange.
8. Capteur selon l'une quelconque des revendications 2 à 7, caractérisé en ce que le corps d'échange est poreux.
9. Capteur selon la revendication 8, caractériεé en ce que le corps d'échange est formé de plaques placées sur chant et bout à bout, retenues par des intercalaires horizontaux qui contribuent à éviter des courants de convexion au sein du corps d'échange.
10. Capteur selon l'une des revendications 8 ou 9, caractérisé en ce que le corps d'échange est réalisé en matière à cellules ouvertes de diamètre supérieur à 0,3 mm, de préférence entre 1 et 5 mm et d'épaisseur de 5 à 30 mm,
11. Capteur selon l'une des revendications 8 ou 9, caractérisé en ce que le corps d'échange est formé d'éléments assemblés dont la dimensioncaractéristique est comprise entre 1 et 10 mm, l'épaisseur du corps d'échange étant au moins triple de ladite dimension.
12. Capteur selon l'une quelconque des revendications 1 à 11 , caractérisé en ce qu'il est réalisé en modules empilables pouvant être disposés en façade d'un bâtiment.
13. Capteur selon la revendication 12,caracté risé en ce que les modules ont la hauteur d'un étage.
14. Capteur selon l'une des revendications 12 ou 13, caractérisé en ce que la paroi transparente de chaque module présente du fruit, de telle sorte que son bord inférieur déborde par rapport au bord supérieur du module sous-jacent pour former une entrée d'air" abritée.
15. Capteur comportant plusieurs modules selon l'une quelconque des revendications 12 à 14,caractérisé en ce que les corps d'échange et les parois des divers modules sont raccordés avec étanchéité de façon à former, notamment, à l'arrière des corps d'échange, une conduite ascendante fermée à son extrémité inférieure.
16. Capteur selon la revendication 15,caractérisé en ce que la conduite ascendante est reliée à un dispositif de stockage -de chaleur.
17. Capteur selon l'une des revendications 15 ou 16, caractérisé par un conduit de rejet adjacent au dispositif de stockage de chaleur et équipé d'un échangeur escamotable.
18. Capteur selon l'une quelconque des revendications 15 à 17, caractérisé en ce qu'il comporte des orifices obturables d'évacuation d'air échauffé et d'aspiration d'air frais.
19» Capteur selon l'une quelconque des revendications 12 à 14, caractérisé en ce qu' il est combiné à un dispositif de stockage de chaleur disposé à l'arrière du corps d'échange perméable et servant en même temps de passage ascendant d'air chauffé.
PCT/FR1979/000072 1978-08-16 1979-08-14 Capteur d'energie solaire WO1980000488A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7823854A FR2443030A1 (fr) 1978-08-16 1978-08-16 Capteur d'energie solaire
FR7823854 1978-08-16

Publications (1)

Publication Number Publication Date
WO1980000488A1 true WO1980000488A1 (fr) 1980-03-20

Family

ID=9211828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1979/000072 WO1980000488A1 (fr) 1978-08-16 1979-08-14 Capteur d'energie solaire

Country Status (5)

Country Link
EP (1) EP0016171A1 (fr)
JP (1) JPS55500456A (fr)
FR (1) FR2443030A1 (fr)
NO (1) NO792617L (fr)
WO (1) WO1980000488A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2535444A1 (fr) * 1982-10-29 1984-05-04 Dalmas Ets Capteur solaire a air
EP0553893A2 (fr) * 1989-01-27 1993-08-04 Solarwall International Limited Méthode et appareil de préchauffage de l'air de ventilation pour un immeuble

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1152129A (fr) * 1956-03-01 1958-02-12 Centre Nat Rech Scient Dispositifs pour la climatisation naturelle des habitations
US2931578A (en) * 1958-03-31 1960-04-05 Dean L Thompson Circulating and heating means for building
US3875925A (en) * 1974-01-08 1975-04-08 John G Johnston Solar heater
FR2266121A1 (fr) * 1974-03-27 1975-10-24 Svenska Flaektfabriken Ab
US4016861A (en) * 1975-07-02 1977-04-12 Taylor Max F Solar heating system
US4023556A (en) * 1975-05-27 1977-05-17 Universal Oil Products Company Laminated absorber member for flat plate solar collector and method of making same
US4034569A (en) * 1974-11-04 1977-07-12 Tchernev Dimiter I Sorption system for low-grade (solar) heat utilization
FR2339142A1 (fr) * 1976-01-21 1977-08-19 Anvar Systeme et module destines a la climatisation naturelle de batiments
US4059226A (en) * 1976-09-02 1977-11-22 Atkinson David L Heat collector and storage chamber
US4067316A (en) * 1976-10-22 1978-01-10 The United States Of America As Represented By The United States Department Of Energy Solar energy collector
DE2629086A1 (de) * 1976-06-29 1978-01-12 Interliz Anstalt Mit einem gasfoermigen medium gekuehlter sonnenstrahlungskollektor
DE2641325A1 (de) * 1976-09-14 1978-03-23 Conradty Nuernberg Sonnenkollektor
US4090494A (en) * 1977-01-24 1978-05-23 Southern Illinois University Foundation Solar collector
US4092978A (en) * 1976-08-11 1978-06-06 Levine Richard S Solar energy collector
US4119083A (en) * 1977-05-16 1978-10-10 Heyen Wilfred L Solar energy absorbing body and collector

