USRE45970E1 - Toner for electrostatic image development, toner cartridge, process cartridge and image forming apparatus - Google Patents
Toner for electrostatic image development, toner cartridge, process cartridge and image forming apparatus Download PDFInfo
- Publication number
- USRE45970E1 USRE45970E1 US13/745,389 US201313745389A USRE45970E US RE45970 E1 USRE45970 E1 US RE45970E1 US 201313745389 A US201313745389 A US 201313745389A US RE45970 E USRE45970 E US RE45970E
- Authority
- US
- United States
- Prior art keywords
- toner
- particles
- particle
- external additive
- primary particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000011161 development Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims description 50
- 230000008569 process Effects 0.000 title description 7
- 239000002245 particle Substances 0.000 claims abstract description 463
- 239000000654 additive Substances 0.000 claims abstract description 224
- 230000000996 additive effect Effects 0.000 claims abstract description 204
- 239000011164 primary particle Substances 0.000 claims abstract description 165
- 229920005989 resin Polymers 0.000 claims description 58
- 239000011347 resin Substances 0.000 claims description 58
- 239000011230 binding agent Substances 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 13
- 230000009477 glass transition Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000011146 organic particle Substances 0.000 claims description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000010954 inorganic particle Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 239000011242 organic-inorganic particle Substances 0.000 claims 1
- 239000006185 dispersion Substances 0.000 description 104
- 239000007788 liquid Substances 0.000 description 70
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 36
- 239000002994 raw material Substances 0.000 description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 108091008695 photoreceptors Proteins 0.000 description 28
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 238000004140 cleaning Methods 0.000 description 25
- 229920001225 polyester resin Polymers 0.000 description 25
- 239000004645 polyester resin Substances 0.000 description 25
- 238000003756 stirring Methods 0.000 description 23
- 239000008367 deionised water Substances 0.000 description 22
- 229910021641 deionized water Inorganic materials 0.000 description 22
- 239000000203 mixture Substances 0.000 description 21
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 18
- 239000003086 colorant Substances 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 17
- 238000007639 printing Methods 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 238000012546 transfer Methods 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000178 monomer Substances 0.000 description 13
- -1 polytetrafluoroethylene Polymers 0.000 description 13
- 238000005406 washing Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 239000000049 pigment Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 230000002159 abnormal effect Effects 0.000 description 10
- 239000003945 anionic surfactant Substances 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 8
- 238000004220 aggregation Methods 0.000 description 8
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 229910017604 nitric acid Inorganic materials 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- 235000010724 Wisteria floribunda Nutrition 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004945 emulsification Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 229920002050 silicone resin Polymers 0.000 description 5
- 239000012798 spherical particle Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000009777 vacuum freeze-drying Methods 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 4
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000007720 emulsion polymerization reaction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000003801 milling Methods 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000000701 coagulant Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 229920006038 crystalline resin Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000005185 salting out Methods 0.000 description 3
- 238000007127 saponification reaction Methods 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 150000003440 styrenes Chemical class 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 2
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 2
- JLIDVCMBCGBIEY-UHFFFAOYSA-N 1-penten-3-one Chemical compound CCC(=O)C=C JLIDVCMBCGBIEY-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 239000004203 carnauba wax Substances 0.000 description 2
- 235000013869 carnauba wax Nutrition 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- DTPCFIHYWYONMD-UHFFFAOYSA-N decaethylene glycol Polymers OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO DTPCFIHYWYONMD-UHFFFAOYSA-N 0.000 description 2
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 2
- ALOUNLDAKADEEB-UHFFFAOYSA-N dimethyl sebacate Chemical compound COC(=O)CCCCCCCCC(=O)OC ALOUNLDAKADEEB-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- ZPIRTVJRHUMMOI-UHFFFAOYSA-N octoxybenzene Chemical compound CCCCCCCCOC1=CC=CC=C1 ZPIRTVJRHUMMOI-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 238000005550 wet granulation Methods 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- 229940043375 1,5-pentanediol Drugs 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- OSNILPMOSNGHLC-UHFFFAOYSA-N 1-[4-methoxy-3-(piperidin-1-ylmethyl)phenyl]ethanone Chemical compound COC1=CC=C(C(C)=O)C=C1CN1CCCCC1 OSNILPMOSNGHLC-UHFFFAOYSA-N 0.000 description 1
- BOVQCIDBZXNFEJ-UHFFFAOYSA-N 1-chloro-3-ethenylbenzene Chemical compound ClC1=CC=CC(C=C)=C1 BOVQCIDBZXNFEJ-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- VTPNYMSKBPZSTF-UHFFFAOYSA-N 1-ethenyl-2-ethylbenzene Chemical compound CCC1=CC=CC=C1C=C VTPNYMSKBPZSTF-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- XHUZSRRCICJJCN-UHFFFAOYSA-N 1-ethenyl-3-ethylbenzene Chemical compound CCC1=CC=CC(C=C)=C1 XHUZSRRCICJJCN-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- WHFHDVDXYKOSKI-UHFFFAOYSA-N 1-ethenyl-4-ethylbenzene Chemical compound CCC1=CC=C(C=C)C=C1 WHFHDVDXYKOSKI-UHFFFAOYSA-N 0.000 description 1
- JWVTWJNGILGLAT-UHFFFAOYSA-N 1-ethenyl-4-fluorobenzene Chemical compound FC1=CC=C(C=C)C=C1 JWVTWJNGILGLAT-UHFFFAOYSA-N 0.000 description 1
- CPWXVNZFDXZIMS-UHFFFAOYSA-N 1-hydroxypropyl prop-2-enoate Chemical compound CCC(O)OC(=O)C=C CPWXVNZFDXZIMS-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- LVGLBCQZYRCDFB-UHFFFAOYSA-N 10,10-dibromoanthracen-9-one Chemical compound C1=CC=C2C(Br)(Br)C3=CC=CC=C3C(=O)C2=C1 LVGLBCQZYRCDFB-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- MFYSUUPKMDJYPF-UHFFFAOYSA-N 2-[(4-methyl-2-nitrophenyl)diazenyl]-3-oxo-n-phenylbutanamide Chemical compound C=1C=CC=CC=1NC(=O)C(C(=O)C)N=NC1=CC=C(C)C=C1[N+]([O-])=O MFYSUUPKMDJYPF-UHFFFAOYSA-N 0.000 description 1
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2 ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 0.000 description 1
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- ISRGONDNXBCDBM-UHFFFAOYSA-N 2-chlorostyrene Chemical compound ClC1=CC=CC=C1C=C ISRGONDNXBCDBM-UHFFFAOYSA-N 0.000 description 1
- DSIWLDCXHHMNQL-UHFFFAOYSA-N 2-ethenyl-1,4-difluorobenzene Chemical compound FC1=CC=C(F)C(C=C)=C1 DSIWLDCXHHMNQL-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- XVTXLKJBAYGTJS-UHFFFAOYSA-N 2-methylpenta-1,4-dien-3-one Chemical compound CC(=C)C(=O)C=C XVTXLKJBAYGTJS-UHFFFAOYSA-N 0.000 description 1
- HSSYVKMJJLDTKZ-UHFFFAOYSA-N 3-phenylphthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C=CC=CC=2)=C1C(O)=O HSSYVKMJJLDTKZ-UHFFFAOYSA-N 0.000 description 1
- IICCLYANAQEHCI-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 IICCLYANAQEHCI-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- CGLVZFOCZLHKOH-UHFFFAOYSA-N 8,18-dichloro-5,15-diethyl-5,15-dihydrodiindolo(3,2-b:3',2'-m)triphenodioxazine Chemical compound CCN1C2=CC=CC=C2C2=C1C=C1OC3=C(Cl)C4=NC(C=C5C6=CC=CC=C6N(C5=C5)CC)=C5OC4=C(Cl)C3=NC1=C2 CGLVZFOCZLHKOH-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- REEFSLKDEDEWAO-UHFFFAOYSA-N Chloraniformethan Chemical compound ClC1=CC=C(NC(NC=O)C(Cl)(Cl)Cl)C=C1Cl REEFSLKDEDEWAO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001272720 Medialuna californiensis Species 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 235000011034 Rubus glaucus Nutrition 0.000 description 1
- 244000235659 Rubus idaeus Species 0.000 description 1
- 235000009122 Rubus idaeus Nutrition 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- POJOORKDYOPQLS-UHFFFAOYSA-L barium(2+) 5-chloro-2-[(2-hydroxynaphthalen-1-yl)diazenyl]-4-methylbenzenesulfonate Chemical compound [Ba+2].C1=C(Cl)C(C)=CC(N=NC=2C3=CC=CC=C3C=CC=2O)=C1S([O-])(=O)=O.C1=C(Cl)C(C)=CC(N=NC=2C3=CC=CC=C3C=CC=2O)=C1S([O-])(=O)=O POJOORKDYOPQLS-UHFFFAOYSA-L 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- HBHZKFOUIUMKHV-UHFFFAOYSA-N chembl1982121 Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HBHZKFOUIUMKHV-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000010073 coating (rubber) Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- VEIOBOXBGYWJIT-UHFFFAOYSA-N cyclohexane;methanol Chemical compound OC.OC.C1CCCCC1 VEIOBOXBGYWJIT-UHFFFAOYSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229940014772 dimethyl sebacate Drugs 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- PLYDMIIYRWUYBP-UHFFFAOYSA-N ethyl 4-[[2-chloro-4-[3-chloro-4-[(3-ethoxycarbonyl-5-oxo-1-phenyl-4h-pyrazol-4-yl)diazenyl]phenyl]phenyl]diazenyl]-5-oxo-1-phenyl-4h-pyrazole-3-carboxylate Chemical compound CCOC(=O)C1=NN(C=2C=CC=CC=2)C(=O)C1N=NC(C(=C1)Cl)=CC=C1C(C=C1Cl)=CC=C1N=NC(C(=N1)C(=O)OCC)C(=O)N1C1=CC=CC=C1 PLYDMIIYRWUYBP-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- PBZROIMXDZTJDF-UHFFFAOYSA-N hepta-1,6-dien-4-one Chemical compound C=CCC(=O)CC=C PBZROIMXDZTJDF-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- JGPMMRGNQUBGND-UHFFFAOYSA-N idebenone Chemical compound COC1=C(OC)C(=O)C(CCCCCCCCCCO)=C(C)C1=O JGPMMRGNQUBGND-UHFFFAOYSA-N 0.000 description 1
- 229960004135 idebenone Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000012182 japan wax Substances 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- MOUPNEIJQCETIW-UHFFFAOYSA-N lead chromate Chemical compound [Pb+2].[O-][Cr]([O-])(=O)=O MOUPNEIJQCETIW-UHFFFAOYSA-N 0.000 description 1
- 235000010187 litholrubine BK Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229940002712 malachite green oxalate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000012184 mineral wax Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- WRYWBRATLBWSSG-UHFFFAOYSA-N naphthalene-1,2,4-tricarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC(C(O)=O)=C21 WRYWBRATLBWSSG-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- UCUUFSAXZMGPGH-UHFFFAOYSA-N penta-1,4-dien-3-one Chemical class C=CC(=O)C=C UCUUFSAXZMGPGH-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- ZZSIDSMUTXFKNS-UHFFFAOYSA-N perylene red Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N(C(=O)C=1C2=C3C4=C(OC=5C=CC=CC=5)C=1)C(=O)C2=CC(OC=1C=CC=CC=1)=C3C(C(OC=1C=CC=CC=1)=CC1=C2C(C(N(C=3C(=CC=CC=3C(C)C)C(C)C)C1=O)=O)=C1)=C2C4=C1OC1=CC=CC=C1 ZZSIDSMUTXFKNS-UHFFFAOYSA-N 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229940099800 pigment red 48 Drugs 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 235000012752 quinoline yellow Nutrition 0.000 description 1
- 229940051201 quinoline yellow Drugs 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 239000004172 quinoline yellow Substances 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- WBHHMMIMDMUBKC-QJWNTBNXSA-N ricinoleic acid Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC(O)=O WBHHMMIMDMUBKC-QJWNTBNXSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- VVNRQZDDMYBBJY-UHFFFAOYSA-M sodium 1-[(1-sulfonaphthalen-2-yl)diazenyl]naphthalen-2-olate Chemical compound [Na+].C1=CC=CC2=C(S([O-])(=O)=O)C(N=NC3=C4C=CC=CC4=CC=C3O)=CC=C21 VVNRQZDDMYBBJY-UHFFFAOYSA-M 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- FUSUHKVFWTUUBE-UHFFFAOYSA-N vinyl methyl ketone Natural products CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 1
- XOSXWYQMOYSSKB-LDKJGXKFSA-L water blue Chemical compound CC1=CC(/C(\C(C=C2)=CC=C2NC(C=C2)=CC=C2S([O-])(=O)=O)=C(\C=C2)/C=C/C\2=N\C(C=C2)=CC=C2S([O-])(=O)=O)=CC(S(O)(=O)=O)=C1N.[Na+].[Na+] XOSXWYQMOYSSKB-LDKJGXKFSA-L 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0827—Developers with toner particles characterised by their shape, e.g. degree of sphericity
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/06—Apparatus for electrographic processes using a charge pattern for developing
- G03G15/08—Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G21/00—Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
- G03G21/10—Collecting or recycling waste developer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08795—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
- G03G9/09708—Inorganic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
- G03G9/09708—Inorganic compounds
- G03G9/09716—Inorganic compounds treated with organic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
- G03G9/09708—Inorganic compounds
- G03G9/09725—Silicon-oxides; Silicates
Definitions
- the present invention relates to a toner for electrostatic image development, a toner cartridge, a process cartridge and an image forming apparatus.
- the image forming apparatus in the so-called xerographic system is provided with an image holding member (hereinafter referred to sometimes as “photoreceptor”), a charging device, an exposure device, a developing device, a transfer device and a fixing device and forms an image by an electrophotographic system using these devices.
- an image forming apparatus in the xerographic system attains a higher speed, high image qualities and a long lifetime by technical development of the member and the system.
- a fine latent image formed in an optical system is used to faithfully produce an image, and for improvement of faithful reproducibility of a fine latent image, it is attempted to reduce the diameter of a toner.
- an electrophotographic toner capable of fixing in a shorter time and an electrophotographic toner capable of fixing at lower temperature that is, an electrophotographic toner capable of fixing with low fixing energy is demanded.
- a toner resin (binder resin) having a relatively low glass transition temperature is used or a plasticizer is added, and it is desired that while aggregation of toner particles is inhibited, the fixing energy is reduced.
- a toner for electrostatic image development comprising a toner particle and external additive particles adhered to the surface of the toner particle, each of the external additive particles being constituted of a plurality of irreversibly coalesced primary particles.
- FIG. 1 is a skeleton framework showing one example of the image forming apparatus of the invention.
- the toner particle contains one or more binder resins and may if necessary contain other additives such as a coloring agent and a releasing agent.
- the toner particle is characterized by containing external additive particles which are adhered to the surface of the toner particle (hereinafter referred to sometimes as the specific external additive particles), and the external additive particles are constituted of plural primary particles being irreversibly coalesced.
- an amorphous particle obtained by coalescing plural irreversibly coalesced primary particles is used as the external additive.
- amorphous particles obtained by milling etc. as compared with spherical particles having a shape factor SF of around 100, are effectively prevented from being buried in toner particles, but may, due to their sharp shapes, cause flaws in an image forming member or cause damage to a coating layer if present on the toner particle.
- the specific external additive particles formed by coalescing primary particles together are amorphous particles having an uneven surface and being free of sharp angles.
- the specific external additive particle in this exemplary embodiment is an external additive particle containing plural irreversibly coalesced primary particles.
- This amorphous particle is an aggregate having an uneven surface, and preferably has a shape with shape factor SF 2 in the range of from 110 or about 110 to 160 or about 160 determined by observation with a scanning electron microscope or a transmission electron microscope and represented by the following formula (1): [(Particle perimeter ⁇ 2)/(particle projected area*4* ⁇ )] ⁇ 100 (1)
- ⁇ 2 indicates square
- * indicates multiplication.
- the shape factor SF 2 of the primary particles is determined as follows.
- the specific external additive particles are observed with an electron microscope (for example, an S-4100 manufactured by Hitachi, Ltd.) and photographed, and the image thereof is entered into an image analyzer (for example, a LUZEX III manufactured by Nireko Corporation), and from the particle perimeters and projected areas of 300 or more specific external additive particles, the SF 2 of the individual particles is determined according to the formula (1) above.
- the specific external additive particles having a shape factor SF 2 in the range of from 110 or about 110 to 160 or about 160 are specifically those particles having shapes such as follows.
- the specific external additive particle in this exemplary embodiment plural primary particles are aggregated and coalesced in an irreversible state to form a particle shape having many concavoconvex structures on its surface.
- the specific external additive particle has concavoconvex structures on the surface, and thus, even when it adheres to the surface of the toner particle and receives strong longitudinal pressure, it has greater resistance to penetrating into the toner particle than ordinary spherical particles, and is thus less likely to be buried in the toner particle.
- the point of contact of ordinary spherical particles with a toner particle almost becomes a single point, and thus, the pressure applied to the point of contact is concentrated thereto to make it easy for the ordinary spherical particles to be buried in the toner particle.
- the specific external additive particle in this exemplary embodiment has concavoconvex structures on the surface thereof, so that there are plural points of contact with the toner particle, or the contact area is increased, and so it is estimated that the pressure applied to one point of contact is dispersed to make the external additive particles less likely to be buried in the toner particle.
- the specific external additive particle in this exemplary embodiment has plural points of contact with, or an increased contact area with, the toner particle, it has stronger adhesion to the toner particle than the ordinary spherical particle, and therefore, it is estimated that the specific external additive particle is less likely to be released, and the members and a recording medium in an image recording apparatus are prevented from being contaminated with released external additives.
- the particle into which plural primary particles are coalesced has many concavoconvex structures on the surface thereof so that even upon application of stress in any direction by the cleaning blade, the specific external additive particles are prevented from being buried in the toner particle, and the fluidity of the recovered toner can be prevented from decreasing, and thus, it is estimated that adhesion of the toner to the apparatus and clogging of a toner carrier path with the recovered toner hardly occur.
- the change in characteristics of the toner is minimized, and so the toner in the exemplary embodiment is estimated to be applicable to an image forming apparatus having a toner recovery device and to an image forming apparatus having a device for reutilizing the recovered toner.
- primary particles are irreversibly coalesced in this exemplary embodiment, it is meant that even when the specific external additive particles undergo stress, for example, when the toner in this exemplary embodiment is stirred in a developing device or when the toner is scraped off with a cleaning blade and recovered in a recovery device, the specific external additive particles maintain their original shapes at the time they were coalesced without being redivided into primary particles.
- a driving unit of an image forming apparatus Apeos Port-II C7500 manufactured by Fuji Xerox Co., Ltd. is modified such that its developing device can be solely driven. By successively outputting blank papers, the developing device is driven, and the developer in the apparatus undergoes stress by stirring.
- the developing device is driven for 2 hours, and then the developer is recovered from the developing device, then observed for its toner under an electron microscope (for example, a S-4100 manufactured by Hitachi, Ltd.) and compared with the developer without undergoing history of driving in the developing device.
- Items observed with the electron microscope include changes in particle diameter and in particle shape.
- the rate of change and the degree of redispersion of the specific external additive particles, as determined under the electron microscope, are preferably 30% by number, respectively.
- the external additive particle into which plural primary particles have been coalesced preferably has a number-average long axis diameter of 0.06 ⁇ m to 1 ⁇ m, more preferably a number-average long axis diameter of 0.1 ⁇ m to 0.8 ⁇ m.
- the external additive particles can improve prevention thereof from being buried in toner particles and are excellent in adhesion to toner particles to prevent them from releasing from the toner particles.
- the number-average particle diameter of the specific external additive particles is determined as follows.
- the external additive particles are observed with a scanning electron microscope (for example, a S-4100 manufactured by Hitachi, Ltd.) and photographed, and the image thereof is entered into an image analyzer (for example, a LUZEXIII manufactured by Nireko Corporation.), and the circle-equivalent diameters, long axis diameters and short axis diameters of 300 or more external additive particles are measured and then averaged up thereby determining their number-average particle diameter, long axis diameter and short axis diameter, respectively.
- a scanning electron microscope for example, a S-4100 manufactured by Hitachi, Ltd.
- an image analyzer for example, a LUZEXIII manufactured by Nireko Corporation.
- the specific external additive particle in this exemplary embodiment plural irreversibly coalesced primary particles, wherein the number-average particle diameter D 1 of the primary particles constituting the external additive particles and the number-average long axis diameter D 2 of the specific external additive particles satisfy the relationship represented by formula (2) below. That is, the ratio of the number-average long axis diameter of the primary particles to the number-average long axis diameter of the objective specific external additive particles is preferably 1/15 to 2 ⁇ 3, from the viewpoint of the effect. 1.5 ⁇ D2/D1 ⁇ 15 (2)
- the number-average long axis diameter of the primary particles is preferably in the range of from 0.02 ⁇ m or about 0.02 ⁇ m to 0.50 ⁇ m or about 0.05 ⁇ m, more preferably in the range of from 0.03 ⁇ m or about 0.03 ⁇ m to 0.3 ⁇ m or about 0.3 ⁇ m.
- the number-average particle diameter of the primary particles is determined as follows.
- the primary particles are observed with an electron microscope (for example, a S-4100 manufactured by Hitachi, Ltd.) and photographed, and the image thereof is entered into an image analyzer (for example, a LUZEXIII manufactured by Nireko Corporation), and the circle-equivalent diameters of 300 or more primary particles are measured to determine the number-average value.
- the specific external additive particles are directly observed with an electron microscope, and the shape of the specific external additive particles is photographed, then the unevenness of the surface and the joint surfaces among the primary particles are observed, and from the whole shape etc., the particle diameter of the primary particles are measured.
- the shape and diameter of the primary particles before coalesce are estimated by examining the observable portion of the primary particles and can be determined in the same manner as described above.
- the specific external additive particles in this exemplary embodiment are preferably free of a sharp shape as described above, and from this viewpoint, the primary particles constituting the external additive particle are preferably spherical or nearly spherical. Specifically, the primary particles constituting the specific external additive particles have shape factor (SF 1 ) of preferably 100 to 130, more preferably 100 to 125. When the spherical primary particles are coalesced together, their coalesced particles have depressions and protrusions and being free of sharp angles.
- shape factor SF 1
- the shape factor (SF 1 ) of the primary particles is determined as follows.
- the primary particles are observed with an electron microscope (for example, S-4100 manufactured by Hitachi, Ltd.) and photographed, and their pictures is taken into an image analyzer (for example, a LUZEXIII manufactured by Nireko Corporation.), and from the maximum length and area of 300 or more primary particles, the shape factor of the individual primary particles is determined according to the following formula (3).
- SF1 [(ML 2 /A) ⁇ ( ⁇ /4)] ⁇ 100 (3)
- ML indicates the absolute maximum length of the toner primary particles; and A indicates the projected area of the toner primary particles; and n represents the circular constant.
- SF 1 100, and SF 1 is minimum.
- the material constituting the primary particles is not particularly limited, and materials usable usually in toner external additives can be used without limitation.
- the organic particles include, for example, fluorine resin powder of polyvinylidene fluoride or polytetrafluoroethylene, an aliphatic acid metal salt such as zinc stearate or calcium stearate, and particles of polystyrene, polymethyl methacrylate, acrylic resin, melamine resin, nylon, or urea resin.
- the inorganic particles include, for example, particles of silica, alumina, titanium oxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, silica sand, clay, mica, wollastonite, diatomaceous earth, cerium chloride, red oxide, chrome oxide, cerium oxide, antimony trioxide, magnesium oxide, zirconium oxide, silicon carbide, or silicon nitride.
- resin particles of vinyl polymerized resin or crosslinked resin and metal oxide particles of silica, titania or cerium oxide are preferable form less influence on image qualities.
- the method of coalescing primary particles irreversibly is not particularly limited.
- Specific examples include, for example, a method wherein primary particle (organic particle) dispersion obtained by dispersion polymerization, emulsion polymerization or suspension polymerization is heated to melt the surfaces of the primary particles thereby coalescing plural the particles, a method wherein an organic solvent or the like is added to a primary organic particle dispersion to melt the surfaces of the primary organic particles thereby coalescing plural the particles, a method wherein primary particles are aggregated and coalesced together by changing the pH of its dispersion or by adding an aggregating agent, a salt etc., a method wherein plural primary particles are adhered to one another with a binder resin, a method wherein primary particles are coalesced together by solution crosslinking during drying of a dispersion of the primary particles or a dispersion of aggregates of the primary particles, and a combination of these methods.
