USRE48242E1 - Character input apparatus and method for automatically switching input mode in terminal having touch screen - Google Patents
Character input apparatus and method for automatically switching input mode in terminal having touch screen Download PDFInfo
- Publication number
- USRE48242E1 USRE48242E1 US14/857,607 US201514857607A USRE48242E US RE48242 E1 USRE48242 E1 US RE48242E1 US 201514857607 A US201514857607 A US 201514857607A US RE48242 E USRE48242 E US RE48242E
- Authority
- US
- United States
- Prior art keywords
- character
- key
- event occurs
- characters
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/042—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
- G06F3/0421—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/02—Input arrangements using manually operated switches, e.g. using keyboards or dials
- G06F3/023—Arrangements for converting discrete items of information into a coded form, e.g. arrangements for interpreting keyboard generated codes as alphanumeric codes, operand codes or instruction codes
- G06F3/0233—Character input methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/043—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
- G06F3/0436—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which generating transducers and detecting transducers are attached to a single acoustic waves transmission substrate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
- G06F3/0486—Drag-and-drop
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0487—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
- G06F3/0488—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
- G06F3/04883—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0487—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
- G06F3/0488—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
- G06F3/04886—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
Definitions
- the present invention relates to a method for inputting a character, and in particular, to a character input apparatus and method for automatically switching an input mode in a terminal having a touch screen.
- a text input method from among character input methods in conventional terminals which will hereinafter be referred to as a ‘T9’ method, outputs frequently used characters by combinations of key inputs.
- the T9 method predicts a character to be input by a user in order to solve inconvenience in conventional character input methods.
- the user can output a desired character by pressing a key corresponding to the character once, as will be described with reference to FIG. 1 which illustrates a key input unit in a conventional terminal.
- numeric keys corresponding to characters have to be pressed in order of 7, 4, 4, 4, 9, 9, 9, 9, 9, 9, 9, 9, 9. 2.
- the user has to press a key corresponding to a desired character several times in order to input the an desired character.
- the user can select ‘z’ from among four characters ‘wxyz’ assigned to a key 101 by pressing the key 101 four times.
- the user may feel confused.
- the desired word ‘pizza’ can be output by pressing once a key 104 to which ‘p’ is assigned, pressing one a key 103 to which ‘i’ is assigned, pressing twice a key 101 to which ‘z’ is assigned, and pressing once a key 102 to which ‘a’ is assigned.
- a terminal can output a word ‘pizza’ predicted by searching a previously stored dictionary.
- the user can conveniently input desired characters with a smaller number of key inputs when using the T9 method than when using conventional character input methods.
- a problem occurs when the user desires to input a proper noun.
- the T9 method only words predicted based on user's key inputs can be input.
- the user has to switch an input mode in order to select a desired character. Namely, the user can input a desired character only after switching an input mode from a T9 mode to a separate input mode.
- the user has to additionally input a mode switch key.
- the user has to press the mode switch key several times when inputting a sentence composed of several words, increasing the overall number of key presses. This is also because the structure of characters displayed in the key input unit does not change even if the user presses the mode switch key. In other words, since two or more characters are assigned to each key even after switching to the separate input mode, an increase in the number of key inputs for character selection is inevitable.
- the user has to perform a separate operation for mode switch in order to input a desired character, e.g., for a proper noun, in the T9 mode. Consequently, the user has to select a mode for character input whenever necessary, making more efforts for key input.
- a desired character e.g., for a proper noun
- the user has to select a mode for character input whenever necessary, making more efforts for key input.
- several key inputs are required to output a corresponding character, making a character input process complex and increasing the time required for the character input process.
- the user has to switch an input mode in a separate way in order to input a proper noun in the mode using the T9 method.
- the conventional character input method requires an operation for mode switch for each character input, the character input process is complex and the time required therefor increases.
- the conventional key input unit has a structural problem in that several key inputs are still required for character selection even after switching to the separate input mode.
- an aspect of the present invention is to a character input apparatus and method for automatically switching an input mode in a terminal having a touch screen, in which a user can select a desired input mode in a simple way and thus can input a character quickly.
- Another aspect of the present invention is to provide a character input apparatus and method for automatically switching an input mode in a terminal having a touch screen, in which the time required for character input can be efficiently reduced by rapid switch from a T9 mode to a mode for selectively inputting a desired character.
- a character input method for automatically switching an input mode in a terminal having a touch screen.
- the character input method includes assigning character groups, each of which includes at least two characters, to at least two key regions acquired by dividing a region of the touch screen and displaying the character groups in the corresponding key regions based on one-to-one correspondence, if a press event occurs in one of the key regions, determining whether a drag event occurs prior to occurrence of a release event, and executing one of a separate input mode for inputting one of the characters of a corresponding character group and a text input mode for inputting a word including one of the characters of the character group according to whether the drag event occurs.
- a character input method for automatically switching an input mode in a terminal having a touch screen.
- the character input method includes, in a text input mode for inputting a word including one of the characters from character groups, each of which includes at least two characters, assigning the character groups to at least two key regions acquired by dividing a region of the touch screen and displaying the character groups in the corresponding key regions based on one-to-one correspondence, if a press event occurs in one of the key regions, counting time from a point of time at which the press event occurs, if the counted time exceeds a previously stored threshold value, switching to a separate input mode for inputting one of the characters from a corresponding character group, assigning the characters of the key region where the press event occurs to the remaining key regions except for the key region where the press event occurs and displaying the characters in the remaining key regions based on one-to-one correspondence in the separate input mode, determining whether a release event occurs in one of the key regions where the characters of the key region where
- a character input method for automatically switching an input mode in a terminal having a touch screen.
- the character input method includes assigning character groups, each of which includes at least two characters, to at least two key regions acquired by dividing a region of the touch screen and displaying the character groups in the corresponding key regions based on one-to-one correspondence, if a press event occurs in one of the key regions, determining whether a drag event occurs prior to occurrence of a release event, if it is determined that the drag event occurs, switching to a separate input mode for inputting one of the characters of a corresponding character group, checking distance and direction of the drag event, displaying a character corresponding to the checked distance and direction of the drag event from among characters of the key region where the press event occurs, and if the release event occurs when the character is displayed, outputting the displayed character.
- a character input apparatus for automatically switching an input mode in a terminal having a touch screen.
- the character input apparatus includes a memory for storing character groups, each of which includes at least two characters, displayed in at least two key regions acquired by dividing a region of the touch screen based on one-to-one correspondence, a touch screen for displaying the character groups in the key regions based on one-to-one correspondence and generating a press event, a release event, and a drag event according to user input to each of the key regions, and a controller for determining whether the drag event occurs prior to occurrence of the release event if the press event occurs in one of the key regions of the touch screen and executing one of a separate input mode for inputting one of the characters of a corresponding character group and a text input mode for inputting a word including one of the characters of the character group according to whether the drag event occurs.
- FIG. 1 illustrates a key input unit in a conventional terminal
- FIG. 2 is a block diagram of a character input apparatus according to an exemplary embodiment of the present invention.
- FIG. 3 is a control flowchart for inputting a character by automatically switching an input mode according to an exemplary embodiment of the present invention
- FIGS. 4a through 4c illustrate a process for inputting a character in a separate input mode according to an exemplary embodiment of the present invention
- FIGS. 5a through 5c illustrate a way in which characters are displayed in the separate input mode according to an exemplary embodiment of the present invention
- FIGS. 6a and 6b illustrate a way in which characters are displayed in the form of a pop-up window in the separate input mode according to an exemplary embodiment of the present invention
- FIG. 7 is a control flowchart for inputting a character in one of a separate input mode and a text input mode, which is selected according to whether a drag event occurs, according to an exemplary embodiment of the present invention
- FIG. 8 illustrates an initial screen in a text input mode according to an exemplary embodiment of the present invention.
- FIGS. 9a through 9c illustrate a screen in which a character is selected and input in a separate input mode according to an exemplary embodiment of the present invention.
- FIGS. 2 through 9c discussed below, and the various embodiments used to describe the principles of the present disclosure in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the disclosure. Those skilled in the art will understand that the principles of the present disclosure may he implemented in any suitably arranged touch screen device.
- the present invention suggests a character input apparatus and method for automatically switching an input mode in a terminal having a touch screen.
- the terminal determines whether a drag event occurs prior to occurrence of a release event and executes one of a separate input mode for inputting one of characters included in a corresponding character group and a text input mode for inputting a word including one of the characters included in the character group according to whether or not the drag event occurs.
- Such a method allows a user to rapidly select a desired input mode, thereby making it easy to input characters.
- FIG. 2 is a block diagram of a character input apparatus according to an exemplary embodiment of the present invention.
- the character input apparatus includes a radio frequency (RF) transceiver 200 , a memory 210 , a touch screen 220 , and a controller 230 .
- the RF transceiver 200 performs wireless communication of a terminal.
- the memory 210 includes a read-only memory (ROM) and a random access memory (RAM) for storing a plurality of programs and data.
- the memory 210 stores words according to key combinations used in the text input mode according to an exemplary embodiment of the present invention.