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1152129A (fr) * 1956-03-01 1958-02-12 Centre Nat Rech Scient Dispositifs pour la climatisation naturelle des habitations
US2931578A (en) * 1958-03-31 1960-04-05 Dean L Thompson Circulating and heating means for building
US3875925A (en) * 1974-01-08 1975-04-08 John G Johnston Solar heater
FR2266121A1 (fr) * 1974-03-27 1975-10-24 Svenska Flaektfabriken Ab
US4034569A (en) * 1974-11-04 1977-07-12 Tchernev Dimiter I Sorption system for low-grade (solar) heat utilization
US4023556A (en) * 1975-05-27 1977-05-17 Universal Oil Products Company Laminated absorber member for flat plate solar collector and method of making same
US4016861A (en) * 1975-07-02 1977-04-12 Taylor Max F Solar heating system
FR2339142A1 (fr) * 1976-01-21 1977-08-19 Anvar Systeme et module destines a la climatisation naturelle de batiments
DE2629086A1 (de) * 1976-06-29 1978-01-12 Interliz Anstalt Mit einem gasfoermigen medium gekuehlter sonnenstrahlungskollektor
US4092978A (en) * 1976-08-11 1978-06-06 Levine Richard S Solar energy collector
US4059226A (en) * 1976-09-02 1977-11-22 Atkinson David L Heat collector and storage chamber
DE2641325A1 (de) * 1976-09-14 1978-03-23 Conradty Nuernberg Sonnenkollektor
US4067316A (en) * 1976-10-22 1978-01-10 The United States Of America As Represented By The United States Department Of Energy Solar energy collector
US4090494A (en) * 1977-01-24 1978-05-23 Southern Illinois University Foundation Solar collector
US4119083A (en) * 1977-05-16 1978-10-10 Heyen Wilfred L Solar energy absorbing body and collector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2535444A1 (fr) * 1982-10-29 1984-05-04 Dalmas Ets Capteur solaire a air
EP0553893A2 (fr) * 1989-01-27 1993-08-04 Solarwall International Limited Méthode et appareil de préchauffage de l'air de ventilation pour un immeuble
EP0553893A3 (en) * 1989-01-27 1993-10-27 Solarwall Int Ltd Improved method and apparatus for preheating ventilation air for a building

Also Published As

Publication number Publication date
FR2443030B1 (fr) 1981-05-22
FR2443030A1 (fr) 1980-06-27
NO792617L (no) 1980-02-19
JPS55500456A (fr) 1980-07-24
EP0016171A1 (fr) 1980-10-01

Similar Documents

Publication Publication Date Title
EP2077589A1 (fr) Élément modulaire avec module photovoltaïque
CA2385304C (fr) Dispositif de transfert thermique entre deux parois
EP0564357B1 (fr) Dispositif pour capter l'énergie solaire et la transférer sur un milieu récepteur à chauffer
CA2322698C (fr) Dispositif de transfert de chaleur entre un panneau chauffe par rayonnement solaire et une paroi
WO2006090060A1 (fr) Capteur solaire hybride thermique et photovoltaique
FR2599481A1 (fr) Sechoir a energie solaire
WO2010063944A1 (fr) Toiture solaire
WO1980000488A1 (fr) Capteur d'energie solaire
CA2721247A1 (fr) Dispositif echangeur de chaleur double flux
EP0943073B1 (fr) Dispositif pour collecter l'energie solaire et la transferer sur un milieu recepteur a chauffer
FR2950372A1 (fr) Maison a ossature bois a inertie
FR2596438A1 (fr) Panneau de facade prefabrique a isolation parietodynamique
FR2929379A1 (fr) Panneau creux de bardage exterieur pour batiment.
EP2388387B1 (fr) Lanterneau d'éclairage zénithal avec protection solaire
EP1496320A1 (fr) Capteur thermique solaire plan de faible épaisseur
FR2577959A1 (fr) Paroi de facade a hyperisolation biodynamique pour constructions bioclimatiques
EP0289438B1 (fr) Absorbeur-stockeur d'énergie solaire
BE1005162A3 (fr) Dispositif d'enceinte thermique adapte au chauffage solaire passif.
EP2529415A2 (fr) Module de production d'énergie mixte photovoltaïque et thermique à partir du rayonnement solaire, et installation équipée de tels modules
FR2540611A1 (fr) Dispositif de captage du rayonnement solaire destine au chauffage d'un batiment
FR2464440A1 (fr) Procede et installation pour l'obtention d'air chaud par capteurs solaires
EP0010497A1 (fr) Panneau en matière plastique
EP0189355A2 (fr) Composant de façade, pour la construction de bâtiments
FR2491597A1 (fr) Dispositif pour capter l'energie solaire integre a une toiture
CH606690A5 (en) Solar energy collector for house roof

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP US

AL Designated countries for regional patents

Designated state(s): CH DE FR GB LU NL SE