USRE44987E1 - Bromo-phenyl substituted thiazolyl dihydropyrimidines - Google Patents

Bromo-phenyl substituted thiazolyl dihydropyrimidines Download PDF

Info

Publication number
USRE44987E1
USRE44987E1 US13/869,981 US201313869981A USRE44987E US RE44987 E1 USRE44987 E1 US RE44987E1 US 201313869981 A US201313869981 A US 201313869981A US RE44987 E USRE44987 E US RE44987E
Authority
US
United States
Prior art keywords
hepatitis
salt
formula
infection
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/869,981
Inventor
Siegfried Goldmann
Jing Li
Yi Song Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunshine Lake Pharma Co Ltd
Original Assignee
Sunshine Lake Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40155886&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE44987(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sunshine Lake Pharma Co Ltd filed Critical Sunshine Lake Pharma Co Ltd
Priority to US13/869,981 priority Critical patent/USRE44987E1/en
Assigned to SUNSHINE LAKE PHARMA CO., LTD. reassignment SUNSHINE LAKE PHARMA CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, ZHONGNENG
Assigned to ZHANG, ZHONGNENG reassignment ZHANG, ZHONGNENG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIU, YI SONG
Assigned to ZHANG, ZHONGNENG reassignment ZHANG, ZHONGNENG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, JING
Assigned to ZHANG, ZHONGNENG reassignment ZHANG, ZHONGNENG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOLDMANN, SIEGFRIED
Publication of USRE44987E1 publication Critical patent/USRE44987E1/en
Application granted granted Critical
Assigned to NORTH & SOUTH BROTHER PHARMACY INVESTMENT COMPANY LIMITED reassignment NORTH & SOUTH BROTHER PHARMACY INVESTMENT COMPANY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUNSHINE LAKE PHARMA CO., LTD.
Assigned to SUNSHINE LAKE PHARMA CO., LTD. reassignment SUNSHINE LAKE PHARMA CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NORTH & SOUTH BROTHER PHARMACY INVESTMENT COMPANY LIMITED
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the invention relates to a new bromo-phenyl substituted thiazolyl dihydropyrimidine, its preparation method and use as a medicament especially for treating and preventing hepatitis B infections.
  • the invention also relates to a composition comprising the dihydropyrimidine, other antiviral agent and, when appropriate, an immunomodulator and a medicament comprising the composition especially for treating and preventing HBV infections such as hepatitis B infections.
  • the hepatitis B virus belongs to the family of hepadna viruses. It can cause acute and/or persistent or progressive chronic diseases. Many other clinical manifestations in the pathological state are also caused by the hepatitis B virus—in particular chronic inflammation of the liver, cirrhosis of the liver and hepatocellular carcinoma. In addition, coinfection with the heptatitis delta virus may have adverse effects on the progress of the disease.
  • the interferon and lamivudine are conventional medicaments approved to be used for treating chronic hepatitis.
  • the interferon has just moderate activity but has an adverse side reaction.
  • lamivudine has good activity, its resistance develops rapidly during the treatment and relapse effects often appear after the treatment is stopped.
  • the IC 50 value of lamivudine (3-TC) is 300 nM (Science, 299 (2003), 893-896).
  • U.S. Pat. No. 7,074,784 discloses 6-amidoalkyldihydropyrimidine and its use as a medicament especially for treating and preventing hepatitis B infection.
  • R 1 is o-chlorine
  • R 2 is p-chlorine
  • R 6 is 3,5-difluoro-pyridin-2-yl
  • X is —CH 2 —
  • Z is morpholinyl.
  • the compound can inhibit the growth of hepatitis B virus during cell culturing.
  • the IC 50 value is 2 nM (tested by themselves).
  • U.S. Pat. No. 7,074,784 B2 also discloses an example, wherein a difluoro residue is substituted for thiazol-2-yl (described in Example 45 of the patent).
  • the derivative has a similar IC 50 value (2 nM) (see Table 1).
  • This invention relates to a compound having formula (I) and its isomer (Ia),
  • R 1 is o-bromine
  • R 2 is p-fluorine
  • R 3 is C 1 -C 4 alkyl
  • R 6 is thiazol-2-yl
  • X is methylene
  • Z is morpholinyl.
  • R 1 of the compound of the invention having formula (I) and (Ia) is o-bromine
  • R 2 is p-fluorine
  • R 3 is methyl or ethyl
  • R 6 is thiazol-2-yl
  • X is methylene
  • Z is morpholinyl.
  • This invention also relates to an enantiomer of the compound disclosed herein and a mixture thereof.
  • the racemate can be separated by a known method, and fundamentally it is a homogeneous component in a stereoisomer mixture.
  • the compounds of the invention comprise an isomer having formula (I) and (Ia) and a mixture thereof.
  • the compound of the invention can also be in a form of a salt, preferably a physiologically acceptable salt.
  • the physiologically acceptable salt can be an inorganic acid salt or organic acid salt.
  • it is an inorganic acid salt such as chloride, bromide, phosphate or sulfate, etc., or a carboxylate or a sulfonate, such as acetate, maleate, fumarate, malate, citrate, tartarate, lactate, benzoate or methanesulfonate, ethanesulfonate, benzenesulfonate, toluenesulfonate or naphthalenedisulfonate, etc.
  • the physiologically acceptable salt can also be a metal salt or an ammonium salt of the compound of the invention.
  • it is a sodium salt, potassium salt, magnesium salt or calcium salt, and an ammonium salt produced by ammonia or organic amine such as ethylamine, diethylamine or triethylamine, diethanolamine or triethanolamine, dicyclohexylamine, dimethylaminoethyl alcohol, arginine, lysine, ethylenediamine or 2-phenylethylamine, etc.
  • the compound (I) of the invention can be prepared by the following methods:
  • R 1 , R 2 , R 3 , X and Z are as defined herein, and then the benzylidene compound reacts with an amidine having formula (V) or a salt thereof (such as hydrochloride or acetate) with or without the addition of an alkali or an acid, and, when appropriate, in the presence of an inert organic solvent:
  • R 6 is as defined herein;
  • R 1 , R 2 , R 3 and R 6 are as defined herein and Y is a nucleophilic substituent, such as chloro, bromo, iodo, methylsulfonyl or toluenesulfonyl; or
  • R 3 , X and Z are as defined herein.
  • Compound of formula (VI) can be prepared by, for example, reacting a compound having formula (VIII)
  • R 1 , R 2 , R 3 and R 6 are as defined herein, with a brominating agent such as N-bromosuccinimide, preferably in an inert organic solution, to produce a compound having formula (IX):
  • R 3 is as defined herein.
  • ⁇ -keto carboxylate (III) is well-known, or can be prepared by known methods published in the literature [for example, D. Baumann, “Um GmbH von Diketen mit mecanicen, Phenolen und Mercaptanen”, in “Methoden der organischen Chemie” (Houben-Weyl), vol. VII/4, 230 ff (1968); Y. Oikawa, K. Sugano und O. Yonemitsu, J. Org. Chem. 43, 2087 (1978)].
  • the compound (V) is known and can be prepared according to the descriptions of WO-A-99/54326 and WO-A-99/54329.
  • Morpholine (VII) is commercially available.
  • the inert organic solvent is preferably an alcohol such as methanol, ethanol and isopropyl alcohol, an ether such as dioxane, diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, a carboxylic acid such as acetic acid, dimethylformamide, dimethyl sulfoxide, acetonitrile, pyridine or hexamethyl phosphoric triamide.
  • an alcohol such as methanol, ethanol and isopropyl alcohol
  • an ether such as dioxane, diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, a carboxylic acid such as acetic acid, dimethylformamide, dimethyl sulfoxide, acetonitrile, pyridine or hexamethyl phosphoric triamide.
  • the reaction temperature can be varied within quite a wide range. Usually the temperature is between 20° C. and 150° C. Preferably, the temperature is the boiling temperature of the selected solvent.
  • the reaction can be carried out under the atmospheric pressure or under a high pressure. It is usually carried out under the atmospheric pressure.
  • the reaction can be carried out with or without an acid or alkali. It is preferable to carry out the reaction in the presence of a weak acid such as acetic acid, formic acid or the like.
  • a weak acid such as acetic acid, formic acid or the like.
  • An embodiment of the invention relates to a composition
  • a composition comprising A) at least one of the above dihydropyrimidines and B) at least one of other antiviral agents different from A).
  • a certain embodiment of the invention relates to a composition
  • a composition comprising A) the above dihydropyrimidine, B) an HBV polymerase inhibitor and, when appropriate, C) an immunomodulator.
  • the immunomodulator C) is selected from, for example, all the interferons such as ⁇ -interferon, ⁇ -interferon and ⁇ -interferon, especially ⁇ -2a-interferon and ⁇ -2b-interferon, an interleukin such as interleukin-2, a polypeptide such as thymosin- ⁇ -1 and a thymoctonan, an imidazoquinoline derivative such as levamisole, an immunoglobulin and a therapeutic vaccine.
  • interferons such as ⁇ -interferon, ⁇ -interferon and ⁇ -interferon, especially ⁇ -2a-interferon and ⁇ -2b-interferon, an interleukin such as interleukin-2, a polypeptide such as thymosin- ⁇ -1 and a thymoctonan, an imidazoquinoline derivative such as levamisole, an immunoglobulin and a therapeutic vaccine.
  • this invention also relates to a composition for treating and preventing HBV infections and its use for treating diseases induced by HBV.
  • the use of the combinations of the invention provides valuable advantages for the treatment of HBV-induced diseases compared with monotherapy with the individual compounds, namely principally a synergistic antiviral activity, but also good tolerability of the combinations of the invention in Tox-50 (the range of toxicity at which 50% of the cells survive).
  • HBV polymerase inhibitors B for the purposes of the invention are those which, in the endogenous polymerase assay which was published by Ph. A. Furman et al. in Antimicrobial Agents and Chemotherapy, Vol. 36 (No. 12), 2688 (1992) and which is described hereinafter, lead to an inhibition of the formation of an HBV DNA double strand, so as to result in a maximum of 50% of the activity of the zero value.
  • HBV polymerase inhibitors B for use in the invention are the substances disclosed in the endogenous polymerase experiment published in “Antimicrobial Agents and Chemotherapy” Vol. 36 (No. 12), 2688 (1992) by Ph. A. Furman, and the substances described below for inhibiting the formation of double-stranded HBV DNA thereby resulting in the maximum 50% activity value to be zero.
  • HBV virions from culture supernatants incorporate nucleoside 5′-triphosphates into the plus strand of the HBV DNA in vitro.
  • agarose gel electrophoresis By using agarose gel electrophoresis, the incorporation of [ ⁇ - 32 P]-deoxynucleoside 5′-triphosphate into the viral 3.2 kb DNA product is observed in the presence and absence of a substance potentially having HBV polymerase-inhibiting properties.
  • HBV virions are obtained from the cell culture supernatant of HepG2.2.15 cells by precipitation with polyethyleneglycol and are concentrated. One part by volume of clarified cell culture supernatant is mixed with 1 ⁇ 4 by volume of an aqueous solution containing 50% by weight polyethylene glycol 8000 and 0.6 M sodium chloride.
  • the virions are sedimented by centrifugation at 2500 ⁇ g/15 minutes.
  • the sediments are resuspended in 2 ml of buffer containing 0.05 M tris-HCl (pH 7.5) and dialyzed against the same buffer containing 100 mM potassium chloride.
  • the samples can be frozen at ⁇ 80° C.
  • Each reaction mixture (100 ⁇ l) contains at least 105 HBV virions; 50 mM tris-HCl (pH 7.5); 300 mM potassium chloride; 50 mM magnesium chloride; 0.1% Nonident® P-40 (nonionic detergent from Boehringer Mannheim); 10 ⁇ M dATP, 10 ⁇ M dGTP, 10 ⁇ M dTTP; 10 ⁇ Ci [ 32 P]dCTP (3000 Ci/mmol; final concentration 33 nM) and 1 ⁇ M of the potential polymerase inhibitor in its triphosphorylated form.
  • the samples are incubated at 37° C. for one hour and then the reaction is stopped by adding 50 mM EDTA.
  • a 10% weight/volume SDS solution (containing 10 g of SDS per 90 ml of water) is added to a final concentration of 1% by volume (based on the total volume), and proteinase K is added to a final concentration of 1 mg/ml. After incubation at 37° C. for one hour, samples are extracted with the same volume of phenol/chloroform/isoamyl alcohol (ratio 25:24:1 by volume), and the DNA is precipitated from the aqueous phase with ethanol.
  • Adefovir dipivoxil 9- ⁇ 2-[[bis[(pivaloyloxy)-methoxy]-phosphinyl]-methoxy]-ethyl ⁇ -a-denine, cf.
  • Abacavir ( ⁇ )-(1S-cis)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol, cf.
  • FTC (2R-cis)-4-amino-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-pyrimidin-2(1H)-one, cf.
  • ⁇ -L-FDDC 5-(6-amino-2-fluoro-9H-purin-9-yl)-tetrahydro-2-furanmethanol, cf.
  • L-FMAU 1-(2-deoxy-2-fluoro- ⁇ -L-arabinofuranosyl)-5-methyl-pyrimidine-2,4(1H,3H)-dione, cf. WO 99/05157, WO 99/05158 and U.S. Pat. No. 5,753,789.
  • a further preferred embodiment of the invention relates to a composition
  • a composition comprising A) the above dihydropyrimidines having formula (I) and (Ia); and B) lamivudine.
  • HBV antiviral agents B comprise, for example, phenylpropenamides of the following formula:
  • R 1 and R 2 are, each independently, C 1-4 alkyl or, together with the nitrogen atom on which they are located, form a ring having 5 to 6 ring atoms which comprise carbon and/or oxygen;
  • R 3 to R 12 are each independently hydrogen, halogen, C 1-4 alkyl, optionally substituted C 1-4 alkoxy, nitro, cyano or trifluoromethyl;
  • R 13 is hydrogen, C 1-4 alkyl, C 1-7 acyl or aralkyl and X is halogen or optionally substituted C 1-4 alkyl.
  • AT-61 is the compound
  • Preferred immunomodulators C) comprise, for example, all interferons such as ⁇ -, ⁇ - and ⁇ -interferons, in particular also ⁇ -2a- and ⁇ -2b-interferons, interleukins such as interleukin-2, polypeptides such asthymosin- ⁇ -1 and thymoctonan, imidazoquinoline derivatives such as Levamisole®, immunoglobulins and therapeutic vaccines.
  • interferons such as ⁇ -, ⁇ - and ⁇ -interferons, in particular also ⁇ -2a- and ⁇ -2b-interferons, interleukins such as interleukin-2, polypeptides such asthymosin- ⁇ -1 and thymoctonan, imidazoquinoline derivatives such as Levamisole®, immunoglobulins and therapeutic vaccines.
  • a further preferred embodiment of the invention relates to combinations of A) above dihydropyrimidines (I) and (Ia), B) lamivudine and, where appropriate, C) an interferon.
  • the antiviral action of the compounds of the invention on hepatitis B virus is investigated by methods based on those described by M. A. Sells et al., Proc. Natl. Acad. Sci., 84, 1005-1009 (1987) and B. E. Korba et al., Antiviral Research 19, 55-70 (1992).
  • the antiviral tests are carried out in 96-well microtiter plates.
  • the first vertical row of the plate receives only growth medium and HepG2.2.15 cells. It serves as virus control.
  • test compounds 50 mM
  • DMSO dimethyl methoxysulfoxide
  • test concentration 100 ⁇ M (1st test concentration) in each case into the second vertical test row of the microtiter plate and subsequently diluted in twofold steps 210 times in growth medium plus 2% by weight of fetal calf serum (volume 25 ⁇ l)
  • Each well of the microtiter plate then contains 225 ⁇ l of HepG2.2.15 cell suspension (5 ⁇ 104 cells/ml) in growth medium plus 2% by weight of fetal calf serum.
  • the test mixture is incubated at 37° C. and 5% CO2 (v/v) for 4 days.
  • the supernatant is then aspirated off and discarded, and the wells receive 225 ⁇ l of freshly prepared growth medium.
  • the compounds according to the invention are each added anew as 10-fold concentrated solution in a volume of 25 ⁇ l. The mixtures are incubated for a further 4 days
  • the HepG2.2.15 cells are examined under the light microscope or by means of biochemical detection methods (for example Alamar Blue stain or Trypan Blue stain) for cytotoxic changes
  • the supernatant and/or cells are then harvested and sucked by means of a vacuum onto 96-well dot-blot chambers covered with a nylon membrane (in accordance with the manufacturer's information).
  • Substance-induced cytotoxic or cytostatic changes in the HepG2.2.15 cells are detected, for example, under the light microscope as changes in cell morphology. Such substance-induced changes in the HepG2.2.15 cells compare with untreated cells are visible, for example, as cytolysis, vacuolation or altered cell morphology.
  • a 50% cytotoxicity (Tox.-50) means that 50% of the cells show a morphology comparable to the corresponding cell control.
  • the tolerability of some of the compounds according to the invention is additionally tested on other host cells such as, for example, HeLa cells, primary human peripheral blood cells or transformed cell lines such as H-9 cells.
  • the intra- or extracellular supernatants of the HepG2.2.15 cells are denatured (1.5 M NaCl/0.5 N NaOH), neutralized (3 M NaCl/0.5M Tris HCl, pH 7.5) and washed (2 ⁇ SSC).
  • the DNA is then baked onto the membrane by incubating the filters at 120° C. for 2-4 hours.
  • Detection of the viral DNA from the treated HepG2.2.15 cells on the nylon filters is usually carried out with nonradioactive, digoxigenin-labeled hepatitis B-specific DNA probes, each of which is labeled with digoxigenin, purified and employed for the hybridization in accordance with the manufacturer's information.
  • the prehybridization and hybridization take place in 5 ⁇ SSC, 1 ⁇ blocking reagent, 0.1% by weight N-lauroylsarcosine, 0.02% by weight SDS and 100 ⁇ g of herring sperm DNA.
  • the prehybridization takes place at 60° C. for 30 minutes, and the specific hybridization takes place with 20 to 40 ng/ml of the digoxigenized, denatured HBV-specific DNA (14 hours, 60° C.). The filters are then washed.
  • the filters were washed and prehybridized in a blocking reagent (in accordance with the manufacturer's information). Hybridization was then carried out with an anti-DIG antibody coupled to alkaline phosphatase for 30 minutes. After a washing step, the substrate of alkaline phosphatase, CSPD, was added, incubated with the filters for 5 minutes, then packed in plastic film and incubated at 37° C. for a further 15 minutes. The chemiluminescence of the hepatitis B-specific DNA signals was visualized by exposing the filters to an X-ray film (incubation depending on signal strength: 10 minutes to 2 hours).
  • the half-maximum inhibitory concentration (IC 50 , 50% inhibitory concentration) was determined as the concentration at which the intra- or extracellular hepatitis B-specific band was reduced by the compound according to the invention by 50% compared with an untreated sample.
  • the compound of the invention exhibits an effective antiviral effect with an IC 50 less than 1 nM. Therefore, the compound of the invention is suitable for use in treating the diseases induced by viruses, especially acute and chronic persistent HBV infections.
  • Chronic viral diseases induced by HBV can worsen the morbidity and the chronic hepatitis B virus infection can cause liver cirrhosis and/or hepatocellular carcinoma in many cases.
  • Areas of indication which may be mentioned for the compounds of the invention are, for example: the treatment of acute and chronic viral infections which may lead to infectious hepatitis, for example infections with heptatitis B viruses.
  • the compounds of the invention are particularly suitable for the treatment of chronic hepatitis B infections and the treatment of acute and chronic hepatitis B viral infections.
  • the present invention includes pharmaceutical preparations which, besides nontoxic, inert pharmaceutically suitable carriers, comprise one or more compounds (I) or (Ia) or a combination of the invention or which consist of one or more active ingredients (I) or (Ia) or of a combination of the invention.
  • the active ingredients (I) and (Ia) are intended to be present in the pharmaceutical preparations mentioned above in a concentration of about 0.1 to 99.5% by weight, preferably of about 0.5 to 95% by weight, of the complete mixture.
  • compositions mentioned above may also comprise other active pharmaceutical ingredients apart from the compounds (I) and (Ia).
  • the ratio of the amounts of the components A, B and, where appropriate, C in the compositions of the invention may vary within wide limits; it is preferably 5 to 500 mg of A/10 to 1000 mg of B, in particular 10 to 200 mg of A/20 to 400 mg of B.
  • Component C which is also to be used where appropriate, may be used in amounts of, preferably, 1 to 10 million, in particular 2 to 7 million, I.U. (international units), about three times a week over a period of up to one year.
  • the compounds or compositions of the invention are intended to be present in the pharmaceutical preparations mentioned above in general in a concentration of about 0.1 to 99.5, preferably about 0.5 to 95, % by weight of the complete mixture.
  • the pharmaceutical preparations mentioned above can be produced in a conventional way by known methods, for example by mixing the active ingredient(s) with the carrier(s).
  • a single dose contains the active ingredient(s) preferably in amounts of about 1 to about 80, in particular 1 to 30 mg/kg of body weight.
  • the dosages mentioned may be necessary to deviate from the dosages mentioned, in particular depending on the species and body weight of the subject to be treated, the nature and severity of the disorder, the type of preparation and mode of administration of the medicament, and the time or interval within which administration takes place.
  • the invention therefore relates further to the compounds and compositions defined above for controlling diseases.
  • the invention further relates to medicaments comprising at least one of the compounds or compositions defined above and, where appropriate, one or more other active pharmaceutical ingredient(s).
  • the invention further relates to the use of the compounds and compositions defined above for producing a medicament for the treatment and prophylaxis of the diseases described above, preferably of viral diseases, in particular of hepatitis B.
  • the percentage data in the following examples relate in each case to weight unless indicated otherwise.
  • the ratios of solvents in solvent mixtures are in each case based on volume.
  • the anti-HBV active compounds in the two examples are enantiomers having a relatively long retention time.
  • the treatment of the hepatitis B virus-producing HepG2.2.15 cells with the compounds of the invention can lead to a reduction in intra- and/or extracellular viral DNA.
  • the compounds disclosed herein exhibit an effective antiviral effect with the IC 50 less than 1 nM. Therefore, the compounds can be used for the treatment of a disease induced by viruses, especially acute and chronic persistent HBV infections according to the methods of the invention or any method known to a person skilled in the art.

Abstract

This invention relates to a bromo-phenyl substituted thiazolyl dihydropyrimidine, its preparation method and use as a medicament for treating and preventing hepatitis B infections. The invention also relates to a composition comprising the dihydropyrimidine, one or more antiviral agents and, optionally, an immunomodulator for treating and preventing HBV infections.

Description

PRIOR RELATED APPLICATIONS
This is a reissue application of U.S. patent application Ser. No. 13/550,601, now U.S. Pat. No. 8,343,969, which is a continuation application of a U.S. national stage application 12/664,392, issued as U.S. Pat. No. 8,236,797, which is a U.S. national stage application of the International Patent Application PCT/CN2008/001187, filed Jun. 18, 2008, which claims priority to Chinese Patent Application 200710119019.8, filed Jun. 18, 2007, both all of which are incorporated herein by reference in their entirety.
FIELD OF THE INVENTION
The invention relates to a new bromo-phenyl substituted thiazolyl dihydropyrimidine, its preparation method and use as a medicament especially for treating and preventing hepatitis B infections. The invention also relates to a composition comprising the dihydropyrimidine, other antiviral agent and, when appropriate, an immunomodulator and a medicament comprising the composition especially for treating and preventing HBV infections such as hepatitis B infections.
BACKGROUND OF THE INVENTION
The hepatitis B virus belongs to the family of hepadna viruses. It can cause acute and/or persistent or progressive chronic diseases. Many other clinical manifestations in the pathological state are also caused by the hepatitis B virus—in particular chronic inflammation of the liver, cirrhosis of the liver and hepatocellular carcinoma. In addition, coinfection with the heptatitis delta virus may have adverse effects on the progress of the disease.
The interferon and lamivudine are conventional medicaments approved to be used for treating chronic hepatitis. However, the interferon has just moderate activity but has an adverse side reaction. Although lamivudine has good activity, its resistance develops rapidly during the treatment and relapse effects often appear after the treatment is stopped. The IC50 value of lamivudine (3-TC) is 300 nM (Science, 299 (2003), 893-896).
U.S. Pat. No. 7,074,784 discloses 6-amidoalkyldihydropyrimidine and its use as a medicament especially for treating and preventing hepatitis B infection.
It is described in Example 12 of U.S. Pat. No. 7,074,784 that R1 is o-chlorine, R2 is p-chlorine, R6 is 3,5-difluoro-pyridin-2-yl, X is —CH2— and Z is morpholinyl. The compound can inhibit the growth of hepatitis B virus during cell culturing. The IC50 value is 2 nM (tested by themselves).
The main substitution in Example 12 is replacing bis-chlorine with R1 (o-bromine) and R2 (p-fluorine), which results in the IC50 of Compound 9 being 7 nM (described in Example 9 of the patent). And when the main substituents are changed into R1 (o-chlorine) and R2 (p-fluorine), an approximate IC50 value is also obtained (IC50=2-4 nM in Example 5).
It is indicated that the IC50 value cannot increase with the variation of the main substituents R1 and R2 (see Table 1).
U.S. Pat. No. 7,074,784 B2 also discloses an example, wherein a difluoro residue is substituted for thiazol-2-yl (described in Example 45 of the patent). The derivative has a similar IC50 value (2 nM) (see Table 1).
TABLE 1
Example 2 of U.S. Pat. No. 7,074,784 B2
Example R1 R2 R3 R6 IC50 (nM)
12 Cl Cl CH3
Figure USRE044987-20140701-C00001
2 (self-tested)
9 Br F CH3
Figure USRE044987-20140701-C00002
7
5 Cl F CH3
Figure USRE044987-20140701-C00003
2-4
45 Cl Cl CH3
Figure USRE044987-20140701-C00004
2
DETAILED DESCRIPTION OF THE INVENTION
We have surprisingly discovered that a derivative with an activity of 10 times higher and the IC50 value of less than 1 nM can be obtained by substituting with thiazol-2-yl and changing the main substituents into R1=o-bromine and R2=p-fluorine. This is unexpected when reading U.S. Pat. No. 7,074,784 (see Table 2).
Figure USRE044987-20140701-C00005
TABLE 2
Some Examples of this Invention
Example R1 R2 R3 R6 IC50 (nM)
6 Br F CH3
Figure USRE044987-20140701-C00006
0.3
5 Br F CH2CH3
Figure USRE044987-20140701-C00007
0.2
This invention relates to a compound having formula (I) and its isomer (Ia),
Figure USRE044987-20140701-C00008
wherein R1 is o-bromine, R2 is p-fluorine, R3 is C1-C4 alkyl, R6 is thiazol-2-yl, X is methylene and Z is morpholinyl.
Preferably, R1 of the compound of the invention having formula (I) and (Ia) is o-bromine, R2 is p-fluorine, R3 is methyl or ethyl, R6 is thiazol-2-yl, X is methylene and Z is morpholinyl.
This invention also relates to an enantiomer of the compound disclosed herein and a mixture thereof. The racemate can be separated by a known method, and fundamentally it is a homogeneous component in a stereoisomer mixture.
The compounds of the invention comprise an isomer having formula (I) and (Ia) and a mixture thereof.
The compound of the invention can also be in a form of a salt, preferably a physiologically acceptable salt.
The physiologically acceptable salt can be an inorganic acid salt or organic acid salt. Preferably it is an inorganic acid salt such as chloride, bromide, phosphate or sulfate, etc., or a carboxylate or a sulfonate, such as acetate, maleate, fumarate, malate, citrate, tartarate, lactate, benzoate or methanesulfonate, ethanesulfonate, benzenesulfonate, toluenesulfonate or naphthalenedisulfonate, etc.
The physiologically acceptable salt can also be a metal salt or an ammonium salt of the compound of the invention. In a preferred example, it is a sodium salt, potassium salt, magnesium salt or calcium salt, and an ammonium salt produced by ammonia or organic amine such as ethylamine, diethylamine or triethylamine, diethanolamine or triethanolamine, dicyclohexylamine, dimethylaminoethyl alcohol, arginine, lysine, ethylenediamine or 2-phenylethylamine, etc.
The compound (I) of the invention can be prepared by the following methods:
  • [A] firstly a benzaldehyde having formula (II) reacts with a β-ketoester having formula (III) with or without the addition of an alkali or an acid, and, when appropriate, in the presence of an inert organic solvent to produce a benzylidene compound having formula (IV):
Figure USRE044987-20140701-C00009

wherein R1, R2, R3, X and Z are as defined herein, and then the benzylidene compound reacts with an amidine having formula (V) or a salt thereof (such as hydrochloride or acetate) with or without the addition of an alkali or an acid, and, when appropriate, in the presence of an inert organic solvent:
Figure USRE044987-20140701-C00010

wherein R6 is as defined herein; or
  • [B] the β-ketoester having formula (III) reacts with the benzaldehyde having formula (II) and the amidine having formula (V) or a salt thereof (such as hydrochloride or acetate) with or without the addition of an alkali or an acid, and, when appropriate, in the presence of an inert organic solvent in one step; or
  • [C] if X in formula (I) is methylene, a compound having formula (VI) reacts with morpholine having formula (VII) with or without the addition of an alkali, and, when appropriate, in the presence of an inert organic solvent,
Figure USRE044987-20140701-C00011

wherein R1, R2, R3 and R6 are as defined herein and Y is a nucleophilic substituent, such as chloro, bromo, iodo, methylsulfonyl or toluenesulfonyl; or
  • [D] the benzaldehyde having formula (II) reacts with a compound having formula (X) and the amidine having formula (V) with or without the addition of an alkali and, when appropriate, in an inert organic solvent,
Figure USRE044987-20140701-C00012

wherein R3, X and Z are as defined herein.
Compound of formula (VI) can be prepared by, for example, reacting a compound having formula (VIII)
Figure USRE044987-20140701-C00013

wherein R1, R2, R3 and R6 are as defined herein, with a brominating agent such as N-bromosuccinimide, preferably in an inert organic solution, to produce a compound having formula (IX):
Figure USRE044987-20140701-C00014

and reacting the compound having a nucleophilic substituent, directly or after the compound being further converted according to a conventional method as described in a literature, with the morpholine having formula (VII).
In order to prepare the compound of the invention having formula (I), wherein X is methylene and Z is morpholinyl, a chloroacetate having formula (XI) reacts with morpholine (VII) to produce the β-keto carboxylate of formula (III),
Figure USRE044987-20140701-C00015

wherein R3 is as defined herein.
As a starting material, 2-bromo-4-fluoro-benzaldehyde (II) is commercially available.
As a starting material, β-keto carboxylate (III) is well-known, or can be prepared by known methods published in the literature [for example, D. Baumann, “Umsetzung von Diketen mit Alkoholen, Phenolen und Mercaptanen”, in “Methoden der organischen Chemie” (Houben-Weyl), vol. VII/4, 230 ff (1968); Y. Oikawa, K. Sugano und O. Yonemitsu, J. Org. Chem. 43, 2087 (1978)].
The compound (V) is known and can be prepared according to the descriptions of WO-A-99/54326 and WO-A-99/54329.
Morpholine (VII) is commercially available.
Compounds (VIII) and (X) can be prepared according to step [A] or [B] described in WO-A-99/54326.
All inert organic solvents are suitable for use in steps A, B, C and D. The inert organic solvent is preferably an alcohol such as methanol, ethanol and isopropyl alcohol, an ether such as dioxane, diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, a carboxylic acid such as acetic acid, dimethylformamide, dimethyl sulfoxide, acetonitrile, pyridine or hexamethyl phosphoric triamide.
The reaction temperature can be varied within quite a wide range. Usually the temperature is between 20° C. and 150° C. Preferably, the temperature is the boiling temperature of the selected solvent.
The reaction can be carried out under the atmospheric pressure or under a high pressure. It is usually carried out under the atmospheric pressure.
The reaction can be carried out with or without an acid or alkali. It is preferable to carry out the reaction in the presence of a weak acid such as acetic acid, formic acid or the like.
An embodiment of the invention relates to a composition comprising A) at least one of the above dihydropyrimidines and B) at least one of other antiviral agents different from A).
A certain embodiment of the invention relates to a composition comprising A) the above dihydropyrimidine, B) an HBV polymerase inhibitor and, when appropriate, C) an immunomodulator.
Preferably the immunomodulator C) is selected from, for example, all the interferons such as α-interferon, β-interferon and γ-interferon, especially α-2a-interferon and α-2b-interferon, an interleukin such as interleukin-2, a polypeptide such as thymosin-α-1 and a thymoctonan, an imidazoquinoline derivative such as levamisole, an immunoglobulin and a therapeutic vaccine.
Thereby, this invention also relates to a composition for treating and preventing HBV infections and its use for treating diseases induced by HBV.
The use of the combinations of the invention provides valuable advantages for the treatment of HBV-induced diseases compared with monotherapy with the individual compounds, namely principally a synergistic antiviral activity, but also good tolerability of the combinations of the invention in Tox-50 (the range of toxicity at which 50% of the cells survive).
The substances referred to as HBV polymerase inhibitors B for the purposes of the invention are those which, in the endogenous polymerase assay which was published by Ph. A. Furman et al. in Antimicrobial Agents and Chemotherapy, Vol. 36 (No. 12), 2688 (1992) and which is described hereinafter, lead to an inhibition of the formation of an HBV DNA double strand, so as to result in a maximum of 50% of the activity of the zero value.
HBV polymerase inhibitors B for use in the invention are the substances disclosed in the endogenous polymerase experiment published in “Antimicrobial Agents and Chemotherapy” Vol. 36 (No. 12), 2688 (1992) by Ph. A. Furman, and the substances described below for inhibiting the formation of double-stranded HBV DNA thereby resulting in the maximum 50% activity value to be zero.
HBV virions from culture supernatants incorporate nucleoside 5′-triphosphates into the plus strand of the HBV DNA in vitro. By using agarose gel electrophoresis, the incorporation of [α-32P]-deoxynucleoside 5′-triphosphate into the viral 3.2 kb DNA product is observed in the presence and absence of a substance potentially having HBV polymerase-inhibiting properties. HBV virions are obtained from the cell culture supernatant of HepG2.2.15 cells by precipitation with polyethyleneglycol and are concentrated. One part by volume of clarified cell culture supernatant is mixed with ¼ by volume of an aqueous solution containing 50% by weight polyethylene glycol 8000 and 0.6 M sodium chloride. The virions are sedimented by centrifugation at 2500×g/15 minutes. The sediments are resuspended in 2 ml of buffer containing 0.05 M tris-HCl (pH 7.5) and dialyzed against the same buffer containing 100 mM potassium chloride. The samples can be frozen at −80° C. Each reaction mixture (100 μl) contains at least 105 HBV virions; 50 mM tris-HCl (pH 7.5); 300 mM potassium chloride; 50 mM magnesium chloride; 0.1% Nonident® P-40 (nonionic detergent from Boehringer Mannheim); 10 μM dATP, 10 μM dGTP, 10 μM dTTP; 10 μCi [32P]dCTP (3000 Ci/mmol; final concentration 33 nM) and 1 μM of the potential polymerase inhibitor in its triphosphorylated form. The samples are incubated at 37° C. for one hour and then the reaction is stopped by adding 50 mM EDTA. A 10% weight/volume SDS solution (containing 10 g of SDS per 90 ml of water) is added to a final concentration of 1% by volume (based on the total volume), and proteinase K is added to a final concentration of 1 mg/ml. After incubation at 37° C. for one hour, samples are extracted with the same volume of phenol/chloroform/isoamyl alcohol (ratio 25:24:1 by volume), and the DNA is precipitated from the aqueous phase with ethanol. The DNA pellet is resuspended in 10 μl of gel buffer (solution of 10.8 g of tris, 5.5 g of boric acid and 0.75 g of EDTA in 1 liter of water (=TBE buffer)) and separated by electrophoresis in an agarose gel. Either the gel is dried or the nucleic acids present therein transferred by the Southern transfer technique to a membrane. The amount of labeled DNA double strand formed is then determined in relation to the negative control (=endo-pol reaction without substance or with inactive control substance). An HBV polymerase inhibitor is present if a maximum of 50% of the activity of the negative control is present.
Preferred HBV polymerase inhibitors B) comprise, for example, 3TC=lamivudine=4-amino-1-[(2R-cis)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl-]-pyrimidin-2(1H)-one, cf. EP-B 382 526 (=U.S. Pat. No. 5,047,407) and WO 91/11186 (=U.S. Pat. No. 5,204,466); Adefovir dipivoxil=9-{2-[[bis[(pivaloyloxy)-methoxy]-phosphinyl]-methoxy]-ethyl}-a-denine, cf. EP-B 481 214 (=U.S. Pat. Nos. 5,663,159 and 5,792,756), U.S. Pat. Nos. 4,724,233 and 4,808,716; BMS 200475=[1S-(1-α,3-α,4-β)]-2-amino-1,9-dihydro-9-[4-hydroxy-3-(hydroxymethyl)-2-methylene-cyclopentyl]-6H-purin-6-one, cf. EP-B 481 754 (=U.S. Pat. Nos. 5,206,244 and 5,340,816), WO 98/09964 and 99/41275; Abacavir=(−)-(1S-cis)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol, cf. EP-B 349 242 (=U.S. Pat. No. 5,049,671) and EP-B 434 450 (=U.S. Pat. No. 5,034,394); FTC=(2R-cis)-4-amino-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-pyrimidin-2(1H)-one, cf. WO 92/14743 (=U.S. Pat. Nos. 5,204,466, 5,210,085, 5,539,116, 5,700,937, 5,728,575, 5,814,639, 5,827,727, 5,852,027, 5,892,025, 5,914,331, 5,914,400) and WO 92/18517; β-L-FDDC=5-(6-amino-2-fluoro-9H-purin-9-yl)-tetrahydro-2-furanmethanol, cf. WO 94/27616 (=U.S. Pat. Nos. 5,627,160, 5,561,120, 5,631,239 and 5,830,881); L-FMAU=1-(2-deoxy-2-fluoro-β-L-arabinofuranosyl)-5-methyl-pyrimidine-2,4(1H,3H)-dione, cf. WO 99/05157, WO 99/05158 and U.S. Pat. No. 5,753,789.
A further preferred embodiment of the invention relates to a composition comprising A) the above dihydropyrimidines having formula (I) and (Ia); and B) lamivudine.
Other preferred HBV antiviral agents B comprise, for example, phenylpropenamides of the following formula:
Figure USRE044987-20140701-C00016

wherein R1 and R2 are, each independently, C1-4 alkyl or, together with the nitrogen atom on which they are located, form a ring having 5 to 6 ring atoms which comprise carbon and/or oxygen; R3 to R12 are each independently hydrogen, halogen, C1-4 alkyl, optionally substituted C1-4 alkoxy, nitro, cyano or trifluoromethyl; and R13 is hydrogen, C1-4 alkyl, C1-7 acyl or aralkyl and X is halogen or optionally substituted C1-4 alkyl.
The phenylpropenamides and their preparation methods are disclosed in WO 98/33501, and are mentioned here for publication. AT-61 is the compound
Figure USRE044987-20140701-C00017
Preferred immunomodulators C) comprise, for example, all interferons such as α-, β- and γ-interferons, in particular also α-2a- and α-2b-interferons, interleukins such as interleukin-2, polypeptides such asthymosin-α-1 and thymoctonan, imidazoquinoline derivatives such as Levamisole®, immunoglobulins and therapeutic vaccines.
A further preferred embodiment of the invention relates to combinations of A) above dihydropyrimidines (I) and (Ia), B) lamivudine and, where appropriate, C) an interferon.
Description of Tests
The antiviral action of the compounds of the invention on hepatitis B virus is investigated by methods based on those described by M. A. Sells et al., Proc. Natl. Acad. Sci., 84, 1005-1009 (1987) and B. E. Korba et al., Antiviral Research 19, 55-70 (1992).
The antiviral tests are carried out in 96-well microtiter plates. The first vertical row of the plate receives only growth medium and HepG2.2.15 cells. It serves as virus control.
Stock solutions of the test compounds (50 mM) are initially dissolved in DMSO, and further dilutions are prepared in the HepG2.2.15 growth medium. The compounds according to the invention are usually pipetted in a test concentration of 100 μM (1st test concentration) in each case into the second vertical test row of the microtiter plate and subsequently diluted in twofold steps 210 times in growth medium plus 2% by weight of fetal calf serum (volume 25 μl)
Each well of the microtiter plate then contains 225 μl of HepG2.2.15 cell suspension (5×104 cells/ml) in growth medium plus 2% by weight of fetal calf serum. The test mixture is incubated at 37° C. and 5% CO2 (v/v) for 4 days.
The supernatant is then aspirated off and discarded, and the wells receive 225 μl of freshly prepared growth medium. The compounds according to the invention are each added anew as 10-fold concentrated solution in a volume of 25 μl. The mixtures are incubated for a further 4 days
Before harvesting the supernatants to determine the anti-viral effect, the HepG2.2.15 cells are examined under the light microscope or by means of biochemical detection methods (for example Alamar Blue stain or Trypan Blue stain) for cytotoxic changes
The supernatant and/or cells are then harvested and sucked by means of a vacuum onto 96-well dot-blot chambers covered with a nylon membrane (in accordance with the manufacturer's information).
Cytotoxicity Determination
Substance-induced cytotoxic or cytostatic changes in the HepG2.2.15 cells are detected, for example, under the light microscope as changes in cell morphology. Such substance-induced changes in the HepG2.2.15 cells compare with untreated cells are visible, for example, as cytolysis, vacuolation or altered cell morphology. A 50% cytotoxicity (Tox.-50) means that 50% of the cells show a morphology comparable to the corresponding cell control.
The tolerability of some of the compounds according to the invention is additionally tested on other host cells such as, for example, HeLa cells, primary human peripheral blood cells or transformed cell lines such as H-9 cells.
No cytotoxic changes are detectable at concentrations >10 μM of the compounds of the invention.
Determination of the Antiviral Action
After the supernatants or lysed cells is transferred to the nylon membrane of the blot apparatus (see above), the intra- or extracellular supernatants of the HepG2.2.15 cells are denatured (1.5 M NaCl/0.5 N NaOH), neutralized (3 M NaCl/0.5M Tris HCl, pH 7.5) and washed (2×SSC). The DNA is then baked onto the membrane by incubating the filters at 120° C. for 2-4 hours.
DNA Hybridization
Detection of the viral DNA from the treated HepG2.2.15 cells on the nylon filters is usually carried out with nonradioactive, digoxigenin-labeled hepatitis B-specific DNA probes, each of which is labeled with digoxigenin, purified and employed for the hybridization in accordance with the manufacturer's information.
The prehybridization and hybridization take place in 5×SSC, 1×blocking reagent, 0.1% by weight N-lauroylsarcosine, 0.02% by weight SDS and 100 μg of herring sperm DNA. The prehybridization takes place at 60° C. for 30 minutes, and the specific hybridization takes place with 20 to 40 ng/ml of the digoxigenized, denatured HBV-specific DNA (14 hours, 60° C.). The filters are then washed.
Detection of HBV-DNA by Digoxigenin Antibodies
The immunological detection of the digoxigenin-labeled DNA took place in accordance with the manufacturer's information:
The filters were washed and prehybridized in a blocking reagent (in accordance with the manufacturer's information). Hybridization was then carried out with an anti-DIG antibody coupled to alkaline phosphatase for 30 minutes. After a washing step, the substrate of alkaline phosphatase, CSPD, was added, incubated with the filters for 5 minutes, then packed in plastic film and incubated at 37° C. for a further 15 minutes. The chemiluminescence of the hepatitis B-specific DNA signals was visualized by exposing the filters to an X-ray film (incubation depending on signal strength: 10 minutes to 2 hours).
The half-maximum inhibitory concentration (IC50, 50% inhibitory concentration) was determined as the concentration at which the intra- or extracellular hepatitis B-specific band was reduced by the compound according to the invention by 50% compared with an untreated sample.
It is unexpected that the compound of the invention exhibits an effective antiviral effect with an IC50 less than 1 nM. Therefore, the compound of the invention is suitable for use in treating the diseases induced by viruses, especially acute and chronic persistent HBV infections. Chronic viral diseases induced by HBV can worsen the morbidity and the chronic hepatitis B virus infection can cause liver cirrhosis and/or hepatocellular carcinoma in many cases.
Areas of indication which may be mentioned for the compounds of the invention are, for example: the treatment of acute and chronic viral infections which may lead to infectious hepatitis, for example infections with heptatitis B viruses. The compounds of the invention are particularly suitable for the treatment of chronic hepatitis B infections and the treatment of acute and chronic hepatitis B viral infections.
The present invention includes pharmaceutical preparations which, besides nontoxic, inert pharmaceutically suitable carriers, comprise one or more compounds (I) or (Ia) or a combination of the invention or which consist of one or more active ingredients (I) or (Ia) or of a combination of the invention.
The active ingredients (I) and (Ia) are intended to be present in the pharmaceutical preparations mentioned above in a concentration of about 0.1 to 99.5% by weight, preferably of about 0.5 to 95% by weight, of the complete mixture.
The pharmaceutical preparations mentioned above may also comprise other active pharmaceutical ingredients apart from the compounds (I) and (Ia).
The ratio of the amounts of the components A, B and, where appropriate, C in the compositions of the invention may vary within wide limits; it is preferably 5 to 500 mg of A/10 to 1000 mg of B, in particular 10 to 200 mg of A/20 to 400 mg of B.
Component C, which is also to be used where appropriate, may be used in amounts of, preferably, 1 to 10 million, in particular 2 to 7 million, I.U. (international units), about three times a week over a period of up to one year.
The compounds or compositions of the invention are intended to be present in the pharmaceutical preparations mentioned above in general in a concentration of about 0.1 to 99.5, preferably about 0.5 to 95, % by weight of the complete mixture.
The pharmaceutical preparations mentioned above can be produced in a conventional way by known methods, for example by mixing the active ingredient(s) with the carrier(s).
It has generally proved to be advantageous both in human and in veterinary medicine to administer the active ingredient (s) in total amounts of about 0.5 to about 500, preferably of 1 to 100 mg/kg of body weight every 24 hours, where appropriate in the form of a plurality of single doses, to achieve the desired results. A single dose contains the active ingredient(s) preferably in amounts of about 1 to about 80, in particular 1 to 30 mg/kg of body weight. However, it may be necessary to deviate from the dosages mentioned, in particular depending on the species and body weight of the subject to be treated, the nature and severity of the disorder, the type of preparation and mode of administration of the medicament, and the time or interval within which administration takes place.
The invention therefore relates further to the compounds and compositions defined above for controlling diseases.
The invention further relates to medicaments comprising at least one of the compounds or compositions defined above and, where appropriate, one or more other active pharmaceutical ingredient(s).
The invention further relates to the use of the compounds and compositions defined above for producing a medicament for the treatment and prophylaxis of the diseases described above, preferably of viral diseases, in particular of hepatitis B.
The percentage data in the following examples relate in each case to weight unless indicated otherwise. The ratios of solvents in solvent mixtures are in each case based on volume.
EXAMPLES A. Preparation of Intermediates
Intermediate 1
Ethyl 4-(2-bromo-4-fluorophenyl)-2-(thiazol-2-yl)-6-methyl-1,4-dihydropyrimidine-5-carboxylic ester
Figure USRE044987-20140701-C00018
A mixture of 10.0 g (49.3 mmol) of 2-bromo-4-fluorobenzaldehyde, 6.4 g (49.3 mmol) of ethyl acetoacetate, 8.1 g (49.3 mmol) of 2-amidino-thiazole hydrochloride and 4.8 g (58.5 mmol) of sodium acetate was dissolved or suspended in 400 ml of ethanol and then boiled and refluxed for 16 hours. The solution obtained was cooled to room temperature and filtered. The residue was washed with water to remove inorganic salts. The product of 10.8 g (51.6%) was obtained. Melting point: 163-165° C.
Intermediate 2
Methyl 4-(2-bromo-4-fluorophenyl)-2-(thiazol-2-yl)-6-methyl-1,4-dihydropyrimidine-5-carboxylic ester
Intermediate 2 was synthesized from methyl acetoacetate by a method similar to that for Intermediate 1. Yield: 53% (melting point: 155-157° C.).
Intermediate 3
Ethyl 6-bromomethyl-4-(2-bromo-4-fluorophenyl)-2-(thiazol-2-yl)-1,4-dihydropyrimidine-5-carboxylic ester
Figure USRE044987-20140701-C00019
5.0 g (11.8 mmol) of Intermediate 1 was added into 100 ml of carbon tetrachloride and was heated to 50° C. in an atmosphere of the argon gas to obtain a clear solution. At this temperature, 2.33 g (13.0 mmol) of N-bromosuccinimide was added into the solution and mixed at the temperature for 10 minutes. The solution obtained was then cooled immediately and filtered at room temperature, and decompressed for concentration. The product obtained has a purity of higher than 90% according to the test result of HPLC, and was used as a raw material in the next step. Rf=0.69 (the ratio of petroleum ether to ethyl acetate is 8:2).
Intermediate 4
Methyl 6-bromomethyl-4-(2-bromo-4-fluorophenyl)-2-(thiazol-2-yl)-1,4-dihydropyrimidine-5-carboxylic ester
Intermediate 4 was synthesized from Intermediate 2 by a method similar to that for the preparation of Intermediate 3. Rf=0.69 (the ratio of petroleum ether to ethyl acetate is 8:2).
B. Preparations of Examples Example 5 Ethyl 4-(2-bromo-4-fluorophenyl)-2-(thiazol-2-yl)-6-(4-morpholinylmethy)-1,4-dihydropyrimidine-5-carboxylic ester
Figure USRE044987-20140701-C00020
2.0 g of Intermediate 3; was added into 15 ml of methanol to form a solution. The solution was mixed with 5 times of morpholine and stirred for 30 minutes at room temperature. The solution obtained was then diluted with water and extracted with ethyl acetate. Yield: 1.7 g. Melting point: 161-163° C. Rf=0.45 (the ratio of petroleum ether to ethyl acetate is 8:2)
Example 6 Methyl 4-(2-bromo-4-fluorophenyl)-2-(thiazol-2-yl)-6-(4-morpholinylmethy)-1,4-dihydropyrimidine-5-carboxylic ester
Figure USRE044987-20140701-C00021
Example 6 was synthesized from Intermediate 4 by a method similar to that for the preparation of Example 5. Melting point: 173-175° C. Rf=0.43 (the ratio of petroleum ether to ethyl acetate is 8:2).
The enantiomers prepared in Example 5 and Example 6 were separated on a chiral column (Daicel Chiralpak AS-H, mobile phase: n-hexane/ethanol=99/1).
The anti-HBV active compounds in the two examples are enantiomers having a relatively long retention time.
The activity data of the compounds of the invention are listed below:
Example No. IC50 (nM)
5 0.2
(−)-5 0.1
6 0.3
(−)-6 0.2
The treatment of the hepatitis B virus-producing HepG2.2.15 cells with the compounds of the invention can lead to a reduction in intra- and/or extracellular viral DNA.
INDUSTRIAL APPLICABILITY
The examples disclosed herein show that the compounds disclosed herein exhibit an effective antiviral effect with the IC50 less than 1 nM. Therefore, the compounds can be used for the treatment of a disease induced by viruses, especially acute and chronic persistent HBV infections according to the methods of the invention or any method known to a person skilled in the art.

Claims (18)

The invention claimed is:
1. A methanesulfonate salt of a compound having the following structure, or an enantiomer, a levo isomer or a tautomer thereof:
Figure USRE044987-20140701-C00022
2. A method of preparing the methanesulfonate salt of claim 1, wherein the method is characterized by:
(a) reacting a benzaldehyde having formula (II) with a β-ketoester having formula (III) to produce a benzylidene compound having formula (IV):
Figure USRE044987-20140701-C00023
and
(b) reacting the benzylidene compound having formula (IV) with a salt of an amidine having formula (V):
Figure USRE044987-20140701-C00024
wherein R1 is o-bromine, R2 is p-fluorine, R3 is ethyl, R6 is thiazolyl-2-yl, X is methylene, and Z is morpholinyl, and wherein the salt is methanesulfonate.
3. A method of preparing the methanesulfonate salt of claim 1, wherein the method is characterized by reacting a compound having formula (III) with an aldehyde having formula (II) and a salt of an amidine having formula (V),
Figure USRE044987-20140701-C00025
wherein R1 is o-bromine, R2 is p-fluorine, R3 is ethyl, R6 is thiazolyl-2-yl, X is methylene, and Z is morpholinyl, and wherein the salt is methanesulfonate.
4. A method of preparing the methanesulfonate salt of claim 1, wherein the method is characterized by reacting the compound having formula (VI) with a salt of morpholine (VII):
Figure USRE044987-20140701-C00026
wherein Y is a nucleophilic substituent, and R1 is o-bromine, R2 is p-fluorine, R3 is ethyl, and R6 is thiazolyl-2-yl, and wherein the salt is methanesulfonate.
5. A method of preparing the methanesulfonate salt of claim 1, which is characterized by the step of reacting a compound having formula (II) with an aldehyde having formula (X) and a salt of an amidine having formula (V):
Figure USRE044987-20140701-C00027
wherein R1 is o-bromine, R2 is p-fluorine, R3 is ethyl, R6 is thiazolyl-2-yl, X is methylene, and Z is morpholinyl, and wherein the salt is methanesulfonate salt.
6. A pharmaceutical composition comprising:
A) the methanesulfonate salt of claim 1;
B) at least an HBV antiviral agent; and, when appropriate,
C) at least an immunomodulator or an interferon.
7. The pharmaceutical composition of claim 6, wherein the component B is an HBV polymerase inhibitor, lamivudine or a phenylpropenamide compound having the following formula:
Figure USRE044987-20140701-C00028
or a salt thereof, wherein
each of R1 and R2 is independently C1-4 alkyl or, together with the nitrogen atom on which they are located, form a ring having 5 to 6 ring atoms which comprise carbon and/or oxygen; and
each of R3 to R12 is independently hydrogen, halogen, C1-C4-alkyl, optionally substituted C1-C4-alkoxy, nitro, cyano or trifluoromethyl; and
X is halogen or optionally substituted C1-4alkyl.
8. The pharmaceutical composition of claim 7, wherein the component B is the phenylpropenamide compound having the following structure:
Figure USRE044987-20140701-C00029
9. A pharmaceutical composition comprising the methane-sulfonate salt of claim 1, and, when appropriate, a pharmaceutically acceptable carrier.
10. A medicament comprising at least one pharmaceutical composition of claim 6, and, when appropriate, one or more active pharmaceutical agents.
11. A method for treating hepatitis B infection or a disease caused by hepatitis B infection, which comprises administering the methanesulfonate salt of claim 1 to a patient having the disease.
12. The method of claim 11, wherein the method is for treating the disease caused by hepatitis B infection selected from hepatitis, cirrhosis or hepatocellular carcinoma.
13. A method for treating hepatitis B infection or a disease caused by hepatitis B infection, which comprises administering the pharmaceutical composition of claim 6 to a patient having the disease.
14. A method for treating hepatitis B infection or a disease caused by hepatitis B infection, which comprises administering the pharmaceutical composition of claim 7 to a patient having the disease.
15. A method for treating hepatitis B infection or a disease caused by hepatitis B infection, which comprises administering the pharmaceutical composition of claim 8 to a patient having the disease.
16. The method of claim 13, wherein the method is for treating the disease caused by hepatitis B infection selected from hepatitis, cirrhosis or hepatocellular carcinoma.
17. The method of claim 14, wherein the method is for treating the disease caused by hepatitis B infection selected from hepatitis, cirrhosis or hepatocellular carcinoma.
18. The method of claim 15, wherein the method is for treating the disease caused by hepatitis B infection selected from hepatitis, cirrhosis or hepatocellular carcinoma.
US13/869,981 2007-06-18 2013-04-25 Bromo-phenyl substituted thiazolyl dihydropyrimidines Active USRE44987E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/869,981 USRE44987E1 (en) 2007-06-18 2013-04-25 Bromo-phenyl substituted thiazolyl dihydropyrimidines

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN200710119019 2007-06-18
CN200710119019 2007-06-18
PCT/CN2008/001187 WO2008154817A1 (en) 2007-06-18 2008-06-18 Bromo-phenyl substituted thiazolyl dihydropyrimidines
US13/550,601 US8343969B2 (en) 2007-06-18 2012-07-17 Bromo-phenyl substituted thiazolyl dihydropyrimidines
US13/869,981 USRE44987E1 (en) 2007-06-18 2013-04-25 Bromo-phenyl substituted thiazolyl dihydropyrimidines

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/550,601 Reissue US8343969B2 (en) 2007-06-18 2012-07-17 Bromo-phenyl substituted thiazolyl dihydropyrimidines

Publications (1)

Publication Number Publication Date
USRE44987E1 true USRE44987E1 (en) 2014-07-01

Family

ID=40155886

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/869,947 Active 2028-12-24 USRE45004E1 (en) 2007-06-18 2008-06-18 Bromo-phenyl substituted thiazolyl dihydropyrimidines
US12/664,392 Ceased US8236797B2 (en) 2007-06-18 2008-06-18 Bromo-phenyl substituted thiazolyl dihydropyrimidines
US13/550,601 Ceased US8343969B2 (en) 2007-06-18 2012-07-17 Bromo-phenyl substituted thiazolyl dihydropyrimidines
US13/869,981 Active USRE44987E1 (en) 2007-06-18 2013-04-25 Bromo-phenyl substituted thiazolyl dihydropyrimidines

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/869,947 Active 2028-12-24 USRE45004E1 (en) 2007-06-18 2008-06-18 Bromo-phenyl substituted thiazolyl dihydropyrimidines
US12/664,392 Ceased US8236797B2 (en) 2007-06-18 2008-06-18 Bromo-phenyl substituted thiazolyl dihydropyrimidines
US13/550,601 Ceased US8343969B2 (en) 2007-06-18 2012-07-17 Bromo-phenyl substituted thiazolyl dihydropyrimidines

Country Status (15)

Country Link
US (4) USRE45004E1 (en)
EP (2) EP2159224B1 (en)
JP (2) JP5361879B2 (en)
KR (1) KR101173892B1 (en)
CN (2) CN101328171A (en)
AU (1) AU2008265397C1 (en)
BR (1) BRPI0813237B8 (en)
CA (1) CA2691056C (en)
DK (2) DK2159224T3 (en)
ES (2) ES2442907T3 (en)
HK (1) HK1174035A1 (en)
PL (2) PL2514750T3 (en)
PT (2) PT2159224E (en)
RU (1) RU2443703C2 (en)
WO (1) WO2008154817A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340538B2 (en) 2012-08-24 2016-05-17 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
US9403814B2 (en) 2012-09-27 2016-08-02 Sunshine Lake Pharma Co., Ltd. Crystalline forms of dihydropyrimidine derivatives
US9498479B2 (en) 2013-11-19 2016-11-22 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
US9573941B2 (en) 2013-11-27 2017-02-21 Sunshine Lake Pharma Co., Ltd. Processes for preparing dihydropyrimidine derivatives and intermediates thereof
US9771358B2 (en) 2014-03-28 2017-09-26 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
US10098889B2 (en) 2015-02-07 2018-10-16 Sunshine Lake Pharma Co., Ltd. Complexes and salts of dihydropyrimidine derivatives and their application in pharmaceuticals

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328171A (en) * 2007-06-18 2008-12-24 张中能 Bromophenyl-substituted thiazole dihydropyrimidine
CN101744823B (en) * 2008-12-17 2013-06-19 广东东阳光药业有限公司 Solid dispersion of dihydropyrimidine compounds and preparation thereof for medical purpose
WO2010069147A1 (en) * 2008-12-17 2010-06-24 张中能 Dihydropyrimidine derivatives, compositions thereof and their use
CN101575318B (en) 2009-06-25 2012-02-08 中国人民解放军军事医学科学院毒物药物研究所 Novel dihydropyridine compound and application thereof on preparing drugs for curing and/or preventing virus diseases
US9233933B2 (en) 2012-01-06 2016-01-12 Janssen Sciences Ireland Uc 4,4-disubstituted-1,4-dihydropyrimidines and the use thereof as medicaments for the treatment of hepatitis B
US20130267517A1 (en) 2012-03-31 2013-10-10 Hoffmann-La Roche Inc. Novel 4-methyl-dihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
CN103664897B (en) * 2012-09-01 2018-04-03 广东东阳光药业有限公司 Dihydropyrimidines and its application in medicine
CN103664925B (en) * 2012-09-07 2018-01-23 广东东阳光药业有限公司 The Dihydropyrimidines of heteroaryl substitution and its application in medicine
KR20150054795A (en) * 2012-09-10 2015-05-20 에프. 호프만-라 로슈 아게 6-amino acid heteroaryldihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
CN103664899B (en) * 2012-09-11 2017-06-16 广东东阳光药业有限公司 The Dihydropyrimidines of heteroaryl substitution and its application in medicine
KR20150133792A (en) * 2013-03-20 2015-11-30 인디애나 유니버시티 리서치 앤드 테크놀로지 코포레이션 Fluorescent-hap: a diagnostic stain for hbv cores in cells
EP3139954A4 (en) * 2014-05-09 2018-02-28 Indiana University Research and Technology Corporation Methods and compositions for treating hepatitis b virus infections
WO2017076791A1 (en) 2015-11-03 2017-05-11 F. Hoffmann-La Roche Ag Combination therapy of an hbv capsid assembly inhibitor and an interferon
JP2019526562A (en) 2016-08-24 2019-09-19 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Combination therapy of HBV capsid assembly inhibitor and nucleoside (Thi) analogue
SI3587420T1 (en) 2017-02-23 2021-09-30 Fujian Cosunter Pharmaceutical Co., Ltd. Tri-cycle compound and applications thereof
WO2018181883A1 (en) 2017-03-31 2018-10-04 富士フイルム株式会社 4-pyridone compound or salt thereof, and pharmaceutical composition and formulation including same
CN110809574A (en) 2017-06-27 2020-02-18 詹森药业有限公司 Heteroaryl dihydropyrimidine derivatives and methods for treating hepatitis b infection
CN107501257B (en) * 2017-08-17 2020-05-29 山东大学 Dihydropyrimidine-triazole derivative and preparation method and application thereof
AU2019272481B2 (en) 2018-05-25 2024-03-21 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. 2,3-dihydro-1H-pyrrolizine-7-formamide derivative and application thereof
US11053235B2 (en) 2018-08-09 2021-07-06 Janssen Sciences Ireland Unlimited Company Substituted 1,4-dihydropyrimidines for the treatment of HBV infection or HBV-induced diseases
EP3854797B1 (en) 2018-08-23 2023-03-15 Fujian Akeylink Biotechnology Co., Ltd. Crystal form of tri-cycle compound and application thereof
WO2020255016A1 (en) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combination of hepatitis b virus (hbv) vaccines and dihydropyrimidine derivatives as capsid assembly modulators
US20230026869A1 (en) 2019-11-22 2023-01-26 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Crystal form of nucleoprotein inhibitor and use thereof
WO2022166923A1 (en) 2021-02-05 2022-08-11 和博医药有限公司 Phenyldihydropyrimidine compound and use thereof
CN117136187A (en) * 2021-06-24 2023-11-28 上海齐鲁制药研究中心有限公司 Novel anti-hepatitis B compound

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822798A (en) 1982-09-18 1989-04-18 Bayer Aktiengesellschaft Circulation-active 4-phenyl-6-substituted dihydropyrimidines
WO2000058302A1 (en) 1999-03-25 2000-10-05 Bayer Aktiengesellschaft Dihydropyrimidines and their use in the treatment of hepatitis b
WO2001045712A1 (en) 1999-12-22 2001-06-28 Bayer Aktiengesellschaft Combinations of medicaments for treating viral diseases
WO2001068642A1 (en) 2000-03-16 2001-09-20 Bayer Aktiengesellschaft Dihydropyrimidines and the use thereof as medicaments for the treatment of hepatitis b
WO2001068639A1 (en) 2000-03-17 2001-09-20 Bayer Aktiengesellschaft Dihydropyrimidine-5-carboxylic acid esters and use thereof as medicaments against viral diseases
WO2001068647A1 (en) 2000-03-15 2001-09-20 Bayer Aktiengesellschaft Medicaments against viral diseases
WO2001068641A1 (en) 2000-03-17 2001-09-20 Bayer Aktiengesellschaft 6-aminoalkyl-dihydropyrimidines and the use thereof as medicaments against viral diseases
US6436943B1 (en) 1998-04-18 2002-08-20 Bayer Aktiengesellschaft Use of dihydropyrimidines as medicaments, and novel substances
US6503913B1 (en) 1998-04-18 2003-01-07 Bayer Aktiengesellschaft 2-heterocyclically substituted dihydropyrimidines
US6696451B1 (en) 1998-04-18 2004-02-24 Bayer Aktiengesellschaft Dihydropyrimidines
WO2005008302A1 (en) 2003-07-22 2005-01-27 National University Corporation Tokyo University Of Agriculture And Technology Reflection type polarizer, laminate optical member and liquid crystal display unit
US7074784B2 (en) 2000-03-16 2006-07-11 Siegfried Goldmann Medicaments against viral diseases
WO2008009209A1 (en) 2006-07-10 2008-01-24 Beijing Molecule Science And Technology Co., Ltd Dihydropyrimidine compounds and their uses in preparation of medicaments for treating and preventing antiviral diseases
WO2008154818A1 (en) 2007-06-18 2008-12-24 Zhang, Zhongneng Fluorophenyl-substituted thiazolyl dihydropyrimidines
WO2008154819A1 (en) 2007-06-18 2008-12-24 Zhang, Zhongneng Carbethoxy-substituted thiazolyl dihydropyrimidines
WO2008154820A1 (en) 2007-06-18 2008-12-24 Zhang, Zhongneng Carbethoxy-substituted thiazolyl dihydropyrimidines
US20100004268A1 (en) 2006-07-10 2010-01-07 Song Li Optically Pure Dihydropyrimidine Compounds and Their Uses for the Preparation of a Medicament for Treatment and Prevention of Viral Diseases
US20100010013A1 (en) 2007-01-16 2010-01-14 Beijing Molecule Science And Technology Co., Ltd. Dihydropyrimidine compounds and their uses in manufacture of a medicament for treatment and prevention of viral diseases
US8236797B2 (en) 2007-06-18 2012-08-07 Sunshine Lake Pharma Co., Ltd. Bromo-phenyl substituted thiazolyl dihydropyrimidines

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458772B1 (en) 1909-10-07 2002-10-01 Medivir Ab Prodrugs
CS263952B1 (en) 1985-04-25 1989-05-12 Holy Antonin Remedy with antiviral effect
CS263951B1 (en) 1985-04-25 1989-05-12 Antonin Holy 9-(phosponylmethoxyalkyl)adenines and method of their preparation
US5047407A (en) 1989-02-08 1991-09-10 Iaf Biochem International, Inc. 2-substituted-5-substituted-1,3-oxathiolanes with antiviral properties
GB8815265D0 (en) 1988-06-27 1988-08-03 Wellcome Found Therapeutic nucleosides
MY104575A (en) 1989-12-22 1994-04-30 The Wellcome Foundation Ltd Therapeutic nucleosides.
US5827727A (en) 1990-02-01 1998-10-27 Emory University Method of resolution of 1,3-oxathiolane nucleoside enantiomers
US5700937A (en) 1990-02-01 1997-12-23 Emory University Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US5204466A (en) 1990-02-01 1993-04-20 Emory University Method and compositions for the synthesis of bch-189 and related compounds
US5276151A (en) 1990-02-01 1994-01-04 Emory University Method of synthesis of 1,3-dioxolane nucleosides
US5914331A (en) 1990-02-01 1999-06-22 Emory University Antiviral activity and resolution of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane
EP0481214B1 (en) 1990-09-14 1998-06-24 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Prodrugs of phosphonates
US5206244A (en) 1990-10-18 1993-04-27 E. R. Squibb & Sons, Inc. Hydroxymethyl (methylenecyclopentyl) purines and pyrimidines
US5340816A (en) 1990-10-18 1994-08-23 E. R. Squibb & Sons, Inc. Hydroxymethyl(methylenecyclopentyl) purines and pyrimidines
IL100965A (en) 1991-02-22 1999-12-31 Univ Emory 2-Hydroxymethyl-5-(5-fluorocytosin-l-yl)-1,3-oxathiolane its resolution and pharmaceutical compositions containing it
WO1992018517A1 (en) 1991-04-17 1992-10-29 Yale University Method of treating or preventing hepatitis b virus
US5627160A (en) 1993-05-25 1997-05-06 Yale University L-2',3'-dideoxy nucleoside analogs as anti-hepatitis B (HBV) and anti-HIV agents
TW374087B (en) 1993-05-25 1999-11-11 Univ Yale L-2',3'-dideoxy nucleotide analogs as anti-hepatitis B(HBV) and anti-HIV agents
US5753789A (en) 1996-07-26 1998-05-19 Yale University Oligonucleotides containing L-nucleosides
AU4090697A (en) 1996-09-03 1998-03-26 Bristol-Myers Squibb Company Improved process for preparing the antiviral agent {1s-(1alpha, 3alpha, 4beta)}-2-amino-1,9-dihydro-9-{4-hydroxy-3-(hydroxymethyl)-2 -methylenecyclopentyl}-6h-purin-6-one
AU5923998A (en) 1997-01-31 1998-08-25 Avid Therapeutics Inc. 2-benzoylamino-3-phenylpropenamide derivatives and methods of using the same
TW434252B (en) 1997-07-23 2001-05-16 Univ Georgia Res Found Process for the preparation of 2'-fluoro-5-methyl-β-L-arabino-furanosyluridine
US6636943B1 (en) * 1999-07-30 2003-10-21 Hewlett-Packard Development Company, L.P. Method for detecting continuity modules in a direct Rambus DRAM subsystem
SE0001836D0 (en) 2000-05-18 2000-05-18 Inovacor Ab Computer based system

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822798A (en) 1982-09-18 1989-04-18 Bayer Aktiengesellschaft Circulation-active 4-phenyl-6-substituted dihydropyrimidines
US6436943B1 (en) 1998-04-18 2002-08-20 Bayer Aktiengesellschaft Use of dihydropyrimidines as medicaments, and novel substances
US6503913B1 (en) 1998-04-18 2003-01-07 Bayer Aktiengesellschaft 2-heterocyclically substituted dihydropyrimidines
US6696451B1 (en) 1998-04-18 2004-02-24 Bayer Aktiengesellschaft Dihydropyrimidines
WO2000058302A1 (en) 1999-03-25 2000-10-05 Bayer Aktiengesellschaft Dihydropyrimidines and their use in the treatment of hepatitis b
WO2001045712A1 (en) 1999-12-22 2001-06-28 Bayer Aktiengesellschaft Combinations of medicaments for treating viral diseases
WO2001068647A1 (en) 2000-03-15 2001-09-20 Bayer Aktiengesellschaft Medicaments against viral diseases
US7074784B2 (en) 2000-03-16 2006-07-11 Siegfried Goldmann Medicaments against viral diseases
WO2001068642A1 (en) 2000-03-16 2001-09-20 Bayer Aktiengesellschaft Dihydropyrimidines and the use thereof as medicaments for the treatment of hepatitis b
WO2001068639A1 (en) 2000-03-17 2001-09-20 Bayer Aktiengesellschaft Dihydropyrimidine-5-carboxylic acid esters and use thereof as medicaments against viral diseases
WO2001068641A1 (en) 2000-03-17 2001-09-20 Bayer Aktiengesellschaft 6-aminoalkyl-dihydropyrimidines and the use thereof as medicaments against viral diseases
WO2005008302A1 (en) 2003-07-22 2005-01-27 National University Corporation Tokyo University Of Agriculture And Technology Reflection type polarizer, laminate optical member and liquid crystal display unit
WO2008009209A1 (en) 2006-07-10 2008-01-24 Beijing Molecule Science And Technology Co., Ltd Dihydropyrimidine compounds and their uses in preparation of medicaments for treating and preventing antiviral diseases
US20100004268A1 (en) 2006-07-10 2010-01-07 Song Li Optically Pure Dihydropyrimidine Compounds and Their Uses for the Preparation of a Medicament for Treatment and Prevention of Viral Diseases
US20100010013A1 (en) 2007-01-16 2010-01-14 Beijing Molecule Science And Technology Co., Ltd. Dihydropyrimidine compounds and their uses in manufacture of a medicament for treatment and prevention of viral diseases
WO2008154818A1 (en) 2007-06-18 2008-12-24 Zhang, Zhongneng Fluorophenyl-substituted thiazolyl dihydropyrimidines
WO2008154819A1 (en) 2007-06-18 2008-12-24 Zhang, Zhongneng Carbethoxy-substituted thiazolyl dihydropyrimidines
WO2008154820A1 (en) 2007-06-18 2008-12-24 Zhang, Zhongneng Carbethoxy-substituted thiazolyl dihydropyrimidines
US8236797B2 (en) 2007-06-18 2012-08-07 Sunshine Lake Pharma Co., Ltd. Bromo-phenyl substituted thiazolyl dihydropyrimidines
US8343969B2 (en) 2007-06-18 2013-01-01 Sunshine Lake Pharma Co., Ltd. Bromo-phenyl substituted thiazolyl dihydropyrimidines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Huff, Joel R., "HIV Protease: A Novel Chemotherapeutic Target for AIDS," Journal of Medicinal Chemistry, Aug. 1991, pp. 2305-2314, vol. 34, No. 8.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340538B2 (en) 2012-08-24 2016-05-17 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
US9403814B2 (en) 2012-09-27 2016-08-02 Sunshine Lake Pharma Co., Ltd. Crystalline forms of dihydropyrimidine derivatives
US9498479B2 (en) 2013-11-19 2016-11-22 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
US9573941B2 (en) 2013-11-27 2017-02-21 Sunshine Lake Pharma Co., Ltd. Processes for preparing dihydropyrimidine derivatives and intermediates thereof
US9617252B2 (en) 2013-11-27 2017-04-11 Sunshine Lake Pharma Co., Ltd. Processes for preparing dihydropyrimidine derivatives and intermediates thereof
US9643962B2 (en) 2013-11-27 2017-05-09 Sunshine Lake Pharma Co., Ltd. Processes for preparing dihydropyrimidine derivatives and intermediates thereof
US9771358B2 (en) 2014-03-28 2017-09-26 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
US10098889B2 (en) 2015-02-07 2018-10-16 Sunshine Lake Pharma Co., Ltd. Complexes and salts of dihydropyrimidine derivatives and their application in pharmaceuticals

Also Published As

Publication number Publication date
CN102066369A (en) 2011-05-18
CA2691056C (en) 2014-03-11
PT2514750E (en) 2014-01-23
KR101173892B1 (en) 2012-08-16
US8236797B2 (en) 2012-08-07
JP2013231036A (en) 2013-11-14
BRPI0813237B1 (en) 2020-01-07
US8343969B2 (en) 2013-01-01
RU2443703C2 (en) 2012-02-27
EP2159224B1 (en) 2012-08-01
JP5361879B2 (en) 2013-12-04
AU2008265397A1 (en) 2008-12-24
PT2159224E (en) 2012-10-24
CN101328171A (en) 2008-12-24
WO2008154817A1 (en) 2008-12-24
AU2008265397B2 (en) 2011-07-21
EP2514750A1 (en) 2012-10-24
ES2391597T3 (en) 2012-11-28
JP2010530374A (en) 2010-09-09
KR20100038104A (en) 2010-04-12
CA2691056A1 (en) 2008-12-24
AU2008265397B9 (en) 2011-08-04
ES2442907T3 (en) 2014-02-14
US20120282221A1 (en) 2012-11-08
PL2514750T3 (en) 2014-05-30
RU2010101212A (en) 2011-07-27
US20100240655A1 (en) 2010-09-23
PL2159224T3 (en) 2012-12-31
EP2159224A1 (en) 2010-03-03
EP2159224A4 (en) 2011-08-03
BRPI0813237A2 (en) 2014-12-23
DK2514750T5 (en) 2014-02-17
DK2514750T3 (en) 2013-12-02
BRPI0813237B8 (en) 2021-05-25
USRE45004E1 (en) 2014-07-08
AU2008265397C1 (en) 2013-08-29
HK1174035A1 (en) 2013-05-31
DK2159224T3 (en) 2012-08-20
CN102066369B (en) 2013-05-29
JP5970421B2 (en) 2016-08-17
EP2514750B1 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
USRE44987E1 (en) Bromo-phenyl substituted thiazolyl dihydropyrimidines
US7074784B2 (en) Medicaments against viral diseases
US6503913B1 (en) 2-heterocyclically substituted dihydropyrimidines
WO2008154819A1 (en) Carbethoxy-substituted thiazolyl dihydropyrimidines
US6436943B1 (en) Use of dihydropyrimidines as medicaments, and novel substances
WO2008154820A1 (en) Carbethoxy-substituted thiazolyl dihydropyrimidines
WO2008154818A1 (en) Fluorophenyl-substituted thiazolyl dihydropyrimidines
WO2001068647A1 (en) Medicaments against viral diseases
DE10013126A1 (en) New 6-aminoalkyl-dihydropyrimidine-5-carboxylate ester derivatives, useful as antiviral agents having strong activity against hepatitis B virus and low cytotoxicity
DE10012824A1 (en) New 6-hydroxyhydrocarbyl or 6-thiohydrocarbyl-dihydropyrimidine-5-carboxylic acid derivatives, useful for the treatment of viral infections, especially hepatitis B infections
WO2001068639A1 (en) Dihydropyrimidine-5-carboxylic acid esters and use thereof as medicaments against viral diseases

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZHANG, ZHONGNENG, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOLDMANN, SIEGFRIED;REEL/FRAME:031133/0818

Effective date: 20100130

Owner name: ZHANG, ZHONGNENG, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, JING;REEL/FRAME:031133/0800

Effective date: 20100130

Owner name: SUNSHINE LAKE PHARMA CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHANG, ZHONGNENG;REEL/FRAME:031133/0845

Effective date: 20130826

Owner name: ZHANG, ZHONGNENG, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, YI SONG;REEL/FRAME:031133/0685

Effective date: 20100205

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: NORTH & SOUTH BROTHER PHARMACY INVESTMENT COMPANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUNSHINE LAKE PHARMA CO., LTD.;REEL/FRAME:050781/0929

Effective date: 20190906

AS Assignment

Owner name: SUNSHINE LAKE PHARMA CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTH & SOUTH BROTHER PHARMACY INVESTMENT COMPANY LIMITED;REEL/FRAME:052921/0778

Effective date: 20200525

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8