- the memory 210 also stores character groups including consonants and vowels of the Hangul, capital letters and small letters of the English alphabet, numbers, and special characters, which all will hereinafter be referred to as characters, displayed in key regions of the touch screen 220 .
- the character groups are divided depending on the number of key regions. More specifically, the number of character groups is the same as that of key regions, and the number of characters constituting a character group decreases as the number of key regions increases.
- the number of character groups may be adjusted for efficient character input from a user according to the screen size of the touch screen 220 .
- character groups each of which includes 3-4 English alphabets, are displayed in 3 ⁇ 3 key regions of the touch screen 220 .
- the touch screen 220 Upon touch of a character or a particular position in the touch screen 220 by a user's hand or an object, the touch screen 220 recognizes the touched position and performs a particular process using stored software.
- the touch screen 220 receives touch input from the user and displays display data under the control of the controller 230 or displays the operation state of a mobile communication terminal or information as icons and characters.
- the touch screen 220 according to the present invention displays key regions in for inputting characters and generates a press event, a release event, and a drag event according to user input under the control of the controller 230 .
- the press event occurs when a key region is pressed. In other words, the press event occurs when there is a touch input in the key region from the user.
- the release event occurs when the pressing of the key region is released.
- the drag event occurs when there is a drag input from the user on key regions displayed in the touch screen 220 .
- the controller 230 assigns character groups, each of which includes at least two characters, to corresponding key regions output on the touch screen 220 , and displays the character groups in the key regions based on one-to-one correspondence.
- the controller 230 determines whether the drag event occurs prior to occurrence of the release event if the press event occurs in one of the key regions, and executes one of the separate input mode for inputting one of characters in a corresponding character group and the text input mode for inputting a word including one of characters included in the character group according to whether the drag event occurs.
- the controller 230 may also count time from a point of time at which the press event occurs. The controller 230 then determines whether the counted time exceeds a previously stored threshold value and executes one of the separate input mode and the text input mode according to the determination result, as will be described in detail with reference to FIG. 3 .
- FIG. 3 is a control flowchart for inputting a character by automatically switching an input mode according to an exemplary embodiment of the present invention.
- the controller 230 assigns character groups to key regions and displays the character groups in the key regions in the text input mode set by default based on one-to-one correspondence in step 300 .
- the text input mode refers to a mode for inputting a desired word by pressing each of corresponding key regions once.
- a T9 mode will be taken as an example of the text input mode.
- the controller 230 determines whether the press event occurs in step 302 .
- the press event occurs when a key region is pressed. If the press event occurs, the controller 230 measures touch input time in step 304 .
- the touch input time is measured by counting elapsed time from a point in time at which the press event occurred.
- the measured touch input time is used to determine whether a touch input to a key region is made for a long or short duration.
- the controller 230 can make a determination by comparing the measured touch input time with the previously stored threshold value. In other words, the controller 230 determines that the touch input is made for a long duration if the measured touch input time exceeds the threshold value.
- the controller 230 determines that the touch input is made for a short duration. Thus, the controller 230 determines whether the release event occurs within the threshold value in step 306 . If the release event does not occur within the threshold value (i.e., the measured touch input time exceeds the threshold value), the controller 230 switches to the separate input mode in step 308 .
- the separate input mode will be described in detail with reference to FIGS. 4a-4c .
- FIGS. 4a through 4c illustrate a process for inputting a character in the separate input mode according to an exemplary embodiment of the present invention.
- the controller 230 displays characters in the key region where the press event is generated in corresponding key regions in step 310 .
- the characters are assigned to, and displayed in, existing key regions as illustrated in FIG. 4b .
- the characters may be assigned to, and displayed in, the remaining portions of the key regions except for portions where character groups corresponding to the key regions are displayed.
- the controller 230 determines whether the drag event occurs in step 312 . If so, the controller 230 moves an indicator according to occurrence of the drag event in step 314 .
- the controller 230 determines whether a key region indicated according to distance and direction of the drag event is the same as one of the key regions in which the characters in the key region where the press event occurs are displayed.
- the controller 230 highlights the indicated key region.
- an indicator is displayed for the highlight.
- the indicator indicates a selected key region with visual effect in order to allow the user to recognize the selected key region.
- the indicator indicates that a key region is selected by changing the color of the edges of the key region or shading in the key region.
- one of the key regions is highlighted by the indicator according to the drag event.
- the highlighted key region may he changed according to the drag event.
- the controller 230 outputs a character onto an input editor window according to movement of the indicator in step 316 . In other words, whenever a key region is highlighted, the controller 230 outputs a character of the highlighted key region onto a predetermined input editor window 400 of the touch screen 220 .
- the character output onto the input editor window 400 may be changed according to the drag event.
- the character is output in a corresponding position of a cursor indicating the input position of the character, and only the output character is changed according to the drag event without a change in the position of the cursor.
- the controller 230 outputs a character of the highlighted key region onto the input editor window 400 , thereby allowing the user to accurately and easily select a desired character.
- the controller 230 determines whether the release event occurs in step 318 .
- the user selects a desired character by dragging a key region and inputs the selected character by releasing the pressing of the key region.
- the controller 230 determines whether the release event occurs after occurrence of the drag event in step 318 .
- occurrence of the release event has the same meaning as input of a character.
- the controller 230 outputs a character corresponding to a key region where the release event occurs in step 320 . Referring to FIG.
- the release event occurs in a state where the indicator moves from the key region corresponding to ‘jkl’ to a key region corresponding to ‘1’ according to the drag event, the character ‘1’ of the key region indicated by the indicator is output onto the input editor window 400 .
- the user can separately select and input a desired character.
- the user can input a desired word at a time by merely pressing a corresponding key region for a long duration.
- the user can directly input a desired word using a T9 mode.
- the controller 230 determines that the measured touch input time does not exceed the threshold value and thus the touch input is made for a short duration, and goes to step 321 .
- the controller 230 checks characters of a key region where the release event occurs. The controller 230 then detects a word including one of the checked characters in step 322 and outputs the detected word in step 324 .
- the controller 230 if a key region corresponding to ‘jkl’ is pressed for input of the first character of the desired word, the controller 230 counts time from a point of time at which the press event occurs. If the counted time does not exceed a previously stored threshold value, the controller 230 determines whether the release event occurs in the key region corresponding to ‘jkl’. If the controller 230 determines that the release event occurs, it searches for words including the characters ‘j’, ‘k’, and ‘l’ of the key region where the release event occurs. The controller 230 detects a word that is most frequently used from among words starting with ‘j’, ‘k’, and ‘l’, and outputs the detected word onto the input editor window 400 . At this time, several words that are frequently used may be displayed and one of them may be output by a user's selection in the input editor window 400 , or a word that is most frequently used may be automatically selected and output in the input editor window 400 .
- the controller detects a corresponding word by referring to words according to key combinations stored in the memory 210 . For example, if the user presses a key region corresponding to ‘tuv’ after ‘s’ is output, the controller 230 outputs onto the input editor window 400 , a word ‘sun’ that is most frequently used as a combination with the already-output ‘s’ by referring to the previously stored words.
- the user can automatically select a desired mode without inputting a separate key or performing additional manipulation for selecting the separate input mode or the text input mode. Moreover, if word spacing starts by a space bar after completion of input of a word or a character, switching to the text input mode is automatically performed, thereby allowing the user to resume the above-described process.
- characters of a key region where the press event occurs in the separate input mode may be displayed as illustrated in FIGS. 5a through 5c unlike in FIGS. 4a through 4c .
- FIGS. 5a through 5c illustrate a way in which characters are displayed in the separate input mode according to an exemplary embodiment of the present invention.
- characters of the key region where the press event occurs may be displayed enlarged in the key regions, instead of the original character groups displayed in the key regions.
- the controller 230 may display the characters of the key region in the right side in a line as illustrated in FIG. 5a . If a large number of characters are assigned to one key region as illustrated in FIGS. 5b and 5c , the controller 230 may enlarge and display the characters in neighboring key regions around the pressed key region.
- While characters are displayed enlarged in key regions except for the key region where the press event occurs in FIGS. 5a through 5c , one of them may also be displayed enlarged in the key region where the press event occurs according to an exemplary embodiment of the present invention.
- the characters of the key region where the press event occurs may also be displayed using a pop-up window as illustrated in FIGS. 6a and 6b according to an exemplary embodiment of the present invention.
- FIGS. 6a and 6b illustrate a way in which characters are displayed in the form of a pop-up window in the separate input mode according to an exemplary embodiment of the present invention.
- a vertical or horizontal pop-up window around the key region where the press event occurs is output.
- the controller 230 enlarges and displays characters of the key region where the press event occurs in at least two key regions of a pop-up window type.
- a method of outputting the pop-up window is not limited, and may be implemented in various ways as long as it improves a user's convenience according to an exemplary embodiment of the present invention.
- characters of a pressed key region in the separate input mode can be displayed in various ways.
- the characters may be assigned to and displayed in corresponding key regions or may be displayed enlarged in at least two key regions of a pop-up window type.
- the present invention may also be applied to various types of characters such as the Hangul, special characters, and the like.
- time from a point of time at which the press event occurs is counted and one of the separate input mode and the text input mode is executed based on the counted time.
- one of the separate input mode and the text input mode may also be executed according to whether the drag event occurs prior to occurrence of the release event after the press event occurs according to an exemplary embodiment of the present invention. More specifically, when the release event occurs after occurrence of the press event (i.e., the drag event does not occur), the controller 230 executes the text input mode in which a desired word can be input at a time. If it is determined that the drag event occurs, the controller 230 switches to the separate input mode for character input from a user.
- a character may also be input to the controller 230 without screen change during mode switch.
- FIG. 7 is a control flowchart for inputting a character in one of the separate input mode and the text input mode, which is selected according to whether the drag event occurs, according to an exemplary embodiment of the present invention.
- the controller 230 assigns character groups to corresponding key regions and displays the character groups in the key regions based on one-to-one correspondence in step 700 .
- the controller 230 determines whether the press event occurs in step 702 .
- an initial screen in the text input mode is as illustrated in FIG. 8 .
- key regions are illustrated with characters and the characters may also be assigned to the key regions, together with a number like in the key regions described above.
- a key region assigned ‘ABC’ is selected from among the key regions.
- a user may select a key region 800 assigned ‘ABC’ from among all the key regions.
- a pop-up window 810 indicating the text input mode is output.
- the controller 230 measures touch input time in step 704 . In other words, the controller 230 measures time counted from a point of time at which the press event occurs. The controller 230 determines whether the release event occurs within predetermined threshold time in step 706 . If not, the controller 230 detects whether the drag event occurs in step 708 . In the embodiment illustrated in FIG. 7 , the drag event is used as a criterion for switching from the text input mode to the separate input mode. If it is determined that the drag event occurs in step 710 , the controller 230 switches to the separate input mode in step 712 .
- the controller 230 checks distance and direction of the drag event in step 714 and displays a character corresponding to the checked distance and direction onto a pop-up window. Such character selection in the separate input mode will be described in more detail with reference to FIGS. 9a through 9c .
- FIGS. 9a through 9c illustrate a screen in which a character is selected and input in the separate input mode according to an exemplary embodiment of the present invention.
- the controller 230 detects whether the drag event occurs prior to occurrence of the release event. When the drag event occurs, the controller 230 switches to the separate input mode. At this time, in spite of mode switch, arrangement of characters displayed in each of key regions does not change.
- the controller 230 displays one of characters in a key region where the press event occurs onto a screen according to distance and direction of the drag event. For example, when the user performs drag input to the left as illustrated in FIG. 9a , the controller 230 displays a character ‘A’ located to the left of a character ‘B’ located in the center of characters ‘ABC’ onto a pop-up window 900 . When the user performs drag input downwardly from the selected key region as illustrated in FIG. 9b , the controller 230 displays the center character ‘B’ onto the pop-up window 900 . When the user performs drag input to the right as illustrated in FIG. 9c , the controller 230 displays the character ‘C’ located to the right of the center character ‘B’ onto the pop-up window 900 .
- the controller 230 displays one of the characters corresponding to the drag event based on the character ‘Q’ in a second leftmost position onto the pop-up window 900 . More specifically, when the drag event occurs to the right of ‘Q’ in the key region 910 , the controller 230 outputs ‘R’ onto the pop-up window 900 . When the drag event occurs to the left of ‘Q’, the controller 230 outputs ‘P’ onto the pop-up window 900 . When the drag event occurs downwardly, the controller 230 outputs ‘Q’ onto the pop-up window 900 .
- the controller 230 sets a position distant a predetermined distance from a position where ‘Q’ is displayed and outputs a corresponding character ‘S’ when the drag event occurs at a position distant more than the preset distance.
- Such a process may also allow characters to be input according to up, down, left, and right directions like character input corresponding to key regions having three characters assigned thereto.
- the controller 230 displays a corresponding character onto a pop-up window according to a user's drag input (i.e., occurrence of the drag event). The user then releases the pressing of a key region when the desired character is displayed onto the pop-up window in order to output the character onto an input editor window. Thus, the controller 230 determines whether the release event occurs in step 718 and outputs the character displayed onto the pop-up window in step 720 .
- the controller 230 goes to step 722 in order to execute the text input mode.
- the controller 230 checks characters of a key region where the release event occurs in step 722 and detects a word including one of the checked characters in step 724 .
- the controller 230 detects a word including one of ‘ABC’ displayed in the key region 800 selected by the user.
- the controller 230 then goes to step 726 in order to output the detected word.
- the user can input a character in a faster and easier way with less effort to select the character by using the character input method in various forms.
- the present invention allows the user to automatically select a desired input mode, thereby improving convenience in and speed of character input.
- the present invention can also be used in various input apparatuses as well as a terminal having a touch screen.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Provided is a character input method and apparatus for automatically switching an input mode in a terminal having a touch screen. If a press event occurs in one of key regions displayed in the touch screen, it is determined whether a drag event occurs prior to occurrence of a release event. According to whether the drag event occurs, one of a separate input mode for inputting one of characters of a corresponding character group and a text input mode for inputting a word including one of the characters of the character group is executed. Thus, a user can easily input a character by rapidly selecting a desired input mode.
Description
ThisNotice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,018,441. The reissue applications are U.S. application Ser. No. 14/026,360, filed on Sep. 13, 2013, and the present application. The present application is a continuation reissue of U.S. application Ser. No. 14/026,360, which is also an application for reissue of U.S. Pat. No. 8,018,441. The present application claims the benefit of U.S. application Ser. No. 12/157,370, filed with the U.S. Patent Trademark Office on Jun. 10, 2008 and issued as U.S. Pat. No. 8,018,441 on Sep. 13, 2011, which claims the benefit under 35 U.S.C. § 119(a) of a Korean Patent Application filed in the Korean Intellectual Property Office on Jun. 2007 and assigned Serial No. 2007-56742 and a Korean Patent Application filed in the Korean Intellectual Property Office on Jul. 19, 2007 and assigned Serial No. 2007-72357, the entire disclosures of which are hereby incorporated by reference.
The present invention relates to a method for inputting a character, and in particular, to a character input apparatus and method for automatically switching an input mode in a terminal having a touch screen.
A text input method from among character input methods in conventional terminals, which will hereinafter be referred to as a ‘T9’ method, outputs frequently used characters by combinations of key inputs. The T9 method predicts a character to be input by a user in order to solve inconvenience in conventional character input methods. Using the T9 method, the user can output a desired character by pressing a key corresponding to the character once, as will be described with reference to FIG. 1 which illustrates a key input unit in a conventional terminal.
When the user desires to input ‘pizza’ in the key input unit illustrated in FIG. 1 , numeric keys corresponding to characters have to be pressed in order of 7, 4, 4, 4, 9, 9, 9, 9, 9, 9, 9, 9, 2. In other words, the user has to press a key corresponding to a desired character several times in order to input the an desired character. For example, in order to input ‘z’, the user can select ‘z’ from among four characters ‘wxyz’ assigned to a key 101 by pressing the key 101 four times. Moreover, when a character assigned to a key has to be input several times, the user may feel confused.
However, according to the T9 method, the desired word ‘pizza’ can be output by pressing once a key 104 to which ‘p’ is assigned, pressing one a key 103 to which ‘i’ is assigned, pressing twice a key 101 to which ‘z’ is assigned, and pressing once a key 102 to which ‘a’ is assigned. In other words, according to the T9 method, if the user presses numeric keys ‘7’, ‘4’, ‘9’, ‘9’, 2‘including characters ‘p’, ‘i’, ‘z’, ‘z’, ‘a’, respectively, a terminal can output a word ‘pizza’ predicted by searching a previously stored dictionary. Thus, the user can conveniently input desired characters with a smaller number of key inputs when using the T9 method than when using conventional character input methods.
However, according to the T9 method, a problem occurs when the user desires to input a proper noun. According to the T9 method, only words predicted based on user's key inputs can be input. As a result, the user has to switch an input mode in order to select a desired character. Namely, the user can input a desired character only after switching an input mode from a T9 mode to a separate input mode. To this end, the user has to additionally input a mode switch key. In particular, the user has to press the mode switch key several times when inputting a sentence composed of several words, increasing the overall number of key presses. This is also because the structure of characters displayed in the key input unit does not change even if the user presses the mode switch key. In other words, since two or more characters are assigned to each key even after switching to the separate input mode, an increase in the number of key inputs for character selection is inevitable.
As such, in a conventional terminal, the user has to perform a separate operation for mode switch in order to input a desired character, e.g., for a proper noun, in the T9 mode. Consequently, the user has to select a mode for character input whenever necessary, making more efforts for key input. Moreover, in order to input characters one by one, several key inputs are required to output a corresponding character, making a character input process complex and increasing the time required for the character input process.
As such, according to the prior art, the user has to switch an input mode in a separate way in order to input a proper noun in the mode using the T9 method. The conventional character input method requires an operation for mode switch for each character input, the character input process is complex and the time required therefor increases. Moreover, the conventional key input unit has a structural problem in that several key inputs are still required for character selection even after switching to the separate input mode.
To address the above-discussed deficiencies of the prior art, it is a primary aspect of the present invention to address at least the above problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the present invention is to a character input apparatus and method for automatically switching an input mode in a terminal having a touch screen, in which a user can select a desired input mode in a simple way and thus can input a character quickly.
Another aspect of the present invention is to provide a character input apparatus and method for automatically switching an input mode in a terminal having a touch screen, in which the time required for character input can be efficiently reduced by rapid switch from a T9 mode to a mode for selectively inputting a desired character.
According to one aspect of the present invention, there is provided a character input method for automatically switching an input mode in a terminal having a touch screen. The character input method includes assigning character groups, each of which includes at least two characters, to at least two key regions acquired by dividing a region of the touch screen and displaying the character groups in the corresponding key regions based on one-to-one correspondence, if a press event occurs in one of the key regions, determining whether a drag event occurs prior to occurrence of a release event, and executing one of a separate input mode for inputting one of the characters of a corresponding character group and a text input mode for inputting a word including one of the characters of the character group according to whether the drag event occurs.
According to another aspect of the present invention, there is provided a character input method for automatically switching an input mode in a terminal having a touch screen. The character input method includes, in a text input mode for inputting a word including one of the characters from character groups, each of which includes at least two characters, assigning the character groups to at least two key regions acquired by dividing a region of the touch screen and displaying the character groups in the corresponding key regions based on one-to-one correspondence, if a press event occurs in one of the key regions, counting time from a point of time at which the press event occurs, if the counted time exceeds a previously stored threshold value, switching to a separate input mode for inputting one of the characters from a corresponding character group, assigning the characters of the key region where the press event occurs to the remaining key regions except for the key region where the press event occurs and displaying the characters in the remaining key regions based on one-to-one correspondence in the separate input mode, determining whether a release event occurs in one of the key regions where the characters of the key region where the press event occurs are displayed in a state where occurrence of a drag event is sensed, and outputting a character in the key region where the release event occurs onto a predetermined input editor window of the touch screen.
According to another aspect of the present invention, there is provided a character input method for automatically switching an input mode in a terminal having a touch screen. The character input method includes assigning character groups, each of which includes at least two characters, to at least two key regions acquired by dividing a region of the touch screen and displaying the character groups in the corresponding key regions based on one-to-one correspondence, if a press event occurs in one of the key regions, determining whether a drag event occurs prior to occurrence of a release event, if it is determined that the drag event occurs, switching to a separate input mode for inputting one of the characters of a corresponding character group, checking distance and direction of the drag event, displaying a character corresponding to the checked distance and direction of the drag event from among characters of the key region where the press event occurs, and if the release event occurs when the character is displayed, outputting the displayed character.
According to another aspect of the present invention, there is provided a character input apparatus for automatically switching an input mode in a terminal having a touch screen. The character input apparatus includes a memory for storing character groups, each of which includes at least two characters, displayed in at least two key regions acquired by dividing a region of the touch screen based on one-to-one correspondence, a touch screen for displaying the character groups in the key regions based on one-to-one correspondence and generating a press event, a release event, and a drag event according to user input to each of the key regions, and a controller for determining whether the drag event occurs prior to occurrence of the release event if the press event occurs in one of the key regions of the touch screen and executing one of a separate input mode for inputting one of the characters of a corresponding character group and a text input mode for inputting a word including one of the characters of the character group according to whether the drag event occurs.
Before undertaking the DETAILED DESCRIPTION OF THE INVENTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like; and the term “controller” means any device, system or part thereof that controls at least one operation, such a device may be implemented in hardware, firmware or software, or some combination of at least two of the same. It should be noted that the functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:
The matters defined in the description such as a detailed construction and elements are provided to assist in a comprehensive understanding of an exemplary embodiment of the invention. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the exemplary embodiment described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted for clarity and conciseness.
The present invention suggests a character input apparatus and method for automatically switching an input mode in a terminal having a touch screen. When a press event occurs in one of the key regions displayed in the touch screen, the terminal determines whether a drag event occurs prior to occurrence of a release event and executes one of a separate input mode for inputting one of characters included in a corresponding character group and a text input mode for inputting a word including one of the characters included in the character group according to whether or not the drag event occurs. Such a method allows a user to rapidly select a desired input mode, thereby making it easy to input characters.
Referring to FIG. 2 , the character input apparatus includes a radio frequency (RF) transceiver 200, a memory 210, a touch screen 220, and a controller 230. The RF transceiver 200 performs wireless communication of a terminal.
The memory 210 includes a read-only memory (ROM) and a random access memory (RAM) for storing a plurality of programs and data. In particular, the memory 210 stores words according to key combinations used in the text input mode according to an exemplary embodiment of the present invention. The memory 210 also stores character groups including consonants and vowels of the Hangul, capital letters and small letters of the English alphabet, numbers, and special characters, which all will hereinafter be referred to as characters, displayed in key regions of the touch screen 220. The character groups are divided depending on the number of key regions. More specifically, the number of character groups is the same as that of key regions, and the number of characters constituting a character group decreases as the number of key regions increases. The number of character groups may be adjusted for efficient character input from a user according to the screen size of the touch screen 220. In an exemplary embodiment of the present invention, character groups, each of which includes 3-4 English alphabets, are displayed in 3×3 key regions of the touch screen 220.
Upon touch of a character or a particular position in the touch screen 220 by a user's hand or an object, the touch screen 220 recognizes the touched position and performs a particular process using stored software. The touch screen 220 receives touch input from the user and displays display data under the control of the controller 230 or displays the operation state of a mobile communication terminal or information as icons and characters. In particular, the touch screen 220 according to the present invention displays key regions in for inputting characters and generates a press event, a release event, and a drag event according to user input under the control of the controller 230. The press event occurs when a key region is pressed. In other words, the press event occurs when there is a touch input in the key region from the user. The release event occurs when the pressing of the key region is released. The drag event occurs when there is a drag input from the user on key regions displayed in the touch screen 220.
The controller 230 assigns character groups, each of which includes at least two characters, to corresponding key regions output on the touch screen 220, and displays the character groups in the key regions based on one-to-one correspondence. The controller 230 determines whether the drag event occurs prior to occurrence of the release event if the press event occurs in one of the key regions, and executes one of the separate input mode for inputting one of characters in a corresponding character group and the text input mode for inputting a word including one of characters included in the character group according to whether the drag event occurs.
If the press event occurs in one of the key regions, the controller 230 may also count time from a point of time at which the press event occurs. The controller 230 then determines whether the counted time exceeds a previously stored threshold value and executes one of the separate input mode and the text input mode according to the determination result, as will be described in detail with reference to FIG. 3 .
Referring to FIG. 3 , the controller 230 assigns character groups to key regions and displays the character groups in the key regions in the text input mode set by default based on one-to-one correspondence in step 300. The text input mode refers to a mode for inputting a desired word by pressing each of corresponding key regions once. Herein, a T9 mode will be taken as an example of the text input mode.
The controller 230 determines whether the press event occurs in step 302. According to an exemplary embodiment of the present invention, the press event occurs when a key region is pressed. If the press event occurs, the controller 230 measures touch input time in step 304. The touch input time is measured by counting elapsed time from a point in time at which the press event occurred. The measured touch input time is used to determine whether a touch input to a key region is made for a long or short duration. The controller 230 can make a determination by comparing the measured touch input time with the previously stored threshold value. In other words, the controller 230 determines that the touch input is made for a long duration if the measured touch input time exceeds the threshold value. If the measured touch input time does not exceed the threshold value, the controller 230 determines that the touch input is made for a short duration. Thus, the controller 230 determines whether the release event occurs within the threshold value in step 306. If the release event does not occur within the threshold value (i.e., the measured touch input time exceeds the threshold value), the controller 230 switches to the separate input mode in step 308. The separate input mode will be described in detail with reference to FIGS. 4a-4c .
When one of the key regions displayed as illustrated in FIG. 4a is pressed longer than the threshold value, the controller 230 displays characters in the key region where the press event is generated in corresponding key regions in step 310. At this time, the characters are assigned to, and displayed in, existing key regions as illustrated in FIG. 4b . In particular, the characters may be assigned to, and displayed in, the remaining portions of the key regions except for portions where character groups corresponding to the key regions are displayed. Thus, the user can continue checking the entire key regions and easily select a next character, thereby reducing the overall time required for character input.
In a state where each of the characters in the key region where the press event occurs is displayed, the controller 230 determines whether the drag event occurs in step 312. If so, the controller 230 moves an indicator according to occurrence of the drag event in step 314.
In an exemplary embodiment of the present invention, if the drag event occurs in the key regions, the controller 230 determines whether a key region indicated according to distance and direction of the drag event is the same as one of the key regions in which the characters in the key region where the press event occurs are displayed.
If so, the controller 230 highlights the indicated key region. In an exemplary embodiment of the present invention, an indicator is displayed for the highlight. The indicator indicates a selected key region with visual effect in order to allow the user to recognize the selected key region. For example, the indicator indicates that a key region is selected by changing the color of the edges of the key region or shading in the key region. Thus, one of the key regions is highlighted by the indicator according to the drag event. The highlighted key region may he changed according to the drag event. The controller 230 outputs a character onto an input editor window according to movement of the indicator in step 316. In other words, whenever a key region is highlighted, the controller 230 outputs a character of the highlighted key region onto a predetermined input editor window 400 of the touch screen 220. Thus, the character output onto the input editor window 400 may be changed according to the drag event. The character is output in a corresponding position of a cursor indicating the input position of the character, and only the output character is changed according to the drag event without a change in the position of the cursor. As such, whenever a key region is highlighted, the controller 230 outputs a character of the highlighted key region onto the input editor window 400, thereby allowing the user to accurately and easily select a desired character.