- a method for producing silica particles may be regulated to prepare aggregates of plural particles (for example, a method for producing silica by high-temperature flame hydrolysis wherein the feed rate of raw materials and the burning temperature are regulated) or a method wherein primary particles are prepared by a sol-gel method, then aggregated by salting-out and dried, may be selected depending on the object.
- a method of irreversibly coalescing primary organic particles is preferably a method wherein when primary particles are organic particles, plural primary particles are aggregated by salting-out or coagulation and then aggregated faces among the primary particles are coalesced together by heating, an organic solvent or polymerization reaction, a method wherein when primary particles are inorganic particles, primary particles are prepared under such conditions as to cause coalesce from the start of preparation thereof, and a method wherein a dispersion of primary inorganic particles are subjected to salting-out or coagulation thereby forming aggregates of the inorganic particles in the dispersion, followed by coalescing the primary inorganic particles by drying and heating or by using a binder resin or coupling surface treatment.
- the specific external additive particles obtained by coalescing from 2 or about 2 to 300 or about 300, more preferably from 2 or about 2 to 100 or about 100, primary particles on a projected area are preferable from the viewpoint of the diameters of the resulting particle and of forming depressions and protrusions on its surfaces.
- the number of primary particles constituting the specific external additive particle is 1 or less, the coalesced particle cannot be constituted.
- the number of primary particles constituting the specific external additive particle is too large, effective depressions and protrusions are hardly formed on the specific external additive particle.
- the number of primary particles constituting the specific external additive particle is measured using an electron microscope photograph used previously in measuring the size.
- the shape factor of the specific external additive particles is preferably in the range of 110 to 160.
- the shape factor is too small, there are few effective depressions and protrusions on the specific external additive particle, thus reducing the efficiency of exhibition of functions.
- the shape factor is too large, the strength of the resulting coalesced particles is easily reduced so that the specific external additive particles are easily broken and deformed.
- ⁇ 2 indicates square, and * indicates multiplication.
- the number-average particle diameter D 1 of the primary particles constituting the specific external additive particles and the number-average long axis diameter D 2 of the external additive particles satisfy more preferably the relationship represented by formula (2) below.
- this numerical value is the range below, effective depressions and protrusions are formed on the surfaced of the specific external additive particle, thus improving the efficiency of exhibition of functions 1.5 ⁇ D2/D1 ⁇ 15 (2)
- the number of primary particles constituting the specific external additive particle on a projection plane is primarily measured from the unevenness of the surface, the coalesced surface between the primary particles, the whole shape etc. by observing and photographing the specific external additive particles under an electron microscope. In this measurement method, the shape and diameter of the primary particles before coalesce are estimated by examining the observable portion of the primary particles, and the number of primary particles constituting the specific external additive particle on a projection plane can be determined.
- the number of primary particles constituting the specific external additive particle can be regulated for example by the concentration and stirring rate of the primary particles used to prepare the specific external additive particles by the method described above.
- the specific external additive particles thus obtained are mixed with toner particles under the same conditions as in a step of adding known external additives and adhered to the surfaces of toner particles described in detail below.
- the toner particles in this exemplary embodiment contain at least one binder resin and may if necessary contain a coloring agent, a releasing agent and other internal additives.
- the binder resin is not particularly limited, and examples thereof include homopolymers composed of monomers such as styrenes such as styrene, p-chlorostyrene, and ⁇ -methylstyrene; esters having a vinyl group such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, lauryl methacrylate, and 2-ethylhexyl methacrylate; vinylnitriles such as acrylonitrile and methacrylonitrile; vinylethers such as vinyl methyl ether, and vinyl isobutyl ether; vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone, and vinyl isopropenyl ketone; and polyolefine
- Non-vinyl condensed resins such as epoxy resin, polyester resin, polyurethane resin, polyamide resin, cellulose resin, polyether resin, mixtures of these resins with the vinyl resins, and graft polymers obtained by polymerizing vinyl monomers in the presence of these resins.
- the styrene resin, (meth)acrylic resin, styrene-(meth) acrylic copolymer resin can be synthesized for example by selecting monomers from the following styrene monomers and (meth)acrylic monomers singly or a combination of monomers depending on the object and polymerizing the monomers by a method known in the art.
- the styrene monomers include, for example, styrene; alkyl-substituted styrenes having an alkyl chain, such as ⁇ -methylstyrene, vinylnaphthalene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, and 4-ethylstyrene; halogen-substituted styrenes such as 2-chlorostyrene, 3-chlorostyrene, and 4-chlorostyrene; fluorine-substituted styrenes such as 4-fluorostyrene, and 2,5-difluorostyrene; and the like.
- alkyl-substituted styrenes having an alkyl chain such as ⁇ -methylstyrene, vinylnaphthalene, 2-methylstyrene,
- the (meth)acrylic acid monomers include, for example, (meth)acrylic acid, n-methyl (meth)acrylate, n-ethyl(meth)acrylate, n-propyl(meth)acrylate, n-butyl(meth)acrylate, n-pentyl(meth)acrylate, n-hexyl (meth)acrylate, n-heptyl(meth)acrylate, n-octyl (meth)acrylate, n-decyl(meth)acrylate, n-dodecyl(meth)acrylate, n-lauryl(meth)acrylate, n-tetradecyl(meth)acrylate, n-hexadecyl(meth)acrylate, n-octadecyl(meth)acrylate, isopropyl (meth)acrylate, isobutyl(meth)acrylate, t-buty
- the polyester resin is synthesized for example by selecting a suitable combination of dicarboxylic acid and diol components from those described below and subjecting them to a known method such as an ester exchange method or a polycondensation method.
- the divalent carboxylic acid component includes, for example, terephthalic acid, isophthalic acid, cyclohexanedicarboxylic acid, naphthalenedicarboxylic acid such as naphthalene-2,6-dicarboxylic acid or naphthalene-2,7-dicarboxylic acid, and biphenyldicarboxylic acid.
- dibasic acids such as succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacid acid, phthalic acid, malonic acid and mesaconic acid, their anhydrides and lower alkyl esters, and aliphatic unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid and citroconic acid.
- Trivalent or higher-valent carboxylic acids such as 1,2,4-benzene tricarboxylic acid, 1,2,5-benzene tricarboxylic acid, 1,2,4-naphthalene tricarboxylic acid, their anhydrides and lower alkyl esters may also be used.
- monovalent acids such as acetic acid and benzoic acid may also be used if necessary.
- the diol component include ethylene glycol, propylene glycol, neopentyl glycol, cyclohexane dimethanol, ethylene (or propylene) oxide adduct of bisphenol A, and trimethylene oxide adduct of bisphenol A.
- Other examples include bisphenol A, hydrogenated bisphenol A, 1,4-cyclohexane diol, 1,4-cyclohexane dimethanol, diethylene glycol, dipropylene glycol, 1,3-butane diol, 1,4-butane diol, 1,5-pentane diol, 1,6-hexane diol, neopentyl glycol, etc.
- Trivalent or higher-valent alcohols such as glycerin, trimethylol ethane, trimethylol propane, pentaerythritol, etc. may also be used in a very small amount. They may be used either alone or in combination of two or more thereof. A monovalent alcohol such as cyclohexanol or benzyl alcohol may be also used.
- the weight-average molecular weight Mw is 10,000 to 100,000, and the number-average molecular weight Mn is 1,000 to 30,000.
- polyester resin is used as the binder resin, it is preferable that the weight-average molecular weight Mw is 4,000 to 50,000, and the number-average molecular weight Mn is 1,000 to 10,000
- a crystalline resin can also be used in the toner particles, and the crystalline resin is used preferably in the range of 2 to 30% by mass, more preferably 5 to 20% by mass, based on the solid content.
- the toner in this exemplary embodiment contains the specific external additive particles described above, so that even if toner particles are excellent in fixability with low energy, for example those having a glass transition temperature of 80° C. or less, particularly those having a glass transition temperature of from 35° C. or about 35° C. to 75° C. or about 75° C. are used, the external additive can be prevented from being buried in the toner particles.
- the glass transition temperature (Tg) of the toner particles can be determined, for example, from a DSC spectrum obtained by using a differential scanning calorimeter (for example, DSC3110 manufactured by Mac Science Company Ltd., or thermal analysis system 001) under the condition of a temperature increasing rate of 10° C./minute from 0° C. to 150° C.
- a differential scanning calorimeter for example, DSC3110 manufactured by Mac Science Company Ltd., or thermal analysis system 001
- the toner particles in this exemplary embodiment may contain a releasing agent.
- the releasing agent used in the toner particles in this exemplary embodiment is preferably a substance having the main maximum peak within the range of 50 to 140° C. as measured according to ASTM D3418-8.
- DSC-7 manufactured by Perkin Elmer Inc.
- the melting points of indium and zinc are utilized, while the heat of coalesce in indium is used for the correction for heat quantity.
- a pan made of aluminum is used for samples, while an empty pan is used as a control; and the measurement is conducted at a temperature increasing rate of 10° C./min.
- the releasing agent include low-molecular weight polyolefins such as polyethylene, polypropylene, and polybutene; silicones having a softening point under heat; fatty acid amides such as oleic acid amide, erucic acid amide, ricinolic acid amide, and stearic acid amide; vegetable waxes such as carnauba wax, rice wax, candelilla wax, Japan wax, and jojoba oil; animal waxes such as beeswax; mineral or petroleum waxes such as montan wax, ozokerite, ceresin, paraffin wax, microcrystalline wax, and Fischer Tropsch wax; and modifications thereof.
- polyolefins such as polyethylene, polypropylene, and polybutene
- silicones having a softening point under heat such as oleic acid amide, erucic acid amide, ricinolic acid amide, and stearic acid amide
- vegetable waxes such as carnauba wax
- the toner particles in this exemplary embodiment may contain a colorant.
- the colorant is not particularly limited as long as it is a known colorant.
- Specific examples thereof include a carbon black such as furnace black, channel black, acetylene black and thermal black; an inorganic pigment such as red iron oxide, iron blue and titanium oxide; an azo pigment such as Fast Yellow, Disazo Yellow, pyrazolone red, chelate red, Brilliant Carmine and Para Brown; a phthalocyanine pigment such as copper phthalocyanine and nonmetal phthalocyanine; a condensation polycyclic pigment such as flavanthrone yellow, dibromoanthrone orange, perylene red, Quinacridone Red and Dioxazine Violet.
- the colorant include pigments such as chrome yellow, hansa yellow, benzidine yellow, threne yellow, quinoline yellow, permanent orange GTR, pyrazolone orange, vulkan orange, watchung red, permanent red, Dupont oil red, lithol red, rhodamine B lake, lake red C, rose bengal, aniline blue, ultramarine blue, calco oil blue, methylene blue chloride, phthalocyanine blue, phthalocyanine green, malachite green oxalate, C.I. pigment red 48:1, C.I. pigment red 122, C.I. pigment red 57:1, C.I. Pigment Yellow 12, C.I. pigment yellow 97, C.I. pigment yellow 17, C.I. pigment blue 15:1, and C.I. pigment blue 15:3, and these colorants may be used alone or in combination of two or more thereof.
- pigments such as chrome yellow, hansa yellow, benzidine yellow, threne yellow, quinoline yellow, permanent orange G
- the content of the above-described colorant in the toner particles is preferably in the range of 1 to 30 parts by mass relative to 100 parts by mass of the binder resin. Further, it is also effective to use a surface-treated colorant or a pigment dispersant as needed. By selecting the kind of the colorant, a yellow toner, magenta toner, cyan toner, black toner or the like is obtained.
- Other internal additives may be known materials such as a magnetic material, a charging regulating agent, inorganic powder etc.
- the volume-average particle diameter of the toner particles is preferably 3 ⁇ m to 10 ⁇ m, more preferably 5 ⁇ m to 8 ⁇ m.
- the volume-average particle diameter of the toner particles is determined as follows. A cumulative volume distribution curve and a cumulative number distribution curve are drawn from the side of the smaller particle size, respectively, for each particle size range (channel) as a result of division of the particle size distribution measured by using a measuring instrument, for example, a Coulter Multisizer II (manufactured by Beckmann Coulter, Inc.) or the like, and the particle diameter providing 50% cumulative is defined as volume D 50v and number D 50p . Unless otherwise specified, the volume-average diameter of the toner mother particles is expressed in terms of volume D 50v that is the particle diameter providing 50% cumulative as determined by the method described above.
- a sample to be measured is added to 2 mL of a 5% solution of a surfactant, preferably sodium alkylbenzenesulfonate, as a dispersing agent in water.
- the resulting measurement sample is added to 100 to 150 mL of an electrolytic solution.
- the electrolytic solution is generally an aqueous solution of about 1% NaCl prepared by using sodium chloride of a first grade, for example, ISOTON-II (manufactured by Beckmann Coulter, Inc.).
- an aqueous solution of potassium chloride (KCI) may also be used as the electrolytic solution.
- This electrolytic solution containing the measurement sample suspended therein is subjected to dispersing treatment with an ultrasonic disperser for about 1 minute, and the particle diameter distribution of the particles is measured.
- the number of the particles to be measured is 50,000.
- the method for producing toner particles is not particularly limited, and includes a kneading milling method and a wet granulation method.
- the wet granulation method includes, for example, a known melting suspension method, an emulsification aggregation/coalesce method, a dissolution suspension method, etc.
- the specific external additives and other known external additives used if necessary are adhered to the surfaces of toner particles, thereby producing the toner in this exemplary embodiment.
- the method of adhering the specific external additive particles and other external additives to toner particles includes a method of adhesion by applying shear strength in a dry state or in a slurry state. After the specific external additive particles are adhered to toner particles, other external additives may be adhered to the toner particles.
- the specific external additive particles which are free of a sharp angle and have depressions and protrusions are not buried in toner particles even upon application of stress, are contacted at many points with the toner particle and thus prevented from being released from the toner particle, and remain on the surface of the toner particle even under severe conditions such as long-term stirring in a developing device, recovery from removal from a cleaning device and movement in a recovery device, thereby preventing deterioration in fluidity, aggregation of toner particles and adhesion of toner particles to an apparatus, which would result in preventing clogging of a carrier path with toner particles or abnormal noises attributable to aggregates.
- the specific external particles present on the surface of a toner particle when used in combination with other external additives, function as spacers to prevent the other external additives from being buried in the toner particle, which would result in suppressing change in toner characteristics.
- the amount of the specific external additive particles adhered to toner particles is determined for example by observing the developer under a scanning electron microscope. Under a scanning electron microscope having magnifying power regulated to enable confirmation of the specific external additive particles, 300 toner particles are confirmed, and the specific external additive particles adhered to the toners are counted to determine the average number of the particles adhered to one tone particle. Because it is estimated that the specific external additive particles are also adhered similarly to the backside of the toner particle not observable with a scanning electron microscope, this average number of the particles is doubled to determine the number of the specific external additive particles adhered to the whole surface of the toner particle.
- the average number of the specific external additive particles adhered to the surface of one toner particle is preferably from 5 or about 5 to 300 or about 300.
- the toner in this exemplary embodiment may be used in combination with other external additives in addition to the specific external additive particles.
- the simultaneously used other external additives are not particularly limited and may be any additives known in the art.
- the electrostatic image developer of the invention contains the toner for electrostatic image development in the exemplary embodiment described above.
- the developer containing the toner for electrostatic image development in the exemplary embodiment may be compounded with other components if necessary.
- the developer when the toner in the exemplary embodiment is used alone, the developer is prepared as one-component electrostatic image developer, and when the toner is used in combination with a carrier, the developer is prepared as two-component electrostatic image developer.
- the density of the toner in the two-component developer is preferably in the range of 1 to 20% by mass.
- the carrier is not particularly limited, and carriers known per se can be mentioned, and for example known carriers such as carriers having a core material coated with a resin layer (resin-coated carrier) described in JP-A No. 62-39879 and JP-A No. 56-11461 can be used.
- carriers known per se can be mentioned, and for example known carriers such as carriers having a core material coated with a resin layer (resin-coated carrier) described in JP-A No. 62-39879 and JP-A No. 56-11461 can be used.
- the image forming apparatus in this exemplary embodiment includes at least a image holding member, a charging unit that charges the surface of the image holding member, an electrostatic latent image forming unit that forms an electrostatic latent image on the surface of the charged image holding member, a development unit that develops the electrostatic latent image with the developer, thereby forming a toner image, a transfer unit that transfers the toner image formed on the image holding member to the surface of a recording medium, a fixing unit that fixes the toner image transferred on the surface of the recording medium, and a toner erasing unit that erases the toner remaining on the surface of the image holding member after transfer, wherein the developer contains the toner in the exemplary embodiment.
- the image forming apparatus in the exemplary embodiment may further include a residual toner recovering/feeding unit that recovers the residual toner eliminated by the toner eliminating unit and feeds the recovered residual toner to the development unit.
- FIG. 1 is a skeleton framework showing one example of the image forming apparatus of the present invention.
- the image forming apparatus 20 in FIG. 1 includes an electrophotographic photoreceptor (latent image holding member) 1 , a contact-type charging device 2 that charges the electrophotographic photoreceptor 1 , a power source 9 that applies voltage to the contact-type charging device 2 , an exposing device 6 that exposes the charged electrophotographic photoreceptor 1 to light to form a latent image, a developing device (developing unit) 3 that develops the formed latent image with a developer containing a toner to form a toner image, a transfer device (transferring unit) 4 that transfers the toner image formed by the developing device 3 onto a recording medium A, a cleaning device (cleaning unit) 5 that removes the toner remaining on the electrophotographic photoreceptor 1 after transfer, an eraser 7 that erases a voltage remaining on the surface of the electrophotographic photoreceptor 1 , a fixing device 8 that fixes the toner image transferred
- the developer used herein is a developer the toner in this exemplary embodiment.
- the contact-type charging device 2 is used as a charging unit, thereby charging the electrophotographic photoreceptor 1 , wherein the charging unit includes a non-contact charging device such as a corotron or scorotron and a contact-type charging device for charging the electrophotographic photoreceptor by applying voltage to an electroconductive member (volume resistivity: 10 11 ⁇ cm or less, the member shown below also has the same volume resistivity) contacted with the surface of the electrophotographic photoreceptor, and the charging device may be in any system.
- a non-contact charging device such as a corotron or scorotron
- a contact-type charging device for charging the electrophotographic photoreceptor by applying voltage to an electroconductive member (volume resistivity: 10 11 ⁇ cm or less, the member shown below also has the same volume resistivity) contacted with the surface of the electrophotographic photoreceptor, and the charging device may be in any system.
- the shape of the electroconductive member is not limited and may be brush, blade, pin electrode, or roll shaped.
- a latent image is formed on the surface of the charged electrophotographic photoreceptor 1 with the exposing device 6 .
- the exposing device 6 a laser optical system or an LED array for example is used.
- the latent image formed on the surface of the electrophotographic photoreceptor 1 is developed with a developer containing the toner in the exemplary embodiment to form a toner image.
- a developer holding member having a developer layer formed thereon is contacted with, or made close to, the surface of the electrophotographic photoreceptor 1 and rotated opposite the electrophotographic photoreceptor 1 , thereby allowing the toner to adhere to the latent image on the surface of the electrophotographic photoreceptor 1 , to form a toner image thereon.
- the development system can make use of a known system, and the development system where the developer is a two-component developer includes, but is not limited to, a cascade system, a magnetic brush system etc.
- the developing unit has a developer holding member (magnetic roll) that holds a developer thereon and rotates opposite the electrophotographic photoreceptor (latent image holding member) 1 to deliver the developer to the electrophotographic photoreceptor 1 .
- a developer holding member magnetic roll
- electrophotographic photoreceptor latent image holding member
- the developer holding member is rotated preferably at a circumferential velocity in the range of 200 mm/sec to 800 mm/sec, more preferably in the range of 300 mm/sec to 700 mm/sec.
- a circumferential velocity of the magnetic roll is in this range, higher speed in recent years can be coped with, high-density image reproducibility is improved, and particularly in application to a small developing machine, the warpage of a layer-forming member attributable to the deficient mechanical strength of the developing machine can be prevented, and the reduction in density reproducibility due to an uneven developer on the developer holding member can be suppressed.
- the toner image formed on the surface of the electrophotographic photoreceptor 1 is transferred onto a recording medium to form a transferred image.
- a toner image is directly transferred onto a transfer material such as paper, or alternatively the toner image may be transferred onto a drum- or belt-shaped intermediate transfer member and then transferred onto a recording member such as paper.
- the transfer device for transferring a toner image from the electrophoto graphic photoreceptor 1 to paper or the like may use a corotron.
- the transfer device may use a contact transfer system wherein an electroconductive transfer roll composed of an elastic material is abutted on the electrophotographic photoreceptor 1 thereby transferring a toner image onto paper, and the transfer device in the image forming apparatus of the invention is not particularly limited.
- a cleaning blade as a cleaning unit is contacted directly with the surface of the electrophotographic photoreceptor 1 , thereby removing the toner, paper dust, and other dust from the surface of the photoreceptor 1 .
- a cleaning brush, a cleaning roll or the like may be used besides the cleaning blade.
- the generally used system in the cleaning step is a blade cleaning system wherein a blade made of rubber such as polyurethane is abutted on the electrophotographic photoreceptor.
- Use can also be made of a magnetic brush system having a magnet fixed therein and provided with a rotatable cylindrical nonmagnetic sleeve arranged in the outer periphery of the magnet, wherein a magnetic carrier is carried on the surface of the sleeve to recover a toner, or a system wherein an electroconductive resin fiber or animal hair is rendered rotatable in a rolled state, and bias of polarity opposite to the toner is applied to the roll to remove the toner.
- a corotron for cleaning pretreatment may be arranged.
- the cleaning system is not particularly limited.
- the residual toner removed from the surface of the electrophotographic photoreceptor 1 in the cleaning step is returned as recycled toner via the toner returning pipe 10 (recycling unit) to the developing device 3 .
- the toner returning pipe 10 is provided therein with a carrier screw (not shown), and by the rotation of the carrier screw, the residual toner in the toner returning pipe 10 at the side of the cleaning device 5 is delivered to the side of the developing device 3 .
- the recycling unit include a method wherein a residual toner removed by the cleaning device is supplied via a carrier conveyor to a toner supply opening or a developing device and a method wherein a toner for replenishment is mixed with a recycled toner in an intermediate chamber and returned to a developing device.
- a system of directly returning a residual toner to a developing device, or a system of mixing a toner for replenishment with a recycled toner in an intermediate chamber and returning the mixed toner to a developing device is a preferable system.
- the developer is charged in a developing device so as to be able to form an image, may be a recycled toner-free initial developer or may contain a recycled toner during use, wherein the developer contain a toner at a density of about 3.0 to 15.0% by mass.
- the toner image transferred onto the recording medium A is fixed with the fixing device 8 .
- the fixing device 8 is preferably a heating fixing device using a heat roll.
- the heating fixing device is composed of a fixing roller having a cylindrical cored bar which has a heating heater lamp therein and which has a release layer of a heat-resistant resin coating layer or a heat-resistant rubber coating layer on the periphery thereof, and a pressure roller or a pressure belt abutting on the fixing roller and having a cylindrical cored bar or a belt-shaped base material provided thereon with a heat-resistant elastic layer.
- the process of fixing a non-fixed toner image involves passing a recording medium having a non-fixed toner image formed thereon, between the fixing roller and the pressure roller, or between the fixing roller and the pressure belt, thereby thermally melting the binder resin, additives etc. in the toner to fix the image.
- the fixing system is not particularly limited.
- a full-color image is formed in the invention, it is preferable to use a method wherein plural electrophotographic photoreceptors each having a developing device for each color are used, and by a series of steps including a latent image forming step, a developing step, a transferring step and a cleaning step, toner images of the respective colors are laminated in order on the surface of a recording medium (tandem system), and laminated full-color toner images are thermally fixed.
- an electrophotographic photoreceptor and at least one unit selected from a charging unit, a latent image forming unit, a developing unit, a transferring unit, a cleaning unit and a recycling unit are formed into one body to constitute a process cartridge which may, as a single unit, be attached to and detached from the image forming apparatus via a guiding unit such as a rail of the body of the apparatus.
- the process cartridge in this exemplary embodiment includes at least a developer holding member and uses the developer in this exemplary embodiment.
- the process cartridge may further contain an image holding member, a charging unit, a toner eliminating unit, etc.
- the toner cartridge in this exemplary embodiment is attached detachably to an image forming apparatus including at least a development unit and accommodates a toner-containing developer to be supplied to the toner image forming unit, wherein the toner is a toner in the exemplary embodiment.
- the toner cartridge in the exemplary embodiment may accommodate at least the toner, and may accommodate a developer for example, depending on the mechanism of the image informing apparatus.
- part and % mean “part by weight” and “% by weight” respectively unless otherwise noted.
- reaction mixture is stirred with a stirring blade at a revolution number of 30 rpm in the flask and simultaneously heated on an oil bath at 80° C. for 24 hours, to carry out emulsion polymerization, thereby yielding resin particle-dispersed slurry.
- the resin particle-dispersed slurry is centrifuged to remove a supernatant, and then the resin particles are re-dispersed in deionized water at 25° C. that is 100-times as large as the resin particle solids, then centrifuged and washed with water. This operation is repeated 5 times, thereby giving a primary particle dispersion liquid (1) (content of primary particles: 30% by mass).
- a part of the primary particle dispersion liquid (1) thus obtained is dried in a vacuum freeze-drying machine, to remove the solvent, thereby obtaining a primary particle (1) for forming specific external additive particles.
- the number-average long axis diameter of the primary particles measured by the method described above is 0.04 ⁇ m, and the shape factor SF 1 is 108.
- This slurry is centrifuged to remove a supernatant, and then the resin particles are re-dispersed in deionized water at 25° C. that is 100-times as large as the resin particle solids, then centrifuged and washed with water. This operation is repeated 5 times, and the resin particles are dried in a vacuum freeze-drying machine to give a specific external additive particle (1) constituted of irreversibly coalesced primary particles, the average number of which is 22.
- the number-average long axis diameter of the specific external additive particle (1) thus obtained is 0.19 ⁇ m.
- 1 part by weight of the particle (1) is added to a toner for an Apeos Port-II C7500 manufactured by Fuji Xerox Co., Ltd., and 10 parts of this model toner is mixed with 100 parts by weight of a carrier for an Apeos Port-II C7500 manufactured by Fuji Xerox Co., Ltd., thereby forming a model developer.
- This model developer is examined in a running test with the image forming apparatus described above. When the toner particles after undergoing stress in the image forming apparatus are observed, the degree of re-dispersion of the specific external additive particles is 3% by number.
- the number-average long axis diameter of the specific external additive particle (2) thus obtained is 0.71 ⁇ m.
- the degree of re-dispersion of the specific external additive particles is 5% by number.
- the number-average long axis diameter of the specific external additive particle (3) thus obtained is 0.08 ⁇ m.
- the degree of re-dispersion of the specific external additive particles is 10% by number.
- the degree of re-dispersion of the specific external additive particles is 0% by number.
- the number-average long axis diameter of the primary particles is 0.05 ⁇ m.
- rutile type titania having a number-average long axis diameter of 0.07 ⁇ m is used.
- 10 parts by weight of the primary particles, 3 parts by weight of polyoxyethylene (10) octyl phenyl ether and 10 parts by weight of polyvinyl alcohol having a saponification degree of 82 mol % are dispersed in 100 parts by weight of deionized water and sufficiently stirred to form a dispersion which is then subjected to spray drying, milling and classification to give a specific external additive particle (5) constituted of irreversibly coalesced primary particles, the average number of which is 200.
- the number-average long axis diameter of the specific external additive particle (5) thus obtained is 1.2 ⁇ m.
- the degree of re-dispersion of the specific external additive particles is 18% by number.
- the reaction mixture is stirred at 30 rpm with a stirring blade in the flask and simultaneously heated on an oil bath at 90° C. for 25 hours, to carry out emulsion polymerization, thereby yielding resin particle-dispersed slurry.
- the resin particle-dispersed slurry is centrifuged to remove a supernatant, and then the resin particles are re-dispersed in deionized water at 25° C. that is 100-times as large as the resin particle solids, then centrifuged and washed with water. This operation is repeated 5 times, thereby giving a primary particle dispersion liquid (2) (content of solid: 30% by mass).
- the number-average long axis diameter of the primary particles is 0.001 ⁇ m.
- This slurry is centrifuged to remove a supernatant, and then the resin particles are re-dispersed in deionized water at 25° C. that is 100-times as large as the resin particle solids, then centrifuged and washed with water. This operation is repeated 5 times, and the resin particles are dried in a vacuum freeze-drying machine to give a specific external additive particle (6) constituted of irreversibly coalesced primary particles, the average number of which is 12. The number-average long axis diameter of the specific external additive particle (6) thus obtained is 0.04 ⁇ m.
- the shape factor SF 2 is 125.
- the degree of re-dispersion of the specific external additive particles is 14% by number.
- silicone resin particles having a number-average long axis diameter of 1.01 ⁇ m are used as the primary particles.
- 10 parts by weight of the primary particles, 1 part by weight of polyoxyethylene (10) octyl phenyl ether and 10 parts by weight of polyvinyl alcohol having a saponification degree of 82 mol % are dispersed in 100 parts by weight of deionized water and sufficiently stirred to form a dispersion which is then centrifuged to remove a supernatant and then to freeze-drying, milling and classification to give a specific external additive particle (7) constituted of irreversibly coalesced primary particles, the average number of which is 7.
- the number-average long axis diameter of the specific external additive particle (7) thus obtained is 3.2 ⁇ m.
- the shape factor SF 2 is 140.
- the degree of re-dispersion of the specific external additive particles is 15% by number.
- the number-average long axis diameter of the specific external additive particle (8) thus obtained is 0.07 ⁇ m.
- the shape factor SF 2 is 117.
- the degree of re-dispersion of the specific external additive particles is 3% by number.
- a two-necked flask dried by heating is charged with 70 parts by mole of polyoxypropylene(2,2)-2,2-bis(4-hydroxyphenyl)propane, 80 parts by mole of ethylene glycol, 15 parts by mole of 1,4-cyclohexane diol, 5 parts by mole of 1,3-propane diol, 60 parts by mole of terephthalic acid and 30 parts by mole of 2,6-naphthalenedicarboxylic acid as the starting materials and also with dibutyltin oxide as the catalyst. Nitrogen gas is introduced into the flask so that the mixture is kept under the inactive atmosphere.
- the mixture is then heated, subjected to polycondensation polymerization reaction at a temperature within the range of 80 to 130° C. for about 12 hours, and depressurized gradually at a temperature within the range of 150 to 160° C. to synthesize a non-crystalline polyester resin (1).
- the weight-average molecular weight (Mw) of the resulting non-crystalline polyester resin (1) is 9800.
- the melting temperature of the non-crystalline polyester resin (1) is measured with a differential scanning calorimeter (DSC) and obtained in analysis by JIS standards (see JIS K-7121).
- the glass transition temperature (Tg) that is a midpoint of this change in endothermic quantity is 47° C.
- a three-necked flask dried by heating is charged with 39 parts by mass of dimethyl sebacate, 29 parts by weight of 1,6-hexane diol, 25 parts by weight of dimethylsulfoxide, 1.5 parts by weight of fumaric acid and 0.015 part by mass of catalyst dibutyltin oxide, and after the air in the container is replaced by a nitrogen gas through depressurization, the mixture is stirred in the inactive atmosphere under mechanical stirring at 120° C. for 8 hours.
- the dimethylsulfoxide is distilled away under reduced pressure, and thereafter, the mixture is gradually heated to 150° C. under reduced pressure and stirred for 3 hours. When the mixture becomes viscous, it is air-cooled to terminate the reaction, whereby aliphatic crystalline polyester resin (1) is synthesized.
- the weight-average molecular weight (MW) of the resulting aliphatic crystalline polyester resin (1) is 8300.
- the melting temperature is measured in the same manner as for the non-crystalline polyester resin (1) to obtain its DSC spectrum, the aliphatic crystalline polyester resin (1) has a clear peak, and the melting temperature (Tm 1 ) is 58° C.
- the above components are mixed and heated to 85° C., and dispersed using a homogenizer (Ultra-Turrax T50, manufactured by IKA®), followed by dispersion treatment in a manton gaulin high pressure homogenizer (manufactured by APV Gaulin, INC.), thereby preparing a releasing agent dispersion liquid having a releasing agent dispersed therein.
- a homogenizer Ultra-Turrax T50, manufactured by IKA®
- a manton gaulin high pressure homogenizer manufactured by APV Gaulin, INC.
- the above components are mixed, dissolved, and dispersed for about 5 hours with a high pressure impact disperser (Ultimizer HJP30006, manufactured by Sugino Machine Limited) to prepare a colorant dispersion liquid having a colorant (cyan pigment) dispersed therein.
- a high pressure impact disperser (Ultimizer HJP30006, manufactured by Sugino Machine Limited) to prepare a colorant dispersion liquid having a colorant (cyan pigment) dispersed therein.
- the above-described raw materials are placed in a 2-L cylindrical stainless steel vessel and mixed by dispersion at 4000 rpm for 45 minutes under shearing force with a homogenizer (Ultra-Turrax T50, manufactured by IKA®). Then, 4.0 parts of 5% nitric acid aqueous solution of polyaluminum chloride as a coagulant is slowly added dropwise, and mixed by dispersion at 6500 rpm for 30 minutes with the homogenizer, thereby obtaining raw material dispersion liquid.
- a homogenizer Ultra-Turrax T50, manufactured by IKA®
- the raw material dispersion liquid is transferred to a polymerization vessel equipped with a stirring device and a thermometer and then heated with a mantle heater, and the growth of aggregated particles is promoted at 39° C.
- the pH of the raw material dispersion liquid is adjusted between 3.5 and 4.1 with 0.1 N aqueous nitric acid or 0.5 N aqueous sodium hydroxide.
- the raw material dispersion liquid is maintained in the above pH range for about 3 hours, thereby forming aggregated particles.
- the raw material dispersion liquid (1) 85 parts is further added to the raw material dispersion liquid, whereby the resin particles of the non-crystalline polyester resin (1) are adhered to the surfaces of the above aggregated particles. Further the temperature of the raw material dispersion liquid is increased to 42° C., and the aggregated particles are conditioned while the diameter and shape of the particles are examined with an optical microscope and Multisizer II. Thereafter, the raw material dispersion liquid is adjusted to pH 7.5 by adding an aqueous solution of NaOH dropwise to fuse the aggregated particles, and then the temperature of the raw material dispersion liquid is increased to 82° C.
- the raw material dispersion liquid is left for 5 hours to fuse the aggregated particles, then the coalesce of the aggregated particles is confirmed with an optical microscope, and the raw material dispersion liquid is cooled at a decreasing temperature rate of 0.5° C./minute.
- the raw material dispersion liquid is adjusted to pH 9.0 at 22° C. with 0.5 N aqueous nitric acid or 0.5 N aqueous sodium hydroxide, then stirred for 45 minutes and sieved through a mesh having a pore size of 32 ⁇ m. Then, the raw material dispersion liquid is filtered. After solid-liquid separation, the toner is dispersed in deionized water at 35° C. that is 50-times as large as the toner solids, stirred for 45 minutes and filtered. This operation is repeated 5 times.
- the toner is re-dispersed in deionized water at 28° C. that is 50-times as large as the toner solids, and 10 parts by weight of an ion-exchange resin is added to 100 parts by weight of the toner and washed for 30 minutes while the dispersion is adjusted to pH 4 or less with 3 N nitric acid under application of 38 kHz with an ultrasonic washing machine (W-115T manufactured by HONDA ELECTRONICS Co., LTD.). Thereafter, the resulting dispersion is filtered.
- the toner is dried in a vacuum freeze-drying machine to give a toner particle (1).
- the volume-average particle diameter of the resulting toner particle (1) is 6.9 ⁇ m, and the glass transition temperature thereof is 55° C.
- a polystyrene particle dispersion liquid (1) is thereby obtained.
- the above-described raw materials are placed in a 2-L cylindrical stainless steel vessel and mixed by dispersion at 4000 rpm for 45 minutes under shearing force with a homogenizer (Ultra-Turrax T50, manufactured by IKA®). Then, 4.0 parts of 5% nitric acid aqueous solution of polyaluminum chloride as a coagulant is slowly added dropwise, mixed by dispersion at 6500 rpm for 30 minutes with the homogenizer, thereby obtaining a raw material dispersion liquid.
- a homogenizer Ultra-Turrax T50, manufactured by IKA®
- the raw material dispersion liquid is transferred to a polymerization vessel equipped with a stirring device and a thermometer, heating is initiated with a mantle heater, and the growth of the aggregated particles is promoted at 39° C.
- the pH of the raw material dispersion liquid is adjusted between 3.5 and 4.1 with 0.1 N aqueous nitric acid or 0.5 N aqueous sodium hydroxide.
- the raw material dispersion liquid is maintained in the above-described pH range for about 3 hours, thereby forming aggregated particles.
- the non-crystalline polyester resin dispersion liquid (1) 85 parts is further added to the raw material dispersion liquid, whereby the resin particles in the non-crystalline polystyrene resin (1) are adhered to the surface of the above aggregated particles. Further, the temperature of the raw material dispersion liquid is increased to 42° C., and the aggregated particles are conditioned while the diameter and shape of the particles are examined with an optical microscope and Multisizer II. Thereafter, the raw material dispersion liquid is adjusted to pH 7.5 by adding an aqueous solution of NaOH dropwise to coalesce the aggregated particles, and then the temperature of the raw material dispersion liquid is increased to 82° C.
- the raw material dispersion liquid is left for 5 hours to coalesce the aggregated particles, then the coalesce of the aggregated particles is confirmed with an optical microscope, and the raw material dispersion liquid is cooled at a decreasing temperature rate of 0.5° C./minute.
- Toner particle (2) is obtained in the washing step and drying step conducted in the same manner as in preparation of the toner particle (1).
- the volume-average particle diameter of the resulting toner mother particle (2) is 4.8 ⁇ m, and the glass transition temperature thereof is 48° C.
- the above components are mixed and heated to 85° C., and dispersed using a homogenizer (Ultra-Turrax T50, manufactured by IKA®), followed by dispersion treatment in a manton gaulin high pressure homogenizer (manufactured by APV Gaulin, INC.), thereby preparing a releasing agent dispersion liquid having a releasing agent dispersed therein.
- a homogenizer Ultra-Turrax T50, manufactured by IKA®
- a manton gaulin high pressure homogenizer manufactured by APV Gaulin, INC.
- the above-described raw materials are placed in a 2-L cylindrical stainless steel vessel and mixed by dispersion at 4000 rpm for 45 minutes under shearing force with a homogenizer (Ultra-Turrax T50, manufactured by IKA®). Then, 4.0 parts of 5% nitric acid aqueous solution of polyaluminum chloride as a coagulant is slowly added dropwise, mixed by dispersion at 6500 rpm for 30 minutes with the homogenizer, thereby obtaining a raw material dispersion liquid.
- a homogenizer Ultra-Turrax T50, manufactured by IKA®
- the raw material dispersion liquid is transferred to a polymerization vessel equipped with a stirring device and a thermometer and heated with a mantle heater, and the growth of aggregated particles is promoted at 80° C.
- the pH of the raw material dispersion liquid is adjusted between 6.3 and 6.8 with 0.1 N aqueous nitric acid or 0.5 N aqueous sodium hydroxide.
- the raw material dispersion liquid is maintained in the above pH range for about 6 hours, thereby forming aggregated particles.
- the polystyrene particle dispersion liquid (1) 85 parts is further added to the raw material dispersion liquid, whereby the polystyrene resin particles are adhered to the surfaces of the above aggregated particles. Further, the temperature of the raw material dispersion liquid is increased to 52° C., and the aggregated particles are conditioned while the diameter and shape of the particles are examined with an optical microscope and Multisizer II. Thereafter, the raw material dispersion liquid is adjusted to pH 7.5 by adding-an aqueous solution of NaOH dropwise to coalesce the aggregated particles, and then the temperature of the raw material dispersion liquid is increased to 87° C.
- the raw material dispersion liquid is left for 5 hours to coalesce the aggregated particles, then the coalesce of the aggregated particles is confirmed with an optical microscope, and the raw material dispersion liquid is cooled at a decreasing temperature rate of 0.5° C./minute.
- Toner mother particle (3) is obtained in the washing step and drying step conducted in the same manner as in preparation of the toner mother particle (1).
- the volume-average particle diameter of the resulting toner mother particle (3) is 6.4 ⁇ m, and the glass transition temperature thereof is 75° C.
- HMDS Hexamethyldisilazane-treated hydrophobic silica particles (primary particle diameter of 0.012 ⁇ m), and 1 part by weight of the specific external additive particle (1) obtained above are introduced into a 5-L Henschel mixer with a jacket through which cooling water is running, and the mixture is blended for 20 minutes under stirring with a stirring blade rotated at a circumferential velocity of 28 m/s, followed by removing coarse particles through a mesh having an opening of 45 ⁇ m, thereby giving toner (1).
- the number-average number of the specific external additive particles (1) adhered to one particle of the toner (1) is 95.
- 10 parts by weight of the resulting toner is mixed with 100 parts by weight of a carrier for an Apeos Port-II C7500 manufactured by Fuji Xerox Co., Ltd., to prepare a developer, this developer is arranged in a developing device in the image forming apparatus Apeos Port-II C7500 manufactured by Fuji Xerox Co., Ltd., and the toner (1) is arranged in a toner cartridge in the same image forming apparatus.
- the apparatus is operated with an output of 5% image area on a recording medium in an atmosphere of 20° C. and 65% humidity.
- Toners (2) to (10) are obtained in the same manner as in preparation of toner (1) except that the toner particles, the specific external additive particles and other components are combined as shown in Table 1.
- the number-average number of the specific external additive particles adhered to one particle of each toner is 7 in Example 2, 350 in Example 3, 6 in Example 4, 4 in Example 5, 400 in Example 6, 1.5 in Example 7, 280 in Example 8, 71 in Example 9, and 87 in Example 10.
- the re-dispersion degree is 2% by number in Example 2, 5% by number in Example 3, 0% by number in Example 4, 12% by number in Example 5, 7% by number in Example 6, 10% by number in Example 7, 0% by number in Example 8, 2% by number in Example 9, and 2% by number in Example 10.
- the toner in Comparative Example 1 is prepared in the same manner as for the toner (1) except that the specific external additive particles (1) are not added.
- the toner in Comparative Example 2 is prepared in the same manner as for the toner (1) except that silicone resin particles having a number-average long axis diameter of 0.25 ⁇ m are used in place of the specific external additive particles (1).
- the number-average number of the silicone resin particles (primary particles) adhered to one particle of the toner is 55.
- the toner When the toner is arranged in the toner cartridge in the image forming apparatus and evaluated in the same manner as in Example 1, the deformation of the silicone resin particles (primary particles) is not observed, but the silicone resin particles are significantly released from, or buried in, the toner particles.
- 100 parts by weight of the toner particle (1) and 1.5 parts by weight of HMDS-treated hydrophobic silica particles are introduced into a 5-L Henschel mixer with a jacket through which cooling water is running, and the mixture is blended for 20 minutes under stirring with a stirring blade rotated at a circumferential velocity of 28 m/s, and after cooling water in the jacket of 5 L-HM is changed to warm water at 40° C., 1 part by weight of the primary particles (1) used in preparing the specific external additive particle (1) is further added thereto, and the mixture is blended for 30 minutes under stirring with a stirring blade rotated at a circumferential velocity of 8 m/s, followed by removing coarse particles through a mesh having an opening of 45 ⁇ m, thereby giving the toner in Comparative Example 3.
- the primary particles (1) are adhered in an aggregated state onto the toner particle (1), and the number-average long axis diameter of this aggregate is 0.36 ⁇ m, and the primary particle diameter is 0.04 ⁇ m.
- the number-average number of aggregates of the primary particles (1) adhered to one particle of the toner is 30.
- the external additive particles are re-dispersed in the state of primary particles and adhered to and buried in the toner particles. At this time, the re-dispersion degree is 79% by number.
- the toner in Comparative Example 4 is prepared in the same manner as for the toner (1) except that the primary particle (1) used in preparing the specific external additive particle (1) is used in place of the specific external additive particle (1).
- the primary particles (1) are adhered in a dispersed state onto the toner particle (1), and the primary particle diameter is 0.04 ⁇ m.
- the number-average number of the primary particles (1) adhered to one particle of the toner is 600.
- An experimental machine capable of outputting 115 sheets/min. is produced by modifying the driving of the image forming apparatus Apeos Port-II C7500 manufactured by Fuji Xerox Co., Ltd.
- This experimental machine is installed in an environment at a temperature of 32° C. and 87% humidity, and each of the toners in Examples 1 to 10 is charged in the toner cartridge and evaluated under the following conditions.
- This image forming apparatus is used in a double-sided output mode to successively form images alternately with low image density (image area coverage of 0.5%) on 1000 sheets of paper and images with high image density (image area coverage of 30%) on 1000 sheets of paper until 100,000 sheets of paper are printed with images.
- the paper used is printing paper CP (high-quality printing paper) manufactured by Fuji Xerox Co., Ltd.
- Image qualities after outputting of images on 100,000 sheets of paper are also confirmed. Confirmation of image quality is carried out by outputting a blank image, a full-face halftone image with an image density of 45%, and an image including 8-point letters and lines.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Sustainable Development (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
Description
[(Particle perimeter^2)/(particle projected area*4*π)]×100 (1)
In formula (1), ^2 indicates square, and * indicates multiplication.
-
- Particles having an uneven surface, like a potato or raspberry
- Particles having plural particles coalesced therein, like a daruma doll or tumble doll, or a peanut
- Particles having protrusions, like a confeito (which is a Japanese confection having horned protrusions on the surface of a spherical shape).
- Warped or deformed particles like boiled rice grains without germs and broad beans.
1.5≦D2/D1≦15 (2)
SF1=[(ML2/A)×(π/4)]×100 (3)
In formula (3), ML indicates the absolute maximum length of the toner primary particles; and A indicates the projected area of the toner primary particles; and n represents the circular constant. When the primary particle is truly spherical, SF1=100, and SF1 is minimum.
[(Particle perimeter^2)/(particle projected area*4*π)]×100 (1)
In formula (1), ^2 indicates square, and * indicates multiplication.
1.5≦D2/D1≦15 (2)
Styrene | 200 parts by | ||
Divinyl benzene | |||
10 parts by | |||
Acrylic acid | |||
10 parts by weight | |||
Methyl methacrylate | 150 parts by | ||
Acrylic acid | |||
10 parts by weight | |||
-
- Paraffin wax (melting temperature: 66° C.): 45 parts
- Anionic surfactant (NEOGEN RK, manufactured by Dai-Ichi Kogyo Seiyaku Co., Ltd.): 1.0 part
- Deionized water: 180 parts
-
- Cyan pigment (Pigment Blue 15:3 (copper phthalocyanine) manufactured by Dainichiseika Color & Chemicals Mfg. Co., Ltd.): 1200 parts
- Anionic surfactant (NEOGEN SC, manufactured by Dai-Ichi Kogyo Seiyaku Co., Ltd.): 2.3 parts
- Deionized water: 10000 parts
-
- Crystalline polyester resin dispersion liquid (1): 70 parts
- Non-crystalline polyester resin dispersion liquid (1): 200 parts
- Colorant dispersion liquid: 28 parts
- Releasing agent dispersion liquid (1): 70 parts
- Anionic surfactant (Teyca Power): 3.0 parts
—Emulsification Step—
-
- Styrene: 310 parts by weight
- n-Butyl acrylate: 120 parts by weight
- Acrylic acid: 5 parts by weight
- 1-Dodecanethiol: 5 parts by weight
- Propanediol acrylate: 2.2 parts by weight
-
- Crystalline polyester resin dispersion liquid (1): 70 parts
- Polystyrene particle dispersion liquid (1): 200 parts
- Colorant dispersion liquid: 28 parts
- Releasing agent dispersion liquid (1): 70 parts
- Anionic surfactant (Teyca Power): 3.0 parts
-
- Carnauba wax (melting temperature 82° C.): 45 parts by weight
- Anionic surfactant (NEOGEN SC, solid content 65%, manufactured by Dai-Ichi Kogyo Seiyaku Co., Ltd.): 2.3 parts by weight
- Deionized water: 200 parts by weight
-
- Polystyrene particle dispersion liquid (1): 200 parts
- Colorant dispersion liquid: 128 parts
- Releasing agent dispersion liquid (2): 70 parts
- Anionic surfactant (Teyca Power): 3.0 parts
TABLE 1 | ||||||
Number- | Number- | |||||
Specific | average long | average | ||||
external | axis diameter | long axis | Evaluation Results |
additive or | D2 (μm) | diameter | Particle | Number of sheets | Stain on out- | Flaws on pho- | |||
comparative | of external | D1 (μm) | diameter | when abnormal noises | putted image | toreceptor after | |||
Toner | external | additive | of primary | ratio | Clogging with | occurs in carrier | after 100000 | outputting on | |
particle | additive | particles | particles | D2/D1 | waste toner | path for waste toner | sheets | 100000 sheets | |
Example 1 | 1 | Specific | 0.19 | 0.04 | 4.75 | Not generated | No noise | Not generated | Not abnormal |
external | |||||||||
additive (1) | |||||||||
Example 2 | 1 | Specific | 0.71 | 0.04 | 17.75 | Not generated | No noise | Not generated | Slight flaw |
external | |||||||||
additive (2) | |||||||||
Example 3 | 1 | Specific | 0.08 | 0.04 | 2.00 | Not generated | Slight noise after | Not generated | Not abnormal |
external | printing on 56000th | ||||||||
additive (3) | sheet | ||||||||
Example 4 | 1 | Specific | 1.01 | 0.05 | 20.20 | Not generated | No noise | Slight density | Slight |
external | irregularity | flaw/adhering | |||||||
additive (4) | material | ||||||||
Example 5 | 1 | Specific | 1.2 | 0.07 | 17.14 | Not generated | Slight noise after | Slight color | Slight |
external | printing on 92000th | dots | flaw/adhering | ||||||
additive (5) | sheet | material | |||||||
Example 6 | 1 | Specific | 0.04 | 0.01 | 4.00 | Not generated | Slight noise after | Slight striated | Not abnormal |
external | printing on 75000th | stain | |||||||
additive (6) | sheet | ||||||||
Example 7 | 1 | Specific | 3.2 | 1.01 | 3.17 | Not generated | Slight noise after | Slight color | Adhering |
external | printing on 33000th | dots | material | ||||||
additive (7) | sheet | ||||||||
Example 8 | 1 | Specific | 0.07 | 0.005 | 14.00 | Not generated | No noise | Slight striated | Not abnormal |
external | stain | ||||||||
additive (8) | |||||||||
Example 9 | 2 | Specific | 0.19 | 0.04 | 4.75 | Not generated | No noise | Not generated | Not abnormal |
external | |||||||||
additive (1) | |||||||||
Example 10 | 3 | Specific | 0.19 | 0.04 | 4.75 | Not generated | No noise | Slight surface | Not abnormal |
external | roughness | ||||||||
additive (1) | |||||||||
Comparative | 1 | — | — | — | — | Apparatus is | Slight noise after | Test is | Test is |
Example 1 | stopped due to | printing on 4000th | discontinued | discontinued | |||||
jamming in | sheet after which | ||||||||
printing on | noise increases | ||||||||
7000th sheet | until stop | ||||||||
Comparative | 1 | Single | 0.25 | — | — | Apparatus is | Slight noise after | Test is | Test is |
Example 2 | spherical | stopped due to | printing on 18000th | discontinued | discontinued | ||||
particle | jamming in | sheet and significant | |||||||
printing on | noise after printing | ||||||||
48000th sheet | on 42000th sheet | ||||||||
Comparative | 1 | Reversibly | 0.36 | 0.04 | Apparatus is | Slight noise after | Test is | Test is | |
Example 3 | aggregated | stopped due to | printing on 9000th | discontinued | discontinued | ||||
particles | jamming in | sheet and significant | |||||||
printing on | noise after printing | ||||||||
22000th sheet | on 15000th sheet | ||||||||
Comparative | 1 | Single | 0.04 | — | — | Apparatus is | Slight noise after | Test is | Test is |
Example 4 | particle | stopped due to | printing on 13000th | discontinued | discontinued | ||||
jamming in | sheet after which | ||||||||
printing on | noise increases | ||||||||
18000th sheet | until stop | ||||||||
Claims (38)
[(particle perimeter)2/(particle projected area×4×π)]×100 (1),
1.5≦D2/D1≦15 (2).
1.5≦D2/D1≦15 (2).
[(particle perimeter)2/(particle projected area×4×π)]×100 (1).
[(particle perimeter)2/(particle projected area×4×π)]×100 (1).
[(particle perimeter)2/(particle projected area×4×π)]×100 (1),
1.5≦D2/D1≦15 (2).
SF1=((ML2/A)×(π/4))×100 (3)
((particle perimeter)2/(particle projected area×4×π))×100 (1),
1.5≦D2/D1≦15 (2).
[(particle perimeter)2/(particle projected area×4×π)]×100 (1).
SF1=((ML2/A)×(π/4))×100 (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/745,389 USRE45970E1 (en) | 2009-03-25 | 2013-01-18 | Toner for electrostatic image development, toner cartridge, process cartridge and image forming apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-074787 | 2009-03-25 | ||
JP2009074787A JP4894876B2 (en) | 2009-03-25 | 2009-03-25 | Toner for developing electrostatic image, toner cartridge, process cartridge, and image forming apparatus |
US12/539,131 US8227158B2 (en) | 2009-03-25 | 2009-08-11 | Toner for electrostatic image development, toner cartridge, process cartridge and image forming apparatus |
US13/745,389 USRE45970E1 (en) | 2009-03-25 | 2013-01-18 | Toner for electrostatic image development, toner cartridge, process cartridge and image forming apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/539,131 Reissue US8227158B2 (en) | 2009-03-25 | 2009-08-11 | Toner for electrostatic image development, toner cartridge, process cartridge and image forming apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE45970E1 true USRE45970E1 (en) | 2016-04-12 |
Family
ID=42771553
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/539,131 Ceased US8227158B2 (en) | 2009-03-25 | 2009-08-11 | Toner for electrostatic image development, toner cartridge, process cartridge and image forming apparatus |
US13/745,389 Active 2030-07-16 USRE45970E1 (en) | 2009-03-25 | 2013-01-18 | Toner for electrostatic image development, toner cartridge, process cartridge and image forming apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/539,131 Ceased US8227158B2 (en) | 2009-03-25 | 2009-08-11 | Toner for electrostatic image development, toner cartridge, process cartridge and image forming apparatus |
Country Status (4)
Country | Link |
---|---|
US (2) | US8227158B2 (en) |
JP (1) | JP4894876B2 (en) |
KR (1) | KR101370502B1 (en) |
CN (1) | CN101846900B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220308482A1 (en) * | 2021-03-23 | 2022-09-29 | Fujifilm Business Innovation Corp. | Method for producing toner for developing electrostatic charge image, and toner for developing electrostatic charge image |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623885B2 (en) * | 1986-08-29 | 1994-03-30 | キヤノン株式会社 | Development device |
JP5493511B2 (en) * | 2009-07-01 | 2014-05-14 | 三菱化学株式会社 | Method for producing toner for developing electrostatic image |
JP2012118504A (en) * | 2010-11-09 | 2012-06-21 | Ricoh Co Ltd | Toner and developer for electrostatic charge image development |
JP5644464B2 (en) | 2010-12-15 | 2014-12-24 | 富士ゼロックス株式会社 | Electrostatic image developing toner, electrostatic image developer, toner cartridge, process cartridge, and image forming apparatus |
JP2012189960A (en) * | 2011-03-14 | 2012-10-04 | Fuji Xerox Co Ltd | Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method |
JP5743578B2 (en) * | 2011-02-03 | 2015-07-01 | キヤノン株式会社 | toner |
JP6069990B2 (en) * | 2011-09-16 | 2017-02-01 | 株式会社リコー | Electrostatic latent image developing carrier, developer, and image forming apparatus |
JP6040537B2 (en) * | 2012-01-31 | 2016-12-07 | 富士ゼロックス株式会社 | Electrostatic image developing toner, electrostatic image developer, toner cartridge, process cartridge, and image forming apparatus |
JP2013190647A (en) * | 2012-03-14 | 2013-09-26 | Ricoh Co Ltd | Toner, two-component developer, and image forming apparatus |
JP5817601B2 (en) * | 2012-03-14 | 2015-11-18 | 株式会社リコー | Toner, developer, and image forming apparatus |
JP5966464B2 (en) * | 2012-03-14 | 2016-08-10 | 株式会社リコー | Toner, two-component developer, and image forming apparatus |
JP2013195621A (en) * | 2012-03-19 | 2013-09-30 | Ricoh Co Ltd | Toner for electrostatic charge image development, two-component developer, and image forming apparatus |
CN102621839A (en) * | 2012-03-28 | 2012-08-01 | 南京新天兴影像科技有限公司 | Nonmagnetic single component developer for low temperature photographic fixing |
JP2013235222A (en) * | 2012-05-11 | 2013-11-21 | Ricoh Co Ltd | Toner, two-component developer including the toner, and image forming apparatus |
JP6127537B2 (en) * | 2013-01-25 | 2017-05-17 | 株式会社リコー | Toner, developer, and image forming apparatus |
JP2014157328A (en) * | 2013-02-18 | 2014-08-28 | Ricoh Co Ltd | Toner, and developer and image forming apparatus |
JP6236798B2 (en) * | 2013-02-21 | 2017-11-29 | 株式会社リコー | Toner for electrostatic image development |
JP6163781B2 (en) * | 2013-02-22 | 2017-07-19 | 株式会社リコー | Toner for developing electrostatic image, two-component developer and image forming apparatus |
JP6350796B2 (en) * | 2013-03-01 | 2018-07-04 | 株式会社リコー | Full-color image forming device |
JP6032064B2 (en) * | 2013-03-04 | 2016-11-24 | 株式会社リコー | Toner, image forming apparatus, and process cartridge |
JP6035680B2 (en) * | 2013-03-07 | 2016-11-30 | 株式会社リコー | Electrophotographic image forming toner, image forming method and process cartridge |
JP6205760B2 (en) * | 2013-03-08 | 2017-10-04 | 株式会社リコー | Toner, developer and image forming apparatus |
JP6051982B2 (en) * | 2013-03-15 | 2016-12-27 | 株式会社リコー | Two-component developer, image forming apparatus, and process cartridge |
JP2014178528A (en) * | 2013-03-15 | 2014-09-25 | Ricoh Co Ltd | Toner for electrostatic charge image development, two-component developer, and image forming apparatus |
JP6060825B2 (en) * | 2013-06-20 | 2017-01-18 | 富士ゼロックス株式会社 | Electrostatic image developing toner, electrostatic image developer, process cartridge, image forming method, and image forming apparatus |
JP6102561B2 (en) * | 2013-06-21 | 2017-03-29 | 富士ゼロックス株式会社 | Image forming apparatus, image forming method, toner for developing electrostatic latent image, and recovered toner for developing electrostatic latent image |
US20150037720A1 (en) * | 2013-07-31 | 2015-02-05 | Canon Kabushiki Kaisha | Magnetic toner |
JP2015210410A (en) * | 2014-04-28 | 2015-11-24 | コニカミノルタ株式会社 | Toner for electrostatic charge image development |
JP6478662B2 (en) * | 2015-01-29 | 2019-03-06 | キヤノン株式会社 | Toner and toner production method |
JP6722019B2 (en) * | 2016-03-30 | 2020-07-15 | キヤノン株式会社 | Toner manufacturing method |
JP2018045112A (en) * | 2016-09-15 | 2018-03-22 | コニカミノルタ株式会社 | Toner for electrostatic charge image development |
JP7257741B2 (en) * | 2018-01-18 | 2023-04-14 | 株式会社リコー | TONER, TONER CONTAINING UNIT, AND IMAGE FORMING APPARATUS |
JP7443048B2 (en) | 2018-12-28 | 2024-03-05 | キヤノン株式会社 | toner |
JP7391640B2 (en) | 2018-12-28 | 2023-12-05 | キヤノン株式会社 | toner |
JP7286314B2 (en) * | 2018-12-28 | 2023-06-05 | キヤノン株式会社 | toner |
JP7391658B2 (en) | 2018-12-28 | 2023-12-05 | キヤノン株式会社 | toner |
JP7504583B2 (en) | 2018-12-28 | 2024-06-24 | キヤノン株式会社 | Toner manufacturing method |
JP7267740B2 (en) * | 2018-12-28 | 2023-05-02 | キヤノン株式会社 | toner |
JP7207998B2 (en) | 2018-12-28 | 2023-01-18 | キヤノン株式会社 | toner |
EP3674802B1 (en) | 2018-12-28 | 2022-05-18 | Canon Kabushiki Kaisha | Toner and toner manufacturing method |
JP7433872B2 (en) | 2018-12-28 | 2024-02-20 | キヤノン株式会社 | toner |
JP7443047B2 (en) | 2018-12-28 | 2024-03-05 | キヤノン株式会社 | toner |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5611461A (en) | 1979-07-02 | 1981-02-04 | Xerox Corp | Developer mixture for electroostatic recording |
JPS6239879A (en) | 1985-08-16 | 1987-02-20 | Fuji Xerox Co Ltd | Electrophotographic carrier |
JPS62246073A (en) | 1986-04-19 | 1987-10-27 | Konika Corp | Electrostatic image developing toner having improved characteristic |
JPH02289859A (en) | 1990-04-20 | 1990-11-29 | Fuji Xerox Co Ltd | Production of nonmagnetic one-component developer |
JPH0728276A (en) | 1993-07-08 | 1995-01-31 | Konica Corp | Electrostatic charge image developer and multicolor picture forming method |
JPH09319134A (en) | 1996-05-29 | 1997-12-12 | Konica Corp | Static-charge-image development toner and multicolor image forming method |
JPH1010770A (en) | 1996-06-21 | 1998-01-16 | Minolta Co Ltd | Toner for developing electrostatic latent image |
US5759731A (en) * | 1996-06-21 | 1998-06-02 | Minolta, Co., Ltd. | Toner for electrophotography with specified fine particles added externally |
US5948582A (en) * | 1997-04-02 | 1999-09-07 | Canon Kabushiki Kaisha | Toner for developing electrostatic image, image forming method and developing apparatus unit |
US6060202A (en) * | 1997-03-26 | 2000-05-09 | Canon Kabushiki Kaisha | Toner for developing electrostatic images image forming method and process cartridge |
JP2000221726A (en) | 1999-01-29 | 2000-08-11 | Tomoegawa Paper Co Ltd | Electrophotographic toner |
US20010053492A1 (en) * | 1999-03-15 | 2001-12-20 | Masaaki Suwabe | Toner for developing static image, process for producing the same, developer for static image, and image forming method |
US20030063922A1 (en) * | 2001-09-14 | 2003-04-03 | Seiko Epson Corporation | Image forming apparatus |
US6635398B1 (en) * | 1999-10-26 | 2003-10-21 | Canon Kabushiki Kaisha | Dry toner, dry toner production process, and image forming method |
US20040067189A1 (en) * | 2002-07-15 | 2004-04-08 | Hideki Sugiura | External additive for toner for electrophotography, toner for electrophotography, double-component developer for electrophotography, image-forming process using the toner, and image-forming apparatus using the toner |
US6818369B2 (en) * | 2001-01-31 | 2004-11-16 | Ricoh Company, Ltd. | Toner for electrostatic image development and image forming method and apparatus using the toner |
JP2005234300A (en) | 2004-02-20 | 2005-09-02 | Tomoegawa Paper Co Ltd | Electrostatic charge image developing toner |
US20060150527A1 (en) * | 2002-12-27 | 2006-07-13 | Masakazu Ohara | Slica fine particles |
US20080131804A1 (en) | 2006-12-05 | 2008-06-05 | Kao Corporation | Process for producing toner for electrophotography |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03170948A (en) * | 1989-11-29 | 1991-07-24 | Kyocera Corp | Toner for developing electrostatic charge image |
JPH10186710A (en) * | 1996-12-26 | 1998-07-14 | Toshiba Corp | Developer, developing device using the same, and image forming device |
US5989768A (en) * | 1997-03-06 | 1999-11-23 | Cabot Corporation | Charge-modified metal oxides with cyclic silazane and electrostatographic systems incorporating same |
JP3684073B2 (en) * | 1997-06-18 | 2005-08-17 | キヤノン株式会社 | Image forming method and image forming apparatus |
JP3684074B2 (en) * | 1997-06-18 | 2005-08-17 | キヤノン株式会社 | Toner, two-component developer and image forming method |
JP2000075541A (en) * | 1998-01-28 | 2000-03-14 | Canon Inc | Toner, two-component developer, image forming method and device unit |
JP2001265050A (en) * | 2000-03-15 | 2001-09-28 | Fuji Xerox Co Ltd | Electrostatic charge image developing toner, method for manufacturing the same, electrostatic charge image developer and method for forming image |
JP2002082478A (en) * | 2000-09-07 | 2002-03-22 | Sekisui Chem Co Ltd | Additive for toner, resin for toner, and toner |
JP2002091053A (en) * | 2000-09-13 | 2002-03-27 | Canon Inc | Two-component developer and image forming device |
JP2003207931A (en) * | 2002-01-16 | 2003-07-25 | Canon Inc | Non-magnetic toner and fixing method |
JP2005121867A (en) * | 2003-10-16 | 2005-05-12 | Konica Minolta Business Technologies Inc | Electrostatic charge image developing toner and method for manufacturing the electrostatic charge image developing toner |
DE102004057997A1 (en) * | 2004-12-01 | 2006-06-08 | Wacker Chemie Ag | Metal oxides with a permanent positive surface charge over a wide pH range |
DE102005005046A1 (en) * | 2005-02-03 | 2006-08-10 | Wacker Chemie Ag | Hydroxyalkyl-functionalized fillers |
JP2007193099A (en) * | 2006-01-19 | 2007-08-02 | Ricoh Co Ltd | Image forming apparatus, image forming method and process cartridge |
CN101174111B (en) * | 2006-11-02 | 2012-09-05 | 花王株式会社 | Toner and two-component developer |
JP4969420B2 (en) * | 2007-03-19 | 2012-07-04 | 株式会社リコー | Toner for developing electrostatic latent image, process cartridge, and image forming method |
JP4967860B2 (en) * | 2007-07-02 | 2012-07-04 | 富士ゼロックス株式会社 | Image forming apparatus |
JP2009025847A (en) * | 2008-11-06 | 2009-02-05 | Fuji Xerox Co Ltd | Electrophotographic toner and method for manufacturing the same |
-
2009
- 2009-03-25 JP JP2009074787A patent/JP4894876B2/en active Active
- 2009-08-11 US US12/539,131 patent/US8227158B2/en not_active Ceased
- 2009-09-07 KR KR1020090083893A patent/KR101370502B1/en active IP Right Grant
- 2009-09-14 CN CN200910169037.6A patent/CN101846900B/en active Active
-
2013
- 2013-01-18 US US13/745,389 patent/USRE45970E1/en active Active
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4264697A (en) | 1979-07-02 | 1981-04-28 | Xerox Corporation | Imaging system |
JPS5611461A (en) | 1979-07-02 | 1981-02-04 | Xerox Corp | Developer mixture for electroostatic recording |
JPS6239879A (en) | 1985-08-16 | 1987-02-20 | Fuji Xerox Co Ltd | Electrophotographic carrier |
JPS62246073A (en) | 1986-04-19 | 1987-10-27 | Konika Corp | Electrostatic image developing toner having improved characteristic |
JPH02289859A (en) | 1990-04-20 | 1990-11-29 | Fuji Xerox Co Ltd | Production of nonmagnetic one-component developer |
JPH0728276A (en) | 1993-07-08 | 1995-01-31 | Konica Corp | Electrostatic charge image developer and multicolor picture forming method |
JPH09319134A (en) | 1996-05-29 | 1997-12-12 | Konica Corp | Static-charge-image development toner and multicolor image forming method |
US5837414A (en) | 1996-05-29 | 1998-11-17 | Konica Corporation | Toner for developing electrostatic image and method for forming multicolor image |
JPH1010770A (en) | 1996-06-21 | 1998-01-16 | Minolta Co Ltd | Toner for developing electrostatic latent image |
US5759731A (en) * | 1996-06-21 | 1998-06-02 | Minolta, Co., Ltd. | Toner for electrophotography with specified fine particles added externally |
US6060202A (en) * | 1997-03-26 | 2000-05-09 | Canon Kabushiki Kaisha | Toner for developing electrostatic images image forming method and process cartridge |
US5948582A (en) * | 1997-04-02 | 1999-09-07 | Canon Kabushiki Kaisha | Toner for developing electrostatic image, image forming method and developing apparatus unit |
JP2000221726A (en) | 1999-01-29 | 2000-08-11 | Tomoegawa Paper Co Ltd | Electrophotographic toner |
US20010053492A1 (en) * | 1999-03-15 | 2001-12-20 | Masaaki Suwabe | Toner for developing static image, process for producing the same, developer for static image, and image forming method |
US6635398B1 (en) * | 1999-10-26 | 2003-10-21 | Canon Kabushiki Kaisha | Dry toner, dry toner production process, and image forming method |
US6818369B2 (en) * | 2001-01-31 | 2004-11-16 | Ricoh Company, Ltd. | Toner for electrostatic image development and image forming method and apparatus using the toner |
US20030063922A1 (en) * | 2001-09-14 | 2003-04-03 | Seiko Epson Corporation | Image forming apparatus |
US20040067189A1 (en) * | 2002-07-15 | 2004-04-08 | Hideki Sugiura | External additive for toner for electrophotography, toner for electrophotography, double-component developer for electrophotography, image-forming process using the toner, and image-forming apparatus using the toner |
US20060150527A1 (en) * | 2002-12-27 | 2006-07-13 | Masakazu Ohara | Slica fine particles |
JP2005234300A (en) | 2004-02-20 | 2005-09-02 | Tomoegawa Paper Co Ltd | Electrostatic charge image developing toner |
US20080131804A1 (en) | 2006-12-05 | 2008-06-05 | Kao Corporation | Process for producing toner for electrophotography |
CN101196702A (en) | 2006-12-05 | 2008-06-11 | 花王株式会社 | Process for producing toner for electrophotography |
Non-Patent Citations (2)
Title |
---|
Chinese Office Action issued Mar. 23, 2012 in related Chinese Patent Application No. 200910169037, with English translation. |
Jan. 19, 2013 Korean Office Action issued in Korean Patent Application No. 10-2009-0083893 (with English translation). |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220308482A1 (en) * | 2021-03-23 | 2022-09-29 | Fujifilm Business Innovation Corp. | Method for producing toner for developing electrostatic charge image, and toner for developing electrostatic charge image |
Also Published As
Publication number | Publication date |
---|---|
KR101370502B1 (en) | 2014-03-06 |
US8227158B2 (en) | 2012-07-24 |
KR20100107373A (en) | 2010-10-05 |
JP2010224502A (en) | 2010-10-07 |
CN101846900A (en) | 2010-09-29 |
CN101846900B (en) | 2014-06-18 |
US20100248110A1 (en) | 2010-09-30 |
JP4894876B2 (en) | 2012-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE45970E1 (en) | Toner for electrostatic image development, toner cartridge, process cartridge and image forming apparatus | |
JP3825922B2 (en) | Toner for developing electrostatic image and image forming method | |
US7556904B2 (en) | Toner for electrostatic development, developer, image forming method, image-forming apparatus and process for cartridge using the same | |
JP3969873B2 (en) | Toner and image forming method using the toner | |
US8592116B2 (en) | Toner for developing electrostatic charge image, method of preparing the same, device for supplying the same, and apparatus and method for forming image using the same | |
JP5866791B2 (en) | Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, toner cartridge, process cartridge, image forming apparatus, and image forming method | |
JP4752373B2 (en) | Cleaning device and image forming apparatus | |
JP5821455B2 (en) | Toner for electrophotographic development, image forming method and process cartridge | |
JP2010191355A (en) | Transparent toner for developing electrostatic latent image, electrostatic latent image developer, toner cartridge, process cartridge, image forming device, and image forming method | |
JP2014174501A (en) | Toner and image forming method | |
JP4551952B2 (en) | Resin-coated carrier, two-component developer, developing device, and image forming apparatus | |
JP2010243693A (en) | Toner and image forming method | |
JP3690776B2 (en) | Toner and image forming method | |
JP4006136B2 (en) | Image forming method | |
JP6032064B2 (en) | Toner, image forming apparatus, and process cartridge | |
JPH11288125A (en) | Electrostatic charge image developing toner and image forming method | |
JP4408119B2 (en) | Toner for developing electrostatic image and image forming method | |
JP4741684B2 (en) | Two-component developer, developing device and image forming apparatus | |
JP4945614B2 (en) | Photo-fixing toner and one-component developer and two-component developer containing the photo-fixing toner | |
JP5358972B2 (en) | Image forming method and toner for developing electrostatic image corresponding to gloss level | |
JP5975707B2 (en) | Toner for light fixing and image forming apparatus having the same | |
JP5143758B2 (en) | Toner, two-component developer, developing device, and image forming apparatus | |
JP2000010377A (en) | Image forming method | |
JP2020173440A (en) | Toner for electrostatic charge image development, method for manufacturing toner for electrostatic charge image development, and image forming method | |
JP2004361983A (en) | Electrostatic charge image developing toner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: FUJIFILM BUSINESS INNOVATION CORP., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:FUJI XEROX CO., LTD.;REEL/FRAME:058287/0056 Effective date: 20210401 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |