WO1979000927A1 - Device for connecting the ends of a separable zipper - Google Patents

Device for connecting the ends of a separable zipper Download PDF

Info

Publication number
WO1979000927A1
WO1979000927A1 PCT/US1979/000212 US7900212W WO7900927A1 WO 1979000927 A1 WO1979000927 A1 WO 1979000927A1 US 7900212 W US7900212 W US 7900212W WO 7900927 A1 WO7900927 A1 WO 7900927A1
Authority
WO
WIPO (PCT)
Prior art keywords
slider
terminals
teeth
terminal
rows
Prior art date
Application number
PCT/US1979/000212
Other languages
French (fr)
Inventor
M Friedberg
Original Assignee
M Friedberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/940,255 external-priority patent/US4232429A/en
Priority claimed from US06/020,318 external-priority patent/US4232430A/en
Application filed by M Friedberg filed Critical M Friedberg
Priority to DE7979900431T priority Critical patent/DE2965836D1/en
Publication of WO1979000927A1 publication Critical patent/WO1979000927A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B19/00Slide fasteners
    • A44B19/24Details
    • A44B19/38Means at the end of stringer by which the slider can be freed from one stringer, e.g. stringers can be completely separated from each other

Definitions

  • the present invention pertains generally to slide fasteners and more particularly to the type of slide fastener commonly known as a zipper which has opposed strings or rows of interlocking elements or zipper teeth which are brought into interlocking engagement or fastened by movement of a slider in one direction along the rows and disengaged or unfastened by movement of the slider in the opposite direction.
  • a zipper which has opposed strings or rows of interlocking elements or zipper teeth which are brought into interlocking engagement or fastened by movement of a slider in one direction along the rows and disengaged or unfastened by movement of the slider in the opposite direction.
  • the present invention addresses the problem of reducing the difficulty involved with the initial engagement of the ends of a separable zipper on a jacket or similar garment, but it will be appreciated that the solution provided by the present invention has useful application to the entire field of slide fasteners without limitation to garments, which will be discussed by way of example herein.
  • the task of initiating the operation of a conventional separable zipper requires a certain degree of care and dexterity so that .many children find the task to be impossible to perform and even adults sometimes find the task to be awkward, inordinately time consuming and frustrating.
  • Conventional separable zippers for jackets and similar garments are typically arranged for right-handed operation of the slider by the wearer.
  • the zipper teeth are arranged in rows along the edges of flexible supporting sheets, commonly known as tapes or stringers, ' which are sewn to the left and right
  • OMFI , WIIPPOO front vertical edges of the jacket so that the rows of teeth can be interleaved or brought into interlocking engagement by operation of the slider.
  • a terminal pin is provided at the end of each row of teeth at the bottom of the jacket.
  • the slider is installed on the right row of teeth and a socket or U-shaped member is installed on the terminal pin at the end of the right row of teeth.
  • the socket serves both as a stop for the slider and as a means for receiving the terminal pin at the end of the left row of teeth. Once the left terminal pin is properly inserted in the socket, the rows of teeth will be aligned and ready to be brought into interlocking engagement in the conventional manner by the forward movement of the slider up the rows of teeth.
  • the task of initiating operation of the conventional right-handed separable zipper proceeds by inserting the left terminal pin through the left port of the slider down into the socket and then pulling the slider forward up the rows of teeth while holding the left terminal pin firmly in the socket by grasping the adjacent stringer or fabric. If the left terminal pin is not initially inserted fully into the socket, the slider will likely refuse to move forward because the teeth adjacent to the terminal pins will not be properly aligned. On the other hand, if the left terminal pin is initially inserted fully into the socket but is not held firmly in the socket, the forward movement of the slider will likely pull the left terminal pin free from the socket, thus preventing the fastening of the zipper.
  • U. S. Patent No. 2,203,005 employs separable end-connecting members which enable proper alignment of the interlocking elements or teeth for engagement by the slider and which, once properly fastened, will not pull free from each other because of the forward movement of the slider.
  • U. S. Patent No. 2,203,005 has not been adopted to any significant extent apparently because initial engagement of the specialized end- connecting members is no less difficult, if at all, in comparison with the conventional terminal pins and socket.
  • end-connecting members In order to interconnect such end- connecting members, substantial care and dexterity are required to align and engage parts that are as small or smaller than a conventional terminal pin and its associated slider port and socket terminal. Furthermore, the interengagement of such specialized end-connecting members can not be achieved while the adjoining ends of the zipper elements are substantially parallel. Rather, it is necessary that the end-connecting members first be positioned at a wide angle during insertion of a relatively small pivot pin of one end-connecting member into a slot or opening of the other end-connecting member, whereupon only then can the .end-connecting members be rotated to bring the adjoining ends of the zipper elements into parallel alignment for passage through the front ports of the slider.
  • the ends of the rows of teeth will then be or will readily become aligned for interengage ent by the slider as it is pulled forward.
  • the cooperating or nesting portions of the terminals are relatively large, preferably at least several times larger than the size of one of the front ports of the slider, such that relatively little dexterity is required to bring the terminals into operative engagement. There is no need to feed or pass anything through the slider in order to operatively engage the terminals and align the rearmost ends of the zipper rows in front of their corresponding slider ports.
  • the terminals of the present invention to separate in response to the mere forward movement of the slider during initial engagement of the rearmost ends of the rows of zipper teeth as is the case with the conventional pin-and-socket type zipper end connectors.
  • the principal advantage of the invention over prior-art separable zippers is the substantial simplification in the act of engaging the ends or terminal portions of the zipper.
  • the terminals of the present invention are sufficiently large and easy to operate such that even children who are incapable of fastening a conventional pin-and- socket separable zipper can bring the terminals of the present invention into engagemen properly with little attention to alignment and can pull the slider forward up the rows of zipper teeth without the risk that the terminals will pull free of each other.
  • FIGURE 1 is perspective view of a first embodiment of the present invention showing first and second zipper terminals aligned just prior to engagement, the first terminal or slider base terminal carrying a slider adapted to interengage conventional rows of zipper teeth, the second termina or receiving terminal being adapted to mate with the first terminal in the indicated manner;
  • FIGURE LA is a front elevational view of a conventional slider used in the present invention.
  • FIGURE 2 is a perspective view showing the terminals i operative engagement and the slider moved slightly forward up the rows o zipper teeth;
  • FIGURE 3 is a plan view of the terminals with the rearmos zipper teeth in interlocking engagement
  • FIGURE 4 is a view in cross-section taken along line IV-IV o FIGURE 3 in the direction indicated;
  • FIGURE 5 is a view in cross-section taken along line V-V o FIGURE 3 in the direction indicated;
  • FIGURE 6 is a perspective view of a second embodiment of the present invention showing a slider base terminal and a receiving termina aligned just prior to engagement, the view being similar to FIGURE 1 but with the slider removed in order to illustrate various details of the slider bas terminal;
  • FIGURE 7 is a view in cross-section as the terminals of FIGUR 6 would appear when operatively engaged with the slider in its rearmos position on the slider base terminal, the view looking in the direction indicate from line VTI-VII of FIGURE 6;
  • FIGURE 8 is an enlarged view of a portion of FIGURE 7;
  • FIGURE 9 is a front elevational view of another slider bas terminal and associated slider carried thereon;
  • FIGURE 10 is a perspective view of the mate to the terminal o
  • FIGURE 9 the terminals of FIGURES 9 and 10 representing a thir embodiment of the present invention
  • FIGURE 11 is a perspective view of a fourth embodiment of th present in * * vention illustrating the top front surfaces of a slider base termina and associated receiving terminal aligned just prior to engagement;
  • FIGURE 12 is a perspective view of the bottom surface of th slider base terminal of FIGURE 11 separate from its receiving terminal wit the addition of a slider shown in phantom lines as it would appear when carrie in its rearmost position thereon;
  • FIGURE 13 is a plan view of the bottom surface of the slider base terminal of FIGURE 12;
  • FIGURE 14 is a top plan view of a fifth embodiment of the present invention illustrating a slider base terminal and a receiving terminal in operative engagement;
  • FIGURE 15 is a view in cross-section taken along line XV-XV of FIGURE 14 in the direction indicated;
  • FIGURE 16 is a view in cross-section taken along line XVI-XVI of FIGURE 14 in the direction indicated.
  • a device for connecting the ends of a separable zipper is illustrated and designated generally by reference numeral 10.
  • the zipper includes interlocking elements or teeth arranged in adjacent rows 12 and 14 in the conventinal manner along the respective edges of flexible supporting sheets or stringers 16a and 16b. Installation of the zipper in a suitable garment is achieved in a conventional manner, such as by sewing the stringers 16a and 16b to the respective right edge 18a and left edge 18b of a garment shown in phantom in FIGURES 1-3.
  • the terms "left” and "right” are used herein with reference to the point of view of a wearer of the garment.
  • the device 10 comprises a first terminal or slider base terminal 20 and a second terminal or receiving terminal 22, which terminals can be operatively engaged or brought together into working relationship in a manner similar to the operation of a conventional snap fastener such that the slider base terminal 20 is aligned over and then pressed into the receiving terminal 22 in the manner indicated.
  • the slider base terminal 20 is adapted to carry a conventional slider 24 which is manually operable by means of a handle 26 pivotally mounted in a longitudinal slot 27 atop the slider 24.
  • the slider 24 is normally carried on a base or generally disc-shaped platform 28 which, in the present example, forms an upper surface portion of the terminal 20.
  • the slider 24 includes top and bottom plates 30 and 32 held in spaced-apart parallel planes by a center post 34 which forms the leading edge of the slider 24 as it moves forwardly.
  • the slider plate 30 has downwardly extending right and left side rims 36a and 36b and the bottom slider plate 32 has upwardly extending right and left side rims 38a and 38b.
  • the rims 36a and 38a form a right side slot through which the stringer 16a passes and the rims 36b and 38b form a left side slot through which the stringer 16b passes, as is
  • the slider base terminal 20 includes a raised shelf 40 which serves as a guide track for slidably cooperating with the upper rims 36a and 36b so as to keep the slider 24 in general forward alignment when situated in its rearmost position thereon.
  • the platform 28 further includes a notch 42 for receiving the center post 34 of the slider 24 in the manner shown in FIGURE 1.
  • the terminal 20 includes a guide segment 44 which defines the rearmost end of the right row 12 of zipper teeth.
  • the guide segment 44 serves in the manner of a cam to guide the leading edge of the center post 34 into operative proximity with the rearmost zipper tooth 12a of the right row 12.
  • the terminal 22 includes a guide segment 46 which defines the rearmost end of the left row 14 of zipper teeth.
  • the guide segment 46 serves to guide the leading edge of the center post 34 into operative proximity with the rearmost zipper tooth 14a of the left row 14, provided the terminals 20 and 22 are operatively engaged and rotationally oriented relative to each other in the position shown.
  • the guide segment 44 and the raised shelf 40 have a eommon c ⁇ linear right edge 48a for a smooth transition in the movement of the slider 24 exiting from and returning to the terminals 20 and 22.
  • the shelf 40 also preferably has a straight left edge 48b at its rearmost position and a generally S-shaped curved edge 49 leading from the edge 48b to the left edge of guide segment 44.
  • the curved edge 49 permits a slight lateral or rotational
  • the terminals 20 and 22 are engaged or nested in a manner similar to that of a snap fastener by pressing the terminals 20 and 22 together after first aligning them in the manner indicated in FIGURE 1 while the slider 24 is carried in its rearmost position on the platform 28.
  • the nesting or mating portions of the terminals 20 and 22 are preferably generally annular in shape so that the terminals 20 and 22 can be brought together without having to first align the two zipper rows 12 and 14 at any particular angle to each other as will be appreciated more fully from the description that follows.
  • the slider base terminal 20 includes curved wall 50 extending downward from the periphery of the platform 28.
  • the wall 50 preferably includes a cuff 52 projecting radially outward from a cylindrical surface 54 of the wall 50.
  • the cuff 52 is provided only through a semicircular arc around the rearward half of the cylindrical surface 54.
  • the receiving terminal 22 includes a curved mating wall 56 extending upward from the periphery of a generally circular floor 58.
  • the wall 56 preferably includes an upper interior cylindrical surface 60 of a first diameter and a lower interior cylindrical surface 62 of a second diameter, the second diameter being greater than the first diameter.
  • the wall 56 includes an upper peripheral rim 64 which with the cylindrical surface 60 defines an aperture 65 for receiving the mating wall 50 of terminal 20.
  • the terminals 20 and 22 are brought into operative engagement by first seating the cuff 52 on the upper peripheral rim 64 of the wall 56 and then pressing the terminals 20 and 22 together until the bottom of the wall 50 abuts the floor 58, which is designed to occur when the rearmost portions of the stringers 16a and 16b have become essentially coplanar with the previously defined slider working plane when the slider 24 is in its rearmost position on terminal 20.
  • the term "operative engagement" and terms of similar import are used herein to mean that the terminals 20 and 22 (and their counterparts in subsequently described embodiments) are mated or nested but not necessarily in any particular relative rotational position to each other nor are they necessarily interlocked. It will be appreciated, therefore, that the generally cylindrical construction of the terminals 20 and 22 permits them to be engaged when the adjacent ends of the zipper rows 12 and 14 are in a nonparallel orientation.
  • the cuff 52 is generally frustoconieal so that it tapers with increasing diamete in moving axially upward along the wall 50 to a maximum diameter at a generally radially oriented shelf 66 which interconnects the conical surface o the cuff 52 with the cylindrical surface 54 of the wall 50.
  • the diameter of the cylindrical surface 54 is slightly smaller than the diameter of the upper interior cylindrical surface 60 of the terminal 22, and the maximum diameter of the cuff 52 is slightly greater than the diameter of the surface 60 such tha forcing the terminals 20 and 22 together causes the cuff 52 to compress slightly radially and/or causes the wall 56 to expand radially as the cuff 52 slidably passes within the surface 60.
  • the degree of compression of the cuff 52 relative to the expansion of the wall 56 depends on the properties of th materials employed in fabricating the terminals 20 and 22, a relatively rigid and resilient plastic being a preferred material.
  • a relatively rigid and resilient plastic being a preferred material.
  • the guide segments 44 and 46 can optionally be adapted to interlock with each other to further insure against inadvertent disengagement of the terminals 20 and 22, as will be decribed below with reference to FIGURES 3 and 4.
  • disengagement of the terminals 20 and 22 can readily be achieved when the slider 24 is situated in its rearmost position by pulling upward (in the view o FIGURE 1) on the portion of the garment hem or edge 18a adjacent to the slider base terminal 20 and simultaneously downward on the portion of the garmen hem or edge 18b adjacent to the receiving terminal 22, which causes the forward portions of the terminals 20 and 22 to begin to separate since no locking action is then being provided by the unfastened zipper teeth.
  • Such pulling action on the garment edges 18a and 18b causes the terminals 20 and 22 continue to ⁇ . tilt out of axial alignment until the cuff 52 can slip past the shoulder 68 permitting the terminals 20 and 22 to pull free from each other.
  • the mating walls 50 and 56- define circular arcs subtending angles in excess of 180 degrees so that, once engaged, the only relative movement of the terminals 20 and 22 that can occur will be rotational and not translational.
  • pulling the slider 24 forward away from the terminals 20 and 22 to fasten the zipper rows 12 and 14 will not cause terminal 20 to move forward relative to terminal 22 because the forward portions of surface 54 will abut the cooperating portions of surface 60.
  • the slider 24 is carried within the nesting portions of the , terminals 20 and 22.
  • the preferred mating walls 50 and 56 are not continuous through a full 360 degrees, but are provided with gaps 69a and 69b at their forward portions to permit the slider 24 to exit from the nesting portions of the terminals 20 and 22 as it moves forward to engage the zipper rows 12 and 14.
  • One advantage of this preferred arrangement is that, while the slider 24 is carried in its rearmost position on the terminal 20, the axis of relative rotational movement of the terminals 20 and 22 passes approximately through the center of the slider 24 which is snugly encompassed within the cylinders defined by walls 50 and 56.
  • pulling forwardly on the handle 26 and rearwardly on the receiving terminal 22 will automatically cause the terminals 20 and 22 to rotate until the rows 12 and 14 are substantially parallel, whereupon the slider 24 is permitted to exit forwardly through the aligned gaps 69a and 69b in the walls 50 and 56.
  • the gaps 69a and 69b in the forward portions of the walls 50 and 56 are just slightly wider than the maximum width of the slider 24 so that it will not exit through the gaps 69a and 69b until they are perfectly aligned, thus assuring that the guide segments 44 and 46 will pass through the two front ports 39a and 39b of the slider 24 on opposite sides of the center post 34. If the terminals 20 and 22 are initially brought together with the rearmost ends of the zipper rows 12 and 14 well out of parallel, at right angles for example, then the leading edge of the center post 34, as the user pulls forwardly on the slider handle 26, will slidably bear against the cylindrical surface 60 as the terminals 20 and 22 begin to rotate into alignment. It will be appreciated that the foreg ⁇ ing preferred features of the device 10 permit the terminals 20 and 22 to be snapped into engagement even when the wearer is in a sitting position during which the zipper rows 12 and 14 are ordinarily misaligned.
  • the slider 70 is provided at the rear thereof for grasping, for example, between the thumb and index finger of the left hand of the wearer.
  • the provision of the slot 27 atop the slider 24 is believed to facilitate the rotational action of the terminals 20 and 22 by permitting the point of pivotal attachment of the handle 26 to the slider 24 to move forward of the axis of rotation.
  • the center post 34 slidably engages the facing surfaces of the guide segments 44 and 46 which in turn pass through the slider 24 and are brought into engagement as seen in FIGURES 2 and 3 because the interior passageway of the slider 24 narrows progressively.
  • the zipper teeth in the rows 12 and 14 are progressively brought into interlocking engagement in the conventional manner.
  • FIGURES 3 and 4 additional features of the preferred zipper terminal device 10 will be described.
  • the terminals 20 and 22 will remain locked in engagement by virtue of the insertion of a tongue 72 on guide segment 46 into a cooperating groove 74 in guide segment 44.
  • the mating of the tongue 72 and groove 74 occurs automatically with a final slight rotation of the terminals 20 and 22 as the rearmost interior surface of the left upper rim 36b of the slider 24 pushes counterclockwise on the guide segment 46 while the rearmost interior surface of the right upper rim 36a pushes clockwise on the guide segment 44.
  • the guide segment 44 preferably interlocks with the zipper tooth 14a in like manner as the various other zipper teeth of the opposed rows 12 and 14 interlock with each other.
  • the guide segment 44 includes a forwardly extending projection 76 evident in FIGURE 1, which is adapted to engage a mating indentation in the rearward portion of the zipper tooth 14a in the manner depicted in FIGURE 3.
  • the wings 80 and 82 each include top (80a, 82a) and bottom (80b, 82b) layers of a folded flange. As exemplified in FIGURE 5, the wing 82 has a top layer 82a and a bottom layer 82b joined at a bend or fold 82c. Disposed between the layers 82a and 82b is the rearmost corner of the stringer 16b. Although other means of attachment are also feasible, it is presently preferred for sake of simplicity that the respective wings 80 and 82 be glued to their respective stringers 16a and 16b and that the wing-stringer assemblies then be securred to their respective adjacent garment edges 18a and 18b (shown in phantom in FIGURE 3) by sewing.
  • slotted openings 84 are provided in the wings 80 and 82, which openings register in the respective top and bottom layers of the wings 80 and 82 to permit a needle and thread (not shown) to pass therethrough.
  • the exterior faces of the wings 80 and 82 may be curved between openings 84 to facilitate guiding the point of the needle into any of the openings 84, since they are most likely obscured from view by the garment edge 18a or 18b to be attached thereat.
  • the stringers 16a and 16b are provided with beaded edges 86a and 86b, respectively, in accordance with one of several well-known prior-art techniques for securring the individual zipper teeth to the stringers 16a and 16b.
  • the guide segments 44 and 46 include hollow interiors for accepting the rearmost portions of the beaded edges 86a and 86b so that attachment of the wings 80 and 82 to the respective stringers 16a and 16b will automatically self-align the guide segments 44 and 46 with the respective rows 12 and 14 of zipper teeth.
  • FIGURES 1 and 4 An additional feature of the inventive device 10 which is apparent from FIGURES 1 and 4 involves the provision of an L-shaped member 88 extending forwardly from the wall 56 and the floor 58 of the terminal 22.
  • the L-shaped member 88 gives added support to the guide segment 46 and adjoining wing 82 to resist flexing at the point of attachment of the wing 82 to the rim 64 of the terminal 22.
  • the placement of the L-shaped member 88 also conveniently permits it to serve as a guide chute for the slider 24, as will be appreciate ⁇ Vfrom the view of FIGURE 2.
  • FIGURES 6-8 wherein a zipper terminal device is illustrated and designated generally by reference numeral 110.
  • parts that function in a similar manner to corresponding parts in the above-described device 10 are designated using similar reference numerals.
  • the following description will focus only on the most important differences of the device 110 with respect to the above- described device 10. It will be appreciated that, while they are not shown i the similar view of FIGURE 6, the rows 12 and 14 of zipper teeth of FIGURE 1 would be provided in essentially the same manner along the beaded edges 186 and 186b of the respective stringers 116a and 116b.
  • a slider retaining mechanism comprising a spring member 190 suspended from the slider base terminal 120 so that it will lie within the interior passageway 191 of the slider 124 and retain the slider 124 in its rearmost position on the terminal 120 unless the terminals 120 and 122 are operatively engaged in the position shown in FIGURE 7.
  • Th spring member 190 includes a catch 192, which extends into an opening 194 i the bottom plate 132 of the slider 124 when the spring member 190 is unflexe as shown in phantom in FIGURE 8, whereby the forward movement of the slider 124 is prevented by virtue of the catch 192 contacting a wall 196 of the bottom plate 132.
  • the spring member 190 includes an arm 198 extending through an opening 200 in a rearward portion of the wall 150 of terminal 120.
  • the slider 124 is released for forward movement by a projection 202 extending upward from rearward portion of the wall 156 of terminal 122 to flex the spring member 190.
  • the terminal 120 preferably includes a lip 204 which extends downward fro the rear of the shelf 140 in order to cover the arm 198 to prevent accidental release of the slider 124.
  • the lip 204 and the adjacent portion of terminal wal 150 form a narrow gap into which the projection 202 extends when the terminals 120 and 122 are operatively engaged, thereby pushing the arm 198 upward to flex the spring member 190 thus lifting the catch 192 out of the opening 194.
  • the upper peripheral rim of the wall As seen best in FIGURE 6, the upper peripheral rim of the wall
  • the 156 includes two beveled surfaces 164a and 164b which serve to guide the slide base terminal 120 down into operative engagement with the receiving terminal 122.
  • the spring flexing projection 202 extends upward from the upper bevele surface 164a to provide a curved cam surface 206 which is slidably engaged by the spring a?m 198 to gradually flex the spring member 190 as the terminals 120 and 122 are rotated to bring the guide segments 144 and 146 into operative proximity.
  • the slider 124 will not be released for forward movement until the guide segments 144 and 146 are aligned for passage through the front ports of the slider 124 on opposite sides of the center post 134.
  • slider 124 will not be released to exit forwardly through the gaps 169a and 169b in the walls 150 and 156 until the relative rotational position of the terminals 120 and 122 is appropriate for fastening the zipper.
  • slider 124 and slider base terminal 120 can be controlled together as a unit using the slider's handle 126, which is conveniently pivotable and longitudinally moveable within the slot 127.
  • the operation of the device 110 of FIGURES 6-8 more nearly approximates the workings of a conventional snap fastener as will be appreciated from the following description of additional features of the device 110. It will be seen from
  • FIGURE 6 that the cuff 152 is coextensive with the entire periphery of the wall
  • terminal 150 which is disposed through an arc substantially in excess of 180 degrees.
  • the cuff 152 is guided by the beveled edges 164a and 164b through the receiving aperture 165 and down past the innermost surface 160 of terminal 122 thereby compressing the cuff 152 and/or expanding the wall 156 until the outermost edge of the cuff 152 passes beyond the surface 160, whereupon the cuff 152 and the wall 156 resiliently return to their normal dimensions.
  • terminals 120 and 122 are locked against axial movement but are free to rotate relative to each other.
  • the distance from the floor 158 to the shoulder 168 will preferably be only slightly greater than the distance from the bottom of the wall 150 to the outermost edge of the cuff 152 so that, as the bottom of the wall 150 snaps into abutment with the floor 158, the terminals
  • the terminals 120 and 122 contemporaneously become operatively engaged and interlocked against axial movement without having to rotate the terminals 120 and 122 relative to each other.
  • the terminals 120 and 122 are readily disengaged by pulling upward on the handle 126 of the slider 124, when situated on the terminal 120, while holding down on terminal 122 with opposing forces sufficiently strong to recompress the cuff 152 a d/or reexpand the wall 156 until the cuff 152 can again pass within the surface 160.
  • the cuff 152 is provided with a curved upper edge 166 for reducing the force required to pull the terminals 120 and 122 apart.
  • axial slits 208 may be desirable to provide axial slits 208 radially spaced apart around the wall 156 for increased flexibility.
  • Such slits 208 are particularly advantageous where the terminals 120 and 122 are fabricated from a relatively rigid material, such as steel.
  • the slider base terminal (20 or 120) is snapped into engagement with its receiving terminal (22 or 122), whereas the mode of release employed by device 10 differs somewhat from that employed by device 110.
  • the terminals 20 and 22 are disengaged by tilting them out of coaxial alignment by forcing their forward portions apart until the cuff 52 of terminal 20 can be withdrawn from beneath the shoulder 68 at the rearward portion of terminal 22.
  • the terminals 120 and 122 are snapped out of engagement while generally maintaining the terminals 120 and 122 in coaxial alignment.
  • Such snap-release is achieved by grasping the slider handle 126 or the wing 180 with one hand and the wing 182 with the other hand and pulling in opposite directions.
  • the disengagement of the respective terminals of devices 10 and 110 requires no special concentration or dexterity.
  • the respective terminals readily and automatically release from each other in response to moderate forces tending to pull them apart.
  • the snap-release action of the terminals 120 and 122 tends to apply slightly more stress to the wing 182 of device 110 than is applied to the wing 82 of device 10.
  • the L-shaped member 188 is preferably permanently secured to the lower wing plate 182b for added support.
  • FIGURES 9-15 In the following description of several additional embodiments of the invention illustrated in FIGURES 9-15, it will be appreciated that the zipper teeth and associated stringers, which are not shown, can be attached to the terminafs in the same manner as with the first embodiment of the invention shown in FIGURES 1-5. It will also be appreciated that the wings (380, 382, 480, 482, 580, 582) and guide segments, (344, 346, 444, 446, 544, 546), which are merely shown schematically as solid members in FIGURES 9- 15, preferably have provisions for receiving the stringers in a manner similar to that depicted in FIGURE 4. A third embodiment of the invention will now be described with reference to FIGURES 9 and 10 wherein parts that function in a similar manner to previously described parts are designated using similar reference numerals.
  • the slider 324 is carried above the platform 328 of the slider base terminal 320.
  • This arrangement eliminates the need for a gap in the wall 350 as is required in the first two embodiments of the invention in which the slider is carried partially within the nesting portion of its slider base terminal.
  • the mating wall 356 of the receiving terminal 322 of FIGURE 10 is provided through a complete 360° are or ring. It will therefore be appreciated that when the terminals 320 and 322 of this embodiment are operatively engaged, the slider 324 is carried in its rearmost position above and entirely outside of the nesting portions defined by the annular walls 350 and 356 of the terminals 320 and 322.
  • the structural simplicity of this third embodiment of the invention makes it comparatively less expensive to fabricate.
  • the slider 324 is held in proper alignment when in its rearmost position on the slider base terminal 320 by means of a guide track 340, which is affixed atop the platform 328, and cooperating L-shaped flanges 341a and 341b, which extend downward from the bottom of the slider 324.
  • the guide track 340 appears generally T-shaped in the view of FIGURE 9 and preferably tapers to a pointed forward end in the manner of guide track 440 to be described below in conjunction with FIGURE 11.
  • the terminals 320 and 322 are adapted to be snapped into engagement by merely pressing the slider base terminal 320 down through the receiving aperture 365 and into the terminal 322.
  • the wall 350 of terminal 320 has an outwardly curved peripheral surface 366 which abuts a cooperating recess or indented surface 368 along the interior of the wall 356 of terminal
  • the interior dimension of the upper bevelled rim 364 of terminal 322 and the cooperating portions of the wall 350 of terminal 320 are adapted so that the wall 350 will contract slightly and/or the wall 356 will expand slightly so as to allow the engagement of the terminals 320 and 322.
  • the terminals 320 and 322 are essentially free to rotate relative to each other so that the guide segment 346 can be positioned to pass into the left front slider port 339b just to the left of the center post 334.
  • the guide segment 346 is supported over and just forward from the rim 364 by means of the wing 382 which in turn cantilevers from its L-shaped supporting wall 388.
  • FIGURES 11-13 A fourth embodiment of the invention will now be described with reference to FIGURES 11-13 wherein parts that function in a similar manner to previously described parts are designated using similar reference numerals.
  • the slider 424 (partially visible in phantom in FIGURES 12 and 13) is held in proper orientation on the slider base terminal 420 by means of a guide track 440 (seen in FIGURE 11) which cooperates with flanges (not shown) on the bottom of the slider 424 in a similar manner to the guide track 340 and flanges 341a and 341b of the previously described embodiment as illustrated in FIGURE 9.
  • a rim 443 To the rear of the guide track 440 is a rim 443 which serves as a stop for the slider 424.
  • the slider 424 is supported in its rearmost position on a platform 428 above and entirely outside of the nesting portions of the terminals 420 and 422, as will be apparent from FIGURES 11 and 12.
  • the wings 480 and 482 and guide segments 444 and 446 are therefore supported above the plane of the platform 428, the wing 480 cantilevering from a supporting shelf 445 and the wing 482 cantilevering from an L-shaped supporting wall 488.
  • the slider base terminal 420 includes spiral-shaped bottom walls or surfaces 450a and 450b which are adapted to slidably abut complementary walls or surfaces 456a and 456b of the receiving terminal 422 during engagement of the terminals 420 and 422.
  • the slider 424 when the slider 424 is in its rearmost position, it extends forward slightly beyond the front edge of surface 450a so that the right side of the center post 434 abuts the adjacent edge of the guide segment 444 as depicted in FIGURE 13.
  • the terminal 420 when the terminal 420 is rotated fully clockwise with respect to terminal 422, the left side of the center post 434 will abut the guide segment 446, thereby assuring that the zipper rows are perfectly aligned in front of their respective slider ports prior to moving the slider 424 f ⁇ rward.
  • a zipper terminal device 510 in accordance with a fifth embodiment of the invention will now be described with reference to FIGURES 14-16 wherein parts that function in a similar manner to previously described parts are designated using similar reference numerals.
  • the slider employed in this embodiment is illustrated by the phantom outline 524 in FIGURE 14.
  • the slider base terminal 520 is provided with guiding and retaining walls 540 which provide a slider receptacle on both sides of a central web 528.
  • the web 528 is inserted between the plates of the slider 524 in a manner similar to the way in which the platform 28 is inserted between the plates 30 and 32 of the slider 24 of FIGURE 1.
  • the slider 524 is held in proper alignment by the walls 540 with the center post 534 of the slider 524 resting in a notch 542 in the web 528.
  • the slider base -terminal 520 includes a raised annular portion 550 adapted to mate with an annular recessed portion 556 of the receiving terminal.522.
  • the nesting or mating portions of the terminals 520 and 522 include peripheral rims 566 and 568, respectively, which operate in the manner of a snap fastener to hold the terminals 520 and 522 in operative engagement while permitting relative rotational movement thereof.
  • the operation of the device 510 proceeds as follows. With the slider 524 in its rearmost position on the terminal 520 as depicted in FIGURE 14, the terminals 520 and 522 are pressed or snapped into operative engagement as seen best in the view of FIGURE 15.
  • the exterior faces of the terminals 520 and 522 are provided with shallow recesses 551 and 557 to facilitate grasping the respective annular nesting portions 550 and 556 between the thumb and index finger of the user while snapping the terminals 520 and 522 into engagement.
  • the terminal 522 is rotated slightly counterclockwise with respect to the terminal 520 to the approximate position seen in FIGURE 14 wherein the guide segment 546 has become aligned for passage through the respective front port of the slider 524. This relative rotation will tend to occur automatically as the user pulls downward on the terminals 520 and 522 provided they are not grasped too tightly.
  • the slider 524 can be pulled up the rows of zipper teeth (not shown). As the slider 524 passes the guide segments 544 and 546, they are first forced apart
  • the guide segment 544 preferabl includes a tongue portion 572 which fits into a cooperating groove 574 in th guide segment 546 as seen best in FIGURE 15, thereby interlocking the fron portions of the terminals 520 and 522 when the zipper teeth (not shown) ar fastened.
  • an inner edge 583 of the win 582 can be nested within a cooperating groove 585 in the adjacent edge of th terminal 520.
  • the edge 583 is shown in the position just prior t its entering the groove 585.
  • the edge 583 can be extended dow around the upper periphary of the adjoining annular nesting portion 556 t interlock with a cooperating portion of the groove 585 as seen best in FIGUR 15.
  • the nesting portions 550 and 556 are relatively large compared t the conventional terminal pin (not shown) which would be used with the slide 524 in a conventional pin-and-socket separable zipper.
  • the diameter of th receiving aperture 565 (shown in dotted outline) of the nesting portion 556 i approximately equal to the width of the slider 524. It will be appreciated therefore, that the area of the receiving aperture 565 is several times large than the area of one of the slider ports.
  • aligning and engagin the nesting portions 550 and 556 of the terminals 520 and 522 is significantl easier than the act of feeding a terminal pin (not shown) into the respectiv front slider port in a comparably sized prior-art separable zipper.
  • the receiving apertur 65 of the device 10 of FIGURE 1 has a diameter at least as large as the overal length of the slider 24.
  • the area of th receiving aperture 65 of the device 10 is very much greater than the area o one of the slider ports, such as the left slider port 39b.
  • each of the above-described embodiments of th invention greatly reduces the care and dexterity required in connecting th ends of a separable zipper. Rather than having to first feed a relatively smal terminal pin through one port of a slider as is done with conventional pin-and socket type separable zippers, relatively large and substantially self-alignin terminals are first fastened and then, if need be, rotated until the rows o zipper teeth are properly aligned for interfastening by the slider.

Abstract

An improved device for connecting the ends of a separable zipper having opposed strings or rows of interlocking teeth or elements including specially adapted terminals which facilitate the engagement of the ends of the zipper and initial movement of a slider to fasten the zipper teeth. The terminals are engagable by being brought together in a direction substantially perpendicular to the zipper rows. Compared to the conventional pin-and-socket terminal arrangement wherein the pin must be threaded through one relatively small port of the slider and then into the socket, the terminals are relatively large and essentially self-aligning during engagement. Once engaged, the terminals are free to rotate relative to each other, thus permitting the opposed rows of zipper elements to self-align as the slider is urged forward to engage the rearmost ends of the zipper elements.

Description

DEVICE FOR CONNECTING THE ENDS OF A SEPARABLE ZIPPER
This is a continuation-in-part of U. S. patent application serial number 940,255, filed September 7, 1978, which in turn is a continuation-in- part of abandoned U. S. patent application serial number 895,935, filed April 13, 1978. All of the subject matter of said prior applications is hereby incorporated by reference herein to the extent such subject matter is consistent with the following description of the presently preferred embodiments of the invention.
The present invention pertains generally to slide fasteners and more particularly to the type of slide fastener commonly known as a zipper which has opposed strings or rows of interlocking elements or zipper teeth which are brought into interlocking engagement or fastened by movement of a slider in one direction along the rows and disengaged or unfastened by movement of the slider in the opposite direction.
The present invention addresses the problem of reducing the difficulty involved with the initial engagement of the ends of a separable zipper on a jacket or similar garment, but it will be appreciated that the solution provided by the present invention has useful application to the entire field of slide fasteners without limitation to garments, which will be discussed by way of example herein. The task of initiating the operation of a conventional separable zipper requires a certain degree of care and dexterity so that .many children find the task to be impossible to perform and even adults sometimes find the task to be awkward, inordinately time consuming and frustrating. Conventional separable zippers for jackets and similar garments are typically arranged for right-handed operation of the slider by the wearer. The zipper teeth are arranged in rows along the edges of flexible supporting sheets, commonly known as tapes or stringers, ' which are sewn to the left and right
< ξ RE lT
OMFI , WIIPPOO . front vertical edges of the jacket so that the rows of teeth can be interleaved or brought into interlocking engagement by operation of the slider. A terminal pin is provided at the end of each row of teeth at the bottom of the jacket. In the case of a typical right-handed separable zipper, the slider is installed on the right row of teeth and a socket or U-shaped member is installed on the terminal pin at the end of the right row of teeth. The socket serves both as a stop for the slider and as a means for receiving the terminal pin at the end of the left row of teeth. Once the left terminal pin is properly inserted in the socket, the rows of teeth will be aligned and ready to be brought into interlocking engagement in the conventional manner by the forward movement of the slider up the rows of teeth.
The task of initiating operation of the conventional right-handed separable zipper proceeds by inserting the left terminal pin through the left port of the slider down into the socket and then pulling the slider forward up the rows of teeth while holding the left terminal pin firmly in the socket by grasping the adjacent stringer or fabric. If the left terminal pin is not initially inserted fully into the socket, the slider will likely refuse to move forward because the teeth adjacent to the terminal pins will not be properly aligned. On the other hand, if the left terminal pin is initially inserted fully into the socket but is not held firmly in the socket, the forward movement of the slider will likely pull the left terminal pin free from the socket, thus preventing the fastening of the zipper.
The foregoing problems have been addressed in certain respects by the prior art. For example, in place of the conventional terminal pins and socket, U. S. Patent No. 2,203,005 employs separable end-connecting members which enable proper alignment of the interlocking elements or teeth for engagement by the slider and which, once properly fastened, will not pull free from each other because of the forward movement of the slider. However, the approach of U. S. Patent No. 2,203,005 has not been adopted to any significant extent apparently because initial engagement of the specialized end- connecting members is no less difficult, if at all, in comparison with the conventional terminal pins and socket. In order to interconnect such end- connecting members, substantial care and dexterity are required to align and engage parts that are as small or smaller than a conventional terminal pin and its associated slider port and socket terminal. Furthermore, the interengagement of such specialized end-connecting members can not be achieved while the adjoining ends of the zipper elements are substantially parallel. Rather, it is necessary that the end-connecting members first be positioned at a wide angle during insertion of a relatively small pivot pin of one end-connecting member into a slot or opening of the other end-connecting member, whereupon only then can the .end-connecting members be rotated to bring the adjoining ends of the zipper elements into parallel alignment for passage through the front ports of the slider. The foregoing problems are solved in accrodance with the present invention as claimed by providing at the ends of the rows of zipper teeth terminals which operate in a manner similar to that of conventional snap fasteners that have cooperating annular snaps which are mated by merely bringing them together in the direction perpendicular to the plane of the adjoining fabric and then pressing them into engagement between thumb and forefinger. As with such snap terminals, the terminals of the present invention can be effortlessly fastened or engaged with a minimum of attention to alignment of the terminals during fastening since they naturally tend to self- align by virtue of their juxtaposition at corresponding positions on the opposed garment edges. Once a portion of one terminal is inserted into or nested within cooperationg portions of the other terminal, the ends of the rows of teeth will then be or will readily become aligned for interengage ent by the slider as it is pulled forward. The cooperating or nesting portions of the terminals are relatively large, preferably at least several times larger than the size of one of the front ports of the slider, such that relatively little dexterity is required to bring the terminals into operative engagement. There is no need to feed or pass anything through the slider in order to operatively engage the terminals and align the rearmost ends of the zipper rows in front of their corresponding slider ports. In addition, there is no tendency for the terminals of the present invention to separate in response to the mere forward movement of the slider during initial engagement of the rearmost ends of the rows of zipper teeth as is the case with the conventional pin-and-socket type zipper end connectors.
It will therefore be appreciated that the principal advantage of the invention over prior-art separable zippers is the substantial simplification in the act of engaging the ends or terminal portions of the zipper. The terminals of the present invention are sufficiently large and easy to operate such that even children who are incapable of fastening a conventional pin-and- socket separable zipper can bring the terminals of the present invention into engagemen properly with little attention to alignment and can pull the slider forward up the rows of zipper teeth without the risk that the terminals will pull free of each other.
The presently preferred way of carrying out the invention is described in detail below with reference to drawings which illustrate five specific embodiments, in which:
OMPI
Λ. WIPO FIGURE 1 is perspective view of a first embodiment of the present invention showing first and second zipper terminals aligned just prior to engagement, the first terminal or slider base terminal carrying a slider adapted to interengage conventional rows of zipper teeth, the second termina or receiving terminal being adapted to mate with the first terminal in the indicated manner;
FIGURE LA is a front elevational view of a conventional slider used in the present invention;
FIGURE 2 is a perspective view showing the terminals i operative engagement and the slider moved slightly forward up the rows o zipper teeth;
FIGURE 3 is a plan view of the terminals with the rearmos zipper teeth in interlocking engagement;
FIGURE 4 is a view in cross-section taken along line IV-IV o FIGURE 3 in the direction indicated;
FIGURE 5 is a view in cross-section taken along line V-V o FIGURE 3 in the direction indicated;
FIGURE 6 is a perspective view of a second embodiment of the present invention showing a slider base terminal and a receiving termina aligned just prior to engagement, the view being similar to FIGURE 1 but with the slider removed in order to illustrate various details of the slider bas terminal;
FIGURE 7 is a view in cross-section as the terminals of FIGUR 6 would appear when operatively engaged with the slider in its rearmos position on the slider base terminal, the view looking in the direction indicate from line VTI-VII of FIGURE 6;
FIGURE 8 is an enlarged view of a portion of FIGURE 7; FIGURE 9 is a front elevational view of another slider bas terminal and associated slider carried thereon; FIGURE 10 is a perspective view of the mate to the terminal o
FIGURE 9, the terminals of FIGURES 9 and 10 representing a thir embodiment of the present invention;
FIGURE 11 is a perspective view of a fourth embodiment of th present in **vention illustrating the top front surfaces of a slider base termina and associated receiving terminal aligned just prior to engagement;
FIGURE 12 is a perspective view of the bottom surface of th slider base terminal of FIGURE 11 separate from its receiving terminal wit the addition of a slider shown in phantom lines as it would appear when carrie in its rearmost position thereon;
. W wIi FIGURE 13 is a plan view of the bottom surface of the slider base terminal of FIGURE 12;
FIGURE 14 is a top plan view of a fifth embodiment of the present invention illustrating a slider base terminal and a receiving terminal in operative engagement;
FIGURE 15 is a view in cross-section taken along line XV-XV of FIGURE 14 in the direction indicated; and
FIGURE 16 is a view in cross-section taken along line XVI-XVI of FIGURE 14 in the direction indicated. Referring to FIGURES 1-5, a device for connecting the ends of a separable zipper is illustrated and designated generally by reference numeral 10. The zipper includes interlocking elements or teeth arranged in adjacent rows 12 and 14 in the conventinal manner along the respective edges of flexible supporting sheets or stringers 16a and 16b. Installation of the zipper in a suitable garment is achieved in a conventional manner, such as by sewing the stringers 16a and 16b to the respective right edge 18a and left edge 18b of a garment shown in phantom in FIGURES 1-3. The terms "left" and "right" are used herein with reference to the point of view of a wearer of the garment. The device 10 comprises a first terminal or slider base terminal 20 and a second terminal or receiving terminal 22, which terminals can be operatively engaged or brought together into working relationship in a manner similar to the operation of a conventional snap fastener such that the slider base terminal 20 is aligned over and then pressed into the receiving terminal 22 in the manner indicated. As seen in FIGURE 1, the slider base terminal 20 is adapted to carry a conventional slider 24 which is manually operable by means of a handle 26 pivotally mounted in a longitudinal slot 27 atop the slider 24. When the terminals 20 and 22 are disengaged, the slider 24 is normally carried on a base or generally disc-shaped platform 28 which, in the present example, forms an upper surface portion of the terminal 20. The slider 24 includes top and bottom plates 30 and 32 held in spaced-apart parallel planes by a center post 34 which forms the leading edge of the slider 24 as it moves forwardly.
As seen in FIGURE 2, when the slider 24 is moved forwardly, it progressively forces the teeth in the opposed rows 12 and 14 into interlocking engagement. As seen in FIGURE 1A, the slider plate 30 has downwardly extending right and left side rims 36a and 36b and the bottom slider plate 32 has upwardly extending right and left side rims 38a and 38b. The rims 36a and 38a form a right side slot through which the stringer 16a passes and the rims 36b and 38b form a left side slot through which the stringer 16b passes, as is
OMPI Λ. WIPO « conventional in the zipper art. As the slider 24 moves forward, the teeth in
' the opposed rows 12 and 14 enter respective right and left slider ports 39a and
39b formed between the front edges of the respective side rims and the center post 34. The manner in which the slider 24 engages and disengages the teeth in the opposed rows 12 and 14 is generally known and thus will not be elaborated on further. From the foregoing, however, it will be appreciated that the slider 24 can be readily moved from the position seen in FIGURE 2 to its rearmost position on the slider base terminal 20 because the platform 28 is made to lie in the same plane as the adjacent portions of the stringers 16a and 16b whenever the terminals 20 and 22 are operatively engaged. Since the stringers 16a and 16b are ordinarily flexible, the full length of each stringer 16a and 16b will not necessarily lie in a single plane. However, portions of the stringers 16a and 16b will lie in what will be referred to herein as the "slider working plane" when they pass through the slider 24. The term "slider working plane" is intended to mean that plane defined by the intersection of longitudinal and transverse axes of the slider 24, the longitudinal axis lying in the direction of slider movement as indicated by the dashed line L in FIGURE 2 and the transverse axis bisecting the slider ports 39a and 39b as indicated by the dashed line T in FIGURE 1A. The slider base terminal 20 includes a raised shelf 40 which serves as a guide track for slidably cooperating with the upper rims 36a and 36b so as to keep the slider 24 in general forward alignment when situated in its rearmost position thereon. The platform 28 further includes a notch 42 for receiving the center post 34 of the slider 24 in the manner shown in FIGURE 1. The terminal 20 includes a guide segment 44 which defines the rearmost end of the right row 12 of zipper teeth. The guide segment 44 serves in the manner of a cam to guide the leading edge of the center post 34 into operative proximity with the rearmost zipper tooth 12a of the right row 12. Similarly, the terminal 22 includes a guide segment 46 which defines the rearmost end of the left row 14 of zipper teeth. The guide segment 46 serves to guide the leading edge of the center post 34 into operative proximity with the rearmost zipper tooth 14a of the left row 14, provided the terminals 20 and 22 are operatively engaged and rotationally oriented relative to each other in the position shown. It is presently preferred that the guide segment 44 and the raised shelf 40 have a eommon cδlinear right edge 48a for a smooth transition in the movement of the slider 24 exiting from and returning to the terminals 20 and 22. The shelf 40 also preferably has a straight left edge 48b at its rearmost position and a generally S-shaped curved edge 49 leading from the edge 48b to the left edge of guide segment 44. The curved edge 49 permits a slight lateral or rotational
OM movement of the slider 24 with respect to terminal 20 as the center post 34 of the slider 24 is guided between the guide segments 44 and 46 which tends to cause the terminals 20 and 22 to rotate slightly relative to each other.
In accordance with a unique feature of the invention, the terminals 20 and 22 are engaged or nested in a manner similar to that of a snap fastener by pressing the terminals 20 and 22 together after first aligning them in the manner indicated in FIGURE 1 while the slider 24 is carried in its rearmost position on the platform 28. The nesting or mating portions of the terminals 20 and 22 are preferably generally annular in shape so that the terminals 20 and 22 can be brought together without having to first align the two zipper rows 12 and 14 at any particular angle to each other as will be appreciated more fully from the description that follows.
Referring again to FIGURE 1, the slider base terminal 20 includes curved wall 50 extending downward from the periphery of the platform 28. The wall 50 preferably includes a cuff 52 projecting radially outward from a cylindrical surface 54 of the wall 50. In this embodiment, the cuff 52 is provided only through a semicircular arc around the rearward half of the cylindrical surface 54. The receiving terminal 22 includes a curved mating wall 56 extending upward from the periphery of a generally circular floor 58. The wall 56 preferably includes an upper interior cylindrical surface 60 of a first diameter and a lower interior cylindrical surface 62 of a second diameter, the second diameter being greater than the first diameter. The wall 56 includes an upper peripheral rim 64 which with the cylindrical surface 60 defines an aperture 65 for receiving the mating wall 50 of terminal 20. The terminals 20 and 22 are brought into operative engagement by first seating the cuff 52 on the upper peripheral rim 64 of the wall 56 and then pressing the terminals 20 and 22 together until the bottom of the wall 50 abuts the floor 58, which is designed to occur when the rearmost portions of the stringers 16a and 16b have become essentially coplanar with the previously defined slider working plane when the slider 24 is in its rearmost position on terminal 20. Accordingly, the term "operative engagement" and terms of similar import are used herein to mean that the terminals 20 and 22 (and their counterparts in subsequently described embodiments) are mated or nested but not necessarily in any particular relative rotational position to each other nor are they necessarily interlocked. It will be appreciated, therefore, that the generally cylindrical construction of the terminals 20 and 22 permits them to be engaged when the adjacent ends of the zipper rows 12 and 14 are in a nonparallel orientation. In order to facilitate guiding terminal 20 into the terminal 22, the cuff 52 is generally frustoconieal so that it tapers with increasing diamete in moving axially upward along the wall 50 to a maximum diameter at a generally radially oriented shelf 66 which interconnects the conical surface o the cuff 52 with the cylindrical surface 54 of the wall 50. The diameter of the cylindrical surface 54 is slightly smaller than the diameter of the upper interior cylindrical surface 60 of the terminal 22, and the maximum diameter of the cuff 52 is slightly greater than the diameter of the surface 60 such tha forcing the terminals 20 and 22 together causes the cuff 52 to compress slightly radially and/or causes the wall 56 to expand radially as the cuff 52 slidably passes within the surface 60. The degree of compression of the cuff 52 relative to the expansion of the wall 56 depends on the properties of th materials employed in fabricating the terminals 20 and 22, a relatively rigid and resilient plastic being a preferred material. When the shelf 66 passes beyond the surface 60, the cuff 52 and wall 56 resiliently return to their normal dimensions with the shelf 66 abutting an annular shoulder 68 whic interconnects the two cylindrical surfaces 60 and 62. Once the slider 24 is moved forward up the rows 12 and 14 of zipper teeth, inadverten disengagement of the terminals 20 and 22 is then prevented by virtue of the shelf 66 abutting the annular shoulder 68 at the rearward portions of the terminals 20 and 22 combined with the locking action of the rearmost zipper teeth 12a and 14a tending to keep the forward portions of the terminals 20 an 22 locked in the engaged position shown in FIGURE 2. In addition, the guide segments 44 and 46 can optionally be adapted to interlock with each other to further insure against inadvertent disengagement of the terminals 20 and 22, as will be decribed below with reference to FIGURES 3 and 4. However disengagement of the terminals 20 and 22 can readily be achieved when the slider 24 is situated in its rearmost position by pulling upward (in the view o FIGURE 1) on the portion of the garment hem or edge 18a adjacent to the slider base terminal 20 and simultaneously downward on the portion of the garmen hem or edge 18b adjacent to the receiving terminal 22, which causes the forward portions of the terminals 20 and 22 to begin to separate since no locking action is then being provided by the unfastened zipper teeth. Such pulling action on the garment edges 18a and 18b causes the terminals 20 and 22 continue to^. tilt out of axial alignment until the cuff 52 can slip past the shoulder 68 permitting the terminals 20 and 22 to pull free from each other.
It will be appreciated from the foregoing that the terminals 20 and 22, once engaged, are kept essentially in coaxial alignment by the relatively snug fit of the slidably abutting walls 50 and 56. In accordance with
Λ- an important feature of the device 10, the mating walls 50 and 56- define circular arcs subtending angles in excess of 180 degrees so that, once engaged, the only relative movement of the terminals 20 and 22 that can occur will be rotational and not translational. Thus, pulling the slider 24 forward away from the terminals 20 and 22 to fasten the zipper rows 12 and 14 will not cause terminal 20 to move forward relative to terminal 22 because the forward portions of surface 54 will abut the cooperating portions of surface 60.
However, it is also a desireable feature of the device 10 that, while being carried in its rearmost position on the terminal 20 with the terminals 20 and 22 operatively engaged, the slider 24 is carried within the nesting portions of the , terminals 20 and 22. Accordingly, the preferred mating walls 50 and 56 are not continuous through a full 360 degrees, but are provided with gaps 69a and 69b at their forward portions to permit the slider 24 to exit from the nesting portions of the terminals 20 and 22 as it moves forward to engage the zipper rows 12 and 14. One advantage of this preferred arrangement is that, while the slider 24 is carried in its rearmost position on the terminal 20, the axis of relative rotational movement of the terminals 20 and 22 passes approximately through the center of the slider 24 which is snugly encompassed within the cylinders defined by walls 50 and 56. Thus, if the zipper rows 12 and 14 are not aligned in parallel when it is desired to fasten them together, pulling forwardly on the handle 26 and rearwardly on the receiving terminal 22 will automatically cause the terminals 20 and 22 to rotate until the rows 12 and 14 are substantially parallel, whereupon the slider 24 is permitted to exit forwardly through the aligned gaps 69a and 69b in the walls 50 and 56. Most preferably, the gaps 69a and 69b in the forward portions of the walls 50 and 56 are just slightly wider than the maximum width of the slider 24 so that it will not exit through the gaps 69a and 69b until they are perfectly aligned, thus assuring that the guide segments 44 and 46 will pass through the two front ports 39a and 39b of the slider 24 on opposite sides of the center post 34. If the terminals 20 and 22 are initially brought together with the rearmost ends of the zipper rows 12 and 14 well out of parallel, at right angles for example, then the leading edge of the center post 34, as the user pulls forwardly on the slider handle 26, will slidably bear against the cylindrical surface 60 as the terminals 20 and 22 begin to rotate into alignment. It will be appreciated that the foregβing preferred features of the device 10 permit the terminals 20 and 22 to be snapped into engagement even when the wearer is in a sitting position during which the zipper rows 12 and 14 are ordinarily misaligned.
OMPI /,, WIPO In order to facilitate pulling rearwardly on the terminal 22, a tab
70 is provided at the rear thereof for grasping, for example, between the thumb and index finger of the left hand of the wearer. The provision of the slot 27 atop the slider 24 is believed to facilitate the rotational action of the terminals 20 and 22 by permitting the point of pivotal attachment of the handle 26 to the slider 24 to move forward of the axis of rotation. As the slider 24 begins to move forwardly, the center post 34 slidably engages the facing surfaces of the guide segments 44 and 46 which in turn pass through the slider 24 and are brought into engagement as seen in FIGURES 2 and 3 because the interior passageway of the slider 24 narrows progressively. As the slider 24 continues forwardly, the zipper teeth in the rows 12 and 14 are progressively brought into interlocking engagement in the conventional manner.
Referring now to FIGURES 3 and 4 in conjunction with FIGURE 2, additional features of the preferred zipper terminal device 10 will be described. After the slider 24 has been pulled forward up the zipper rows 12 and 14, the terminals 20 and 22 will remain locked in engagement by virtue of the insertion of a tongue 72 on guide segment 46 into a cooperating groove 74 in guide segment 44. The mating of the tongue 72 and groove 74 occurs automatically with a final slight rotation of the terminals 20 and 22 as the rearmost interior surface of the left upper rim 36b of the slider 24 pushes counterclockwise on the guide segment 46 while the rearmost interior surface of the right upper rim 36a pushes clockwise on the guide segment 44. As previously mentioned, even without the tongue-and-groove locking feature of the guide segments 44 and 46, the interlocked rearmost zipper teeth 12a and 14a will tend to keep the forward portions of the terminals 20 and 22 in engagement while the cuff 52 (FIGURE 1) of terminal 20 abuts the annular shoulder 68 of terminal 22 to keep the rearward portions of the terminals 20 and 22 locked in engagement.
To further assist in securing the terminals 20 and 22, the guide segment 44 preferably interlocks with the zipper tooth 14a in like manner as the various other zipper teeth of the opposed rows 12 and 14 interlock with each other. In particular, the guide segment 44 includes a forwardly extending projection 76 evident in FIGURE 1, which is adapted to engage a mating indentation in the rearward portion of the zipper tooth 14a in the manner depicted in FIGURE 3.
With particular reference to FIGURES 3-5, a preferred technique will now be described for securing the terminals 20 and 22 to the stringers 16a and 16b and the adjacent garment edges 18a and 18b. Extending radially outward from the upper forward portions of the terminals 20 and 22 are wings
( OM 80 and 82, respectively. The wings 80 and 82 each include top (80a, 82a) and bottom (80b, 82b) layers of a folded flange. As exemplified in FIGURE 5, the wing 82 has a top layer 82a and a bottom layer 82b joined at a bend or fold 82c. Disposed between the layers 82a and 82b is the rearmost corner of the stringer 16b. Although other means of attachment are also feasible, it is presently preferred for sake of simplicity that the respective wings 80 and 82 be glued to their respective stringers 16a and 16b and that the wing-stringer assemblies then be securred to their respective adjacent garment edges 18a and 18b (shown in phantom in FIGURE 3) by sewing. Accordingly, slotted openings 84 are provided in the wings 80 and 82, which openings register in the respective top and bottom layers of the wings 80 and 82 to permit a needle and thread (not shown) to pass therethrough. As exemplified in FIGURE 5, the exterior faces of the wings 80 and 82 may be curved between openings 84 to facilitate guiding the point of the needle into any of the openings 84, since they are most likely obscured from view by the garment edge 18a or 18b to be attached thereat.
Referring briefly again to FIGURE 4, it will be seen that the stringers 16a and 16b are provided with beaded edges 86a and 86b, respectively, in accordance with one of several well-known prior-art techniques for securring the individual zipper teeth to the stringers 16a and 16b. (It will, of course, be appreciated that the invention can be practiced using other suitable slide-fastening interlocking elements and associated means for attachment to the edges of a garment.) The guide segments 44 and 46 include hollow interiors for accepting the rearmost portions of the beaded edges 86a and 86b so that attachment of the wings 80 and 82 to the respective stringers 16a and 16b will automatically self-align the guide segments 44 and 46 with the respective rows 12 and 14 of zipper teeth.
An additional feature of the inventive device 10 which is apparent from FIGURES 1 and 4 involves the provision of an L-shaped member 88 extending forwardly from the wall 56 and the floor 58 of the terminal 22. The L-shaped member 88 gives added support to the guide segment 46 and adjoining wing 82 to resist flexing at the point of attachment of the wing 82 to the rim 64 of the terminal 22. The placement of the L-shaped member 88 also conveniently permits it to serve as a guide chute for the slider 24, as will be appreciateαVfrom the view of FIGURE 2.
A second embodiment of the invention will now be described with reference to FIGURES 6-8, wherein a zipper terminal device is illustrated and designated generally by reference numeral 110. In order to simplify the description of the device 110, parts that function in a similar manner to corresponding parts in the above-described device 10 are designated using similar reference numerals. The following description will focus only on the most important differences of the device 110 with respect to the above- described device 10. It will be appreciated that, while they are not shown i the similar view of FIGURE 6, the rows 12 and 14 of zipper teeth of FIGURE 1 would be provided in essentially the same manner along the beaded edges 186 and 186b of the respective stringers 116a and 116b.
The most significant difference between the device 110 and the above-described device 10 is the inclusion of a slider retaining mechanism comprising a spring member 190 suspended from the slider base terminal 120 so that it will lie within the interior passageway 191 of the slider 124 and retain the slider 124 in its rearmost position on the terminal 120 unless the terminals 120 and 122 are operatively engaged in the position shown in FIGURE 7. Th spring member 190 includes a catch 192, which extends into an opening 194 i the bottom plate 132 of the slider 124 when the spring member 190 is unflexe as shown in phantom in FIGURE 8, whereby the forward movement of the slider 124 is prevented by virtue of the catch 192 contacting a wall 196 of the bottom plate 132. The spring member 190 includes an arm 198 extending through an opening 200 in a rearward portion of the wall 150 of terminal 120. When the terminals 120 and 122 are operatively engaged, the slider 124 is released for forward movement by a projection 202 extending upward from rearward portion of the wall 156 of terminal 122 to flex the spring member 190. The terminal 120 preferably includes a lip 204 which extends downward fro the rear of the shelf 140 in order to cover the arm 198 to prevent accidental release of the slider 124. The lip 204 and the adjacent portion of terminal wal 150 form a narrow gap into which the projection 202 extends when the terminals 120 and 122 are operatively engaged, thereby pushing the arm 198 upward to flex the spring member 190 thus lifting the catch 192 out of the opening 194. As seen best in FIGURE 6, the upper peripheral rim of the wall
156 includes two beveled surfaces 164a and 164b which serve to guide the slide base terminal 120 down into operative engagement with the receiving terminal 122. The spring flexing projection 202 extends upward from the upper bevele surface 164a to provide a curved cam surface 206 which is slidably engaged by the spring a?m 198 to gradually flex the spring member 190 as the terminals 120 and 122 are rotated to bring the guide segments 144 and 146 into operative proximity. Thus, the slider 124 will not be released for forward movement until the guide segments 144 and 146 are aligned for passage through the front ports of the slider 124 on opposite sides of the center post 134. As the slider base terminal 120 is rotated clockwise with respect to the receiving terminal 122, the arm 198 rides up along cam surface 206 to the top of the projection 202 thereby lifting the catch 192 out of the opening 194, as depicted in FIGURE 7. It is clearly evident from the foregoing description of the device
110 that one important advantage of such a slider retaining mechanism is that the slider 124 will not be released to exit forwardly through the gaps 169a and 169b in the walls 150 and 156 until the relative rotational position of the terminals 120 and 122 is appropriate for fastening the zipper. Another important advantage of such a slider retaining mechanism is that the slider 124 and slider base terminal 120 can be controlled together as a unit using the slider's handle 126, which is conveniently pivotable and longitudinally moveable within the slot 127. Thus, for example, when the terminals 120 and 122 are separated and the slider 124 is captured on the terminal 120 by virtue of the spring catch 192 extending down into the opening 194, engagement of the terminals 120 and 122 is easily achieved by grasping the handle 126 with one hand and the wing 182 of terminal 122 with the other hand and then merely forcing the terminals 120 and 122 together.
When compared to the device 10 of FIGURES 1-5, the operation of the device 110 of FIGURES 6-8 more nearly approximates the workings of a conventional snap fastener as will be appreciated from the following description of additional features of the device 110. It will be seen from
FIGURE 6 that the cuff 152 is coextensive with the entire periphery of the wall
150, which is disposed through an arc substantially in excess of 180 degrees. During engagement of the terminals 120 and 122, the cuff 152 is guided by the beveled edges 164a and 164b through the receiving aperture 165 and down past the innermost surface 160 of terminal 122 thereby compressing the cuff 152 and/or expanding the wall 156 until the outermost edge of the cuff 152 passes beyond the surface 160, whereupon the cuff 152 and the wall 156 resiliently return to their normal dimensions. At this point, terminals 120 and 122 are locked against axial movement but are free to rotate relative to each other. It will of course be appreciated that the distance from the floor 158 to the shoulder 168 will preferably be only slightly greater than the distance from the bottom of the wall 150 to the outermost edge of the cuff 152 so that, as the bottom of the wall 150 snaps into abutment with the floor 158, the terminals
120 and 122 contemporaneously become operatively engaged and interlocked against axial movement without having to rotate the terminals 120 and 122 relative to each other. The terminals 120 and 122 are readily disengaged by pulling upward on the handle 126 of the slider 124, when situated on the terminal 120, while holding down on terminal 122 with opposing forces sufficiently strong to recompress the cuff 152 a d/or reexpand the wall 156 until the cuff 152 can again pass within the surface 160. In order to facilitate this mode of release, the cuff 152 is provided with a curved upper edge 166 for reducing the force required to pull the terminals 120 and 122 apart. In addition, it may be desirable to provide axial slits 208 radially spaced apart around the wall 156 for increased flexibility. Such slits 208 are particularly advantageous where the terminals 120 and 122 are fabricated from a relatively rigid material, such as steel.
In comparing the two embodiments 10 and 110, it will be appreciated that in both cases the slider base terminal (20 or 120) is snapped into engagement with its receiving terminal (22 or 122), whereas the mode of release employed by device 10 differs somewhat from that employed by device 110. In the ease of the device 10, the terminals 20 and 22 are disengaged by tilting them out of coaxial alignment by forcing their forward portions apart until the cuff 52 of terminal 20 can be withdrawn from beneath the shoulder 68 at the rearward portion of terminal 22. In the case of device 110, the terminals 120 and 122 are snapped out of engagement while generally maintaining the terminals 120 and 122 in coaxial alignment. Such snap-release is achieved by grasping the slider handle 126 or the wing 180 with one hand and the wing 182 with the other hand and pulling in opposite directions. In either case, the disengagement of the respective terminals of devices 10 and 110 requires no special concentration or dexterity. In both cases, the respective terminals readily and automatically release from each other in response to moderate forces tending to pull them apart. However, the snap-release action of the terminals 120 and 122 tends to apply slightly more stress to the wing 182 of device 110 than is applied to the wing 82 of device 10. Accordingly, as seen in FIGURE 6, the L-shaped member 188 is preferably permanently secured to the lower wing plate 182b for added support.
In the following description of several additional embodiments of the invention illustrated in FIGURES 9-15, it will be appreciated that the zipper teeth and associated stringers, which are not shown, can be attached to the terminafs in the same manner as with the first embodiment of the invention shown in FIGURES 1-5. It will also be appreciated that the wings (380, 382, 480, 482, 580, 582) and guide segments, (344, 346, 444, 446, 544, 546), which are merely shown schematically as solid members in FIGURES 9- 15, preferably have provisions for receiving the stringers in a manner similar to that depicted in FIGURE 4. A third embodiment of the invention will now be described with reference to FIGURES 9 and 10 wherein parts that function in a similar manner to previously described parts are designated using similar reference numerals.
As seen in FIGURE 9, the slider 324 is carried above the platform 328 of the slider base terminal 320. This arrangement eliminates the need for a gap in the wall 350 as is required in the first two embodiments of the invention in which the slider is carried partially within the nesting portion of its slider base terminal. Furthermore, the mating wall 356 of the receiving terminal 322 of FIGURE 10 is provided through a complete 360° are or ring. It will therefore be appreciated that when the terminals 320 and 322 of this embodiment are operatively engaged, the slider 324 is carried in its rearmost position above and entirely outside of the nesting portions defined by the annular walls 350 and 356 of the terminals 320 and 322. The structural simplicity of this third embodiment of the invention, though not as compact as the previously described embodiments, makes it comparatively less expensive to fabricate. The slider 324 is held in proper alignment when in its rearmost position on the slider base terminal 320 by means of a guide track 340, which is affixed atop the platform 328, and cooperating L-shaped flanges 341a and 341b, which extend downward from the bottom of the slider 324. The guide track 340 appears generally T-shaped in the view of FIGURE 9 and preferably tapers to a pointed forward end in the manner of guide track 440 to be described below in conjunction with FIGURE 11.
The terminals 320 and 322 are adapted to be snapped into engagement by merely pressing the slider base terminal 320 down through the receiving aperture 365 and into the terminal 322. The wall 350 of terminal 320 has an outwardly curved peripheral surface 366 which abuts a cooperating recess or indented surface 368 along the interior of the wall 356 of terminal
322. The interior dimension of the upper bevelled rim 364 of terminal 322 and the cooperating portions of the wall 350 of terminal 320 are adapted so that the wall 350 will contract slightly and/or the wall 356 will expand slightly so as to allow the engagement of the terminals 320 and 322. When engaged, however, the terminals 320 and 322 are essentially free to rotate relative to each other so that the guide segment 346 can be positioned to pass into the left front slider port 339b just to the left of the center post 334. The guide segment 346 is supported over and just forward from the rim 364 by means of the wing 382 which in turn cantilevers from its L-shaped supporting wall 388.
A fourth embodiment of the invention will now be described with reference to FIGURES 11-13 wherein parts that function in a similar manner to previously described parts are designated using similar reference numerals. will be appreciated that the slider 424 (partially visible in phantom in FIGURES 12 and 13) is held in proper orientation on the slider base terminal 420 by means of a guide track 440 (seen in FIGURE 11) which cooperates with flanges (not shown) on the bottom of the slider 424 in a similar manner to the guide track 340 and flanges 341a and 341b of the previously described embodiment as illustrated in FIGURE 9. To the rear of the guide track 440 is a rim 443 which serves as a stop for the slider 424. Like the previous embodiment of FIGURES 9 and 10, the slider 424 is supported in its rearmost position on a platform 428 above and entirely outside of the nesting portions of the terminals 420 and 422, as will be apparent from FIGURES 11 and 12. The wings 480 and 482 and guide segments 444 and 446 are therefore supported above the plane of the platform 428, the wing 480 cantilevering from a supporting shelf 445 and the wing 482 cantilevering from an L-shaped supporting wall 488. The slider base terminal 420 includes spiral-shaped bottom walls or surfaces 450a and 450b which are adapted to slidably abut complementary walls or surfaces 456a and 456b of the receiving terminal 422 during engagement of the terminals 420 and 422. By bringing the surfaces 450a and 450b into contact with the respective surfaces 456a and 456b and rotating the terminals 420 and 422 relative to each other until the guide segment 446 is aligned for passage through the left front port 439b of the slider 424, locking or latching members 466a and 466b on the bottom of terminal 420 become partially engaged with complementary members 468a and 468b down within the aperture 465 of terminal 422. Thereafter, as the slider 424 is moved forwardly beyond the guide segments 444 and 446, a final slight rotation of the terminals 420 and 422 causes the latching members 466a and 466b of terminal 420 to become completely engaged with the respective latching members. 468a and 468b of terminal 422. Preferably, when the slider 424 is in its rearmost position, it extends forward slightly beyond the front edge of surface 450a so that the right side of the center post 434 abuts the adjacent edge of the guide segment 444 as depicted in FIGURE 13. Thus, when the terminal 420 is rotated fully clockwise with respect to terminal 422, the left side of the center post 434 will abut the guide segment 446, thereby assuring that the zipper rows are perfectly aligned in front of their respective slider ports prior to moving the slider 424 fβrward.
It will be appreciated that the generally cone-like arrangement of the terminals 420 and 422 greatly facilitates guiding them into operative engagement. The receiving aperture 456 defined by the upper peripheral rim 464 of terminal 422 provides an easy target for the bottom portion of terminal 420. Furthermore, the dual-spiral construction of the cooperating surfaces of the terminals 420 and 422 tends to promote rotation in the proper direction for interlocking the terminals 420 and 422 merely by the force of pressing the terminals 420 and 422 together. A zipper terminal device 510 in accordance with a fifth embodiment of the invention will now be described with reference to FIGURES 14-16 wherein parts that function in a similar manner to previously described parts are designated using similar reference numerals. The slider employed in this embodiment is illustrated by the phantom outline 524 in FIGURE 14. When in it rearmost position as shown, the slider 524 is carried forward and entirely outside of the nesting portions of the terminal 520 and 522. For this purpose, the slider base terminal 520 is provided with guiding and retaining walls 540 which provide a slider receptacle on both sides of a central web 528. The web 528 is inserted between the plates of the slider 524 in a manner similar to the way in which the platform 28 is inserted between the plates 30 and 32 of the slider 24 of FIGURE 1. When in its rearmost positon, the slider 524 is held in proper alignment by the walls 540 with the center post 534 of the slider 524 resting in a notch 542 in the web 528. As seen in FIGURE 15, the slider base -terminal 520 includes a raised annular portion 550 adapted to mate with an annular recessed portion 556 of the receiving terminal.522. The nesting or mating portions of the terminals 520 and 522 include peripheral rims 566 and 568, respectively, which operate in the manner of a snap fastener to hold the terminals 520 and 522 in operative engagement while permitting relative rotational movement thereof. The operation of the device 510 proceeds as follows. With the slider 524 in its rearmost position on the terminal 520 as depicted in FIGURE 14, the terminals 520 and 522 are pressed or snapped into operative engagement as seen best in the view of FIGURE 15. The exterior faces of the terminals 520 and 522 are provided with shallow recesses 551 and 557 to facilitate grasping the respective annular nesting portions 550 and 556 between the thumb and index finger of the user while snapping the terminals 520 and 522 into engagement. Once engaged, the terminal 522 is rotated slightly counterclockwise with respect to the terminal 520 to the approximate position seen in FIGURE 14 wherein the guide segment 546 has become aligned for passage through the respective front port of the slider 524. This relative rotation will tend to occur automatically as the user pulls downward on the terminals 520 and 522 provided they are not grasped too tightly. Thereafter, the slider 524 can be pulled up the rows of zipper teeth (not shown). As the slider 524 passes the guide segments 544 and 546, they are first forced apart
*gUREA
OMPI WIPO .t slightly by the center post 534 and then brought back tightly together as th passageway within the slider 524 narrows. The guide segment 544 preferabl includes a tongue portion 572 which fits into a cooperating groove 574 in th guide segment 546 as seen best in FIGURE 15, thereby interlocking the fron portions of the terminals 520 and 522 when the zipper teeth (not shown) ar fastened. To further assist in interlocking the terminals 520 and 522 as will b appreciated best from the view of FIGURE 16, an inner edge 583 of the win 582 can be nested within a cooperating groove 585 in the adjacent edge of th terminal 520. In FIGURE 16, the edge 583 is shown in the position just prior t its entering the groove 585. In addition, the edge 583 can be extended dow around the upper periphary of the adjoining annular nesting portion 556 t interlock with a cooperating portion of the groove 585 as seen best in FIGUR 15.
In accordance with an important feature of the presen invention, the nesting portions 550 and 556 are relatively large compared t the conventional terminal pin (not shown) which would be used with the slide 524 in a conventional pin-and-socket separable zipper. In FIGURE 14, th pertinent parts of which are generally accurately scaled, the diameter of th receiving aperture 565 (shown in dotted outline) of the nesting portion 556 i approximately equal to the width of the slider 524. It will be appreciated therefore, that the area of the receiving aperture 565 is several times large than the area of one of the slider ports. Accordingly, aligning and engagin the nesting portions 550 and 556 of the terminals 520 and 522 is significantl easier than the act of feeding a terminal pin (not shown) into the respectiv front slider port in a comparably sized prior-art separable zipper.
It will be appreciated that the size differences are even mor advantageous when comparing the previously described four embodiments t the prior art. For example, it will be appreciated that the receiving apertur 65 of the device 10 of FIGURE 1 has a diameter at least as large as the overal length of the slider 24. Thus, it should be readily apparent that the area of th receiving aperture 65 of the device 10 is very much greater than the area o one of the slider ports, such as the left slider port 39b.
Therefore, each of the above-described embodiments of th invention greatly reduces the care and dexterity required in connecting th ends of a separable zipper. Rather than having to first feed a relatively smal terminal pin through one port of a slider as is done with conventional pin-and socket type separable zippers, relatively large and substantially self-alignin terminals are first fastened and then, if need be, rotated until the rows o zipper teeth are properly aligned for interfastening by the slider.
O WI Those skilled in the art will appreciate that the presently illustrated five embodiments are merely exemplary of the great variety of alternate embodiments contemplated by the present invention. For example, the present invention can be practiced using a terminal arrangement wherein the nesting portions are disposed to one side of the slider when in its rearmost position so that the axis of rotation of the terminals does not intersect the line along which the slider moves, as is the case with each of the presently illustrated embodiments. Furthermore, other terminal devices are contemplated wherein the slider is carried in its rearmost position on the terminal having the female rather than the male structure of the nesting portions, so that the term "receiving terminal" as used herein is not intended to be limited to terminals having the female structure. Other modifications and alternatives are within the spirit and scope of the present invention as defined by the appended claims. What is claimed is:

Claims

1. A device for connecting the ends of a separable zipper of the type having first (12) and second (14) opposed rows of teeth and a slider (24) for engaging and disengaging the rows of teeth, each row of teeth being disposed along the edge of a supporting sheet (16a, 16b) , the slider having first
5 (39a) and second (39b) adjacent ports at the front thereof which lead to a common passageway within the slider, the ports being adapted to receive the respective first and second rows of teeth as the slider is moved -forward whereby the teeth in the opposed rows are progressively brought into interlocking engagement within the passageway, the slider having a center post
10 (34) at the front thereof between the ports, the center post being adapted to progressively disengage the rows of teeth as the slider is moved rearwardly along the rows, the slider having two mutually perpendicular main axes, one being a longitudinal axis (L) lying in the direction of slider movement and the other being a transverse axis (T) bisecting the ports, the longitudinal and
15 transverse axes intersecting each other to define a slider working plane, the device having first (20) and second (22) terminals disposed at the respective rearward ends of the first and second rows of teeth, the first terminal including means (28) for carrying the slider when the rows of teeth are fully disengaged, one of the terminals having portions (60, 64) defining an aperture
20 (65) for receiving cooperating portions (52, 54) of the other terminal such that insertion of the cooperating portions into the receiving aperture by relative movement of the terminals in the direction substantially perpendicular to the slider working plane couples the terminals in operative engagement, characterized in that the area defined by the receiving aperture (65) is at least
25 about sev ral times larger than the area defined by one of the slider ports (39b).
O . W W
2. A device for connecting the ends of a separable zipper of the type having first (12) and second (14) opposed rows of teeth and a slider (24) for engaging and disengaging the rows of teeth, each row of teeth being disposed along the edge of a supporting sheet (16a, 16b), the slider having first (39a) and second (39b) adjacent ports at the front thereof which lead to a common passageway within the slider, the ports being adapted to receive the respective first and second rows of teeth as the slider is moved forward whereby the teeth in the opposed rows are progressively brought into interlocking engagement within the passageway, the slider having a center post (34) at the front thereof between the ports, the center post being adapted to progressively disengage the rows of teeth as the slider is moved rearwardly along the rows, the slider having two mutaully perpendicular main axes, one being a longitudinal axis (L) lying in the direction of slider movement and the other being a transverse axis (T) bisecting the ports, the longitudinal and transverse axes intersecting each other to define a slider working plane, the device having first (20) and second (22) terminals disposed at the respective rearward ends of the first and second rows of teeth, the first terminal including means (28) for carrying the slider when the rows of teeth are fully disengaged, one of the terminals having portions (60, 64) defining an aperture (65) for receiving cooperating portions (52, 54) of the other terminal such that insertion of the cooperating portions into the receiving aperture by relative movement of the terminals in the direction substantially perpendicular to the slider working plane couples the terminals in operative engagement, characterized in that the terminals (20, 22) are adapted so that they can be brought together into operative engagement to align the rearmost end (46) of the second row of teeth in front of the second slider port (39b) solely by relative translational movement of the terminals.
3. The device of Claim 2 wherein the terminals (20, 22) are further characterized in that no part of the second terminal (22) must be passed through any portion of the slider (24) in order to operatively engage the terminals and align the rearmost end (46) of the second row of teeth in front of the second slider port (39b).
4. The device of Claims 1 or 2 further characterized in that the terminals (20, 22) include slidably cooperating surfaces (54, 60) for permitting relative rotational movement of the terminals when the terminals
- REXD*
OMPI . /., WIPO , are operatively engaged with the slider (24) in its rearmost position on the firs terminal (20), the axis of rotational movement being substantiall perpendicular to said slider working plane, the terminals being adapted t permit their operative engagement solely by relative translational movemen along the rotational axis while the terminals are rotationally positione relative to each other within a range of angles including the relative rotationa position wherein the rearmost ends (44, 46) of the first and second rows o teeth are aligned in front of the respective first and second slider ports (39a 39b).
5. The device of Claim 4 further characterized in that th first and second terminals (20, 22) include respective first and second matin walls (50, 56) , one such wall (56) defining the receiving aperture (65) and th other such wall (50) defining the cooperating portions (52, 54) that are inserte into the receiving aperture during coupling of the terminals, the mating wall including means-(66, 68) for interlocking the terminals against separation whe the rows of teeth are fastened.
6. The device of Claim 5 further characterized by means (50 on the first terminal (20) abutting means (58) on the second terminal (22) t stop the relative translational movement of the terminals during coupling upo reaching a point such that at least the rearmost end (46) of the second row o teeth is brought into the slider working plane, whereby the terminals are the operatively engaged.
7. The device of Claim 6 further characterized in that th terminal interlocking means (66, 68) becomes operative as the terminals (20 22) initially become operatively engaged without having to rotate th terminals relative to each other.
*-
8. The device of Claim 5 further characterized in that th terminal interlocking means (466a, 466b, 468a, 468b) become operative onl after rotating the operatively engaged terminals (420, 422).
O
9. The device of Claim 5 further characterized in that the slider (24) is carried in its rearmost position at least partially within the mating walls (50, 56) wherein the mating walls are provided with gaps (69a, 69b) at the front thereof for passage of the slider therethrough.
10. The device of Claim 5 further characterized in that the slider (324) is carried in its rearmost positon entirely outside of the mating walls (350, 356) wherein each mating wall is disposed through a full 360° .
11. The device of Claim 10 further characterized in that the slider (324) is carried in its rearmost position above the mating walls (350, 356) so that the rotational axis of the terminals (320, 322) passes through the slider.
12. The device of Claim 10 further characterized in that the slider (524) is carried in its rearmost position adjacent to the mating walls (550, 556) so that the rotational axis of the terminals does not pass through the slider.
13. The device of Claim 5 further characterized by means (190, 192, 194, 196, 198, 200, 202, 204, 206) for retaining the slider (124) on the first terminal (120) when the first and second terminals (120, 122) are disengaged wherein the retaining means is adapted to release the slider for forward movement when the terminals are operatively engaged.
14. The device of Claim 13 further characterized in that the retaining means (190, 192, 194, 196, 198, 200, 204, 206) is adapted to release the slider (124) only when the terminals (120, 122) are operatively engaged and rotationally positioned so that the rearmost end (146) of the second row of teeth is alig ed in front of the second slider port.
OMPI /., WIPO .
15. The device of Claim 5 further characterized in that the first terminal (20) includes a guide segment (44) at the rearmost end of the first row (12) of teeth and the second terminal (22) includes a guide segment (46) at the rearmost end of the second row (14) of teeth, one such guide segment including a tongue portion (72) and the other such guide segment including a groove portion (74), the groove portion being adapted to receive the tongue portion to interlock the terminals against separation once the slider (24) has moved forwardly beyond the guide segments.
OMP
PCT/US1979/000212 1978-04-13 1979-04-04 Device for connecting the ends of a separable zipper WO1979000927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE7979900431T DE2965836D1 (en) 1978-04-13 1979-04-04 Device for connecting the ends of a separable zipper

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US89593578A 1978-04-13 1978-04-13
US895935 1978-04-13
US05/940,255 US4232429A (en) 1978-09-07 1978-09-07 Sliding fastener
US06/020,318 US4232430A (en) 1979-03-15 1979-03-15 Device for connecting the ends of a separable zipper

Publications (1)

Publication Number Publication Date
WO1979000927A1 true WO1979000927A1 (en) 1979-11-15

Family

ID=27361413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1979/000212 WO1979000927A1 (en) 1978-04-13 1979-04-04 Device for connecting the ends of a separable zipper

Country Status (5)

Country Link
EP (1) EP0015957B1 (en)
JP (1) JPS55500279A (en)
CA (1) CA1121572A (en)
DE (1) DE2965836D1 (en)
WO (1) WO1979000927A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2507446A1 (en) * 1981-06-12 1982-12-17 Flexico France Sarl Stop for slide clasp fastener - has two elements fixed to bands with one waxing split ball fitting into hole in other
WO1996004813A1 (en) * 1994-08-13 1996-02-22 J. & P. Coats, Limited Slide fasteners
US10874179B2 (en) 2016-09-30 2020-12-29 Ykk Corporation Rotation mechanism of separable stopper for slide fastener and slide fastener including same
US11425972B2 (en) 2018-03-12 2022-08-30 Ykk Corporation Stopper and slide fastener comprising same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2939559B1 (en) * 2012-12-31 2018-02-21 Kmk Slider assembly and zipper comprising same
JP5509382B1 (en) * 2013-10-10 2014-06-04 哲男 佐久間 Open fastener connection tool
US11202487B2 (en) 2017-09-26 2021-12-21 Ykk Corporation Slide fastener
CN109846150B (en) * 2019-02-13 2021-06-18 淮南冠东信息科技有限公司 Transverse closed zipper
FR3133299A1 (en) * 2022-03-09 2023-09-15 Giulia SPINA Zipper with rings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT117965B (en) * 1928-08-21 1930-06-10 Max Blaskopf Fa Zipper.
GB363596A (en) * 1931-04-23 1931-12-24 Max Blaskopf Improvements in and relating to sliding-clasp fasteners
US4139927A (en) * 1976-02-12 1979-02-20 Optilon W. Erich Heilmann Gmbh Slide fastener with separable endstop members

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE434400A (en) *
DE616470C (en) * 1932-06-30 1935-07-29 Creditanstalt In Luzern Zipper with completely separable halves of the closure
DE2603241C3 (en) * 1976-01-29 1979-08-16 Optilon W. Erich Heilmann Gmbh, Cham (Schweiz) Zipper with separable end coupling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT117965B (en) * 1928-08-21 1930-06-10 Max Blaskopf Fa Zipper.
GB363596A (en) * 1931-04-23 1931-12-24 Max Blaskopf Improvements in and relating to sliding-clasp fasteners
US4139927A (en) * 1976-02-12 1979-02-20 Optilon W. Erich Heilmann Gmbh Slide fastener with separable endstop members

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0015957A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2507446A1 (en) * 1981-06-12 1982-12-17 Flexico France Sarl Stop for slide clasp fastener - has two elements fixed to bands with one waxing split ball fitting into hole in other
WO1996004813A1 (en) * 1994-08-13 1996-02-22 J. & P. Coats, Limited Slide fasteners
US10874179B2 (en) 2016-09-30 2020-12-29 Ykk Corporation Rotation mechanism of separable stopper for slide fastener and slide fastener including same
DE112016007305B4 (en) 2016-09-30 2023-09-21 Ykk Corporation Rotating mechanism of a divisible stop part for a zipper and a zipper having the same
US11425972B2 (en) 2018-03-12 2022-08-30 Ykk Corporation Stopper and slide fastener comprising same

Also Published As

Publication number Publication date
JPS55500279A (en) 1980-05-08
EP0015957A1 (en) 1980-10-01
DE2965836D1 (en) 1983-08-18
EP0015957A4 (en) 1980-09-29
CA1121572A (en) 1982-04-13
EP0015957B1 (en) 1983-07-13

Similar Documents

Publication Publication Date Title
US4232430A (en) Device for connecting the ends of a separable zipper
EP0917837B1 (en) Separable bottom stop assembly of slide fastener
EP0097362B1 (en) Slide fastener slider
EP2442684B1 (en) Zipper
CA2295396C (en) Slide zipper assembly
JPH0228324B2 (en)
US4232429A (en) Sliding fastener
WO1979000927A1 (en) Device for connecting the ends of a separable zipper
US9173457B2 (en) Zipper assembly
CA2100396C (en) Separable bottom end stop assembly and its assembling and separating method for concealed slide fastener
US5528802A (en) Lockable slider for slide fasteners
CA1121573A (en) Separable slide fastener
EP0368170A1 (en) Separable slide fastener
EP0821893B1 (en) Lock slider for slide fastener
US4326319A (en) Slide fastener with improved end connections
EP0221417B1 (en) Snap-fit clasp fastener for bags
JPH11276215A (en) Slider of slide fastener
EP1300094A1 (en) A slide fastener
EP0090873A1 (en) Slide fastener
JP7381776B2 (en) Top stop for slide fastener chain and method for disengaging the slider from the slide fastener
JPH04158803A (en) Continuous fastener element for slide fastener
KR100281301B1 (en) Detachable bottom stop assembly of slide fastener
EP0144632A2 (en) Separable slide fastener
US4133083A (en) Lock slider for slide fasteners
MXPA00001357A (en) Zipper

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): BR DK JP SU

AL Designated countries for regional patents

Designated state(s): CH DE FR GB LU SE