In such a state where a character is output according to the drag event, the controller 230 determines whether the release event occurs in step 318. According to an exemplary embodiment of the present invention, the user selects a desired character by dragging a key region and inputs the selected character by releasing the pressing of the key region. Thus, the controller 230 determines whether the release event occurs after occurrence of the drag event in step 318. In the present invention, occurrence of the release event has the same meaning as input of a character. Thus, if the release event occurs, the controller 230 outputs a character corresponding to a key region where the release event occurs in step 320. Referring to FIG. 4c , if the release event occurs in a state where the indicator moves from the key region corresponding to ‘jkl’ to a key region corresponding to ‘1’ according to the drag event, the character ‘1’ of the key region indicated by the indicator is output onto the input editor window 400.
As mentioned above, if a key region is pressed for a short duration, the user can separately select and input a desired character. On the other hand, the user can input a desired word at a time by merely pressing a corresponding key region for a long duration. In other words, the user can directly input a desired word using a T9 mode.
More specifically, if the release event occurs within the threshold value in step 306, the controller 230 determines that the measured touch input time does not exceed the threshold value and thus the touch input is made for a short duration, and goes to step 321. In step 321, the controller 230 checks characters of a key region where the release event occurs. The controller 230 then detects a word including one of the checked characters in step 322 and outputs the detected word in step 324.
According to an exemplary embodiment of the present invention, if a key region corresponding to ‘jkl’ is pressed for input of the first character of the desired word, the controller 230 counts time from a point of time at which the press event occurs. If the counted time does not exceed a previously stored threshold value, the controller 230 determines whether the release event occurs in the key region corresponding to ‘jkl’. If the controller 230 determines that the release event occurs, it searches for words including the characters ‘j’, ‘k’, and ‘l’ of the key region where the release event occurs. The controller 230 detects a word that is most frequently used from among words starting with ‘j’, ‘k’, and ‘l’, and outputs the detected word onto the input editor window 400. At this time, several words that are frequently used may be displayed and one of them may be output by a user's selection in the input editor window 400, or a word that is most frequently used may be automatically selected and output in the input editor window 400.
If the key region corresponding to ‘jkl’ is not pressed to input the first character of the desired word in the separate input mode (i.e., the user additionally inputs a character after another character is output), the controller detects a corresponding word by referring to words according to key combinations stored in the memory 210. For example, if the user presses a key region corresponding to ‘tuv’ after ‘s’ is output, the controller 230 outputs onto the input editor window 400, a word ‘sun’ that is most frequently used as a combination with the already-output ‘s’ by referring to the previously stored words.
As such, according to the present invention, the user can automatically select a desired mode without inputting a separate key or performing additional manipulation for selecting the separate input mode or the text input mode. Moreover, if word spacing starts by a space bar after completion of input of a word or a character, switching to the text input mode is automatically performed, thereby allowing the user to resume the above-described process.
According to an exemplary embodiment of the present invention, characters of a key region where the press event occurs in the separate input mode may be displayed as illustrated in FIGS. 5a through 5c unlike in FIGS. 4a through 4c .
Referring to FIGS. 5a through 5c , if the press event occurs in one of key regions, characters of the key region where the press event occurs may be displayed enlarged in the key regions, instead of the original character groups displayed in the key regions.
When the key region where the press event occurs is located leftmost, the controller 230 may display the characters of the key region in the right side in a line as illustrated in FIG. 5a . If a large number of characters are assigned to one key region as illustrated in FIGS. 5b and 5c , the controller 230 may enlarge and display the characters in neighboring key regions around the pressed key region.
While characters are displayed enlarged in key regions except for the key region where the press event occurs in FIGS. 5a through 5c , one of them may also be displayed enlarged in the key region where the press event occurs according to an exemplary embodiment of the present invention.
The characters of the key region where the press event occurs may also be displayed using a pop-up window as illustrated in FIGS. 6a and 6b according to an exemplary embodiment of the present invention.
As illustrated in FIGS. 6a and 6b , if the press event occurs in one of key regions, a vertical or horizontal pop-up window around the key region where the press event occurs is output. In other words, the controller 230 enlarges and displays characters of the key region where the press event occurs in at least two key regions of a pop-up window type. A method of outputting the pop-up window is not limited, and may be implemented in various ways as long as it improves a user's convenience according to an exemplary embodiment of the present invention.
As such, according to the present invention, characters of a pressed key region in the separate input mode can be displayed in various ways. For example, the characters may be assigned to and displayed in corresponding key regions or may be displayed enlarged in at least two key regions of a pop-up window type.
Moreover, although a description has been made regarding the English alphabet in an exemplary embodiment of the present invention, the present invention may also be applied to various types of characters such as the Hangul, special characters, and the like.
In the foregoing embodiment of the present invention, time from a point of time at which the press event occurs is counted and one of the separate input mode and the text input mode is executed based on the counted time. However, one of the separate input mode and the text input mode may also be executed according to whether the drag event occurs prior to occurrence of the release event after the press event occurs according to an exemplary embodiment of the present invention. More specifically, when the release event occurs after occurrence of the press event (i.e., the drag event does not occur), the controller 230 executes the text input mode in which a desired word can be input at a time. If it is determined that the drag event occurs, the controller 230 switches to the separate input mode for character input from a user.
On the other hand, a character may also be input to the controller 230 without screen change during mode switch.
Referring to FIG. 7 , in the text input mode, the controller 230 assigns character groups to corresponding key regions and displays the character groups in the key regions based on one-to-one correspondence in step 700. In step 702, the controller 230 determines whether the press event occurs in step 702. According to an exemplary embodiment of the present invention, an initial screen in the text input mode is as illustrated in FIG. 8 . In FIG. 8 , key regions are illustrated with characters and the characters may also be assigned to the key regions, together with a number like in the key regions described above.
In FIG. 8 , a key region assigned ‘ABC’ is selected from among the key regions. As illustrated in FIG. 8 , a user may select a key region 800 assigned ‘ABC’ from among all the key regions. According to an exemplary embodiment of the present invention, when the user select one of the key regions in the text input mode, a pop-up window 810 indicating the text input mode is output. Thus, the user can recognize which input mode is being executed when inputting a character.
If it is determined that the press event occurs in one of the key regions according to user's selection, the controller 230 measures touch input time in step 704. In other words, the controller 230 measures time counted from a point of time at which the press event occurs. The controller 230 determines whether the release event occurs within predetermined threshold time in step 706. If not, the controller 230 detects whether the drag event occurs in step 708. In the embodiment illustrated in FIG. 7 , the drag event is used as a criterion for switching from the text input mode to the separate input mode. If it is determined that the drag event occurs in step 710, the controller 230 switches to the separate input mode in step 712. The controller 230 checks distance and direction of the drag event in step 714 and displays a character corresponding to the checked distance and direction onto a pop-up window. Such character selection in the separate input mode will be described in more detail with reference to FIGS. 9a through 9c .
In the separate input mode, the controller 230 displays one of characters in a key region where the press event occurs onto a screen according to distance and direction of the drag event. For example, when the user performs drag input to the left as illustrated in FIG. 9a , the controller 230 displays a character ‘A’ located to the left of a character ‘B’ located in the center of characters ‘ABC’ onto a pop-up window 900. When the user performs drag input downwardly from the selected key region as illustrated in FIG. 9b , the controller 230 displays the center character ‘B’ onto the pop-up window 900. When the user performs drag input to the right as illustrated in FIG. 9c , the controller 230 displays the character ‘C’ located to the right of the center character ‘B’ onto the pop-up window 900.
For a key region assigned four characters like a key region 910 assigned characters ‘PQRS’, the controller 230 displays one of the characters corresponding to the drag event based on the character ‘Q’ in a second leftmost position onto the pop-up window 900. More specifically, when the drag event occurs to the right of ‘Q’ in the key region 910, the controller 230 outputs ‘R’ onto the pop-up window 900. When the drag event occurs to the left of ‘Q’, the controller 230 outputs ‘P’ onto the pop-up window 900. When the drag event occurs downwardly, the controller 230 outputs ‘Q’ onto the pop-up window 900. On the other hand, the controller 230 sets a position distant a predetermined distance from a position where ‘Q’ is displayed and outputs a corresponding character ‘S’ when the drag event occurs at a position distant more than the preset distance. Such a process may also allow characters to be input according to up, down, left, and right directions like character input corresponding to key regions having three characters assigned thereto.
As such, the controller 230 displays a corresponding character onto a pop-up window according to a user's drag input (i.e., occurrence of the drag event). The user then releases the pressing of a key region when the desired character is displayed onto the pop-up window in order to output the character onto an input editor window. Thus, the controller 230 determines whether the release event occurs in step 718 and outputs the character displayed onto the pop-up window in step 720.
When the release event occurs within the predetermined threshold time (i.e., the release event occurs after the press event occurs in step 706), the controller 230 goes to step 722 in order to execute the text input mode. The controller 230 then checks characters of a key region where the release event occurs in step 722 and detects a word including one of the checked characters in step 724. Referring to FIG. 8 , the controller 230 detects a word including one of ‘ABC’ displayed in the key region 800 selected by the user. The controller 230 then goes to step 726 in order to output the detected word.
As such, the user can input a character in a faster and easier way with less effort to select the character by using the character input method in various forms.
As is apparent from the foregoing description, the present invention allows the user to automatically select a desired input mode, thereby improving convenience in and speed of character input. Moreover, the present invention can also be used in various input apparatuses as well as a terminal having a touch screen.
Although the present disclosure has been described with an exemplary embodiment, various changes and modifications may be suggested to one skilled in the art. It is intended that the present disclosure encompass such changes and modifications as fall within the scope of the appended claims.
Claims (33)
1. A character input method for automatically switching an input mode in a terminal having a touch screen, the character input method comprising:
assigning character groups, each of which includes at least two characters, to at least two key regions acquired by dividing a region of the touch screen and displaying the character groups in the corresponding key regions based on one-to-one correspondence;
if a press event occurs in a first of the key regions, determining whether a drag event occurs prior to occurrence of a release event;
executing one of a separate input mode for inputting one of characters of a corresponding character group and a text input mode for inputting a word including one of the characters of the character group according to whether the drag event occurs; and
upon execution of the separate input mode, assigning each character of the character group associated with the first key region to a different one of the key regions other than the first key region and displaying the characters of the character group in the other key regions.
2. The character input method of claim 1 , further comprising:
if the press event occurs in the first key region, counting time from a point of time at which the press event occurs;
determining whether the counted time exceeds a previously stored threshold value; and
executing one of the separate input mode for inputting one of characters of a corresponding character group and the text input mode for inputting a word including one of the characters of the character group according to a determination result.
3. The character input method of claim 1 , further comprising:
determining whether a key region indicated according to distance and direction of the drag event is the same as one of the key regions where the characters of the key region where the press event occurs are displayed;
highlighting the indicated key region if it is determined that the key region is the same as one of the key regions; and
if the release event occurs in the highlighted key region, outputting a character of the key region where the release event occurs onto, a predetermined input editor window of the touch screen.
4. The character input method of claim 3 , further comprising, each time one of the key regions where the characters of the key region where the press event occurs are displayed is highlighted, outputting the character of the highlighted key region onto the input editor window.
5. The character input method of claim 3 , wherein the displaying of the characters of the key region where the press event occurs in the key regions based on one-to-one correspondence comprises displaying the characters of the key region where the press event occurs in second portions of the key regions except for first portions where the character groups of the key regions are displayed based on one-to-one correspondence.
6. The character input method of claim 3 , wherein the displaying of the characters of the key region where the press event occurs in the key regions based on one-to-one correspondence comprises enlarging and displaying the characters of the key region where the press event occurs in the key regions based on one-to-one correspondence, instead of the character groups of the key regions.
7. The character input method of claim 3 , wherein the displaying of the characters of the key region where the press event occurs in the key regions based on one-to-one correspondence comprises enlarging and displaying the characters of the key region where the press event occurs in at least two key regions of a pop-up window type.
8. The character input method of claim 1 , further comprising:
if the text input mode is executed, determining whether the release event occurs prior to occurrence of the drag event;
if the release event occurs, searching for words including a character of a key region where the release event occurs;
detecting a word that is most frequently used based on a search result; and
outputting the detected word.
9. A character input method for automatically switching an input mode in a terminal having a touch screen, the character input method comprising:
in a text input mode for inputting a word including one of characters from character groups, each of which includes at least two characters, assigning the character groups to at least two key regions acquired by dividing a region of the touch screen and displaying the character groups in the corresponding key regions based on one-to-one correspondence;
if a press event occurs in a first of the key regions, counting time from a point of time at which the press event occurs;
if the counted time exceeds a previously stored threshold value, switching to a separate input mode for inputting one of characters from a corresponding character group;
upon execution of the separate input mode, assigning each character of the character group associated with the first key region to a different one of the key regions other than the first key region key region and displaying the characters of the character group in the other key regions;
determining whether a release event occurs in one of the other key regions assigned to the each character; and
outputting a character in the key region where the release event occurs onto a predetermined input editor window of the touch screen.
10. The character input method of claim 9 , further comprising:
if the counted time does not exceed the previously stored threshold value, determining whether the release event occurs;
if the release event occurs, searching for words including characters of the key region where the release event occurs;
detecting a word that is most frequently used based on a search result; and
outputting the detected word.
11. A character input method for automatically switching an input mode in a terminal having a touch screen the character input method comprising:
assigning character groups, each of which includes at least two characters, to at least two key regions acquired by dividing a region of the touch screen and displaying the character groups in the corresponding key regions based on one-to-one correspondence;
if a press event occurs in one of the key regions, determining whether a drag event occurs prior to occurrence of a release event;
if it is determined that the drag eve occurs, switching to a separate input mode for inputting one of characters of a corresponding character group;
upon execution of the separate input mode, checking a distance and a direction of the drag event;
displaying a character corresponding to the checked distance and direction of the drag event from among characters of the key region where the press event occurs; and
if the release event occurs when the character is displayed, outputting the displayed character.
12. The character input method of claim 11 , further comprising:
if the press event occurs in one of the key regions, counting time from at point of time at which the press event occurs;
determining whether the release event occurs within previously stored threshold time; and
if it is determined that the release event occurs, executing a text input mode for inputting a word including one of the characters of the corresponding character group.
13. The character input method of claim 11 , wherein the displaying of the character comprises enlarging and displaying the character onto a key region in the form of a pop-up window.
14. The character input method of claim 11 , wherein the displaying of the character comprises displaying a character corresponding to the checked distance and direction of the drag event.
15. The character input method of claim 11 , wherein a text input mode is a mode using a T9 input method.
16. A character input apparatus for automatically switching an input mode in a terminal having a touch screen, the character input apparatus comprising:
a memory configured to store character groups, each of which includes at least two characters, displayed in at least two key regions acquired by dividing a region of the touch screen based on one-to-one correspondence;
a touch screen configured to display the character groups in the key regions based on one-to-one correspondence and generating a press event, a release event, and a drag event according to user input to each of the key regions; and
a controller configured to:
determine whether the drag event occurs prior to occurrence of the release event if the press event occurs in a first of the key regions of the touch screen;
execute one of a separate input mode for inputting one of characters of a corresponding character group and a text input mode for inputting a word including one of the characters of the character group according to whether the drag event occurs; and
upon execution of the separate input mode, assign each character of the character group associated with the first key region to a different one of the key regions other than the first key region and display the characters of the character group in the other key regions.
17. The character input apparatus of claim 16 , wherein the controller counts time from a point of time at which the press event occurs if the press event occurs in one of the key regions, determines whether the counted time exceeds a previously stored threshold value, and executes one of the separate input mode for inputting one of characters of a corresponding character group and the text input mode for inputting a word including one of the characters of the character group according to a determination result.
18. The character input apparatus of claim 16 , wherein the controller determines whether a key region indicated according to distance and direction of the drag event is the same as one of the key regions where the characters of the key region where the press event occurs are displayed, highlights the indicated key region if it is determined that the key region is the same as one of the key regions, and outputs a character of the key region where the release event occurs onto a predetermined input editor window of the touch screen if the release event occurs in the highlighted key region.
19. The character input apparatus of claim 18 , wherein each time one of the key regions where the characters of the key region where the press event occurs are displayed is highlighted, the controller outputs the character of the highlighted key region onto the input editor window.
20. The character input apparatus of claim 18 , wherein the touch screen displays the characters of the key region where the press event occurs in second portions of the key regions except for first portions where the character groups of the key regions are displayed based on one-to-one correspondence under the control of the controller.
21. The character input apparatus of claim 18 , wherein the touch screen enlarges and displays the characters of the key region where the press event occurs in the key regions based on one-to-one correspondence, instead of the character groups of the key regions under the control of the controller.
22. The character input apparatus of claim 18 , wherein the touch screen enlarges and displays the characters of the key region where the press event occurs in at least two key regions of a pop-up window type under the control of the controller.
23. The character input apparatus of claim 16 , wherein the controller determines whether the release event occurs prior to occurrence of the drag event if the text input mode is executed, searches for words including a character of a key region where the release event occurs if the release event occurs, detects a word that is most frequently used based on a search result, and outputs the detected word.
24. The character input apparatus of claim 16 , wherein the controller outputs the detected word onto the touch screen using a T9 input method in a text input mode.
25. A character input method for automatically switching an input mode in a terminal having a touch screen, the character input method comprising:
in a first input mode for inputting one of characters from a character group on a key region, each character group including at least two characters, assigning character groups to at least two key regions acquired by dividing a region of the touch screen and displaying the character groups in the corresponding key regions based on one-to-one correspondence;
based on a press event occurring in a first key region of the key regions, counting time from a point of time at which the press event occurs;
based on the counted time exceeding a previously stored threshold value, switching to a second input mode, different from the first input mode, for inputting one of characters from a character group on a plurality of key regions;
upon execution of the second input mode, assigning each character of the character group associated with the first key region to at least two key regions respectively, displaying the characters of the character group associated with the first key region in the assigned key regions, detecting changes in selection of the key regions associated with the displayed characters of the character group associated with the first key region based on drag inputs, and changing a visual characteristic of a selected key region;
determining whether a release event occurs in one of the key regions assigned to the each character of the character group associated with the first key region; and
outputting a character in the key region where the release event occurs onto a predetermined input editor window of the touch screen.
26. The character input method according to claim 25, wherein the changing of a visual characteristic comprises changing color.
27. The character input method according to claim 26, wherein the changing of a visual characteristic comprises changing color of an edge of the selected key region.
28. The character input method according to claim 25, wherein the changing of a visual characteristic comprises changing a shading of the selected key region.
29. The character input method according to claim 25, further comprising:
outputting a character corresponding to the selected key region onto the predetermined input editor window.
30. The character input method according to claim 29, further comprising:
changing the character output onto the predetermined input editor window as changes in selection of key regions are detected.
31. The character input method according to claim 30, further comprising:
maintaining a position of an input cursor in the predetermined input editor window as the character output onto the predetermined input editor window changes based on detected changes in selection of key regions.
32. The character input method according to claim 25, wherein the at least two key regions include a plurality of rectangular-type key regions.
33. The character input method according to claim 32, wherein the key regions are arranged in a 3×3 layout.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/857,607 USRE48242E1 (en) | 2007-06-11 | 2015-09-17 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
US17/063,280 USRE49670E1 (en) | 2007-06-11 | 2020-10-05 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20070056742 | 2007-06-11 | ||
KR10-2007-56742 | 2007-06-11 | ||
KR1020070072357A KR100933398B1 (en) | 2007-06-11 | 2007-07-19 | Character input apparatus and method for automatically switching input modes in terminal having touch screen |
KR10-2007-72357 | 2007-07-19 | ||
US12/157,370 US8018441B2 (en) | 2007-06-11 | 2008-06-10 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
US14/026,360 USRE45694E1 (en) | 2007-06-11 | 2013-09-13 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
US14/857,607 USRE48242E1 (en) | 2007-06-11 | 2015-09-17 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/157,370 Reissue US8018441B2 (en) | 2007-06-11 | 2008-06-10 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
US14/026,360 Continuation USRE45694E1 (en) | 2007-06-11 | 2013-09-13 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/157,370 Continuation US8018441B2 (en) | 2007-06-11 | 2008-06-10 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE48242E1 true USRE48242E1 (en) | 2020-10-06 |
Family
ID=40368412
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/026,360 Active 2029-12-04 USRE45694E1 (en) | 2007-06-11 | 2013-09-13 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
US14/857,607 Active 2029-12-04 USRE48242E1 (en) | 2007-06-11 | 2015-09-17 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/026,360 Active 2029-12-04 USRE45694E1 (en) | 2007-06-11 | 2013-09-13 | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
Country Status (2)
Country | Link |
---|---|
US (2) | USRE45694E1 (en) |
KR (1) | KR100933398B1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8018441B2 (en) | 2007-06-11 | 2011-09-13 | Samsung Electronics Co., Ltd. | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
KR100933398B1 (en) * | 2007-06-11 | 2009-12-22 | 삼성전자주식회사 | Character input apparatus and method for automatically switching input modes in terminal having touch screen |
KR20100088647A (en) * | 2009-01-31 | 2010-08-10 | 김호연 | A method and apparatus for character input and command input with touch screen |
KR20110074822A (en) * | 2009-12-26 | 2011-07-04 | 김기주 | Recognition method of multi-touch of touch button on touch screen, text input method on touch screen and modifying method of object |
KR101685975B1 (en) * | 2010-04-27 | 2016-12-13 | 엘지전자 주식회사 | Mobile terminal and Method for inputting key data thereof |
KR101675374B1 (en) * | 2010-06-10 | 2016-11-11 | 삼성전자 주식회사 | Method and apparatus for inputting character of a portable terminal |
JP6230992B2 (en) * | 2011-06-15 | 2017-11-15 | ヤン チャン ソ | User interface providing apparatus and method for providing keyboard layout |
KR101771259B1 (en) * | 2011-07-06 | 2017-08-24 | 삼성전자주식회사 | Apparatus for inputting a character on a touch screen and method for inputting a character thereof |
KR101077926B1 (en) | 2011-08-23 | 2011-10-31 | (주)케이앤피어소시에이티드 | Arabic language touch screen keypad array for mobile device |
US9547375B2 (en) * | 2012-10-10 | 2017-01-17 | Microsoft Technology Licensing, Llc | Split virtual keyboard on a mobile computing device |
IN2014CH02016A (en) * | 2014-04-18 | 2015-10-23 | Samsung R & D Inst India Bangalore | |
US10268366B2 (en) | 2015-06-05 | 2019-04-23 | Apple Inc. | Touch-based interactive learning environment |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5952942A (en) * | 1996-11-21 | 1999-09-14 | Motorola, Inc. | Method and device for input of text messages from a keypad |
US6169538B1 (en) * | 1998-08-13 | 2001-01-02 | Motorola, Inc. | Method and apparatus for implementing a graphical user interface keyboard and a text buffer on electronic devices |
US6271835B1 (en) | 1998-09-03 | 2001-08-07 | Nortel Networks Limited | Touch-screen input device |
KR20020053784A (en) | 2002-03-29 | 2002-07-05 | 정희성 | Method for characters input and the information and communication service method thereby |
US6606486B1 (en) * | 1999-07-29 | 2003-08-12 | Ericsson Inc. | Word entry method for mobile originated short messages |
US20040177179A1 (en) * | 2003-03-03 | 2004-09-09 | Tapio Koivuniemi | Input of data |
US20040183834A1 (en) * | 2003-03-20 | 2004-09-23 | Chermesino John C. | User-configurable soft input applications |
JP2004348695A (en) | 2003-05-21 | 2004-12-09 | Keiju Ihara | Character input device of small personal digital assistant, and input method thereof |
US20050089226A1 (en) * | 2003-10-22 | 2005-04-28 | Samsung Electronics Co., Ltd. | Apparatus and method for letter recognition |
US20050099397A1 (en) * | 2003-06-12 | 2005-05-12 | Katsuyasu Ono | 6-Key keyboard for touch typing |
US20050190147A1 (en) * | 2004-02-27 | 2005-09-01 | Samsung Electronics Co., Ltd. | Pointing device for a terminal having a touch screen and method for using the same |
KR20050119112A (en) | 2003-03-03 | 2005-12-20 | 엑스알고믹스 피티이 리미티드 | Unambiguous text input method for touch screens and reduced keyboard systems |
US7057607B2 (en) * | 2003-06-30 | 2006-06-06 | Motorola, Inc. | Application-independent text entry for touch-sensitive display |
US20060161846A1 (en) * | 2002-11-29 | 2006-07-20 | Koninklijke Philips Electronics N.V. | User interface with displaced representation of touch area |
US7098896B2 (en) * | 2003-01-16 | 2006-08-29 | Forword Input Inc. | System and method for continuous stroke word-based text input |
US20070046641A1 (en) * | 2005-09-01 | 2007-03-01 | Swee Ho Lim | Entering a character into an electronic device |
US7190351B1 (en) | 2002-05-10 | 2007-03-13 | Michael Goren | System and method for data input |
US20070139382A1 (en) * | 2005-12-15 | 2007-06-21 | Microsoft Corporation | Smart soft keyboard |
US20070229476A1 (en) * | 2003-10-29 | 2007-10-04 | Samsung Electronics Co., Ltd. | Apparatus and method for inputting character using touch screen in portable terminal |
US7646315B2 (en) * | 2006-06-08 | 2010-01-12 | Motorola, Inc. | Method and apparatus for keypad manipulation |
US7800588B2 (en) * | 2004-05-07 | 2010-09-21 | Min Ho Kim | Function button and method of inputting letter using the same |
US7821503B2 (en) * | 2003-04-09 | 2010-10-26 | Tegic Communications, Inc. | Touch screen and graphical user interface |
US8044937B2 (en) * | 2006-10-20 | 2011-10-25 | Samsung Electronics Co., Ltd | Text input method and mobile terminal therefor |
USRE45694E1 (en) * | 2007-06-11 | 2015-09-29 | Samsung Electronics Co., Ltd. | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06202784A (en) | 1992-12-29 | 1994-07-22 | Casio Comput Co Ltd | Character inputting device |
DE19615472A1 (en) | 1996-04-19 | 1997-10-23 | Frank Kampfmann | Safety function element for a line |
US6170000B1 (en) | 1998-08-26 | 2001-01-02 | Nokia Mobile Phones Ltd. | User interface, and associated method, permitting entry of Hangul sound symbols |
KR100532317B1 (en) | 1998-12-24 | 2006-02-10 | 삼성전자주식회사 | Hangul input device and method |
US6562078B1 (en) | 1999-06-29 | 2003-05-13 | Microsoft Corporation | Arrangement and method for inputting non-alphabetic language |
KR100362747B1 (en) | 2000-08-24 | 2002-11-27 | 에스케이텔레텍주식회사 | Method for inputting hangul character set in the mobile phone |
JP2002108543A (en) | 2000-09-21 | 2002-04-12 | Nokia Mobile Phones Ltd | Method for inputting kana character |
KR20030008873A (en) | 2001-07-20 | 2003-01-29 | (주)네이스텍 | Word input method and a computer-readable recording medium with program for executing the method |
CN1407434A (en) | 2001-09-07 | 2003-04-02 | 亿用软件技术(天津)有限公司 | Numerical keyboard Chinese input method with 10 key places |
US20090040184A9 (en) | 2001-10-04 | 2009-02-12 | Infogation Corporation | Information entry mechanism |
KR100477852B1 (en) | 2002-08-16 | 2005-03-22 | 강훈기 | character input device for touch screen |
WO2004017216A1 (en) | 2002-08-16 | 2004-02-26 | Yun-Kee Kang | Method of inputting a character using a software keyboard |
JP3995093B2 (en) | 2002-09-20 | 2007-10-24 | 富士通株式会社 | Hangul character input method, Hangul character input device, Hangul character input program, and computer-readable medium |
JP2005078211A (en) | 2003-08-28 | 2005-03-24 | Fujitsu Ltd | Chinese input program |
US20050052431A1 (en) | 2003-09-05 | 2005-03-10 | Samsung Electronics Co., Ltd. | Apparatus and method for character recognition |
KR100651396B1 (en) | 2003-09-05 | 2006-11-29 | 삼성전자주식회사 | Alphabet recognition apparatus and method |
JP2005182487A (en) | 2003-12-19 | 2005-07-07 | Nec Software Chubu Ltd | Character input apparatus, method and program |
KR100506231B1 (en) | 2004-01-12 | 2005-08-05 | 삼성전자주식회사 | Apparatus and method for inputting character in terminal having touch screen |
JP3927203B2 (en) | 2004-07-07 | 2007-06-06 | 拓郎 小川 | A character input method and key arrangement according to the Roman character input method realized by arranging vowel keys so as to surround each consonant key without arranging them at fixed positions. |
DE102004041895A1 (en) | 2004-08-30 | 2006-03-16 | Siemens Ag | Mechanical input unit for a display unit with a pressure-sensitive surface |
US7443386B2 (en) | 2004-11-01 | 2008-10-28 | Nokia Corporation | Mobile phone and method |
JP4743129B2 (en) | 2007-01-25 | 2011-08-10 | 船井電機株式会社 | Hologram recording medium, hologram recording method and apparatus, hologram reproducing method and apparatus |
EP1953623B1 (en) * | 2007-01-30 | 2018-09-05 | Samsung Electronics Co., Ltd. | Apparatus and method for inputting characters on touch keyboard |
-
2007
- 2007-07-19 KR KR1020070072357A patent/KR100933398B1/en active IP Right Grant
-
2013
- 2013-09-13 US US14/026,360 patent/USRE45694E1/en active Active
-
2015
- 2015-09-17 US US14/857,607 patent/USRE48242E1/en active Active
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5952942A (en) * | 1996-11-21 | 1999-09-14 | Motorola, Inc. | Method and device for input of text messages from a keypad |
US6169538B1 (en) * | 1998-08-13 | 2001-01-02 | Motorola, Inc. | Method and apparatus for implementing a graphical user interface keyboard and a text buffer on electronic devices |
US6271835B1 (en) | 1998-09-03 | 2001-08-07 | Nortel Networks Limited | Touch-screen input device |
US6606486B1 (en) * | 1999-07-29 | 2003-08-12 | Ericsson Inc. | Word entry method for mobile originated short messages |
KR20020053784A (en) | 2002-03-29 | 2002-07-05 | 정희성 | Method for characters input and the information and communication service method thereby |
US7190351B1 (en) | 2002-05-10 | 2007-03-13 | Michael Goren | System and method for data input |
US20060161846A1 (en) * | 2002-11-29 | 2006-07-20 | Koninklijke Philips Electronics N.V. | User interface with displaced representation of touch area |
US7098896B2 (en) * | 2003-01-16 | 2006-08-29 | Forword Input Inc. | System and method for continuous stroke word-based text input |
US20040177179A1 (en) * | 2003-03-03 | 2004-09-09 | Tapio Koivuniemi | Input of data |
KR20050119112A (en) | 2003-03-03 | 2005-12-20 | 엑스알고믹스 피티이 리미티드 | Unambiguous text input method for touch screens and reduced keyboard systems |
US20060119582A1 (en) * | 2003-03-03 | 2006-06-08 | Edwin Ng | Unambiguous text input method for touch screens and reduced keyboard systems |
US20040183834A1 (en) * | 2003-03-20 | 2004-09-23 | Chermesino John C. | User-configurable soft input applications |
US7821503B2 (en) * | 2003-04-09 | 2010-10-26 | Tegic Communications, Inc. | Touch screen and graphical user interface |
JP2004348695A (en) | 2003-05-21 | 2004-12-09 | Keiju Ihara | Character input device of small personal digital assistant, and input method thereof |
US7230607B2 (en) | 2003-06-12 | 2007-06-12 | Katsuyasu Ono | 6-key keyboard for touch typing |
US20050099397A1 (en) * | 2003-06-12 | 2005-05-12 | Katsuyasu Ono | 6-Key keyboard for touch typing |
US7057607B2 (en) * | 2003-06-30 | 2006-06-06 | Motorola, Inc. | Application-independent text entry for touch-sensitive display |
US20050089226A1 (en) * | 2003-10-22 | 2005-04-28 | Samsung Electronics Co., Ltd. | Apparatus and method for letter recognition |
US20070229476A1 (en) * | 2003-10-29 | 2007-10-04 | Samsung Electronics Co., Ltd. | Apparatus and method for inputting character using touch screen in portable terminal |
US8610669B2 (en) * | 2003-10-29 | 2013-12-17 | Samsung Electronics Co., Ltd. | Apparatus and method for inputting character using touch screen in portable terminal |
US20050190147A1 (en) * | 2004-02-27 | 2005-09-01 | Samsung Electronics Co., Ltd. | Pointing device for a terminal having a touch screen and method for using the same |
US7800588B2 (en) * | 2004-05-07 | 2010-09-21 | Min Ho Kim | Function button and method of inputting letter using the same |
US20070046641A1 (en) * | 2005-09-01 | 2007-03-01 | Swee Ho Lim | Entering a character into an electronic device |
US20070139382A1 (en) * | 2005-12-15 | 2007-06-21 | Microsoft Corporation | Smart soft keyboard |
US7646315B2 (en) * | 2006-06-08 | 2010-01-12 | Motorola, Inc. | Method and apparatus for keypad manipulation |
US8044937B2 (en) * | 2006-10-20 | 2011-10-25 | Samsung Electronics Co., Ltd | Text input method and mobile terminal therefor |
USRE45694E1 (en) * | 2007-06-11 | 2015-09-29 | Samsung Electronics Co., Ltd. | Character input apparatus and method for automatically switching input mode in terminal having touch screen |
Also Published As
Publication number | Publication date |
---|---|
KR100933398B1 (en) | 2009-12-22 |
KR20080108881A (en) | 2008-12-16 |
USRE45694E1 (en) | 2015-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49670E1 (en) | Character input apparatus and method for automatically switching input mode in terminal having touch screen | |
USRE48242E1 (en) | Character input apparatus and method for automatically switching input mode in terminal having touch screen | |
EP1988444A2 (en) | Character input apparatus and method | |
KR101391080B1 (en) | Apparatus and method for inputting character | |
US9354765B2 (en) | Text input mode selection method | |
KR20090015327A (en) | Apparatus and method for providing character delete function | |
WO2011118096A1 (en) | Information display device and method for editing document data | |
US8589145B2 (en) | Handheld electronic device including toggle of a selected data source, and associated method | |
KR20110018075A (en) | Apparatus and method for inputting character using touchscreen in poratable terminal | |
JP2009205303A (en) | Input method and input device | |
EP3267301B1 (en) | High-efficiency touch screen text input system and method | |
KR20100024563A (en) | System and method for inputting characters in terminal | |
KR101624255B1 (en) | Character input apparatus and method | |
KR101046660B1 (en) | Character input and output device and method | |
KR20120065795A (en) | Virtual keyboard input device, and data input method thereof | |
CN107526449B (en) | Character input method | |
KR101083786B1 (en) | Apparatus and method for entering characters | |
KR101475519B1 (en) | Method for inputting korean | |
KR100641185B1 (en) | Korean literature input method for portable terminal | |
JP6676985B2 (en) | Electronics | |
EP1701241A1 (en) | Handheld electronic device having display of disambiguation choices, and associated method | |
KR20120029562A (en) | Method for inputting characters by drag | |
KR100866191B1 (en) | Method and device for character inputting in mobile communication terminal with touch screen | |
KR101399150B1 (en) | Method for inputting character using touch screen | |
KR100883116B1 (en) | Methods for inputting character of portable terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |