USRE43568E1 - Anti-P-selectin antibodies - Google Patents

Anti-P-selectin antibodies Download PDF

Info

Publication number
USRE43568E1
USRE43568E1 US13/187,586 US201113187586A USRE43568E US RE43568 E1 USRE43568 E1 US RE43568E1 US 201113187586 A US201113187586 A US 201113187586A US RE43568 E USRE43568 E US RE43568E
Authority
US
United States
Prior art keywords
seq
amino acid
chain variable
antibody
variable region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/187,586
Inventor
Yvo Graus
Jacques Himber
Miranda Jansen-Molenaar
Dorothee Kling
Erhard Kopetzki
Paul Parren
Frank Rebers
Beat Steiner
Anne Stern
Pamela Strein
Kay-Gunnar Stubenrauch
Jan van de Winkel
Martine van Vugt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoffmann La Roche Inc
Original Assignee
Hoffmann La Roche Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann La Roche Inc filed Critical Hoffmann La Roche Inc
Priority to US13/187,586 priority Critical patent/USRE43568E1/en
Application granted granted Critical
Publication of USRE43568E1 publication Critical patent/USRE43568E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2851Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
    • C07K16/2854Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72 against selectins, e.g. CD62
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/81Packaged device or kit

Definitions

  • This invention relates generally to anti-P-selectin antibodies and, in particular, to anti-P-selectin antibodies that do not bind complement factor C1q.
  • these antibodies are human or humanized antibodies.
  • P-selectin (CD62P, GMP-140, PADGEM, LECAM-3) is a 140 kDa calcium-dependent carbohydrate-binding protein that is expressed on the surfaces of activated platelets and endothelium in response to thrombin and other agonists (McEver et al., J Biol Chem 270:11025 (1995); Varki, Proc Natl Acad Sci USA 91:7390 (1994); Springer T A, Annu Rev Physiol 57:827 (1995)). In both cell types, P-selectin is stored in secretory granules, i.e.
  • P-selectin The structure of P-selectin is similar to the other two members of the selectin family, E- and L-selectin, which are either expressed on cytokine-activated endothelial cells (E-selectin) or constitutively expressed on most classes of leukocytes (L-selectin).
  • P-selectin Glycoprotein ligand-1 P-selectin Glycoprotein ligand-1 (PSGL-1, CD162), which is normally expressed as a homodimer with two disulfide-linked subunits with relative molecular masses of approximately 120 kDa by circulating leukocytes.
  • the binding site of P-selectin is localized to the extreme NH 2 -terminal part of PSGL-1.
  • P-selectin mediates rolling of the leukocytes on activated platelets and endothelial cells.
  • the rolling process effectively reduces the velocity of leukocyte movement, which is a prerequisite for firm adhesion and subsequent transmigration of leukocytes into the subendothelium but also for the accumulation of leukocytes in thrombi.
  • P-selectin deficient mice and P-selectin-specific blocking antibodies have shown that P-selectin participates in the pathophysiology of numerous acute and chronic inflammatory diseases including ischemia/reperfusion injury (Winn et al., J Clin Invest 92:2042 (1993); Massberg et al., Blood 92:507 (1998)).
  • Antibodies against P-selectin have been described in the state of the art and investigated for their anti-inflammatory and anti-thrombotic effects.
  • U.S. Pat. No. 4,783,399 and WO 93/06863 describe mouse monoclonal antibodies against P-selectin reactive with activated platelets.
  • Geng J. G. et al J. Biol. Chem., 266 (1991) 22313-22318) describe mouse monoclonal antibodies binding to P-selectin amino acid (aa) fragment aa 60-75 (Cys to Glu, counting according to Swiss-Prot sequence P16109 which includes the signal sequence.
  • WO 93/21956 refers to mouse monoclonal antibodies against P-selectin and humanized antibodies of IgG1 subclass competing with a defined antibody, binding in the presence of P-selectin fragment aa 60-75) and in the absence of calcium ions. None of the mentioned mouse monoclonal antibodies against human P-selectin is useful for the treatment of human patients.
  • a humanized antibody against P-selectin of human IgG1 subclass mentioned in WO 93/21956 is in pre-clinical development (www.mrctechnology.org).
  • the invention relates to antibodies characterized in that said antibodies bind P-selectin and do not bind human complement factor C1q. Preferably the antibodies do also not bind to human Fc ⁇ receptor on NK cells.
  • the antibodies according to the invention contain a Fc part derived from human origin. Preferably these antibodies are humanized or human antibodies.
  • the antibodies have new and inventive properties causing a benefit for a patient suffering from inflammatory and thrombotic disorders, especially from peripheral arterial occlusive disease (PAOD) and critical limb ischemia (CLI).
  • PAOD peripheral arterial occlusive disease
  • CLI critical limb ischemia
  • FIG. 1 shows that the antibodies of the invention inhibit the adhesion of leukocyte-like HL60 cells to purified P-selectin coated onto microtiter plates.
  • the mutated antibodies are more potent than the non-mutated parent antibody.
  • FIG. 2 shows the inhibitory activity of the antibodies of the invention in the rosetting assay measuring the adhesion of thrombin-activated platelets to HL60 cells.
  • FIGS. 3a and 3b depicts the cross-reactivity of the antibodies of the invention with rat and cynomologus P-selectin.
  • FIG. 3a The anti-P-selectin antibodies do not affect the adhesion of thrombin-activated rat platelets to HL60 cells, whereas the commercially available polyclonal anti-P-selectin antibody (Pharmingen 09361A) inhibits this interaction.
  • FIG. 3b The antibodies of the invention inhibit the adhesion of activated cynomologus platelets to HL60 cells.
  • FIG. 4a-c demonstrates the selectivity of the antibodies for P-selectin vs. E- and L-selectin by representative binding curves on P-, E- and L-selectin transfectants.
  • the antibodies according to the invention bind to P-selectin CHO cells with EC 50 values in the range of 0.01 and 0.07 ⁇ g/ml.
  • EC 50 values on E-selectin CHO cells and L-selectin 300.19 cells are preferably above 100 ⁇ g/ml.
  • FIG. 5 depicts the inhibitory activity of the antibodies of the invention in a fully human flow system. They inhibit the adhesion of human leukocytes to a platelet monolayer in a concentration-dependent manner at a shear rate of 65/s.
  • FIG. 6 depicts the inhibitory effect of the antibodies of the invention on the adhesion of leukocytes to human endothelial cells expressing P-selectin.
  • FIG. 6a demonstrates the total inhibition of leukocyte adhesion in % of the control
  • FIG. 6b representatively shows the inhibitory effect of one of the antibodies on the absolute number of the different leukocyte subsets.
  • the invention relates to antibodies characterized in that said antibodies bind P-selectin and do not bind human complement factor C1q. Preferably the antibodies do also not bind to human Fc ⁇ receptor on NK cells.
  • the antibodies according to the invention contain a Fc part derived from human origin. Preferably these antibodies are humanized or human antibodies.
  • the antibodies have new and inventive properties causing a benefit for a patient suffering from inflammatory and thrombotic disorders, especially from peripheral arterial occlusive disease (PAOD) and critical limb ischemia (CLI).
  • PAOD peripheral arterial occlusive disease
  • CLI critical limb ischemia
  • P-selectin refers to a 140 kDa protein expressed by human platelets and endothelial cells, as described by Hsu-Lin et al., J Biol Chem 259: 9121 (1984), and Mc Ever et al., J Clin Invest 84:92 (1989).
  • This type I transmembrane glycoprotein is composed of an NH 2 -terminal lectin domain, followed by an epidermal growth factor (EGF)-like domain and nine consensus repeat domains. It is anchored in the membrane by a single transmembrane domain and contains a small cytoplasmic tail.
  • EGF epidermal growth factor
  • the present invention provides antibodies, which are capable of inhibiting one or more of the biological activities mediated by P-selectin, for example, its inflammatory or thrombotic activity.
  • the antibodies bind to P-selectin and act by interfering with the binding of P-selectin to its ligand.
  • P-selectin ligand relates preferably to the high affinity and biologically relevant ligand of P-selectin such as the mucin-like glycoprotein P-selectin ligand glycoprotein-1 (PSGL-1), as described by Moore et al.; J Cell Biol 118:2445 (1992), Sako et al., Cell 75:1179 (1993)
  • PSGL-1 is a type I membrane protein with an extracellular domain rich in serines, threonines, and prolines, including a series of decameric repeats linked with clusters of sialylated O-glycans.
  • P-selectin also binds with low affinity to small sialated, fucosylated oligosaccharides such as sialyl Lewis x (Foxall et al., J Cell Biol 117:895 (1992), Varki, Curr Opin Cell Biol 257 (1992) and to particular sulfated carbohydrates, such as heparin sulfate (McEver et al., J Biol Chem 270:11025 (1995).
  • antibody encompasses the various forms of antibodies, preferably monoclonal antibodies including but not being limited to whole antibodies, antibody fragments, human antibodies, humanized antibodies, chimeric antibodies and genetically engineered antibodies (variant or mutant antibodies) as long as the characteristic properties according to the invention are retained. Especially preferred are human or humanized monoclonal antibodies, especially as recombinant human antibodies.
  • monoclonal antibody or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of a single amino acid composition.
  • chimeric antibody refers to a monoclonal antibody comprising a variable region, i.e., binding region, from one source or species and at least a portion of a constant region derived from a different source or species, usually prepared by recombinant DNA techniques. Chimeric antibodies comprising a murine variable region and a human constant region are especially preferred. Such murine/human chimeric antibodies are the product of expressed immunoglobulin genes comprising DNA segments encoding murine immunoglobulin variable regions and DNA segments encoding human immunoglobulin constant regions.
  • chimeric antibodies encompassed by the present invention are those in which the constant region has been modified or changed from that of the original antibody to generate the properties according to the invention, especially in regard to C1q binding and/or Fc receptor (FcR) binding.
  • Such “chimeric” antibodies are also referred to as “class-switched antibodies.”
  • Methods for producing chimeric antibodies involve conventional recombinant DNA and gene transfection techniques now well known in the art. See, e.g., Morrison, S. L., et al., Proc. Natl. Acad. Sci. USA 81 (1984) 6851-6855; U.S. Pat. Nos. 5,202,238 and 5,204,244.
  • humanized antibody refers to antibodies in which the framework or “complementarity determining regions” (CDR) have been modified to comprise the CDR of an immunoglobulin of different specificity as compared to that of the parent immunoglobulin.
  • CDR complementarity determining regions
  • a murine CDR is grafted into the framework region of a human antibody to prepare the “humanized antibody.” See, e.g., Riechmann, L., et al., Nature 332 (1988) 323-327; and Neuberger, M. S., et al., Nature 314 (1985) 268-270.
  • Particularly preferred CDRs correspond to those representing sequences recognizing the antigens noted above for chimeric and bifunctional antibodies.
  • Other forms of “humanized antibodies” encompassed by the present invention are those in which the constant region has been modified or changed from that of the original antibody to generate the properties according to the invention, especially in regard to C1q binding and/or Fc receptor (FcR) binding.
  • human antibody is intended to include antibodies having variable and constant regions derived from human germ line immunoglobulin sequences. Human antibodies are well-known in the state of the art (van Dijk and van de Winkel, Curr Opin Pharmacol 5:368 (2001). Human antibodies can also be produced in transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge (see, e.g., Jakobovits et al., Proc. Natl. Acad. Sci.
  • Human antibodies can also be produced in phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1992); Marks et al., J. Mol. Biol, 222:581 (19991)).
  • the techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p.
  • human antibody as used herein also comprises such antibodies which are modified in the constant region to generate the properties according to the invention, especially in regard to C1q binding and/or FcR binding.
  • the invention comprises human antibodies which bind to C1q and/or FcR.
  • Such human antibodies are characterized by a high selectivity for P-selectin vs. E- and L-selectin.
  • Such antibodies according to the invention bind to P-selectin expressing cells with EC 50 values in the range of 0.01 and 0.07 ⁇ g/ml.
  • EC 50 values on E-selectin and L-selectin expressing cells are preferably above 100 ⁇ g/ml.
  • Such antibodies are preferable useful as intermediates for manufacturing human antibodies with the properties according to the invention.
  • recombinant human antibody is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from a host cell such as a NS0 or CHO cell or from an animal (e.g. a mouse) that is transgenic for human immunoglobulin genes or antibodies expressed using a recombinant expression vector transfected into a host cell.
  • recombinant human antibodies have variable and constant regions in a rearranged form.
  • the recombinant human antibodies according to the invention have been subjected to in vivo somatic hypermutation.
  • the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germ line VH and VL sequences, may not naturally exist within the human antibody germ line repertoire in vivo.
  • variable region denotes each of the pair of light and heavy chains which is involved directly in binding the antibody to the antigen.
  • the domains of variable human light and heavy chains have the same general structure and each domain comprises four framework (FR) regions whose sequences are widely conserved, connected by three “hypervariable regions” (or complementarity determining regions, CDRs).
  • the framework regions adopt a ⁇ -sheet conformation and the CDRs may form loops connecting the ⁇ -sheet structure.
  • the CDRs in each chain are held in their three-dimensional structure by the framework regions and form together with the CDRs from the other chain the antigen binding site.
  • the antibody heavy and light chain CDR3 regions play a particularly important role in the binding specificity/affinity of the antibodies according to the invention and therefore provide a further object of the invention.
  • hypervariable region or “antigen-binding portion of an antibody” when used herein refer to the amino acid residues of an antibody which are responsible for antigen-binding.
  • the hypervariable region comprises amino acid residues from the “complementarity determining regions” or “CDRs”.
  • “Framework” or “FR” regions are those variable domain regions other than the hypervariable region residues as herein defined. Therefore, the light and heavy chains of an antibody comprise from N- to C-terminus the domains FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4.
  • CDR3 of the heavy chain is the region which contributes most to antigen binding.
  • CDR and FR regions are determined according to the standard definition of Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop”.
  • nucleic acid or nucleic acid molecule is intended to include DNA molecules and RNA molecules.
  • a nucleic acid molecule may be single-stranded or double-stranded, but preferably is double-stranded DNA.
  • Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence.
  • DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
  • a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
  • “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
  • the expressions “cell,” “cell line,” and “cell culture” are used interchangeably and all such designations include progeny.
  • the words “transformants” and “transformed cells” include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Variant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be dear from the context.
  • antibodies or immunoglobulins are divided in the classes: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g. IgG1, IgG2, IgG3, and IgG4, IgA1 and IgA2.
  • the heavy chain constant regions that correspond to the different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ and ⁇ , respectively.
  • the antibodies according to the invention are preferably of IgG type.
  • the Fc part of an antibody is directly involved in complement activation, C1q binding and Fc receptor binding. While the influence of an antibody on the complement system is dependent on certain conditions, binding to C1q is caused by defined binding sites in the Fc part. Such binding sites are known in the state of the art and described e.g. by Boakle et al., Nature 282 (1975) 742-743, Lukas et al., J. Immunol. 127 (1981) 2555-2560, Brunhouse and Cebra, Mol. Immunol. 16 (1979) 907-917, Burton et al., Nature 288 (1980) 338-344, Tansen et al., Mol. Immunol.
  • binding sites are e.g. L234, L235, D270, N297, E318, K320, K322, P331 and P329 (numbering according to EU index of Kabat, see below).
  • Antibodies of subclass IgG1, IgG2 and IgG3 usually show complement activation and C1q and C3 binding, whereas IgG4 do not activate the complement system and do not bind C1q and C3.
  • Fc part derived from human origin denotes a Fc part which is either a Fc part of a human antibody of the subclass IgG4 or a Fc part of a human antibody of the subclass IgG1, IgG2 or IgG3 which is modified in such a way that no C1q binding and/or FcR binding as defined below can be detected.
  • a “Fc part of an antibody” is a term well known to the skilled artisan and defined on the basis of papain cleavage of antibodies.
  • the antibodies according to the invention contain as Fc part a Fc part derived from human origin and preferably all other parts of the human constant regions.
  • the Fc part is a human Fc part and especially preferred either from human IgG4 subclass or a mutated Fc part from human IgG1 subclass.
  • Fc parts and heavy chain constant regions shown in SEQ ID NO: 25-28 or of SEQ ID NO: 25 without PVA236 mutation.
  • the invention comprises an antibody binding to P-selectin characterized in that the variable heavy chain amino acid sequence CDR3 of said antibody is selected from the group consisting of the heavy chain CDR3 sequences SEQ ID NO: 38, 39, 40, 41 or 42.
  • the invention preferably provides an antibody binding to P-selectin, comprising a variable heavy chain and a variable light chain, characterized in that the variable heavy chain comprises CDR sequences CDR1, CDR2 and CDR3 and CDR1 being selected from the group consisting of SEQ ID NOs: 29, 30, 31, 32, CDR2 being selected from the group consisting of SEQ ID NOs: 33, 34, 35, 36, 37, CDR3 being selected from the group consisting of SEQ ID NOs: 38, 39, 40, 41, 42, wherein said CDRs are selected independently of each other.
  • variable light chain comprises CDR sequences CDR1, CDR2 and CDR3, and CDR1 is selected from SEQ ID NOs: 43, 44, CDR2 is selected from SEQ ID NOs: 45, 46 and CDR3 is selected from SEQ ID NOs: 47, 48, 49, 50, 51, 52 wherein said CDRs are selected independently of each other.
  • the antibody is preferably characterized in containing as heavy chain CDRs the CDRs of SEQ ID NO: 2 and as light chain CDRs the CDRs of SEQ ID NO: 1, as heavy chain CDRs the CDRs of SEQ ID NO: 4 and as light chain CDRs the CDRs of SEQ ID NO: 3, as heavy chain CDRs the CDRs of SEQ ID NO: 6 and as light chain CDRs the CDRs of SEQ ID NO: 5, as heavy chain CDRs the CDRs of SEQ ID NO: 8 and as light chain CDRs the CDRs of SEQ ID NO: 7, as heavy chain CDRs the CDRs of SEQ ID NO: 10 and as light chain CDRs the CDRs of SEQ ID NO: 9, as heavy chain CDRs the CDRs of SEQ ID NO: 12 and as light chain CDRs the CDRs of SEQ ID NO: 11, as heavy chain CDRs the CDRs of SEQ ID NO: 14 and as light chain CDRs the CDRs of SEQ ID NO:
  • CDR sequences can be determined according to the standard definition of Kabat et al., Sequences of Proteins of Immunological Interest, 5th ed., Public Health Service, National Institutes of Health, Bethesda, Md. (1991). CDRs on each chain are separated by framework amino acids. CDRs of SEQ ID NO: 1-22 are shown in SEQ ID NO: 29-52.
  • the antibody according to the invention is preferably characterized in that the heavy chain variable region comprises an amino acid sequence independently selected from the group consisting of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 and 22.
  • the antibody according to the invention is preferably characterized in that the light chain variable region comprises an amino acid sequence independently selected from the group consisting of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21.
  • the present invention refers to an antibody that binds P-selectin and does not bind complement factor C1q and/or Fc receptor. These antibodies do not elicit the complement dependent cytotoxicity (CDC) and/or antibody-dependent cellular cytotoxicity (ADCC).
  • this antibody is characterized in that it binds P-selectin, contains a Fc part derived from human origin and does not bind complement factor C1q. More preferably, this antibody is a human or humanized antibody.
  • the antibody according to the invention is preferably characterized in that the constant chains are of human origin.
  • Such constant chains are well known in the state of the art and e.g. described by Kabat (see e.g. Johnson, G., and Wu, T. T., Nucleic Acids Res. 28 (2000) 214-218).
  • a useful human heavy chain constant region comprises an amino acid sequence independently selected from the group consisting of SEQ ID NO: 24, 25, 26, 27 and 28.
  • an useful human light chain constant region comprises an amino acid sequence of a kappa-light chain constant region of SEQ ID NO: 23.
  • the effector functions mediated by the Fc part of the antibody Fc region refer to effector functions that operate after the binding of an antibody to an antigen (these functions involve the activation of the complement cascade and/or cell activation by a Fc receptor (FcR)).
  • FcR Fc receptor
  • the function of the complement cascade can be assessed by the CH50 assay.
  • Sheep red cells sensitized with anti-red cell antibodies (EA) are added to test serum to activate the classical pathway resulting in haemolysis.
  • the volume of serum needed to lyse 50% of the red cells determines the CH50 unit.
  • the AP-CH50 measures the alternative and the terminal pathways. The procedure is similar except that rabbit red cells are used.
  • the alternative pathway is activated upon addition of test serum.
  • CDC complement dependent cytotoxicity
  • CDC complement-dependent cytotoxicity
  • CDC refers to lysis of P-selectin expressing human endothelial cells and platelets by the antibody according to the invention in the presence of complement.
  • CDC is measured preferably by the treatment of P-selectin expressing human endothelial cells and platelets with an antibody according to the invention in the presence of complement.
  • the cells are preferably labeled with calcein.
  • CDC is found if the antibody induces lysis of 20% or more of the target cells at a concentration of 30 ⁇ g/ml.
  • the inventors have found that for the properties of the antibodies according to the invention reduced binding to the complement factor C1q in an ELISA assay is essential.
  • an ELISA plate is coated with concentration ranges of the antibody, to which purified human C1q or human serum is added.
  • C1q binding is detected by an antibody directed against C1q followed by a peroxidase-labeled conjugate.
  • Detection of binding is measured as optical density at 405 nm (OD405) for peroxidase substrate ABTS (2,2′-Azino-di-[3-ethylbenzthiazoline-6-sulfonate (6)].
  • the present invention refers to an antibody, characterized in that non-binding of the antibody to complement factor C1q refers to such an ELISA assay measurement wherein the maximal binding (Bmax) of C1q to the antibody at a concentration of 10 ⁇ g/ml of the antibody is ⁇ 30% of Bmax of the antibody LC 1004-002 of cell line hu-Mab ⁇ P-selectin>LC 1004-002 (DSM ACC2641).preferably 20% or lower.
  • an antibody according to the invention shows a reduced binding to complement factor C3 in an ELISA assay.
  • the assay is performed in the same manner as the C1q assay.
  • an ELISA plate is coated with concentration ranges of the antibody, to which purified human C3 or human serum is added.
  • C3 binding is detected by an antibody directed against C3 followed by a peroxidase-labeled conjugate. Detection of binding (maximal binding Bmax) is measured as optical density at 405 nm (OD405) for peroxidase substrate ABTS (2,2′-Azino-di-[3-ethylbenzthiazolinesulfonate (6)].
  • the present invention refers to an antibody, characterized in that non-binding of the antibody to complement factor C3 refers to such an ELISA assay measurement wherein the maximal binding (Bmax) of C3 to the antibody at a concentration of 10 ⁇ g/ml of the antibody is 10% of Bmax of antibody LC 1004-002 of cell line hu-Mab ⁇ P-selectin>LC 1004-002 (DSM ACC2641)., preferably 5% or lower.
  • ADCC antibody-dependent cellular cytotoxicity
  • the labeled cells are incubated with effector cells and the supernatant is analyzed for released 51 Cr. Controls include the incubation of the target endothelial cells with effector cells but without the antibody.
  • the capacity of the antibodies to induce the initial steps mediating ADCC was determined by measuring their binding to Fc ⁇ receptors expressing cells, such as granulocytes (expressing Fc ⁇ RII and RIII), NK cells (expressing Fc ⁇ RIII) and monocytes (expressing Fc ⁇ RI and RII).
  • Fc receptor binding effector functions can be mediated by the interaction of the Fc region of an antibody with Fc receptors (FcRs), which are specialized cell surface receptors on hematopoietic cells.
  • Fc receptors belong to the immunoglobulin superfamily, and have been shown to mediate both the removal of antibody-coated pathogens by phagocytosis of immune complexes, and the lysis of erythrocytes and various other cellular targets (e.g. tumor cells) coated with the corresponding antibody, via antibody dependent cell mediated cytotoxicity (ADCC). Van de Winkel and Anderson, J. Leuk. Biol. 49:511-24 (1991).
  • FcRs are defined by their specificity for immunoglobulin isotypes; Fc receptors for IgG antibodies are referred to as Fc ⁇ R, for IgE as Fc ⁇ R, for IgA as Fc ⁇ R and so on. Fc receptor binding is described e.g. in Ravetch and Kinet, Ann. Rev. Immunol. 9 (1991) 457-492, Capel et al., Immunomethods 4 (1994) 32-34, de Haas et al., J. Lab. Clin. Med. 126 (1995) 330-341 and Gessner et al., Ann. Hematol. 76 1998) 231-248.
  • the antibodies according to the invention preferably show a reduced binding to Fc ⁇ receptors, preferably to F ⁇ cRI, -IIA, -IIB, and/or IIIA.
  • the antibodies according to the present invention antibodies preferably do not elicit any effector function and do not bind to Fc ⁇ R presented on NK cells.
  • the term “no binding of Fc ⁇ R” therefore means that in an antibody concentration of 10 ⁇ g/ml the binding of an antibody according to the invention to NK cells is 1% or less of the binding found for antibody LC 1004-002 of cell line hu-Mab ⁇ P-selectin>LC 1004-002 (DSM ACC2641).
  • IgG4 shows reduced FcR binding
  • antibodies of other IgG subclasses show strong binding.
  • Pro238, Asp265, Asp270, Asn297 (loss of Fc carbohydrate), Pro329 and 234, 235, 236 and 237 Ile253, Ser254, Lys288, Thr307, Gln311, Asn434, and His435 are residues which provides if altered also reduced FcR binding (Shields et al. J. Biol. Chem. 276 (2001), 6591-6604, Lund et al. FASEB J. 9 (1995), 115-119, Morgan et al. Immunology 86 (1995) 319-324, EP 0307434 ).
  • an antibody according to the invention is in regard to FcR binding of IgG4 subclass or of IgG1 or IgG2 subclass with a mutation in S228, L234, L235 and/or D265, and/or contains the PVA236 or GLPSS331 mutation.
  • S228P IgG4
  • L234A IgG1
  • L235A IgG1
  • L235E IgG4
  • GLPSS331(IgG1) and/or PVA236 IgG1
  • Preferred combinations of mutations are also shown in table 1.
  • An additional preferred combination is D265A/N297A.
  • binding to P-selectin means the binding of the antibody to P-selectin in either a BIAcore® assay (Pharmacia Biosensor AB, Uppsala, Sweden) or in an ELISA in which either purified P-selectin or P-selectin CHO transfectants are coated onto microtiter plates.
  • the antibody is bound to a surface and binding of P-selectin is measured by Surface Plasmon Resonance (SPR).
  • SPR Surface Plasmon Resonance
  • the affinity of the binding is defined by the terms ka (rate constant for the association of the antibody from the antibody/antigen complex), kd (dissociation constant), and K D (kd/ka).
  • the antibodies according to the invention show a K D of 10 ⁇ 8 or less, preferably of about 10 ⁇ 11 to 10 ⁇ 9 M (see examples).
  • the present invention refers to an antibody as described above, wherein the antibody binds to P-selectin with a K D value of less than 10 ⁇ 8 M in a BIAcore® assay, preferably wherein the K D range is 10 ⁇ 11 to 10 ⁇ 9 M.
  • the antibody is of IgG1 or IgG4 human subtype. More preferably, the antibody is characterized in that the antibody is an antibody of human subclass IgG1, containing (comprising) at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or an antibody of human subclass IgG4, containing (comprising) at least one mutation in L235 and S228 (numbering according to EU index).
  • P-selectin-specific ELISA purified P-selectin is coated onto microtiter plates and the binding of the antibody to P-selectin is detected with a biotinylated anti-human IgG and the usual steps of an ELISA.
  • the EC 50 values in this assay range preferably between 0.002 and 0.03 ⁇ g/ml on P-selectin CHO cells, i.e. the present invention refers to antibodies, wherein the EC50 values for P-selectin binding are in the range of 0.002 to 0.03 ⁇ g/ml on P-selectin presenting CHO cells in an ELISA assay.
  • the EC50 values range between 0.01 and 0.08 ⁇ g/ml, preferably between 0.01 and 0.04 ⁇ g/ml.
  • EC 50 values on E- and L-selectin transfectants are preferably above 100 ⁇ g/ml.
  • the antibodies of the present invention are characterized in that they bind at least 1000 fold more specifically to P-selectin than to E- and/or L-selectin as measured by EC 50 values in an ELISA assay, wherein P- and E- and/or L-selectin are coated onto the microtiter plate.
  • the term “inhibiting the binding of the P-selectin ligand to P-selectin” as used herein refers to the binding of purified or cell-expressed P-selectin to its ligand presented on HL60 cells.
  • the binding of P-selectin to its ligand is inhibited by the antibodies according to the invention.
  • the inhibition is measured as IC 50 in in vitro assays analyzing the capacity of the antibody to inhibit binding of P-selectin to a ligand.
  • Such assays are described in the Examples. They use as suitable sources of P-selectin affinity purified P-selectin and activated platelets and as suitable sources of the ligand leukocyte-like cells, such as HL60 cells.
  • the adhesion of HL60 cells, expressing PSGL-1 as the physiologically relevant ligand of P-selectin, to P-selectin or activated platelets is measured without and with increasing concentrations of the antibody.
  • the IC 50 values are measured as average values of at least three independent measurements. Inhibiting means an IC 50 value of no more than 1 ⁇ g/ml, preferably 0.5 to 0.08 ⁇ g/ml.
  • the antibodies of the present invention inhibit the adhesion of leukocyte-like HL60 cells to purified P-selectin with IC50 values in the range of 0.08 to 0.5 ⁇ g/ml, preferably 0.08 to ⁇ 0.11 ⁇ g/ml.
  • the adhesion of leukocyte-like HL60 cells to activated platelets is inhibited with IC50 values in the range of 0.05 to 0.3 ⁇ g/ml.
  • further embodiments of the present invention refer to antibodies, characterized in that the EC50 values for P-selectin binding is in the range of 0.01 to 0.08 ⁇ g/ml in an ELISA assay wherein P-selectin expressing CHO transfectants are coated onto the microtiter plate.
  • the preferred range is 0.01 to 0.04 ⁇ g/ml.
  • the EC50 values on E- and L-selectin transfectants are above 100 ⁇ g/ml.
  • the antibodies of the present invention inhibit the adhesion of leukocyte-like HL60 cells to purified P-selelctin with IC50 values between 0.08 to 0.5 ⁇ g/ml.
  • the preferred range is 0.08 to 0.11 ⁇ g/ml.
  • the antibodies of the present invention inhibit the interaction of leukocytes with a monolayer of platelets by preferably more than 70% in a fully human flow system (at a concentration of 10 ⁇ g/ml).
  • these antibodies inhibit the adhesion of leukocytes to activated endothelial cells in a human flow system in the range of 60-90% at a concentration of 3 ⁇ g/ml (with differential effects on leukocyte subtypes).
  • the antibodies of the present invention are preferably capable of binding to P-selectin in the presence of the P-selectin fragment aa 60-75 (Swiss-Prot sequence P16109) and/or do not competitively inhibit the binding of an antibody secreted by a cell line designated ATCC Accession No. HB11041 to P-selectin.
  • the antibodies of the invention preferably do not inhibit the interaction of P-selectin with platelet membrane glycoprotein GPIb ⁇ in an ELISA assay format.
  • the soluble extracellular portion of GPIb ⁇ was immobilized on the wells of microtiter plates, as described (Romo et al., J Exp Med 190:803 (1999), and the binding of purified P-selectin after preincubation with the P-selectin HuMabs was detected with a polyclonal anti-P-selectin antibody.
  • the antibody characterized in that does not bind the C3 protein, more preferably it is characterized in that it does not elicit complement-dependent cytotoxicity (CDC). Further, the antibody may be characterized it does not bind to Fc ⁇ receptors on NK effector cells.
  • the antibody is characterized that it is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or an antibody of human subclass IgG4, containing at least one mutation in L235 and S228 (numbering according to EU index).
  • the antibody is characterized in that it does not elicit antibody-dependent cellular cytotoxicity (ADCC).
  • the antibodies of the present invention are characterized in that they bind P-selectin and that they comprise a variable region independently selected from the group consisting of
  • the antibodies comprise the light chain variable domain defined by amino acid sequence SEQ ID NO:3 and the heavy chain variable domain defined by SEQ ID NO:4.
  • the preferred antibodies are characterized in that the antibodies are of human IgG4 subclass or comprise at least one amino acid mutation causing non-binding to complement factor C1q.
  • These variant antibodies comprise for example the amino acid sequence independently selected from the group consisting of SEQ ID NO: 25 or SEQ ID NO:26 and SEQ ID NO:28.
  • a “variant” anti-P-selectin antibody refers herein to a molecule which differs in amino acid sequence from a “parent” anti-P-selectin antibody amino acid sequence by virtue of addition, deletion and/or substitution of one or more amino acid residue(s) in the parent antibody sequence.
  • the variant comprises one or more amino acid substitution(s) in one or more constant or variable region(s) of the parent antibody, preferably in the constant region.
  • the variant may comprise at least one, e.g. from about one to about ten, and preferably from about two to about five, substitutions in one or more variable regions of the parent antibody.
  • the variant will have an amino acid sequence having at least 90% amino acid sequence identity with the parent antibody constant and/or variable domain sequences, more preferably at least 95%, and most preferably at least 99%.
  • Identity or homology with respect to this sequence is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the parent antibody residues, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. None of N-terminal, C-terminal, or internal extensions, deletions, or insertions into the antibody sequence shall be construed as affecting sequence identity or homology.
  • the variant retains the ability to bind human P-selectin and preferably has properties, which are superior to those of the parent antibody. For example, the variant may have a stronger binding affinity, enhanced ability to treat a disease associated with critical limb ischemia or peripheral arterial occlusive disease (CLI/PAOD).
  • the variant antibody of particular interest herein is one which displays at least about 4 fold, enhancement in inhibitory activity in the adhesion assay when compared to the parent antibody because of the elimination of the binding to the Fc ⁇ receptors.
  • the “parent” antibody herein is one, which is encoded by an amino acid sequence used for the preparation of the variant.
  • the parent antibody has a human framework region and, if present, has human antibody constant region(s).
  • the parent antibody may be a humanized or human antibody.
  • the antibodies according to the invention include, in addition, such antibodies having “conservative sequence modifications”, nucleotide and amino acid sequence modifications, which do not affect or alter the above-mentioned characteristics of the antibody according to the invention. Modifications can be introduced by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine.
  • a predicted nonessential amino acid residue in a human anti-P-selectin antibody can be preferably replaced with another amino acid residue from the same side chain family.
  • Amino acid substitutions can be performed by mutagenesis based upon molecular modeling as described by Riechmann, L., et al., Nature 332 (1988) 323-327 and Queen, C., et al., Proc. Natl. Acad. Sci. USA 86 (1989) 10029-10033.
  • the antibodies comprise an ⁇ -light chain constant region as defined by SEQ ID NO:23.
  • Preferred antibodies according to the invention are antibodies defined as IgG1v1 (PVA-236; GLPSS331 as specified by E233P; L234V; L235A; delta G236; A327G; A330S; P331S), IgG1v2 (L234A; L235A) and IgG4v1 (S228P; L235E).
  • these antibodies also comprise antibody fragments selected from the group consisting of Fab, F(ab′) 2 and single-chain fragments.
  • the invention further comprises a method for the production of an antibody according to the invention comprising the steps of a) transforming a host cell with a first nucleic acid sequence encoding a light chain of a parent human antibody according to the invention and a second DNA sequence encoding a heavy chain of said parent human antibody wherein the Fc part is modified in that said Fc part does not bind complement factor C1q and/or Fc receptor; b) expressing said first and second DNA sequence so that said antibody heavy and light chains are produced and c) recovering said antibody from the host cell or host cell culture.
  • the invention also refers to intermediate antibodies, i.e. anti-P-selectin antibodies characterized in that these antibodies are human or humanized antibodies and bind at least 1000 fold more specifically to P-selectin than to E- or L-selectin as measured in an ELISA assay wherein P- and E- and/or L-selectin are coated onto the microtiter plate.
  • these antibodies are IgG1 or IgG4 antibodies.
  • These antibodies may also comprise the amino acid sequence as defined by SEQ ID NO:24 ⁇ 1 heavy chain constant region or SEQ ID NO:27 ⁇ 4 heavy chain constant region.
  • these antibodies refer to the antibodies produced by a cell line selected from the group consisting of hu-Mab ⁇ P-selectin>LC 1004-001 (DSM ACC2640), hu-Mab ⁇ P-selectin>LC 1004-002 (DSM ACC2641) and hu-Mab ⁇ P-selectin>LC 1004-017(DSM ACC2642).
  • the antibodies according to the invention include, in addition, such antibodies having “conservative sequence modifications”, nucleotide and amino acid sequence modifications, which do not affect or alter the above-mentioned characteristics of the antibody according to the invention. Modifications can be introduced by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine.
  • a predicted nonessential amino acid residue in a human anti-P-selectin antibody can be preferably replaced with another amino acid residue from the same side chain family.
  • Amino acid substitutions can be performed by mutagenesis based upon molecular modeling as described by Riechmann, L., et al., Nature 332 (1988) 323-327 and Queen, C., et al., Proc. Natl. Acad. Sci. USA 86 (1989) 10029-10033.
  • the invention further embodies an antibody (such as for example an antibody molecule) containing a Fc part derived from human origin wherein the antibody binds to P-selectin and is non-binding to complement factor C1q and wherein, in a further embodiment, said antibody is selected from the group consisting of a) human subclass IgG1 antibody comprising at least one mutation in L234, L235, D270, N297,E318, K320, K322, P331 and P329 and b) human subclass IgG4 antibody wherein S228 is replaced by P and L235 is replaced by E.
  • an antibody such as for example an antibody molecule
  • the antibody is an anti-P-selectin antibody produced by a hybridoma cell line selected from the group consisting of DSM ACC2640, DSM ACC2641 and DSM ACC2642.
  • the invention also discloses pharmaceutical compositions of the antibody of the invention, further comprising at least one pharmaceutically acceptable excipient.
  • the invention further comprises a method for the preparation of such an antibody according to the invention under conditions which allow synthesis and recovery of the antibody, as well as pharmaceutical compositions of the such produced antibody.
  • the method of preparation may additionally comprise a nucleic acid molecule which encodes the antibody of the invention, a vector that comprises said nucleic acid molecule, and/or a host cell comprising said vector.
  • the invention also comprises a kit for the detection of the presence of P-selectin protein comprising the said antibody of the invention as disclosed above and further alternatively comprises one or more of the group consisting of a nucleic acid molecule which encodes the said antibody of the invention, a vector that comprises said nucleic acid molecule, and/or a host cell comprising said vector.
  • the invention also further comprises a method for treatment of a patient in need of therapy comprising administering to the patient a therapeutically effective amount of the antibody of the invention.
  • the invention further embodies a medicament comprising the antibody of the invention for use in such therapy administration and treatment and in particular for the treatment of inflammatory and thrombotic disorders, more particularly for the treatment of PAOD and CLI.
  • the present invention also comprises nucleic acid molecules encoding an antibody mentioned above, the corresponding vectors comprising these nucleic acids and the corresponding host cell for these vectors.
  • the invention encompasses a method for the preparation of the antibodies comprising culturing the corresponding host cells under conditions that allow synthesis of said antibody molecules and recovering said antibodies from said culture, e.g. by expressing a nucleic acid encoding a heavy chain and a nucleic acid encoding a light chain in a prokaryotic or eukaryotic host cell and recovering said polypeptide from said cell
  • the invention provides a method for determining the presence of the P-selectin protein comprising exposing a sample suspected of containing P-selectin to the anti-P-selectin antibody and determining binding of the antibody to the sample.
  • the invention provides a kit comprising the antibody and instructions for using the antibody to detect the P-selectin protein.
  • the antibodies of the present invention are useful for treatment of inflammatory and thrombotic diseases.
  • diseases include vascular disorders such as atherosclerosis, arterial and deep venous thrombosis, restenosis after angioplasty or stent placement.
  • Preferred applications are peripheral arterial occlusive disease (PAOD) and critical limb ischemia (CLI).
  • Other applications are the treatment of post-ischemic leukocyte-mediated tissue damage caused by myocardial infarction, cerebral ischemic event (e.g. stroke), renal infarction, and the like.
  • the antibodies are also suitable for treatment of sepsis, acute leukocyte-mediated lung-injury, and allergic reactions such as asthma.
  • Other applications are the prevention of organ transplant rejection and autoimmune diseases including rheumatoid arthritis.
  • tumor metastasis can be prevented by inhibiting the adhesion of circulating cancer cells.
  • the invention further provides a method for treating a mammal suffering from the abovementioned inflammatory and thrombotic disorders, especially from PAOD and CLI (peripheral arterial occlusive disease or critical limb ischemia).
  • PAOD and CLI peripheral arterial occlusive disease or critical limb ischemia
  • the invention further provides the use of the above antibodies for therapy, e.g. for the manufacture of medicaments for the treatment of these diseases.
  • the invention relates also to the use of the antibodies as defined above for the manufacture of a pharmaceutical composition and comprises a pharmaceutical composition containing an antibody according to the invention with a pharmaceutically effective amount, optionally together with a buffer and/or an adjuvant useful for the formulation of antibodies for pharmaceutical purposes.
  • the invention further provides pharmaceutical compositions comprising such antibodies in a pharmaceutically acceptable carrier.
  • the pharmaceutical composition may be included in an article of manufacture or kit.
  • the invention further provides hybridoma cell lines, which produce such antagonistic monoclonal antibodies, e.g. the parent antibodies, according to the invention.
  • hu-Mab ⁇ P-selectin>LC 1004-001 antibody HuMab 001
  • hu-Mab ⁇ P-selectin>LC 1004-002 antibody HuMab 002
  • hu-Mab ⁇ P-selectin>LC 1004-017 antibody HuMab 017
  • the antibodies obtainable from said cell lines are preferred embodiments of the invention.
  • the antibodies according to the invention are preferably produced by recombinant means. Such methods are widely known in the state of the art and comprise protein expression in prokaryotic and eukaryotic cells with subsequent isolation of the antibody polypeptide and usually purification to a pharmaceutically acceptable purity.
  • nucleic acids encoding light and heavy chains or fragments thereof are inserted into expression vectors by standard methods. Expression is performed in appropriate prokaryotic or eukaryotic host cells like CHO cells, NS0 cells, SP2/0 cells, HEK293 cells, COS cells, yeast, or E.coli cells, and the antibody is recovered from the cells (supernatant or cells after lysis).
  • the antibodies may be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form. Purification is performed in order to eliminate other cellular components or other contaminants, e.g. other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, column chromatography and others well known in the art. See Ausubel, F., et al., ed. Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York (1987).
  • NS0 cells Expression in NS0 cells is described by, e.g., Barnes, L. M., et al., Cytotechnology 32 (2000) 109-123; and Barnes, L. M., et al., Biotech. Bioeng. 73 (2001) 261-270.
  • Transient expression is described by, e.g., Durocher, Y., et al., Nucl. Acids. Res. 30 (2002) E9.
  • Cloning of variable domains is described by Orlandi, R., et al., Proc. Natl. Acad. Sci. USA 86 (1989) 3833-3837; Carter, P., et al., Proc. Natl. Acad. Sci.
  • HEK 293 A preferred transient expression system (HEK 293) is described by Schlaeger, E.-J., and Christensen, K., in Cytotechnology 30 (1999) 71-83 and by Schlaeger, E.-J., in J. Immunol. Methods 194 (1996) 191-199.
  • control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding site.
  • Eukaryotic cells are known to utilize promoters, enhancers and polyadenylation signals.
  • Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence.
  • DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
  • a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
  • “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading frame. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
  • the monoclonal antibodies are suitably separated from the culture medium by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • DNA and RNA encoding the monoclonal antibodies are readily isolated and sequenced using conventional procedures.
  • the hybridoma cells can serve as a source of such DNA and RNA.
  • the DNA may be inserted into expression vectors, which are then transfected into host cells such as HEK 293 cells, CHO cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of recombinant monoclonal antibodies in the host cells.
  • Amino acid sequence variants (or mutants) of a human P-selectin antibody are prepared by introducing appropriate nucleotide changes into the antibody DNA, or by nucleotide synthesis. Such modifications can be performed, however, only in a very limited range, e.g. as described above. For example, the modifications do not alter the abovementioned antibody characteristics such as the IgG isotype and epitope binding, but may improve the yield of the recombinant production, protein stability or facilitate the purification.
  • cysteine residues not involved in maintaining the proper conformation of the anti-P-selectin antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking.
  • cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
  • Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.
  • Glycosylation of antibodies is typically N-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
  • the tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
  • glycosylation sites are conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites).
  • Nucleic acid molecules encoding amino acid sequence variants of anti-P-selectin antibodies are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of humanized anti-P-selectin antibody.
  • the invention also pertains to immunoconjugates comprising the antibody according to the invention conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant or animal origin, or fragments thereof), a radioactive isotope (i.e., a radioconjugate) or a prodrug of an agent for the prophylaxis or treatment of inflammatory and thrombotic disorders, especially from PAOD and CLI.
  • a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant or animal origin, or fragments thereof), a radioactive isotope (i.e., a radioconjugate) or a prodrug of an agent for the prophylaxis or treatment of inflammatory and thrombotic disorders, especially from PAOD and CLI.
  • a cytotoxic agent such as
  • Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters; (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediatnine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene).
  • SPDP N-succinimidyl-3
  • a ricin immunotoxin can be prepared as described in Vitetta, E. S., et al., Science 238 (1987) 1098-1104).
  • Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO 94/11026.
  • Another type of covalent modification involves chemically or enzymatically coupling glycosides to the antibody. These procedures are advantageous in that they do not require production of the antibody in a host cell that has glycosylation capabilities for N— or O-linked glycosylation.
  • the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine.
  • arginine and histidine arginine and histidine
  • free carboxyl groups such as those of cysteine
  • free hydroxyl groups such as those of serine, threonine, or hydroxyproline
  • aromatic residues such as those of phenylalanine
  • Removal of any carbohydrate moieties present on the antibody may be accomplished chemically or enzymatically.
  • Chemical deglycosylation requires exposure of the antibody to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the antibody intact.
  • Chemical deglycosylation is described by Sojahr, H. T., and Bahl, O. P., Arch. Biochem. Biophys. 259 (1987) 52-57 and by Edge, A. S., et al. Anal. Biochem. 118 (1981) 131-137.
  • Enzymatic cleavage of carbohydrate moieties on antibodies can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura, N. R., and Bahl, O. P., Meth. Enzymol. 138 (1987) 350-359.
  • Another type of covalent modification of the antibody comprises linking the antibody to one of a variety of nonproteinaceous polymers, eg., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
  • nonproteinaceous polymers eg., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes
  • the invention provides isolated B-cells from a transgenic non-human animal, e.g. a transgenic mouse, which express the human anti-P-selectin antibodies (e.g. the parent antibodies produced by a cell line selected from the group consisting of hu-Mab ⁇ P-selectin>LC 1004-001 (DSM ACC2640), hu-Mab ⁇ P-selectin>LC 1004-002 (DSM ACC2641) and hu-Mab ⁇ P-selectin>LC 1004-017(DSM ACC2642) according to the invention.
  • KM mice are suitable transchromosomal mice.
  • the KM mouse contains a human heavy chain transchromosome and a human kappa light chain transgene.
  • the endogenous mouse heavy and light chain genes also have been disrupted in the KM mice such that immunization of the mice leads to production of human immunoglobulins rather than mouse immunoglobulins. Construction of KM mice and their use to raise human immunoglobulins is described in detail in WO 02/43478.
  • the isolated B cells are obtained from a transgenic non-human animal, e.g., a transgenic mouse, which has been immunized with a purified or recombinant form of P-selectin antigen and/or cells expressing P-selectin.
  • the transgenic non-human animal e.g. a transgenic mouse
  • the isolated B-cells are then immortalized to provide a source (e.g. a hybridoma) of human anti-P-selectin antibodies.
  • the present invention also provides a hybridoma capable of producing human monoclonal antibodies according to the invention.
  • the hybridoma includes a B cell obtained from a transgenic non-human animal, e.g., a transgenic mouse having a genome comprising a human heavy chain transgene and a human light chain transgene encoding all or a portion of an antibody of the invention, fused to an immortalized cell.
  • the transgenic non-human animal is a transgenic mouse having a genome comprising a human heavy chain transgene and a human light chain transgene encoding all or a portion of an antibody of the invention.
  • the transgenic non-human animal can be immunized with a purified or enriched preparation of P-selectin antigen and/or cells expressing P-selectin.
  • the transgenic non-human animal e.g. the transgenic mouse, is capable of producing P-selectin isotypes of human monoclonal antibodies to P-selectin.
  • the human monoclonal antibodies according to the invention can be produced by immunizing a transgenic non-human animal, e.g. a transgenic mouse, having a genome comprising a human heavy chain transgene and a human light chain transgene encoding all or a portion of an antibody of the invention, with a purified or enriched preparation of P-selectin antigen and/or cells expressing P-selectin.
  • B cells e.g. splenic B cells
  • myeloma cells to form immortal, hybridoma cells that secrete human monoclonal antibodies against P-selectin.
  • human monoclonal antibodies directed against P-selectin can be generated using transgenic mice carrying parts of the human immune system rather than the mouse system.
  • transgenic mice referred to herein as “HuMab” mice, contain a human immunoglobulin gene miniloci that encodes unrearranged human immunoglobulin genes which include the heavy ( ⁇ and ⁇ ) and ⁇ light chain (constant region genes), together with targeted mutations that inactivate the endogenous ⁇ and ⁇ chain loci (Lonberg, N., et al., Nature 368 (1994) 856-859).
  • mice exhibit reduced expression of mouse IgM or K, and in response to immunization, the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity human IgG monoclonal antibodies (Lonberg, N., et al., Nature 368 (1994) 856-859; reviewed in Lonberg, N., Handbook of Experimental Pharmacology 113 (1994) 49-101; Lonberg, N., and Huszar, D., Intern. Rev. Immunol. 25 (1995) 65-93; and Harding, F., and Lonberg, N., Ann. N. Acad. Sci 764 (1995) 536-546).
  • HuMab mice The preparation of HuMab mice is described in Taylor, L., et al., Nucleic Acids Research 20 (1992) 6287-6295; Chen, J., et al., International Immunology 5 (1993) 647-656; Tuaillon, N., et al., Proc. Natl. Acad. Sci USA 90 (1993) 3720-3724; Choi, T. K., et al., Nature Genetics 4 (1993) 117-123; Chen, J., et al., EMBO J. 12 (1993) 821-830; Tuaillon, N., et al., Immunol.
  • HuMab mice can be immunized with a purified or enriched preparation of P-selectin antigen and/or cells expressing P-selectin in accordance with the general method, as described by Lonberg, N., et al., Nature 368 (1994) 856-859; Fishwild, D. M., et al., Nat. Biotechnol. 14 (1996) 845-851 and WO 98/24884.
  • the mice will be 6-16 weeks of age upon the first immunization.
  • a purified or enriched preparation of soluble P-selectin antigen e.g.
  • mice can also be immunized with cells expressing P-selectin, e.g., a tumor cell line, to promote immune responses. Cumulative experience with various antigens has shown that the HuMab transgenic mice respond best when initially immunized intraperitoneally (i.p.) with antigen in complete Freund's adjuvant, followed by every other week i.p. immunizations (for example, up to a total of 6) with antigen in incomplete Freund's adjuvant.
  • the immune response can be monitored over the course of the immunization protocol with plasma samples being obtained by retroorbital bleeds.
  • the plasma can be screened by ELISA, and mice with sufficient titers of anti-P-selectin human immunoglobulin can be used for immortalization of corresponding B cells.
  • Mice can be boosted intravenously with antigen 3 to 4 days before sacrifice and removal of the spleen and lymph nodes. It is expected that 2-3 fusions for each antigen may need to be performed.
  • Several mice will be immunized for each antigen. For example, a total of twelve HuMab mice of the HCo7 and HCo12 strains can be immunized.
  • the HCo7 mice have a JKD disruption in their endogenous light chain (kappa) genes (as described in Chen, J., et al., EMBO J. 12 (1993) 821-830), a CMD disruption in their endogenous heavy chain genes (as described in Example 1 of WO 01/14424), a KCo5 human kappa light chain transgene (as described in Fishwild, D. M., et al., Nat. Biotechnol. 14 (1996) 845-851), and a HCo7 human heavy chain transgene (as described in U.S. Pat. No. 5,770,429).
  • mice have a JKD disruption in their endogenous light chain (kappa) genes (as described in Chen, J., et al., EMBO J. 12 (1993) 821-830), a CMD disruption in their endogenous heavy chain genes (as described in Example 1 of WO 01/14424), a KCo5 human kappa light chain transgene (as described in Fishwild, D. M., et al., Nat. Biotechnol.
  • mice 14 (1996) 845-851), and a HCo12 human heavy chain transgene (as described in Example 2 of WO 01/14424).
  • the mouse lymphocytes can be isolated and fused with a mouse myeloma cell line using PEG based on standard protocols to generate hybridomas.
  • the resulting hybridomas are then screened for the production of antigen-specific antibodies. For example, single cell suspensions of splenic and lymph node-derived lymphocytes from immunized mice are fused to one-sixth the number of SP 2/0 nonsecreting mouse myeloma cells (ATCC, CRL 1581) with 50% PEG. Cells are plated at approximately 2 ⁇ 10 5 in flat bottom microtiter plate, followed by about two weeks incubation in selective medium.
  • CDR sequences are responsible for antibody-antigen interactions
  • Such framework sequences can be obtained from public DNA databases that include germline human antibody gene sequences.
  • germline sequences will differ from mature antibody gene sequences because they will not include completely assembled variable genes, which are formed by V(D)J joining during B cell maturation. Germline gene sequences will also differ from the sequences of a high affinity secondary repertoire antibody at individual evenly across the variable region.
  • the invention further comprises the use of an antibody according to the invention for the diagnosis of P-selectin in vitro, preferably by an immunological assay determining the binding between P-selectin of a sample and the antibody according to the invention.
  • the present invention provides a composition, e.g. a pharmaceutical composition, containing one or a combination of human monoclonal antibodies, or the antigen-binding portion thereof, of the present invention, formulated together with a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier e.g. a pharmaceutical or a diagnostic composition and even more specifically the pharmaceutical composition comprises an antibody as defined above and at least one pharmaceutically acceptable excipient.
  • compositions of the invention also can be administered in combination therapy, i.e., combined with other agents.
  • the combination therapy can include a composition of the present invention with at least one agent useful in the prophylaxis or treatment a disease associated with critical limb ischemia (CLI/PAOD) or other conventional therapy.
  • CLI/PAOD critical limb ischemia
  • “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible.
  • the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g. by injection or infusion).
  • a “pharmaceutically acceptable salt” refers to a salt that retains the desired biological activity of the antibody and does not impart any undesired toxicological effects (see e.g. Berge, S. M., et al., J. Pharm. Sci. 66 (1977) 1-19). Such salts are included in the invention. Examples of such salts include acid addition salts and base addition salts. Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric salts.
  • composition of the present invention can be administered by a variety of methods known in the art. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results.
  • the compound may be administered to a subject in an appropriate carrier, for example, liposomes, or a diluent.
  • an appropriate carrier for example, liposomes, or a diluent.
  • Pharmaceutically acceptable diluents include saline and aqueous buffer solutions.
  • compositions or carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • the use of such media and agents for pharmaceutically active substances is known in the art.
  • parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion.
  • compositions may also contain excipients or adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
  • the compounds of the present invention which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • the selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
  • a typical weekly dosage might range from about 0.1 mg/kg to about 20 mg/kg or more, depending on the factors mentioned above.
  • the composition must be sterile and fluid to the extent that the composition is deliverable by syringe.
  • the carrier can be an isotonic buffered saline solution, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof.
  • Proper fluidity can be maintained, for example, by use of coating such as lecithin, by maintenance of required particle size in the case of dispersion and by use of surfactants.
  • isotonic agents for example, sugars, polyalcohoils such as mannitol or sorbitol, and sodium chloride in the composition.
  • Long-term absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate or gelatin.
  • the invention comprises a method for the treatment of a patient in need of therapy, characterized by administering to the patient a therapeutically effective amount of an antibody which binds P-selectin, contains a Fc part derived from human origin and does not bind complement factor C1q.
  • the invention comprises the use of an antibody which binds P-selectin, contains a Fc part derived from human origin and does not bind complement factor C1q for therapy.
  • the invention comprises the use of an antibody which binds P-selectin, contains a Fc part derived from human origin and does not bind complement factor C1q for the preparation of a medicament for the prophylaxis and treatment of inflammatory and thrombotic disorders.
  • the invention comprises the use of an antibody which binds P-selectin, contains a Fc part derived from human origin and does not bind complement factor C1q for the treatment of PAOD and CLI.
  • the present invention thus provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E.
  • the antibody is a human antibody.
  • the antibody is a humanized antibody.
  • the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein non-binding of the antibody to complement factor C1q refers to an ELISA assay measurement wherein the maximal binding (Bmax) of C1q to the antibody at a concentration of 10 ⁇ g/ml of the antibody is ⁇ 30% of Bmax of the antibody LC 1004-002 of cell line hu-Mab ⁇ P-selectin>LC 1004-002 (DSM ACC2641). In another embodiment the maximal binding is ⁇ 20% of Bmax of the antibody LC 1004-002 of cell line hu-
  • the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein the antibody binds to P-selectin with a K D value of less than 10 ⁇ 8 M in a BIAcore assay.
  • the K D range is 10 ⁇ 11 to 10 ⁇ 9 M.
  • the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein the antibody binds at least 1000 fold more specifically to P-selectin than to E- and/or L-selectin as measured by EC50 values in an ELISA assay, wherein P- and E- and/or L-selectin are coated onto the microtiter plate.
  • the EC50 values on E- and L-selectin transfectants are above 100 ⁇ g/ml.
  • the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein the antibody inhibits the adhesion of leukocyte-like HL60 cells to purified P-selectin with an IC50 value of no more than 1 ⁇ g/ml.
  • the IC50 value is in the range of 0.08 to 0.5 ⁇ g/ml.
  • the IC50 value is in the range of 0.08 to 0.11 ⁇ g/ml.
  • the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein
  • the present invention provides an antibody binding to P-selectin characterized in that the variable heavy chain amino acid sequence CDR3 of said antibody is selected from the group consisting of the heavy chain CDR3 sequences SEQ ID NO: 38, 39, 40, 41 or 42.
  • the present invention provides an antibody binding to P-selectin, comprising a variable heavy chain and a variable light chain, characterized in that the variable heavy chain comprises CDR sequences CDR1, CDR2 and CDR3 and CDR1 being selected from the group consisting of SEQ ID NOs: 29, 30, 31, 32, CDR2 being selected from the group consisting of SEQ ID NOs: 33, 34, 35, 36, 37, CDR3 being selected from the group consisting of SEQ ID NOs: 38, 39, 40, 41, 42, wherein said CDRs are selected independently of each other.
  • the present invention provides an antibody characterized in that the variable light chain comprises CDR sequences CDR1, CDR2 and CDR3, and CDR1 is selected from SEQ ID NOs: 43, 44, CDR2 is selected from SEQ ID NOs: 45, 46 and CDR3 is selected from SEQ ID NOs: 47, 48, 49, 50, 51, 52 wherein said CDRs are selected independently of each other.
  • the present invention provides an antibody, characterized in that said antibody binds P-selectin and that the antibody comprises a variable region independently selected from the group consisting of
  • the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein the antibody comprises the CDR1, CDR2 and CDR3 regions of the light chain variable domain defined by amino acid sequence SEQ ID NO:3 and the CDR1, CDR2 and CDR3 regions of the heavy chain variable domain defined by SEQ ID NO:4. In another embodiment the antibody comprises the light chain variable domain defined by amino acid sequence SEQ ID NO:3 and the heavy chain variable domain defined by SEQ ID NO:4.
  • the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein
  • the present invention provides an anti-P selectin antibody, characterized in that it a) is a human or humanized antibody, and b) binds at least 1000 fold more specifically to P-selectin than to E- or L-selectin as measured by EC50 values in an ELISA assay, wherein P- and E- and/or L-selectin are coated onto the microtiter plate.
  • the antibody comprises the amino acid sequence as defined by SEQ ID NO:24, 25 or 26 ⁇ 1 heavy chain constant region or SEQ ID NO:27 or 28 ⁇ 4 heavy chain constant region.
  • the antibody is produced by a cell line selected from the group consisting of hu-Mab ⁇ P-selectin>LC 1004-001 (DSM ACC2640), hu-Mab ⁇ P-selectin>LC 1004-002 (DSM ACC2641) and hu-+Mab ⁇ P-selectin>LC 1004-017(DSM ACC2642).
  • Antibody HuMab 00X is also named antibody 00X
  • HuMab hybridomas were cultured in IMDM (Cambrex), Fetal clone 1 Bovine serum (Perbio Science), origin Hybridoma cloning factor (Igen), sodium pyruvate, penicillin/streptomycin, 2-mercaptoethanol, HAT (Sigma-Aldrich) and Kanamycin (Invitrogen) in 37° C. and 5% CO 2 .
  • Anti-P-selectin titers in sera of immunized mice were determined by antigen specific ELISA. Plate (96 flat bottom ELISA plate, Greiner) was coated with 0.1 ⁇ g/ml purified P-selectin dissolved in PBS and coated overnight at room temperature. Thereafter, wells were blocked with PBSTC (PBS containing 0.05% Tween 20 (Sigma-Aldrich Chemie BV) and 2% chickenserum (Gibco)) for 1 hour at room temperature.
  • PBSTC PBS containing 0.05% Tween 20 (Sigma-Aldrich Chemie BV) and 2% chickenserum (Gibco)
  • Tested serum taps were diluted 1:100 in PBSTC and added to the wells. Serum obtained from mice prior to immunization was dissolved 1:100 in PBSTC and used as negative control. A mouse antibody directed against human P-selectin ( 1/7, produced in house by Roche Basel) was dissolved 1:100 in PBSTC and used as a positive control. Plates were incubated for 1 hour at room temperature. Subsequently, plates were washed twice using PBST (PBS containing 0.05% Tween 20. Gt- ⁇ -huIgG-HRP (Jackson) was diluted 1:5000 in PBSTC and added to the wells containing the tested taps and the negative control.
  • PBST PBS containing 0.05% Tween 20.
  • Rb- ⁇ -mIgG (Jackson) was diluted 1:3000 in PBSTC and added to the wells containing the positive control. Plates were incubated for 1 hour at room temperature. Finally, plates were washed twice using PBST and developed with freshly prepared ABTS® solution (1 mg/ml) (ABTS: 2,2′-azino bis (3-ethylbenzthiazoline-6-sulfonic acid) for 30 minutes at room temperature (RT) in the dark. Absorbance was measured at 405 nm.
  • mice were additionally boosted twice with 20 ⁇ g recombinant human P-selectin in 100 ⁇ l PBS, intraveneously 4 and 3 days before fusion.
  • mice were sacrificed and the spleen and lymph nodes flanking the abdominal aorta and vena cava were collected. Fusion of splenocytes and lymph node cells with the fusion partner SP 2.0 cells was performed according to standard operating procedures.
  • a ⁇ -ELISA was performed. ELISA plates were coated with rat anti-human IgG ⁇ -light chain antibody (DAKO) diluted 1/10000 in PBS by overnight incubation at 4° C. After discarding the wells, plates were blocked by incubation with PBSTC for 1 hour at room temperature. Thereafter, wells were incubated with hybridoma culture supernatant, 1/2 diluted in PBSTC. Culture medium 1/2 diluted in PBSTC was used as negative control, ⁇ -light positive mouse serum 1/100 diluted in PBSTC served as positive control.
  • DAKO rat anti-human IgG ⁇ -light chain antibody
  • nucleotide sequences coding for the light chain variable region V L and the heavy chain variable region V H of the P-selectin HuMabs were isolated by a standard cDNA synthesis/PCR procedure.
  • RNA was prepared from 1 ⁇ 10 6 ⁇ 1 ⁇ 10 7 hybridoma cells using the RNeasy® Mini Kit (Qiagen). Hybridoma derived RNA was used as a template for the 1 st strand cDNA synthesis which was performed according to a conventional method making use of an oligo dT primer. 2 nd -strand cDNA synthesis and further PCR amplification of V L and V H encoding cDNA fragments were performed with reverse light and heavy chain primers complementary to nucleotide sequences of the ⁇ -light and ⁇ 1-heavy chain constant region and 5′-specific light and heavy chain primers, respectively.
  • PCR products were cloned using the TOPO® TA cloning kit from InvitrogenTM life technologies and pCR4-TOPO® as a cloning vector. Cloned PCR products were identified by restriction mapping of the appropriate plasmids using EcoRi for digestion and expected/calculated DNA fragment sizes of about 740 and 790 bp for V L and V H , respectively.
  • the DNA sequence of cloned PCR fragments was determined by double strand sequencing.
  • the GCG® (Genetics Computer Group, Madison, Wis.) software package version 10.2 was used for general data processing. DNA and protein sequences were aligned using the GCG® modul CLUSTALW. Sequence alignments were tabulated, edited and color-coded using the program GENEDOC® (version 2.1).
  • the anti-P-selectin HuMab light and heavy chain encoding genes were separately assembled in mammalian cell expression vectors.
  • the transcription unit of the anti-P-selectin HuMab ⁇ -light chain is composed of the following elements:
  • the transcription unit of the anti-P-selectin HuMab ⁇ 1-heavy chain is composed of the following elements:
  • An anti-P-selectin ⁇ 4-heavy chain prototype expression plasmid was derived from the anti-P-selectin ⁇ 1-heavy chain expression plasmid by replacing the human genomic ⁇ 1-constant region and ⁇ 1-immunoglobulin polyadenylation (“poly A”) signal sequence by the human genomic ⁇ 4-constant region and ⁇ 4-immunoglobulin polyadenylation-signal sequence.
  • Expression plasmids encoding mutant anti-P-selectin ⁇ 1- and ⁇ 4-heavy chains were created by site-directed mutagenesis of the wild type expression plasmids using the QuickChangeTM Site-Directed mutagenesis Kit (Stratagene).
  • IgG1 IgG1v1 PVA-236 The amino acid sequence GLPSS331 Glu 233 Leu 234 Leu 235 G1y 236 (SEQ ID as specified NO: 53) of the human ⁇ 1-heavy by chain is replaced by the amino acid E233P; sequence Pro 233 Val 234 Ala 235 of the L234V; human ⁇ 2-heavy chain.
  • L235A The amino acid sequence delta G236; Ala 327 Leu 328 Pro 329 A1a 330 Pro 331 A327G; (SEQ ID NO: 54) of the human A330S; ⁇ 1-heavy chain is replaced by the P331S amino acid sequence SEQ ID Gly 327 Leu 328 Pro 329 Ser 330 Ser 331 NO: 25 (SEQ ID NO: 55) of the human ⁇ 4-heavy chain IgG1 IgG1v2 L234A; The amino acid sequence L235A Leu 234 Leu 235 of the human ⁇ 1-heavy SEQ ID chain is replaced by the amino acid NO: 26 sequence Ala 234 A1a 235 IgG4 IgG4v1 S228P; Ser 228 of the human ⁇ 4-heavy chain L235E is replaced by Pro 228 and Leu 235 of SEQ ID the human ⁇ 4-heavy chain is NO: 28 replaced by Glu 235
  • Recombinant HuMabs were generated by transient transfection of adherent HEK293-EBNA cells (ATTC # CRL-10852) cultivated in DMEM (Gibco) supplemented with 10% ultra-low IgG FCS (Gibco), 2 mM Glutamine (Gibco), 1% v/v nonessential aminoacids (Gibco) and 250 ⁇ g/ml G418 (Roche).
  • FugeneTM 6 (Roche) Transfection Reagent was used in a ratio of reagent ( ⁇ l) to DNA ( ⁇ g) ranging from 3:1 to 6:1.
  • Immunoglobulin light and heavy chains were expressed from two different plasmids using a molar ratio of light chain to heavy chain encoding plasmid from 1:2 to 2:1.
  • HuMab containing cell culture supernatants were harvested at day 4 to 11 after transfection. Supernatants were stored at ⁇ 20° C. until purification.
  • the wells were preincubated with 50 ⁇ l of different dilutions of the P-selectin HuMabs or reference mouse P-selectin antibodies (WAPS 12.2, respective hybridoma cell line provided by ATCC) in the above-mentioned buffer containing 1% BSA for 20 minutes at RT.
  • the labeled HL60 cells (50 ⁇ l, 70,000 cells/well) were added and allowed to bind for 45 min at RT.
  • the HL60 cells were preincubated with 20 ⁇ g/ml of human IgG1 for 30 minutes prior to their addition to the wells in order to block Fc receptors.
  • the adherent cells were lysed with 120 ⁇ l NP-40 (Fluka; 1% in H 2 O). 100 ⁇ l of the supernates were transferred to plates to measure the respective fluorescence at an excitation wavelength of 485 nm and an emission of 538 nm using a luminescence spectrometer LS 50B (Perkin Elmer).
  • Rosetting assay To evaluate the effect of the antibodies on the interaction of activated platelets with HL60 cells a rosetting assay (Jungi et al, Blood 67:629 (1986)) in combination with double color cytofluorimetric analysis (Evangelista et al., Blood 88:4183 (1996) was applied. Washed human platelets were prepared as described (Fox et al, Methods Enzymol 215:45 (1992)). They were activated with thrombin (final conc 1 U/ml) for 5 min and labeled with a FITC-conjugated anti-human GPIIb antibody pl-36 (Kouns et al., J Biol Chem 267:18844 (1992)).
  • HL60 cell-gated events Five thousand HL60 cell-gated events were measured for each sample.
  • a sample in which non-activated or thrombin-activated platelets were mixed with HL60 cells in the presence of EDTA (10 mmol/l) was used to set a threshold on the green fluorescence scale.
  • the percentage of HL60 cells above the threshold represents the percentage of HL60 cell binding platelets.
  • the shift of the platelet marker fluorescence towards lower fluorescence values reflects the reduction of the number of mixed aggregates with a higher number of adhering platelets in favor of an increase of the number of mixed aggregates with a low number of adhering platelets.
  • the P-selectin antibodies inhibited the adhesion of the HL60 cells to purified P-selectin with IC50 values in the range of 0.08-0.5 ⁇ g/ml, Although the mutations were introduced in the Fc portion of the antibody, both the IgG4 and IgG1 variants of HuMabs were more potent than the parent antibody with IC50 values of 0.08-0.11 ⁇ g/ml as illustrated in FIG. 1 .
  • the potency of the parent non-mutated antibodies is also increased with an about 3 to 4-fold reduction of the IC50 value, as demonstrated for HuMab 002 in FIG. 1 . This finding suggests that the increased efficacy of the mutants in the adhesion assay is primarily due to the elimination of the adhesion of the HL60 cells to P-selectin via the Fc portion of the antibody to the Fc ⁇ receptors.
  • the IC50 values of the HuMabs were even below those of the adhesion assay due to the lower number of P-selectin receptors in this assay (IC50: 0.05-0.3 ⁇ g/ml, preferably between 0.05 and 0.2 ⁇ g/ml).
  • the efficacy of the Fc variants of the respective HuMabs tends to be increased as compared to the non-mutated parent antibody ( FIG. 2 ).
  • the cross-reactivity of the P-selectin HuMabs was evaluated by measuring (i) the binding of the HuMabs to activated platelets from rat and cynomologus monkey using FACS® analysis and (ii) their inhibitory activity in the rosetting assay evaluating the adhesion of rat and cynomologus platelets to HL60 cells.
  • washed rat and cynomologus platelets were prepared similar to preparing washed human platelets (s. above). They were activated with thrombin (final conc 1 U/ml) for 5 min. Activated platelets were incubated with different dilutions of the HuMabs (20 ⁇ l) for 30 min at RT. After binding of the HuMabs the platelets were fixed with PFA 2% at RT for 15 min. Samples were washed with Tyrode buffer and resuspended in 300 ml Tyrode.
  • the binding of the HuMabs was detected with a FITC-conjugated F(ab′) 2 fragment of rabbit anti-human IgG (Code No. F0056, Dako).
  • a control antibody inhibiting rat P-selectin a rabbit anti-human polyclonal anti-P-selectin antibody (Code No. 09361A, Pharmingen) was used.
  • washed rat and cynomologus platelets were prepared as described above for human platelets.
  • the rosetting assay was performed essentially as described for human platelets.
  • the FITC-conjugated anti-human GPIIb antibody pl-36 was used, whereas the rat platelets were labeled with the FITC-conjugated mouse anti-rat CD61 antibody (Code No. 554952, Pharmingen).
  • the selectivity of the P-selectin HuMabs vs E- and L-selectin was determined in a cell-free ELISA measuring the binding of the antibodies to recombinant E- and L-selectin (ADP1 and ADP2, R&D Systems) and a cell-based ELISA measuring the binding of the antibodies to E-selectin-CHO transfectants and L-selectin-300.19 transfectants (transfectants were generated as described in Goetz et al., J Cell Biol 137:509 (1997); Ley et al., Blood 82:1632 (1993)).
  • the wells were preincubated with 50 ⁇ l of different dilutions of the P-selectin HuMabs or reference mouse P-, E-selectin antibody (BBA26; R&D Systems) and goat L-selectin antibody (AF728; R&D Systems) in the above-mentioned buffer containing 1% BSA overnight at RT.
  • the binding of the HuMabs was detected by using a biotinylated anti-human IgG (Amersham, RPN1003, Final concentration 1:1000) or for the control antibodies the corresponding biotinylated anti-mouse or anti-goat IgG.
  • TopBlockTM Code No. TB23201 0; Juro
  • 50 ⁇ l of different dilutions of the P-selectin HuMabs or reference mouse P- and E-selectin antibody (s. above) in the above-mentioned buffer containing 1% TopBlockTM and 0.1% azide were added and incubated for 60 min at RT. After washing the wells (4 times), the bound antibodies were detected using the same steps as mentioned above for the cell-free ELISA.
  • the cell-based ELISA format had to be modified by plating the L-selectin-300.19 transfectants into wells of 96 well polystyrene filter plates (Corning 3510). Using the filter plates blocking and incubation solutions were removed by filtering them through the bottom of the plates, but otherwise the protocol was similar to that using P- and E-selectin-CHO cells. As controls non-transfected CHO and 300.19 were used.
  • the antibodies of the invention were highly selective vs E- and L-selectin. They bound to P-selectin-CHO cells with EC50 values in the range of 0.01 to 0.08 ⁇ g/ml, preferably in the range of 0.01 to 0.04 ⁇ g/ml, whereas the EC50 values on E-selectin-CHO cells and L-selectin-300.19 were dearly above 50 ⁇ g/ml, preferably above 100 ⁇ g/ml.
  • HuMab 002 had highest selectivity with a selectivity factor vs E- and L-selectin of more than 4,000 fold in the cell-based ELISA.
  • HuMab 002 does not bind to E- and L-selectin transfectants above baseline levels up to a concentration of 100 ⁇ g/ml.
  • the selectivity of the Fc variants IgG4v1 and IgG1v1 of HuMab 002 is similar to that of the parent HuMab 002 ( FIG. 4a-c ).
  • a human blood flow system which allows the measurement of the interaction of human leukocytes with human platelets at different shear rates was used essentially as described (Kirchhofer et al., Blood 89:1270 (1997)).
  • human whole blood drawn from the antecubital vein of a healthy donor was perfused over a collagen surface simulating an injured denuded vessel wall.
  • Collagen-coated coverslips were prepared as described (Kirchhofer et al., Blood 89:1270 (1997)). They were positioned in three parallel plate perfusion chambers.
  • the P-selectin antibodies (the HuMabs, mutants, respective reference antibodies or human IgG1 and IgG4 as controls) were administered at different concentrations and the blood-inhibitor mixture then entered the perfusion chamber containing the collagen-coated coverslips. After a 5.5 minute perfusion period, PBS is perfused through the perfusion chamber without interrupting the flow for 3 min. After a brief interruption of flow the chambers were fixed with 3% paraformaldehyde in PBS at 1 ml/min for 2 min. Then the coverslips were removed from the chambers, fixed again for 1 h in 3% paraformaldehyde in PBS at 4° C. and stored in PBS-0.03% sodium azide.
  • the P-selectin HuMabs inhibited the adhesion of leukocytes to the platelet monolayer in a concentration-dependent manner. At a shear rate of 65/s and a concentration of 10 ⁇ g/ml the HuMabs inhibited the adhesion of leukocytes by 60-99%, preferably 70-99 %. The inhibitory effect of the HuMabs was more pronounced at the higher shear rate of 280/s (closer to the arterial situation) as compared to the venous shear rate of 65/s. Overall, at a shear rate of 280/s the number of adhering leukocytes was lower than at 65/s.
  • the above-mentioned human blood flow system was used in a set up in which endothelial cells were coated onto the coverslips.
  • Human umbilical vein endothelial cells (HUVEC) from umbilical cords were isolated by digestion with collagenase Type II (Roche Switzerland) according to the method of Jaffe et al, Culture of human endothelial cells derived from umbilical veins. J. Olin. Invest. 52, 2745-2756 (1973).
  • HUVECs were grown to confluency (approx.
  • HUVECs 4 days
  • Thermanox® plastic coverslips approximately 200,000 ECs/coverslip
  • Thermanox® plastic coverslips approximately 200,000 ECs/coverslip
  • Thermanox® plastic coverslips approximately 200,000 ECs/coverslip
  • Thermanox® plastic coverslips were allowed to settle and became confluent over 1-2 days. They were stimulated with 20 ng/ml IL-4 (R&D Systems) 24 h before starting the perfusion and with 10 ⁇ 4 M histamine (Fluka, Germany) 5-10 min prior to the perfusion. Each experiment was performed with HUVECs at passage 1.
  • the coverslips with confluent monolayers of stimulated HUVECs were positioned into the parallel plate perfusion chambers as described above. Similar to the perfusion experiments described above, whole blood was drawn from healthy donors. However in these experiments, the blood was anticoagulated with a thrombin inhibitor Ro-46-6240 (10 ⁇ M) and preincubated with different concentrations of the P-selectin antibodies (HuMabs, mutants, respective reference antibodies) or human IgG1 and IgG4 as controls for 5 min just prior to the perfusion over the activated endothelial cells. The blood flow was adjusted to 1 ml/min, the shear rate 65/s and the perfusion time 5.5 min.
  • the HUVECs with the adhering leukocytes were fixed with 3% paraformaldehyde for 2 min under the same flow conditions as described. Then the coverslips were removed from the chambers, immersed in fresh fixative for 1 h, and stored in PBS-0.02% sodium azide.
  • the leukocytes were stained with a mouse antibody against the leukocyte common antigen CD45, which was labeled beforehand using a modified biotinylated anti-mouse immunoglobulin (Animal Research Kit, Dako, USA). The nuclei were counterstained with hematoxylin (J.T Baker, Holland).
  • the stimulation of the HUVECs with the combination of IL-4 and histamine resulted in the expression of P-selectin and the adhesion of different types of leukocytes with granulocytes (including PMNs and eosinophils) constituting the prevailing portion of adhering leukocytes.
  • the HuMabs of the invention inhibited the adhesion of the total leukocyte population by 60-90% at 3 ⁇ g/ml. Overall the inhibitory activity of the Fc variants was not significantly different from that of the non-mutated HuMabs.
  • the P-selectin HuMabs demonstrate a differential effect on the different leukocyte subtypes.
  • the effect on granulocytes is more pronounced as compared to mononuclear leukocytes.
  • the antibodies according to the invention inhibited the adhesion of granulocytes (including PMNs and eosinophils) by 90-99%, monocytes by 50-88%, and lymphocytes by 5-40%.
  • the respective decrease in the absolute numbers of the different leukocyte subtypes is representatively given for IgG4v1 in FIG. 6 .
  • C1q is part of the adaptive immune system and, upon binding to immune complexes, triggers the sequential activation of several zymogens.
  • the enzymes in turn, cause the cleavage of C3 molecules, which can result in the onset of inflammatory reactions, opsonization of foreign or aberrant particles and lysis of cell membranes.
  • the ELISA plate is coated with concentration ranges of the antibody, to which human C1q or human pooled serum, as a source of C3, is added.
  • C1q or C3 ⁇ binding is detected by an antibody directed against human C1q or C3 ⁇ followed by a peroxidase-labeled conjugate.
  • HuMab 002 the hybridoma- and the transient transfectoma-derived material, its mutant variants, and control antibodies were tested in concentrations of 0.16-20 ⁇ g/ml.
  • a human IgG4 (CLB, the Netherlands, 0.5 ⁇ g/ml stock), that binds C1q very weakly, was used.
  • Human IgG1 (Sigma, 2 ug/ml stock) was incorporated as positive control.
  • C1q a rabbit antibody directed against C1q (Dako) and a swine anti-rabbit IgG antibody, conjugated with horseradish peroxidase (Sigma) were used.
  • C3 ⁇ a mouse anti-human C3 antibody and a rabbit anti-mouse IgG antibody, conjugated with horseradish peroxidase (Sigma) were applied.
  • HuMab 002 according to the invention was able to bind C1q efficiently as indicated by EC50 values of 0.946 ⁇ g/ml and 1.159 ⁇ g/ml, and Bmax (OD405) values of 0.987 and 0.711 for the hybridoma- and transfectoma-derived material, respectively.
  • the negative control human IgG4 did not bind C1q, as indicated by a Bmax value of 0.222 at OD405.
  • all three Fc-variants tested (IgG4v1, IgG1v1, IgG1v2) had lost the capacity to bind C1q, as shown by OD405 Bmax values of 0.132, 0.119, and 0.132, respectively (Table 3).
  • this antibody As HuMab 002 interacts with complement components, this antibody has the intrinsic potential to induce CDC in vivo. Therefore, the Fc part of this antibody is modified according to the invention.
  • IgG antibody dependent cytotoxicity effects are mediated by Fc ⁇ receptors on effector cells. Binding of hybridoma- and transfectoma-derived HuMab 002 as well as the mutant variants and control antibodies to Fc ⁇ R expressing effector cells from human blood was studied by FACS® analysis.
  • Fc ⁇ RI IIA1.6 transfectants or freshly isolated effector cells were incubated with antibodies, and binding of antibody was detected with FITC-labeled rabbit-anti-human IgG F(ab) 2 (DAKO), or FITC-labeled rabbit-anti-human IgG F(ab) 2 (BD/Pharmingen).
  • HuMab 002 transient transfectoma- and/or hybridoma-derived material, and mutant variants wase tested at a concentration of 1 ⁇ g/ml (IIA1.6 transfectants) or 10 ⁇ g/ml (effector cells). Absence of primary antibody or human IgG4 (10 ⁇ g/ml) was used as negative control.
  • FITC-labeled mouse anti-human CD64 (BD/Pharmingen) was used.
  • NK cells were identified by double staining using PE-labeled mouse-anti-human CD56 (BD/Pharmingen).
  • Granulocytes and monocytes were identified based on FSC/SSC profile.
  • IIA1.6 cells, IIA1.6-Fc ⁇ RI transfectant and freshly isolated effector cells were incubated with antibodies. Binding of antibody was detected with FITC-labeled Rb- ⁇ -huIgG F(ab) 2 (DAKO), or FITC-labeled Rb- ⁇ -huIgG F(ab) 2 (BD/Pharmingen).
  • HuMab 002 transient transfectoma-, hybridoma derived- and mutant variant material was tested at a concentration of 1 ⁇ g/ml in the IIA1.6-Fc ⁇ RI transfectant binding assay.
  • the IIA1.6 wild type cells were used as a negative control.
  • As a control for Fc ⁇ RI expression m- ⁇ -huCD64-FITC (BD/Pharmingen) was used.
  • HuMab 002 transient transfectoma-, hybridoma derived- and mutant variant material was tested at a concentration of 10 ⁇ g/ml in the effector cell binding assays. Transient transfectoma material was not tested in the granulocyte binding assay. IgG4 (10 ⁇ g/ml) was used as a negative control in all effector cell binding assays with the exception of the granulocyte binding assay.
  • NK cells were identified by m- ⁇ -huCD56-FITC staining.
  • PBMCs peripheral blood mononuclear cells
  • NK isolation kit Dianal Biotech ASA, Oslo, Norway
  • Monocytes were identified based on FSC/SSC profile.
  • Granulocytes were isolated from whole blood using FACS lysis buffer and identified based on FSC/SSC profile.
  • NK cells were isolated from MNC samples by a NK isolation kit (Miltenyi Biotec, USA).
  • NK cells were identified by double staining using PE-labeled mouse-anti-human CD56 (BD/Pharmingen).
  • Granulocytes and monocytes were isolated according to the state of the art from PBMC (e.g. Monocyte isolation kit (Miltenyi, see above). Granulocytes and monocytes were identified based on FSC/SSC profile.
  • HuMab 002 according to the invention was able to bind to FcR as indicated by binding to granulocytes, monocytes and NK cells. All three Fc-variants tested (IgG4v1, IgG1v1 and IgG1v2) had completely lost the capacity to bind to NK cells (Table 4). In addition, HuMab 002 bound efficiently to granulocytes and monocytes, whereas the mutant variants showed binding levels comparable to absence of primary antibody or human IgG4, as indicated by percentages of cells binding antibody in Tables 5 and 6. This indicates that the mutant variants lost the capacity to interact with FcR on effector cells.
  • this antibody has the intrinsic potential to induce antibody dependent cell-mediated cytotoxicity in vivo. Inactivation of the interaction with FcR as performed for the Fc-variants according to the invention prevents ADCC in an effective manner.
  • NK cell binding Antibody (% NK cells binding antibody) No antibody 0.03 HuMab 002 (hybridoma) 90.92 HuMab 002 (transient) 37.40 Human IgG4 0.06 IgG4v1 0.06 IgG1v1 0.12 IgG1v2 0.00

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

This invention relates to anti-P-selectin antibodies and, in particular, to anti-P-selectin antibodies and variants thereof that contain an Fc part derived from human origin and do not bind complement factor C1q. These antibodies have new and inventive properties causing a benefit for a patient suffering from critical limb ischemia or peripheral arterial occlusive disease (CLI/PAOD).

Description

RELATED APPLICATIONS
This application is a reissue of U.S. Pat. No. 7,563,441, which was filed Apr. 8, 2005 and was assigned U.S. application Ser. No. 11/102,403, which claims the benefit of EP patent application no. 04008722, filed Apr. 13, 2004.
INCORPORATION BY REFERENCE OF SEQUENCE LISTING
This application contains references to amino acids and/or nucleic acid sequences that have been submitted as sequence listing text file “22354.txt”, file size of 44 KB, created on Jul. 19, 2011. The aforementioned sequence listing is hereby incorporated by reference in its entirety pursuant to 37 C.F.R. §1.52(e)(5).
FIELD OF THE INVENTION
This invention relates generally to anti-P-selectin antibodies and, in particular, to anti-P-selectin antibodies that do not bind complement factor C1q. Preferably, these antibodies are human or humanized antibodies.
BACKGROUND OF THE INVENTION
P-selectin (CD62P, GMP-140, PADGEM, LECAM-3) is a 140 kDa calcium-dependent carbohydrate-binding protein that is expressed on the surfaces of activated platelets and endothelium in response to thrombin and other agonists (McEver et al., J Biol Chem 270:11025 (1995); Varki, Proc Natl Acad Sci USA 91:7390 (1994); Springer T A, Annu Rev Physiol 57:827 (1995)). In both cell types, P-selectin is stored in secretory granules, i.e. α-granules in platelets and Weibel-Palade bodies in endothelial cells (McEver et al., J Clin Invest 84:92 (1984)). It is a type I transmembrane glycoprotein which is composed of an NH2-terminal lectin domain, followed by an EGF-like domain, nine short consensus repeats with homology to complement regulatory proteins, a transmembrane domain, and a short cytoplasmic tail (Johnston et al., Cell 56:1033 (1989)). The structure of P-selectin is similar to the other two members of the selectin family, E- and L-selectin, which are either expressed on cytokine-activated endothelial cells (E-selectin) or constitutively expressed on most classes of leukocytes (L-selectin).
All selectins are known to bind with low affinity to small sialylated, fucosylated oligosaccharides such as sialyl Lewis x (sLex; Foxall et al., J Cell Biol 117:895 (1992); Varki, Curr Opin Cell Biol 257:257 (1992)). P- and L-selectin, but not E-selectin, also bind to particular sulfated carbohydrates, such as heparin sulfate (for review, see McEver and Cummings, J Clin Invest 100:S97 (1997)). High affinity ligands for P-selectin are mucin-like glycoproteins (McEver et al., J Biol Chem 270:11025 (1995)), which consist of a polypeptide backbone with clusters of sialylated O-glycans. One sialomucin ligand to which P-selectin binds preferentially is P-selectin Glycoprotein ligand-1 (PSGL-1, CD162), which is normally expressed as a homodimer with two disulfide-linked subunits with relative molecular masses of approximately 120 kDa by circulating leukocytes. The binding site of P-selectin is localized to the extreme NH2-terminal part of PSGL-1. Through its binding to its ligands, P-selectin mediates rolling of the leukocytes on activated platelets and endothelial cells. The rolling process effectively reduces the velocity of leukocyte movement, which is a prerequisite for firm adhesion and subsequent transmigration of leukocytes into the subendothelium but also for the accumulation of leukocytes in thrombi.
Studies using P-selectin deficient mice and P-selectin-specific blocking antibodies have shown that P-selectin participates in the pathophysiology of numerous acute and chronic inflammatory diseases including ischemia/reperfusion injury (Winn et al., J Clin Invest 92:2042 (1993); Massberg et al., Blood 92:507 (1998)). In addition, there is a clear contribution of P-selectin in cardiovascular diseases that have an inflammatory component such as atherosclerosis (Collins et al., J Exp Med 191: 189 (2000); Johnson et al., J Clin Invest 99:1037 (1997)), restenosis (Manka et al., Circulation 103:1000 (2001); Bienvenu et al., Circulation 103:1128 (2001)) and thrombosis (Kumar et al., Circulation 99:1363 (1999); Andre et al., Proc Natl Acad Sci USA 97:13835 (2000); Blann et al., Br. J. Haematol 108:191 (2000); Myers et al., Thromb Haemostasis 85: 423 (2001). Evidently, inhibition of P-selectin function would be effective as a therapy in various diseases involving leukocyte adherence to vascular endothelium or platelets (see e.g. WO 93/06863).
Antibodies against P-selectin have been described in the state of the art and investigated for their anti-inflammatory and anti-thrombotic effects. U.S. Pat. No. 4,783,399 and WO 93/06863 describe mouse monoclonal antibodies against P-selectin reactive with activated platelets. Geng J. G. et al (J. Biol. Chem., 266 (1991) 22313-22318) describe mouse monoclonal antibodies binding to P-selectin amino acid (aa) fragment aa 60-75 (Cys to Glu, counting according to Swiss-Prot sequence P16109 which includes the signal sequence. WO 93/21956 refers to mouse monoclonal antibodies against P-selectin and humanized antibodies of IgG1 subclass competing with a defined antibody, binding in the presence of P-selectin fragment aa 60-75) and in the absence of calcium ions. None of the mentioned mouse monoclonal antibodies against human P-selectin is useful for the treatment of human patients. A humanized antibody against P-selectin of human IgG1 subclass mentioned in WO 93/21956 is in pre-clinical development (www.mrctechnology.org).
SUMMARY OF THE INVENTION
The invention relates to antibodies characterized in that said antibodies bind P-selectin and do not bind human complement factor C1q. Preferably the antibodies do also not bind to human Fcγ receptor on NK cells. The antibodies according to the invention contain a Fc part derived from human origin. Preferably these antibodies are humanized or human antibodies. The antibodies have new and inventive properties causing a benefit for a patient suffering from inflammatory and thrombotic disorders, especially from peripheral arterial occlusive disease (PAOD) and critical limb ischemia (CLI).
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows that the antibodies of the invention inhibit the adhesion of leukocyte-like HL60 cells to purified P-selectin coated onto microtiter plates. The mutated antibodies are more potent than the non-mutated parent antibody.
FIG. 2 shows the inhibitory activity of the antibodies of the invention in the rosetting assay measuring the adhesion of thrombin-activated platelets to HL60 cells.
FIGS. 3a and 3b depicts the cross-reactivity of the antibodies of the invention with rat and cynomologus P-selectin. FIG. 3a: The anti-P-selectin antibodies do not affect the adhesion of thrombin-activated rat platelets to HL60 cells, whereas the commercially available polyclonal anti-P-selectin antibody (Pharmingen 09361A) inhibits this interaction. FIG. 3b: The antibodies of the invention inhibit the adhesion of activated cynomologus platelets to HL60 cells.
FIG. 4a-c demonstrates the selectivity of the antibodies for P-selectin vs. E- and L-selectin by representative binding curves on P-, E- and L-selectin transfectants. The antibodies according to the invention bind to P-selectin CHO cells with EC50 values in the range of 0.01 and 0.07 μg/ml. EC50 values on E-selectin CHO cells and L-selectin 300.19 cells are preferably above 100 μg/ml.
FIG. 5 depicts the inhibitory activity of the antibodies of the invention in a fully human flow system. They inhibit the adhesion of human leukocytes to a platelet monolayer in a concentration-dependent manner at a shear rate of 65/s.
FIG. 6 depicts the inhibitory effect of the antibodies of the invention on the adhesion of leukocytes to human endothelial cells expressing P-selectin. FIG. 6a demonstrates the total inhibition of leukocyte adhesion in % of the control, FIG. 6b representatively shows the inhibitory effect of one of the antibodies on the absolute number of the different leukocyte subsets.
DETAILED DESCRIPTION OF THE INVENTION
The invention relates to antibodies characterized in that said antibodies bind P-selectin and do not bind human complement factor C1q. Preferably the antibodies do also not bind to human Fcγ receptor on NK cells. The antibodies according to the invention contain a Fc part derived from human origin. Preferably these antibodies are humanized or human antibodies. The antibodies have new and inventive properties causing a benefit for a patient suffering from inflammatory and thrombotic disorders, especially from peripheral arterial occlusive disease (PAOD) and critical limb ischemia (CLI).
Definitions
The term “P-selectin” refers to a 140 kDa protein expressed by human platelets and endothelial cells, as described by Hsu-Lin et al., J Biol Chem 259: 9121 (1984), and Mc Ever et al., J Clin Invest 84:92 (1989). This type I transmembrane glycoprotein is composed of an NH2-terminal lectin domain, followed by an epidermal growth factor (EGF)-like domain and nine consensus repeat domains. It is anchored in the membrane by a single transmembrane domain and contains a small cytoplasmic tail. The present invention provides antibodies, which are capable of inhibiting one or more of the biological activities mediated by P-selectin, for example, its inflammatory or thrombotic activity. The antibodies bind to P-selectin and act by interfering with the binding of P-selectin to its ligand.
The term “P-selectin ligand” relates preferably to the high affinity and biologically relevant ligand of P-selectin such as the mucin-like glycoprotein P-selectin ligand glycoprotein-1 (PSGL-1), as described by Moore et al.; J Cell Biol 118:2445 (1992), Sako et al., Cell 75:1179 (1993) PSGL-1 is a type I membrane protein with an extracellular domain rich in serines, threonines, and prolines, including a series of decameric repeats linked with clusters of sialylated O-glycans. It is normally expressed as a homodimer with two disulfide-linked subunits with relative molecular masses of approximately 120 kDa by circulating leukocytes. The binding site of P-selectin is localized to the extreme NH2-terminal part of PSGL-1. The sialomucin GPIbα which is expressed by platelets and has structural similarities with PSGL-1 was recently demonstrated to be a platelet ligand for P-selectin (Romo et al., J Exp Med 190:803 (1999). The physiological consequences of GPIbα binding to P-selectin are still under investigation, the interaction, however, is likely to contribute to the rolling and adherence of platelets to activated endothelial cells (Berndt et al., Thromb Haemost 86:178 (2001). P-selectin also binds with low affinity to small sialated, fucosylated oligosaccharides such as sialyl Lewis x (Foxall et al., J Cell Biol 117:895 (1992), Varki, Curr Opin Cell Biol 257 (1992) and to particular sulfated carbohydrates, such as heparin sulfate (McEver et al., J Biol Chem 270:11025 (1995).
The term “antibody” encompasses the various forms of antibodies, preferably monoclonal antibodies including but not being limited to whole antibodies, antibody fragments, human antibodies, humanized antibodies, chimeric antibodies and genetically engineered antibodies (variant or mutant antibodies) as long as the characteristic properties according to the invention are retained. Especially preferred are human or humanized monoclonal antibodies, especially as recombinant human antibodies.
The terms “monoclonal antibody” or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of a single amino acid composition.
The term “chimeric antibody” refers to a monoclonal antibody comprising a variable region, i.e., binding region, from one source or species and at least a portion of a constant region derived from a different source or species, usually prepared by recombinant DNA techniques. Chimeric antibodies comprising a murine variable region and a human constant region are especially preferred. Such murine/human chimeric antibodies are the product of expressed immunoglobulin genes comprising DNA segments encoding murine immunoglobulin variable regions and DNA segments encoding human immunoglobulin constant regions. Other forms of “chimeric antibodies” encompassed by the present invention are those in which the constant region has been modified or changed from that of the original antibody to generate the properties according to the invention, especially in regard to C1q binding and/or Fc receptor (FcR) binding. Such “chimeric” antibodies are also referred to as “class-switched antibodies.” Methods for producing chimeric antibodies involve conventional recombinant DNA and gene transfection techniques now well known in the art. See, e.g., Morrison, S. L., et al., Proc. Natl. Acad. Sci. USA 81 (1984) 6851-6855; U.S. Pat. Nos. 5,202,238 and 5,204,244.
The term “humanized antibody” refers to antibodies in which the framework or “complementarity determining regions” (CDR) have been modified to comprise the CDR of an immunoglobulin of different specificity as compared to that of the parent immunoglobulin. In a preferred embodiment, a murine CDR is grafted into the framework region of a human antibody to prepare the “humanized antibody.” See, e.g., Riechmann, L., et al., Nature 332 (1988) 323-327; and Neuberger, M. S., et al., Nature 314 (1985) 268-270. Particularly preferred CDRs correspond to those representing sequences recognizing the antigens noted above for chimeric and bifunctional antibodies. Other forms of “humanized antibodies” encompassed by the present invention are those in which the constant region has been modified or changed from that of the original antibody to generate the properties according to the invention, especially in regard to C1q binding and/or Fc receptor (FcR) binding.
The term “human antibody”, as used herein, is intended to include antibodies having variable and constant regions derived from human germ line immunoglobulin sequences. Human antibodies are well-known in the state of the art (van Dijk and van de Winkel, Curr Opin Pharmacol 5:368 (2001). Human antibodies can also be produced in transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge (see, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90: 2551-2555 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno., 7:33 (1993)). Human antibodies can also be produced in phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1992); Marks et al., J. Mol. Biol, 222:581 (19991)). The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)).As already mentioned for chimeric and humanized antibodies according to the invention the term “human antibody” as used herein also comprises such antibodies which are modified in the constant region to generate the properties according to the invention, especially in regard to C1q binding and/or FcR binding. In addition the invention comprises human antibodies which bind to C1q and/or FcR. Such human antibodies are characterized by a high selectivity for P-selectin vs. E- and L-selectin. Such antibodies according to the invention bind to P-selectin expressing cells with EC50 values in the range of 0.01 and 0.07 μg/ml. EC50 values on E-selectin and L-selectin expressing cells are preferably above 100 μg/ml. Such antibodies are preferable useful as intermediates for manufacturing human antibodies with the properties according to the invention.
The term “recombinant human antibody”, as used herein, is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from a host cell such as a NS0 or CHO cell or from an animal (e.g. a mouse) that is transgenic for human immunoglobulin genes or antibodies expressed using a recombinant expression vector transfected into a host cell. Such recombinant human antibodies have variable and constant regions in a rearranged form. The recombinant human antibodies according to the invention have been subjected to in vivo somatic hypermutation. Thus, the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germ line VH and VL sequences, may not naturally exist within the human antibody germ line repertoire in vivo.
The “variable region” (variable region of a light chain (VL), variable region of a heavy chain (VH)) as used herein denotes each of the pair of light and heavy chains which is involved directly in binding the antibody to the antigen. The domains of variable human light and heavy chains have the same general structure and each domain comprises four framework (FR) regions whose sequences are widely conserved, connected by three “hypervariable regions” (or complementarity determining regions, CDRs). The framework regions adopt a β-sheet conformation and the CDRs may form loops connecting the β-sheet structure. The CDRs in each chain are held in their three-dimensional structure by the framework regions and form together with the CDRs from the other chain the antigen binding site. The antibody heavy and light chain CDR3 regions play a particularly important role in the binding specificity/affinity of the antibodies according to the invention and therefore provide a further object of the invention.
The terms “hypervariable region” or “antigen-binding portion of an antibody” when used herein refer to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region comprises amino acid residues from the “complementarity determining regions” or “CDRs”. “Framework” or “FR” regions are those variable domain regions other than the hypervariable region residues as herein defined. Therefore, the light and heavy chains of an antibody comprise from N- to C-terminus the domains FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4. Especially, CDR3 of the heavy chain is the region which contributes most to antigen binding. CDR and FR regions are determined according to the standard definition of Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop”.
The term “nucleic acid or nucleic acid molecule”, as used herein, is intended to include DNA molecules and RNA molecules. A nucleic acid molecule may be single-stranded or double-stranded, but preferably is double-stranded DNA.
Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
As used herein, the expressions “cell,” “cell line,” and “cell culture” are used interchangeably and all such designations include progeny. Thus, the words “transformants” and “transformed cells” include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Variant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be dear from the context.
The “constant domains” are not involved directly in binding an antibody to an antigen, but exhibit various effector functions. Depending on the amino acid sequence of the constant region of their heavy chains, antibodies or immunoglobulins are divided in the classes: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g. IgG1, IgG2, IgG3, and IgG4, IgA1 and IgA2. The heavy chain constant regions that correspond to the different classes of immunoglobulins are called α, δ, ε, γ and μ, respectively. The antibodies according to the invention are preferably of IgG type.
The Fc part of an antibody is directly involved in complement activation, C1q binding and Fc receptor binding. While the influence of an antibody on the complement system is dependent on certain conditions, binding to C1q is caused by defined binding sites in the Fc part. Such binding sites are known in the state of the art and described e.g. by Boakle et al., Nature 282 (1975) 742-743, Lukas et al., J. Immunol. 127 (1981) 2555-2560, Brunhouse and Cebra, Mol. Immunol. 16 (1979) 907-917, Burton et al., Nature 288 (1980) 338-344, Thommesen et al., Mol. Immunol. 37 (2000) 995-1004, Idusogie et al., J. Immunol.164 (2000) 4178-4184, Hezareh et al., J. Virology 75 (2001) 12161-12168, Morgan et al., Immunology 86 (1995) 319-324, EP 0307434. Such binding sites are e.g. L234, L235, D270, N297, E318, K320, K322, P331 and P329 (numbering according to EU index of Kabat, see below). Antibodies of subclass IgG1, IgG2 and IgG3 usually show complement activation and C1q and C3 binding, whereas IgG4 do not activate the complement system and do not bind C1q and C3. As used herein the term “Fc part derived from human origin” denotes a Fc part which is either a Fc part of a human antibody of the subclass IgG4 or a Fc part of a human antibody of the subclass IgG1, IgG2 or IgG3 which is modified in such a way that no C1q binding and/or FcR binding as defined below can be detected. A “Fc part of an antibody” is a term well known to the skilled artisan and defined on the basis of papain cleavage of antibodies. The antibodies according to the invention contain as Fc part a Fc part derived from human origin and preferably all other parts of the human constant regions. Preferably the Fc part is a human Fc part and especially preferred either from human IgG4 subclass or a mutated Fc part from human IgG1 subclass. Mostly preferred are the Fc parts and heavy chain constant regions shown in SEQ ID NO: 25-28 or of SEQ ID NO: 25 without PVA236 mutation.
PREFERRED EMBODIMENTS OF THE INVENTION
The invention comprises an antibody binding to P-selectin characterized in that the variable heavy chain amino acid sequence CDR3 of said antibody is selected from the group consisting of the heavy chain CDR3 sequences SEQ ID NO: 38, 39, 40, 41 or 42.
The invention preferably provides an antibody binding to P-selectin, comprising a variable heavy chain and a variable light chain, characterized in that the variable heavy chain comprises CDR sequences CDR1, CDR2 and CDR3 and CDR1 being selected from the group consisting of SEQ ID NOs: 29, 30, 31, 32, CDR2 being selected from the group consisting of SEQ ID NOs: 33, 34, 35, 36, 37, CDR3 being selected from the group consisting of SEQ ID NOs: 38, 39, 40, 41, 42, wherein said CDRs are selected independently of each other.
The antibody according to the invention is preferably characterized in that the variable light chain comprises CDR sequences CDR1, CDR2 and CDR3, and CDR1 is selected from SEQ ID NOs: 43, 44, CDR2 is selected from SEQ ID NOs: 45, 46 and CDR3 is selected from SEQ ID NOs: 47, 48, 49, 50, 51, 52 wherein said CDRs are selected independently of each other.
The antibody is preferably characterized in containing as heavy chain CDRs the CDRs of SEQ ID NO: 2 and as light chain CDRs the CDRs of SEQ ID NO: 1, as heavy chain CDRs the CDRs of SEQ ID NO: 4 and as light chain CDRs the CDRs of SEQ ID NO: 3, as heavy chain CDRs the CDRs of SEQ ID NO: 6 and as light chain CDRs the CDRs of SEQ ID NO: 5, as heavy chain CDRs the CDRs of SEQ ID NO: 8 and as light chain CDRs the CDRs of SEQ ID NO: 7, as heavy chain CDRs the CDRs of SEQ ID NO: 10 and as light chain CDRs the CDRs of SEQ ID NO: 9, as heavy chain CDRs the CDRs of SEQ ID NO: 12 and as light chain CDRs the CDRs of SEQ ID NO: 11, as heavy chain CDRs the CDRs of SEQ ID NO: 14 and as light chain CDRs the CDRs of SEQ ID NO: 13, as heavy chain CDRs the CDRs of SEQ ID NO: 16 and as light chain CDRs the CDRs of SEQ ID NO: 15, as heavy chain CDRs the CDRs of SEQ ID NO: 18 and as light chain CDRs the CDRs of SEQ ID NO: 17, as heavy chain CDRs the CDRs of SEQ ID NO: 20 and as light chain CDRs the CDRs of SEQ ID NO: 19, or as heavy chain CDRs the CDRs of SEQ ID NO: 22 and as light chain CDRs the CDRs of SEQ ID NO: 21.
The CDR sequences can be determined according to the standard definition of Kabat et al., Sequences of Proteins of Immunological Interest, 5th ed., Public Health Service, National Institutes of Health, Bethesda, Md. (1991). CDRs on each chain are separated by framework amino acids. CDRs of SEQ ID NO: 1-22 are shown in SEQ ID NO: 29-52.
The antibody according to the invention is preferably characterized in that said antibody binds P-selectin and comprises a variable heavy and light region independently selected from the group consisting of
  • a) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:2 and the light chain variable domain defined by SEQ ID NO:1;
  • b) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:4 and the light chain variable domain defined by SEQ ID NO:3;
  • c) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:6 and the light chain variable domain defined by SEQ ID NO:5;
  • d) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:8 and the light chain variable domain defined by SEQ ID NO:7;
  • e) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:10 and the light chain variable domain defined by SEQ ID NO:9;
  • f) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:12 and the light chain variable domain defined by SEQ ID NO:11;
  • g) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:14 and the light chain variable domain defined by SEQ ID NO:13;
  • h) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:16 and the light chain variable domain defined by SEQ ID NO:15;
  • i) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:18 and the light chain variable domain defined by SEQ ID NO:17;
  • j) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:20 and the light chain variable domain defined by SEQ ID NO:19;
  • k) the heavy chain variable domain defined by amino acid sequence SEQ ID NO:22 and the light chain variable domain defined by SEQ ID NO:21.
The antibody according to the invention is preferably characterized in that the heavy chain variable region comprises an amino acid sequence independently selected from the group consisting of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 and 22.
The antibody according to the invention is preferably characterized in that the light chain variable region comprises an amino acid sequence independently selected from the group consisting of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21.
The present invention refers to an antibody that binds P-selectin and does not bind complement factor C1q and/or Fc receptor. These antibodies do not elicit the complement dependent cytotoxicity (CDC) and/or antibody-dependent cellular cytotoxicity (ADCC). Preferably, this antibody is characterized in that it binds P-selectin, contains a Fc part derived from human origin and does not bind complement factor C1q. More preferably, this antibody is a human or humanized antibody.
The antibody according to the invention is preferably characterized in that the constant chains are of human origin. Such constant chains are well known in the state of the art and e.g. described by Kabat (see e.g. Johnson, G., and Wu, T. T., Nucleic Acids Res. 28 (2000) 214-218). For example a useful human heavy chain constant region comprises an amino acid sequence independently selected from the group consisting of SEQ ID NO: 24, 25, 26, 27 and 28. For example an useful human light chain constant region comprises an amino acid sequence of a kappa-light chain constant region of SEQ ID NO: 23.
The effector functions mediated by the Fc part of the antibody Fc region refer to effector functions that operate after the binding of an antibody to an antigen (these functions involve the activation of the complement cascade and/or cell activation by a Fc receptor (FcR)).
The function of the complement cascade can be assessed by the CH50 assay. Sheep red cells sensitized with anti-red cell antibodies (EA) are added to test serum to activate the classical pathway resulting in haemolysis. The volume of serum needed to lyse 50% of the red cells determines the CH50 unit. The AP-CH50 measures the alternative and the terminal pathways. The procedure is similar except that rabbit red cells are used. The alternative pathway is activated upon addition of test serum.
C1q and two serine proteases, C1r and C1s, form the complex C1, the first component of the complement dependent cytotoxicity (CDC) pathway. To activate the complement cascade C1 q binds to at least two molecules of IgG1 or one molecule of IgM, attached to the antigenic target (Ward and Ghetie, Therapeutic Immunology 2:77-94 (1995)). Burton described (Molec. Immunol., 22(3):161-206 (1985)) that the heavy chain region comprising amino acid residues 318 to 337 is being involved in complement fixation. Duncan and Winter (Nature 332:738-40 (1988)), using site directed mutagenesis, reported that Glu318, Lys320 and Lys322 form the binding site to C1q. The role of Glu318, Lys320 and Lys 322 residues in the binding of C1q was confirmed by the ability of a short synthetic peptide containing these residues to inhibit complement mediated lysis.
The term “complement-dependent cytotoxicity (CDC)” refers to lysis of P-selectin expressing human endothelial cells and platelets by the antibody according to the invention in the presence of complement. CDC is measured preferably by the treatment of P-selectin expressing human endothelial cells and platelets with an antibody according to the invention in the presence of complement. The cells are preferably labeled with calcein. CDC is found if the antibody induces lysis of 20% or more of the target cells at a concentration of 30 μg/ml. However, the inventors have found that for the properties of the antibodies according to the invention reduced binding to the complement factor C1q in an ELISA assay is essential. In such an assay in principle an ELISA plate is coated with concentration ranges of the antibody, to which purified human C1q or human serum is added. C1q binding is detected by an antibody directed against C1q followed by a peroxidase-labeled conjugate. Detection of binding (maximal binding Bmax) is measured as optical density at 405 nm (OD405) for peroxidase substrate ABTS (2,2′-Azino-di-[3-ethylbenzthiazoline-6-sulfonate (6)]. Accordingly the present invention refers to an antibody, characterized in that non-binding of the antibody to complement factor C1q refers to such an ELISA assay measurement wherein the maximal binding (Bmax) of C1q to the antibody at a concentration of 10 μg/ml of the antibody is ≦30% of Bmax of the antibody LC 1004-002 of cell line hu-Mab<P-selectin>LC 1004-002 (DSM ACC2641).preferably 20% or lower.
It is further preferred, that an antibody according to the invention shows a reduced binding to complement factor C3 in an ELISA assay. The assay is performed in the same manner as the C1q assay. In such an assay in principle an ELISA plate is coated with concentration ranges of the antibody, to which purified human C3 or human serum is added. C3 binding is detected by an antibody directed against C3 followed by a peroxidase-labeled conjugate. Detection of binding (maximal binding Bmax) is measured as optical density at 405 nm (OD405) for peroxidase substrate ABTS (2,2′-Azino-di-[3-ethylbenzthiazolinesulfonate (6)]. Accordingly the present invention refers to an antibody, characterized in that non-binding of the antibody to complement factor C3 refers to such an ELISA assay measurement wherein the maximal binding (Bmax) of C3 to the antibody at a concentration of 10 μg/ml of the antibody is 10% of Bmax of antibody LC 1004-002 of cell line hu-Mab<P-selectin>LC 1004-002 (DSM ACC2641)., preferably 5% or lower.
The term “antibody-dependent cellular cytotoxicity (ADCC)” is a function mediated by Fc receptor binding and refers to lysis of P-selectin expressing target cells by an antibody according to the invention in the presence of effector cells. ADCC is measured preferably by the treatment of a preparation of P-selectin expressing endothelial cells with an antibody according to the invention in the presence of effector cells such as freshly isolated PBMC (peripheral blood mononuclear cells) or purified effector cells from buffy coats, like monocytes or NK (natural killer) cells. Target cells are labeled with 51Cr and subsequently incubated with the antibodies. The labeled cells are incubated with effector cells and the supernatant is analyzed for released 51Cr. Controls include the incubation of the target endothelial cells with effector cells but without the antibody. The capacity of the antibodies to induce the initial steps mediating ADCC was determined by measuring their binding to Fcγ receptors expressing cells, such as granulocytes (expressing FcγRII and RIII), NK cells (expressing FcγRIII) and monocytes (expressing FcγRI and RII).
Fc receptor binding effector functions can be mediated by the interaction of the Fc region of an antibody with Fc receptors (FcRs), which are specialized cell surface receptors on hematopoietic cells. Fc receptors belong to the immunoglobulin superfamily, and have been shown to mediate both the removal of antibody-coated pathogens by phagocytosis of immune complexes, and the lysis of erythrocytes and various other cellular targets (e.g. tumor cells) coated with the corresponding antibody, via antibody dependent cell mediated cytotoxicity (ADCC). Van de Winkel and Anderson, J. Leuk. Biol. 49:511-24 (1991). FcRs are defined by their specificity for immunoglobulin isotypes; Fc receptors for IgG antibodies are referred to as FcγR, for IgE as FcεR, for IgA as FcαR and so on. Fc receptor binding is described e.g. in Ravetch and Kinet, Ann. Rev. Immunol. 9 (1991) 457-492, Capel et al., Immunomethods 4 (1994) 32-34, de Haas et al., J. Lab. Clin. Med. 126 (1995) 330-341 and Gessner et al., Ann. Hematol. 76 1998) 231-248. The antibodies according to the invention preferably show a reduced binding to Fcγ receptors, preferably to FγcRI, -IIA, -IIB, and/or IIIA.
The antibodies according to the present invention antibodies preferably do not elicit any effector function and do not bind to FcγR presented on NK cells. The term “no binding of FcγR” therefore means that in an antibody concentration of 10 μg/ml the binding of an antibody according to the invention to NK cells is 1% or less of the binding found for antibody LC 1004-002 of cell line hu-Mab<P-selectin>LC 1004-002 (DSM ACC2641).
While IgG4 shows reduced FcR binding, antibodies of other IgG subclasses show strong binding. However Pro238, Asp265, Asp270, Asn297 (loss of Fc carbohydrate), Pro329 and 234, 235, 236 and 237 Ile253, Ser254, Lys288, Thr307, Gln311, Asn434, and His435 are residues which provides if altered also reduced FcR binding (Shields et al. J. Biol. Chem. 276 (2001), 6591-6604, Lund et al. FASEB J. 9 (1995), 115-119, Morgan et al. Immunology 86 (1995) 319-324, EP 0307434 ). Preferably an antibody according to the invention is in regard to FcR binding of IgG4 subclass or of IgG1 or IgG2 subclass with a mutation in S228, L234, L235 and/or D265, and/or contains the PVA236 or GLPSS331 mutation. Especially preferred are the mutations S228P (IgG4), L234A (IgG1), L235A (IgG1), L235E (IgG4), GLPSS331(IgG1) and/or PVA236 (IgG1). Preferred combinations of mutations are also shown in table 1. An additional preferred combination is D265A/N297A.
The term “binding to P-selectin” as used herein means the binding of the antibody to P-selectin in either a BIAcore® assay (Pharmacia Biosensor AB, Uppsala, Sweden) or in an ELISA in which either purified P-selectin or P-selectin CHO transfectants are coated onto microtiter plates.
In the BIAcore® assay the antibody is bound to a surface and binding of P-selectin is measured by Surface Plasmon Resonance (SPR). The affinity of the binding is defined by the terms ka (rate constant for the association of the antibody from the antibody/antigen complex), kd (dissociation constant), and KD (kd/ka). The antibodies according to the invention show a KD of 10−8 or less, preferably of about 10−11 to 10−9 M (see examples). Accordingly, the present invention refers to an antibody as described above, wherein the antibody binds to P-selectin with a KD value of less than 10−8 M in a BIAcore® assay, preferably wherein the KD range is 10−11 to 10−9 M.
Preferably, the antibody is of IgG1 or IgG4 human subtype. More preferably, the antibody is characterized in that the antibody is an antibody of human subclass IgG1, containing (comprising) at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or an antibody of human subclass IgG4, containing (comprising) at least one mutation in L235 and S228 (numbering according to EU index).
In the P-selectin-specific ELISA purified P-selectin is coated onto microtiter plates and the binding of the antibody to P-selectin is detected with a biotinylated anti-human IgG and the usual steps of an ELISA. The EC50 values in this assay range preferably between 0.002 and 0.03 μg/ml on P-selectin CHO cells, i.e. the present invention refers to antibodies, wherein the EC50 values for P-selectin binding are in the range of 0.002 to 0.03 μg/ml on P-selectin presenting CHO cells in an ELISA assay. In an assay in which P-selectin expressing CHO transfectants are coated onto the microtiter plate, the EC50 values range between 0.01 and 0.08 μg/ml, preferably between 0.01 and 0.04 μg/ml.
EC50 values on E- and L-selectin transfectants are preferably above 100 μg/ml. The antibodies of the present invention are characterized in that they bind at least 1000 fold more specifically to P-selectin than to E- and/or L-selectin as measured by EC50 values in an ELISA assay, wherein P- and E- and/or L-selectin are coated onto the microtiter plate.
The term “inhibiting the binding of the P-selectin ligand to P-selectin” as used herein refers to the binding of purified or cell-expressed P-selectin to its ligand presented on HL60 cells. The binding of P-selectin to its ligand is inhibited by the antibodies according to the invention. The inhibition is measured as IC50 in in vitro assays analyzing the capacity of the antibody to inhibit binding of P-selectin to a ligand. Such assays are described in the Examples. They use as suitable sources of P-selectin affinity purified P-selectin and activated platelets and as suitable sources of the ligand leukocyte-like cells, such as HL60 cells. In such assays the adhesion of HL60 cells, expressing PSGL-1 as the physiologically relevant ligand of P-selectin, to P-selectin or activated platelets is measured without and with increasing concentrations of the antibody. The IC50 values are measured as average values of at least three independent measurements. Inhibiting means an IC50 value of no more than 1 μg/ml, preferably 0.5 to 0.08 μg/ml.
The antibodies of the present invention inhibit the adhesion of leukocyte-like HL60 cells to purified P-selectin with IC50 values in the range of 0.08 to 0.5 μg/ml, preferably 0.08 to −0.11 μg/ml. The adhesion of leukocyte-like HL60 cells to activated platelets is inhibited with IC50 values in the range of 0.05 to 0.3 μg/ml.
Accordingly, further embodiments of the present invention refer to antibodies, characterized in that the EC50 values for P-selectin binding is in the range of 0.01 to 0.08 μg/ml in an ELISA assay wherein P-selectin expressing CHO transfectants are coated onto the microtiter plate. The preferred range is 0.01 to 0.04 μg/ml. The EC50 values on E- and L-selectin transfectants are above 100 μg/ml. In a further embodiment the antibodies of the present invention inhibit the adhesion of leukocyte-like HL60 cells to purified P-selelctin with IC50 values between 0.08 to 0.5 μg/ml. The preferred range is 0.08 to 0.11 μg/ml.
The antibodies of the present invention inhibit the interaction of leukocytes with a monolayer of platelets by preferably more than 70% in a fully human flow system (at a concentration of 10 μg/ml). In addition these antibodies inhibit the adhesion of leukocytes to activated endothelial cells in a human flow system in the range of 60-90% at a concentration of 3 μg/ml (with differential effects on leukocyte subtypes).
The antibodies of the present invention are preferably capable of binding to P-selectin in the presence of the P-selectin fragment aa 60-75 (Swiss-Prot sequence P16109) and/or do not competitively inhibit the binding of an antibody secreted by a cell line designated ATCC Accession No. HB11041 to P-selectin.
The antibodies of the invention preferably do not inhibit the interaction of P-selectin with platelet membrane glycoprotein GPIbα in an ELISA assay format. In the ELISA glycocalicin, the soluble extracellular portion of GPIbα was immobilized on the wells of microtiter plates, as described (Romo et al., J Exp Med 190:803 (1999), and the binding of purified P-selectin after preincubation with the P-selectin HuMabs was detected with a polyclonal anti-P-selectin antibody.
In a further preferred embodiment of the present invention, the antibody, characterized in that does not bind the C3 protein, more preferably it is characterized in that it does not elicit complement-dependent cytotoxicity (CDC). Further, the antibody may be characterized it does not bind to Fcγ receptors on NK effector cells. Preferably, the antibody is characterized that it is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or an antibody of human subclass IgG4, containing at least one mutation in L235 and S228 (numbering according to EU index). In a further preferred embodiment, the antibody is characterized in that it does not elicit antibody-dependent cellular cytotoxicity (ADCC).
In an even more preferred embodiment, the antibodies of the present invention are characterized in that they bind P-selectin and that they comprise a variable region independently selected from the group consisting of
  • a) the light chain variable domain defined by amino acid sequence SEQ ID NO:1 and the heavy chain variable domain defined by SEQ ID NO:2;
  • b) the light chain variable domain defined by amino acid sequence SEQ ID NO:3 and the heavy chain variable domain defined by SEQ ID NO:4;
  • c) the light chain variable domain defined by amino acid sequence SEQ ID NO:5 and the heavy chain variable domain defined by SEQ ID NO:6;
  • d) the light chain variable domain defined by amino acid sequence SEQ ID NO:7 and the heavy chain variable domain defined by SEQ ID NO:8;
  • e) the light chain variable domain defined by amino acid sequence SEQ ID NO:9 and the heavy chain variable domain defined by SEQ ID NO:10;
  • f) the light chain variable domain defined by amino acid sequence SEQ ID NO:11 and the heavy chain variable domain defined by SEQ ID NO:12;
  • g) the light chain variable domain defined by amino acid sequence SEQ ID NO:13 and the heavy chain variable domain defined by SEQ ID NO:14;
  • h) the light chain variable domain defined by amino acid sequence SEQ ID NO:15 and the heavy chain variable domain defined by SEQ ID NO:16;
  • i) the light chain variable domain defined by amino acid sequence SEQ ID NO:17 and the heavy chain variable domain defined by SEQ ID NO:18;
  • j) the light chain variable domain defined by amino acid sequence SEQ ID NO:19 and the heavy chain variable domain defined by SEQ ID NO:20; and
  • k) the light chain variable domain defined by amino acid sequence SEQ ID NO:21 and the heavy chain variable domain defined by SEQ ID NO:22.
Preferably, the antibodies comprise the light chain variable domain defined by amino acid sequence SEQ ID NO:3 and the heavy chain variable domain defined by SEQ ID NO:4.
The preferred antibodies are characterized in that the antibodies are of human IgG4 subclass or comprise at least one amino acid mutation causing non-binding to complement factor C1q. These variant antibodies comprise for example the amino acid sequence independently selected from the group consisting of SEQ ID NO: 25 or SEQ ID NO:26 and SEQ ID NO:28.
A “variant” anti-P-selectin antibody, refers herein to a molecule which differs in amino acid sequence from a “parent” anti-P-selectin antibody amino acid sequence by virtue of addition, deletion and/or substitution of one or more amino acid residue(s) in the parent antibody sequence. In the preferred embodiment, the variant comprises one or more amino acid substitution(s) in one or more constant or variable region(s) of the parent antibody, preferably in the constant region. For example, the variant may comprise at least one, e.g. from about one to about ten, and preferably from about two to about five, substitutions in one or more variable regions of the parent antibody. Ordinarily, the variant will have an amino acid sequence having at least 90% amino acid sequence identity with the parent antibody constant and/or variable domain sequences, more preferably at least 95%, and most preferably at least 99%.
Identity or homology with respect to this sequence is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the parent antibody residues, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. None of N-terminal, C-terminal, or internal extensions, deletions, or insertions into the antibody sequence shall be construed as affecting sequence identity or homology. The variant retains the ability to bind human P-selectin and preferably has properties, which are superior to those of the parent antibody. For example, the variant may have a stronger binding affinity, enhanced ability to treat a disease associated with critical limb ischemia or peripheral arterial occlusive disease (CLI/PAOD).
The variant antibody of particular interest herein is one which displays at least about 4 fold, enhancement in inhibitory activity in the adhesion assay when compared to the parent antibody because of the elimination of the binding to the Fcγ receptors.
The “parent” antibody herein is one, which is encoded by an amino acid sequence used for the preparation of the variant. Preferably, the parent antibody has a human framework region and, if present, has human antibody constant region(s). For example, the parent antibody may be a humanized or human antibody.
The antibodies according to the invention include, in addition, such antibodies having “conservative sequence modifications”, nucleotide and amino acid sequence modifications, which do not affect or alter the above-mentioned characteristics of the antibody according to the invention. Modifications can be introduced by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a human anti-P-selectin antibody can be preferably replaced with another amino acid residue from the same side chain family.
Amino acid substitutions can be performed by mutagenesis based upon molecular modeling as described by Riechmann, L., et al., Nature 332 (1988) 323-327 and Queen, C., et al., Proc. Natl. Acad. Sci. USA 86 (1989) 10029-10033.
In a further preferred embodiment the antibodies comprise an κ-light chain constant region as defined by SEQ ID NO:23.
Preferred antibodies according to the invention are antibodies defined as IgG1v1 (PVA-236; GLPSS331 as specified by E233P; L234V; L235A; delta G236; A327G; A330S; P331S), IgG1v2 (L234A; L235A) and IgG4v1 (S228P; L235E).
In a further preferred embodiment, these antibodies also comprise antibody fragments selected from the group consisting of Fab, F(ab′)2 and single-chain fragments.
The invention further comprises a method for the production of an antibody according to the invention comprising the steps of a) transforming a host cell with a first nucleic acid sequence encoding a light chain of a parent human antibody according to the invention and a second DNA sequence encoding a heavy chain of said parent human antibody wherein the Fc part is modified in that said Fc part does not bind complement factor C1q and/or Fc receptor; b) expressing said first and second DNA sequence so that said antibody heavy and light chains are produced and c) recovering said antibody from the host cell or host cell culture.
The invention also refers to intermediate antibodies, i.e. anti-P-selectin antibodies characterized in that these antibodies are human or humanized antibodies and bind at least 1000 fold more specifically to P-selectin than to E- or L-selectin as measured in an ELISA assay wherein P- and E- and/or L-selectin are coated onto the microtiter plate. Preferably these antibodies are IgG1 or IgG4 antibodies. These antibodies may also comprise the amino acid sequence as defined by SEQ ID NO:24 γ1 heavy chain constant region or SEQ ID NO:27 γ4 heavy chain constant region. Especially, these antibodies refer to the antibodies produced by a cell line selected from the group consisting of hu-Mab<P-selectin>LC 1004-001 (DSM ACC2640), hu-Mab<P-selectin>LC 1004-002 (DSM ACC2641) and hu-Mab<P-selectin>LC 1004-017(DSM ACC2642).
The antibodies according to the invention include, in addition, such antibodies having “conservative sequence modifications”, nucleotide and amino acid sequence modifications, which do not affect or alter the above-mentioned characteristics of the antibody according to the invention. Modifications can be introduced by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a human anti-P-selectin antibody can be preferably replaced with another amino acid residue from the same side chain family.
Amino acid substitutions can be performed by mutagenesis based upon molecular modeling as described by Riechmann, L., et al., Nature 332 (1988) 323-327 and Queen, C., et al., Proc. Natl. Acad. Sci. USA 86 (1989) 10029-10033.
The invention further embodies an antibody (such as for example an antibody molecule) containing a Fc part derived from human origin wherein the antibody binds to P-selectin and is non-binding to complement factor C1q and wherein, in a further embodiment, said antibody is selected from the group consisting of a) human subclass IgG1 antibody comprising at least one mutation in L234, L235, D270, N297,E318, K320, K322, P331 and P329 and b) human subclass IgG4 antibody wherein S228 is replaced by P and L235 is replaced by E. In another further embodiment, the antibody is an anti-P-selectin antibody produced by a hybridoma cell line selected from the group consisting of DSM ACC2640, DSM ACC2641 and DSM ACC2642. The invention also discloses pharmaceutical compositions of the antibody of the invention, further comprising at least one pharmaceutically acceptable excipient.
The invention further comprises a method for the preparation of such an antibody according to the invention under conditions which allow synthesis and recovery of the antibody, as well as pharmaceutical compositions of the such produced antibody. The method of preparation may additionally comprise a nucleic acid molecule which encodes the antibody of the invention, a vector that comprises said nucleic acid molecule, and/or a host cell comprising said vector. The invention also comprises a kit for the detection of the presence of P-selectin protein comprising the said antibody of the invention as disclosed above and further alternatively comprises one or more of the group consisting of a nucleic acid molecule which encodes the said antibody of the invention, a vector that comprises said nucleic acid molecule, and/or a host cell comprising said vector.
The invention also further comprises a method for treatment of a patient in need of therapy comprising administering to the patient a therapeutically effective amount of the antibody of the invention. The invention further embodies a medicament comprising the antibody of the invention for use in such therapy administration and treatment and in particular for the treatment of inflammatory and thrombotic disorders, more particularly for the treatment of PAOD and CLI.
The present invention also comprises nucleic acid molecules encoding an antibody mentioned above, the corresponding vectors comprising these nucleic acids and the corresponding host cell for these vectors. The invention encompasses a method for the preparation of the antibodies comprising culturing the corresponding host cells under conditions that allow synthesis of said antibody molecules and recovering said antibodies from said culture, e.g. by expressing a nucleic acid encoding a heavy chain and a nucleic acid encoding a light chain in a prokaryotic or eukaryotic host cell and recovering said polypeptide from said cell
Diagnostic and therapeutic uses for the antibody are contemplated. In one diagnostic application, the invention provides a method for determining the presence of the P-selectin protein comprising exposing a sample suspected of containing P-selectin to the anti-P-selectin antibody and determining binding of the antibody to the sample. For this use, the invention provides a kit comprising the antibody and instructions for using the antibody to detect the P-selectin protein.
The antibodies of the present invention are useful for treatment of inflammatory and thrombotic diseases. Such diseases include vascular disorders such as atherosclerosis, arterial and deep venous thrombosis, restenosis after angioplasty or stent placement. Preferred applications are peripheral arterial occlusive disease (PAOD) and critical limb ischemia (CLI). Other applications are the treatment of post-ischemic leukocyte-mediated tissue damage caused by myocardial infarction, cerebral ischemic event (e.g. stroke), renal infarction, and the like. The antibodies are also suitable for treatment of sepsis, acute leukocyte-mediated lung-injury, and allergic reactions such as asthma. Other applications are the prevention of organ transplant rejection and autoimmune diseases including rheumatoid arthritis. In addition, tumor metastasis can be prevented by inhibiting the adhesion of circulating cancer cells.
The invention further provides a method for treating a mammal suffering from the abovementioned inflammatory and thrombotic disorders, especially from PAOD and CLI (peripheral arterial occlusive disease or critical limb ischemia).
The invention further provides the use of the above antibodies for therapy, e.g. for the manufacture of medicaments for the treatment of these diseases.
The invention relates also to the use of the antibodies as defined above for the manufacture of a pharmaceutical composition and comprises a pharmaceutical composition containing an antibody according to the invention with a pharmaceutically effective amount, optionally together with a buffer and/or an adjuvant useful for the formulation of antibodies for pharmaceutical purposes.
The invention further provides pharmaceutical compositions comprising such antibodies in a pharmaceutically acceptable carrier. In one embodiment, the pharmaceutical composition may be included in an article of manufacture or kit.
The invention further provides hybridoma cell lines, which produce such antagonistic monoclonal antibodies, e.g. the parent antibodies, according to the invention.
The preferred hybridoma cell lines according to the invention, hu-Mab<P-selectin>LC 1004-001 (antibody HuMab 001) hu-Mab<P-selectin>LC 1004-002 (antibody HuMab 002) and hu-Mab<P-selectin>LC 1004-017 (antibody HuMab 017) were deposited, under the Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure, with Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Germany:
Cell line Deposition No. Date of Deposit
hu-Mab<P-selectin>LC 1004-001 DSM ACC2640 30 Mar. 2004
hu-Mab<P-selectin>LC 1004-002 DSM ACC2641 30 Mar. 2004
hu-Mab<P-selectin>LC 1004-017 DSM ACC2642 30 Mar. 2004
The antibodies obtainable from said cell lines are preferred embodiments of the invention.
The antibodies according to the invention are preferably produced by recombinant means. Such methods are widely known in the state of the art and comprise protein expression in prokaryotic and eukaryotic cells with subsequent isolation of the antibody polypeptide and usually purification to a pharmaceutically acceptable purity. For the protein expression, nucleic acids encoding light and heavy chains or fragments thereof are inserted into expression vectors by standard methods. Expression is performed in appropriate prokaryotic or eukaryotic host cells like CHO cells, NS0 cells, SP2/0 cells, HEK293 cells, COS cells, yeast, or E.coli cells, and the antibody is recovered from the cells (supernatant or cells after lysis).
Recombinant production of antibodies is well-known in the state of the art and described, for example, in the review articles of Makrides, S. C., Protein Expr. Purif. 17 (1999) 183-202; Geisse, S., et al., Protein Expr. Purif. 8 (1996) 271-282; Kaufman, R. J., Mol. Biotechnol. 16 (2000) 151-161; Werner, R. G., Drug Res. 48 (1998) 870-880.
The antibodies may be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form. Purification is performed in order to eliminate other cellular components or other contaminants, e.g. other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, column chromatography and others well known in the art. See Ausubel, F., et al., ed. Current Protocols in Molecular Biology, Greene Publishing and Wiley Interscience, New York (1987).
Expression in NS0 cells is described by, e.g., Barnes, L. M., et al., Cytotechnology 32 (2000) 109-123; and Barnes, L. M., et al., Biotech. Bioeng. 73 (2001) 261-270. Transient expression is described by, e.g., Durocher, Y., et al., Nucl. Acids. Res. 30 (2002) E9. Cloning of variable domains is described by Orlandi, R., et al., Proc. Natl. Acad. Sci. USA 86 (1989) 3833-3837; Carter, P., et al., Proc. Natl. Acad. Sci. USA 89 (1992) 4285-4289; and Norderhaug, L., et al., J. Immunol. Methods 204 (1997) 77-87. A preferred transient expression system (HEK 293) is described by Schlaeger, E.-J., and Christensen, K., in Cytotechnology 30 (1999) 71-83 and by Schlaeger, E.-J., in J. Immunol. Methods 194 (1996) 191-199.
The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, enhancers and polyadenylation signals.
Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading frame. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
The monoclonal antibodies are suitably separated from the culture medium by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography. DNA and RNA encoding the monoclonal antibodies are readily isolated and sequenced using conventional procedures. The hybridoma cells can serve as a source of such DNA and RNA. Once isolated, the DNA may be inserted into expression vectors, which are then transfected into host cells such as HEK 293 cells, CHO cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of recombinant monoclonal antibodies in the host cells.
Amino acid sequence variants (or mutants) of a human P-selectin antibody are prepared by introducing appropriate nucleotide changes into the antibody DNA, or by nucleotide synthesis. Such modifications can be performed, however, only in a very limited range, e.g. as described above. For example, the modifications do not alter the abovementioned antibody characteristics such as the IgG isotype and epitope binding, but may improve the yield of the recombinant production, protein stability or facilitate the purification.
Any cysteine residue not involved in maintaining the proper conformation of the anti-P-selectin antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody. Glycosylation of antibodies is typically N-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites).
Nucleic acid molecules encoding amino acid sequence variants of anti-P-selectin antibodies are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of humanized anti-P-selectin antibody.
The invention also pertains to immunoconjugates comprising the antibody according to the invention conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant or animal origin, or fragments thereof), a radioactive isotope (i.e., a radioconjugate) or a prodrug of an agent for the prophylaxis or treatment of inflammatory and thrombotic disorders, especially from PAOD and CLI. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters; (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediatnine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta, E. S., et al., Science 238 (1987) 1098-1104). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO 94/11026.
Another type of covalent modification involves chemically or enzymatically coupling glycosides to the antibody. These procedures are advantageous in that they do not require production of the antibody in a host cell that has glycosylation capabilities for N— or O-linked glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330, and in Aplin, J. D., and Wriston, J. C. Jr., CRC Crit. Rev. Biochem. (1981) 259-306.
Removal of any carbohydrate moieties present on the antibody may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the antibody to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the antibody intact. Chemical deglycosylation is described by Sojahr, H. T., and Bahl, O. P., Arch. Biochem. Biophys. 259 (1987) 52-57 and by Edge, A. S., et al. Anal. Biochem. 118 (1981) 131-137. Enzymatic cleavage of carbohydrate moieties on antibodies can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura, N. R., and Bahl, O. P., Meth. Enzymol. 138 (1987) 350-359.
Another type of covalent modification of the antibody comprises linking the antibody to one of a variety of nonproteinaceous polymers, eg., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
In yet another aspect, the invention provides isolated B-cells from a transgenic non-human animal, e.g. a transgenic mouse, which express the human anti-P-selectin antibodies (e.g. the parent antibodies produced by a cell line selected from the group consisting of hu-Mab<P-selectin>LC 1004-001 (DSM ACC2640), hu-Mab<P-selectin>LC 1004-002 (DSM ACC2641) and hu-Mab<P-selectin>LC 1004-017(DSM ACC2642) according to the invention. KM mice are suitable transchromosomal mice. The KM mouse contains a human heavy chain transchromosome and a human kappa light chain transgene. The endogenous mouse heavy and light chain genes also have been disrupted in the KM mice such that immunization of the mice leads to production of human immunoglobulins rather than mouse immunoglobulins. Construction of KM mice and their use to raise human immunoglobulins is described in detail in WO 02/43478.
Preferably, the isolated B cells are obtained from a transgenic non-human animal, e.g., a transgenic mouse, which has been immunized with a purified or recombinant form of P-selectin antigen and/or cells expressing P-selectin. Preferably, the transgenic non-human animal, e.g. a transgenic mouse, has a genome comprising a human heavy chain transgene and a human light chain transgene encoding all or a portion of an antibody of the invention. The isolated B-cells are then immortalized to provide a source (e.g. a hybridoma) of human anti-P-selectin antibodies. Accordingly, the present invention also provides a hybridoma capable of producing human monoclonal antibodies according to the invention. In one embodiment, the hybridoma includes a B cell obtained from a transgenic non-human animal, e.g., a transgenic mouse having a genome comprising a human heavy chain transgene and a human light chain transgene encoding all or a portion of an antibody of the invention, fused to an immortalized cell.
In a particular embodiment, the transgenic non-human animal is a transgenic mouse having a genome comprising a human heavy chain transgene and a human light chain transgene encoding all or a portion of an antibody of the invention. The transgenic non-human animal can be immunized with a purified or enriched preparation of P-selectin antigen and/or cells expressing P-selectin. Preferably, the transgenic non-human animal, e.g. the transgenic mouse, is capable of producing P-selectin isotypes of human monoclonal antibodies to P-selectin.
The human monoclonal antibodies according to the invention can be produced by immunizing a transgenic non-human animal, e.g. a transgenic mouse, having a genome comprising a human heavy chain transgene and a human light chain transgene encoding all or a portion of an antibody of the invention, with a purified or enriched preparation of P-selectin antigen and/or cells expressing P-selectin. B cells (e.g. splenic B cells) of the animal are then obtained and fused with myeloma cells to form immortal, hybridoma cells that secrete human monoclonal antibodies against P-selectin.
In a preferred embodiment, human monoclonal antibodies directed against P-selectin can be generated using transgenic mice carrying parts of the human immune system rather than the mouse system. These transgenic mice, referred to herein as “HuMab” mice, contain a human immunoglobulin gene miniloci that encodes unrearranged human immunoglobulin genes which include the heavy (μ and γ) and κ light chain (constant region genes), together with targeted mutations that inactivate the endogenous μ and κ chain loci (Lonberg, N., et al., Nature 368 (1994) 856-859). Accordingly, the mice exhibit reduced expression of mouse IgM or K, and in response to immunization, the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity human IgG monoclonal antibodies (Lonberg, N., et al., Nature 368 (1994) 856-859; reviewed in Lonberg, N., Handbook of Experimental Pharmacology 113 (1994) 49-101; Lonberg, N., and Huszar, D., Intern. Rev. Immunol. 25 (1995) 65-93; and Harding, F., and Lonberg, N., Ann. N. Acad. Sci 764 (1995) 536-546). The preparation of HuMab mice is described in Taylor, L., et al., Nucleic Acids Research 20 (1992) 6287-6295; Chen, J., et al., International Immunology 5 (1993) 647-656; Tuaillon, N., et al., Proc. Natl. Acad. Sci USA 90 (1993) 3720-3724; Choi, T. K., et al., Nature Genetics 4 (1993) 117-123; Chen, J., et al., EMBO J. 12 (1993) 821-830; Tuaillon, N., et al., Immunol. 152 (1994) 2912-2920; Lonberg, N., et al., Nature 368 (1994) 856-859; Lonberg, N., Handbook of Experimental Pharmacology 113 (1994) 49-101; Taylor, L., et al., Int. Immunol. 6 (1994) 579-591; Lonberg, N., and Huszar, D., Intern. Rev. Immunol. 25 (1995) 65-93; Harding, F., and Lonberg, N., Ann. N. Acad. Sci 764 (1995) 536-546; Fishwild, D. M., et al., Nat. Biotechnol. 14 (1996) 845-851, the contents of all of which are hereby incorporated by reference in their entirety. See further, U.S. Pat. Nos. 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,789,650; 5,877,397; 5,661,016; 5,814,318; 5,874,299; 5,545,807; 5,770,429; WO 98/24884; WO 94/25585; WO 93/1227; WO 92/22645; and WO 92/03918.
To generate fully human monoclonal antibodies to P-selectin, HuMab mice can be immunized with a purified or enriched preparation of P-selectin antigen and/or cells expressing P-selectin in accordance with the general method, as described by Lonberg, N., et al., Nature 368 (1994) 856-859; Fishwild, D. M., et al., Nat. Biotechnol. 14 (1996) 845-851 and WO 98/24884. Preferably, the mice will be 6-16 weeks of age upon the first immunization. For example, a purified or enriched preparation of soluble P-selectin antigen (e.g. purified from P-selectin-expressing cells) can be used to immunize the HuMab mice intraperitoneally. In the event that immunizations using a purified or enriched preparation of P-selectin antigen do not result in antibodies, mice can also be immunized with cells expressing P-selectin, e.g., a tumor cell line, to promote immune responses. Cumulative experience with various antigens has shown that the HuMab transgenic mice respond best when initially immunized intraperitoneally (i.p.) with antigen in complete Freund's adjuvant, followed by every other week i.p. immunizations (for example, up to a total of 6) with antigen in incomplete Freund's adjuvant. The immune response can be monitored over the course of the immunization protocol with plasma samples being obtained by retroorbital bleeds. The plasma can be screened by ELISA, and mice with sufficient titers of anti-P-selectin human immunoglobulin can be used for immortalization of corresponding B cells. Mice can be boosted intravenously with antigen 3 to 4 days before sacrifice and removal of the spleen and lymph nodes. It is expected that 2-3 fusions for each antigen may need to be performed. Several mice will be immunized for each antigen. For example, a total of twelve HuMab mice of the HCo7 and HCo12 strains can be immunized.
The HCo7 mice have a JKD disruption in their endogenous light chain (kappa) genes (as described in Chen, J., et al., EMBO J. 12 (1993) 821-830), a CMD disruption in their endogenous heavy chain genes (as described in Example 1 of WO 01/14424), a KCo5 human kappa light chain transgene (as described in Fishwild, D. M., et al., Nat. Biotechnol. 14 (1996) 845-851), and a HCo7 human heavy chain transgene (as described in U.S. Pat. No. 5,770,429).
The HCo12 mice have a JKD disruption in their endogenous light chain (kappa) genes (as described in Chen, J., et al., EMBO J. 12 (1993) 821-830), a CMD disruption in their endogenous heavy chain genes (as described in Example 1 of WO 01/14424), a KCo5 human kappa light chain transgene (as described in Fishwild, D. M., et al., Nat. Biotechnol. 14 (1996) 845-851), and a HCo12 human heavy chain transgene (as described in Example 2 of WO 01/14424).The mouse lymphocytes can be isolated and fused with a mouse myeloma cell line using PEG based on standard protocols to generate hybridomas. The resulting hybridomas are then screened for the production of antigen-specific antibodies. For example, single cell suspensions of splenic and lymph node-derived lymphocytes from immunized mice are fused to one-sixth the number of SP 2/0 nonsecreting mouse myeloma cells (ATCC, CRL 1581) with 50% PEG. Cells are plated at approximately 2×105 in flat bottom microtiter plate, followed by about two weeks incubation in selective medium.
Individual wells are then screened by ELISA for human anti-P-selectin monoclonal IgM and IgG antibodies. Once extensive hybridoma growth occurs, medium is analyzed, usually after 10-14 days. The antibody secreting hybridomas are replated, screened again, and if still positive for human IgG, anti-P-selectin monoclonal antibodies, can be subcloned at least twice by limiting dilution. The stable subclones are then cultured in vitro to produce antibody in tissue culture medium for characterization.
Because CDR sequences are responsible for antibody-antigen interactions, it is possible to express recombinant antibodies according to the invention by constructing expression vectors that include the CDR sequences according to the invention onto framework sequences from a different human antibody (see, e.g., Riechmann, L., et al., Nature 332 (1998) 323-327; Jones, P., et al., Nature 321 (1986) 522-525; and Queen, C., et al., Proc. Natl. Acad. See. U.S.A. 86 (1989)10029-10033). Such framework sequences can be obtained from public DNA databases that include germline human antibody gene sequences. These germline sequences will differ from mature antibody gene sequences because they will not include completely assembled variable genes, which are formed by V(D)J joining during B cell maturation. Germline gene sequences will also differ from the sequences of a high affinity secondary repertoire antibody at individual evenly across the variable region.
The invention further comprises the use of an antibody according to the invention for the diagnosis of P-selectin in vitro, preferably by an immunological assay determining the binding between P-selectin of a sample and the antibody according to the invention.
In another aspect, the present invention provides a composition, e.g. a pharmaceutical composition, containing one or a combination of human monoclonal antibodies, or the antigen-binding portion thereof, of the present invention, formulated together with a pharmaceutically acceptable carrier. More specifically, the composition is a pharmaceutical or a diagnostic composition and even more specifically the pharmaceutical composition comprises an antibody as defined above and at least one pharmaceutically acceptable excipient.
Pharmaceutical compositions of the invention also can be administered in combination therapy, i.e., combined with other agents. For example, the combination therapy can include a composition of the present invention with at least one agent useful in the prophylaxis or treatment a disease associated with critical limb ischemia (CLI/PAOD) or other conventional therapy.
As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Preferably, the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g. by injection or infusion).
A “pharmaceutically acceptable salt” refers to a salt that retains the desired biological activity of the antibody and does not impart any undesired toxicological effects (see e.g. Berge, S. M., et al., J. Pharm. Sci. 66 (1977) 1-19). Such salts are included in the invention. Examples of such salts include acid addition salts and base addition salts. Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric salts.
A composition of the present invention can be administered by a variety of methods known in the art. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results.
To administer a compound of the invention by certain routes of administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation. For example, the compound may be administered to a subject in an appropriate carrier, for example, liposomes, or a diluent. Pharmaceutically acceptable diluents include saline and aqueous buffer solutions.
Pharmaceutically acceptable excipients or carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for pharmaceutically active substances is known in the art.
The phrases “parenteral administration” and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion.
These compositions may also contain excipients or adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of presence of microorganisms may be ensured both by sterilization procedures, supra, and by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
Regardless of the route of administration selected, the compounds of the present invention, which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.
Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient. The selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compositions employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts. A typical weekly dosage might range from about 0.1 mg/kg to about 20 mg/kg or more, depending on the factors mentioned above.
The composition must be sterile and fluid to the extent that the composition is deliverable by syringe. In addition to water, the carrier can be an isotonic buffered saline solution, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof.
Proper fluidity can be maintained, for example, by use of coating such as lecithin, by maintenance of required particle size in the case of dispersion and by use of surfactants. In many cases, it is preferable to include isotonic agents, for example, sugars, polyalcohoils such as mannitol or sorbitol, and sodium chloride in the composition. Long-term absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate or gelatin.
The invention comprises a method for the treatment of a patient in need of therapy, characterized by administering to the patient a therapeutically effective amount of an antibody which binds P-selectin, contains a Fc part derived from human origin and does not bind complement factor C1q.
The invention comprises the use of an antibody which binds P-selectin, contains a Fc part derived from human origin and does not bind complement factor C1q for therapy.
The invention comprises the use of an antibody which binds P-selectin, contains a Fc part derived from human origin and does not bind complement factor C1q for the preparation of a medicament for the prophylaxis and treatment of inflammatory and thrombotic disorders.
The invention comprises the use of an antibody which binds P-selectin, contains a Fc part derived from human origin and does not bind complement factor C1q for the treatment of PAOD and CLI.
The present invention thus provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E. In one embodiment the antibody is a human antibody. In another embodiment the antibody is a humanized antibody.
In one embodiment the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein non-binding of the antibody to complement factor C1q refers to an ELISA assay measurement wherein the maximal binding (Bmax) of C1q to the antibody at a concentration of 10 μg/ml of the antibody is ≦30% of Bmax of the antibody LC 1004-002 of cell line hu-Mab<P-selectin>LC 1004-002 (DSM ACC2641). In another embodiment the maximal binding is ≦20% of Bmax of the antibody LC 1004-002 of cell line hu-Mab<P-selectin>LC 1004-002 (DSM ACC2641).
In one embodiment the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein the antibody binds to P-selectin with a KD value of less than 10−8 M in a BIAcore assay. In another embodiment the KD range is 10−11 to 10−9 M.
In one embodiment the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein the antibody binds at least 1000 fold more specifically to P-selectin than to E- and/or L-selectin as measured by EC50 values in an ELISA assay, wherein P- and E- and/or L-selectin are coated onto the microtiter plate. In another embodiment the EC50 values on E- and L-selectin transfectants are above 100 μg/ml.
In one embodiment the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein the antibody inhibits the adhesion of leukocyte-like HL60 cells to purified P-selectin with an IC50 value of no more than 1 μg/ml. In another embodiment the IC50 value is in the range of 0.08 to 0.5 μg/ml. In still another embodiment the IC50 value is in the range of 0.08 to 0.11 μg/ml.
In one embodiment the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein
    • (a) the adhesion of leukocyte-like HL60 cells to activated platelets is inhibited with an IC50 value of 0.05 to 0.3 μg/ml;
    • (b) the antibody inhibits the interaction of leukocytes with a monolayer of platelets by more than 70%;
    • (c) the antibody inhibits the adhesion of leukocytes to activated endothelial cells in a human flow system in the range of 60 to 90% at a concentration of 3 μg/ml;
    • (d) the antibody does not bind the C3 protein;
    • (e) the antibody does not elicit complement-dependent cytotoxicity (CDC);
    • (f) the antibody does not bind to Fcγ receptors on NK effector cells; or
    • (g) the antibody does not elicit antibody-dependent cellular cytotoxicity (ADCC).
In one embodiment the present invention provides an antibody binding to P-selectin characterized in that the variable heavy chain amino acid sequence CDR3 of said antibody is selected from the group consisting of the heavy chain CDR3 sequences SEQ ID NO: 38, 39, 40, 41 or 42.
In one embodiment the present invention provides an antibody binding to P-selectin, comprising a variable heavy chain and a variable light chain, characterized in that the variable heavy chain comprises CDR sequences CDR1, CDR2 and CDR3 and CDR1 being selected from the group consisting of SEQ ID NOs: 29, 30, 31, 32, CDR2 being selected from the group consisting of SEQ ID NOs: 33, 34, 35, 36, 37, CDR3 being selected from the group consisting of SEQ ID NOs: 38, 39, 40, 41, 42, wherein said CDRs are selected independently of each other.
In one embodiment the present invention provides an antibody characterized in that the variable light chain comprises CDR sequences CDR1, CDR2 and CDR3, and CDR1 is selected from SEQ ID NOs: 43, 44, CDR2 is selected from SEQ ID NOs: 45, 46 and CDR3 is selected from SEQ ID NOs: 47, 48, 49, 50, 51, 52 wherein said CDRs are selected independently of each other.
In one embodiment the present invention provides an antibody, characterized in that said antibody binds P-selectin and that the antibody comprises a variable region independently selected from the group consisting of
  • a) the light chain variable domain defined by amino acid sequence SEQ ID NO:1 and the heavy chain variable domain defined by SEQ ID NO:2;
  • b) the light chain variable domain defined by amino acid sequence SEQ ID NO:3 and the heavy chain variable domain defined by SEQ ID NO:4;
  • c) the light chain variable domain defined by amino acid sequence SEQ ID NO:5 and the heavy chain variable domain defined by SEQ ID NO:6;
  • d) the light chain variable domain defined by amino acid sequence SEQ ID NO:7 and the heavy chain variable domain defined by SEQ ID NO:8;
  • e) the light chain variable domain defined by amino acid sequence SEQ ID NO:9 and the heavy chain variable domain defined by SEQ ID NO:10;
  • f) the light chain variable domain defined by amino acid sequence SEQ ID NO:11 and the heavy chain variable domain defined by SEQ ID NO:12;
  • g) the light chain variable domain defined by amino acid sequence SEQ ID NO:13 and the heavy chain variable domain defined by SEQ ID NO:14;
  • h) the light chain variable domain defined by amino acid sequence SEQ ID NO:15 and the heavy chain variable domain defined by SEQ ID NO:16;
  • i) the light chain variable domain defined by amino acid sequence SEQ ID NO:17 and the heavy chain variable domain defined by SEQ ID NO:18;
  • j) the light chain variable domain defined by amino acid sequence SEQ ID NO:19 and the heavy chain variable domain defined by SEQ ID NO:20; and
  • k) the light chain variable domain defined by amino acid sequence SEQ ID NO:21 and the heavy chain variable domain defined by SEQ ID NO:22.
In one embodiment the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein the antibody comprises the CDR1, CDR2 and CDR3 regions of the light chain variable domain defined by amino acid sequence SEQ ID NO:3 and the CDR1, CDR2 and CDR3 regions of the heavy chain variable domain defined by SEQ ID NO:4. In another embodiment the antibody comprises the light chain variable domain defined by amino acid sequence SEQ ID NO:3 and the heavy chain variable domain defined by SEQ ID NO:4.
In one embodiment the present invention provides an antibody binding to P-selectin, not binding to complement factor C1q, containing an Fc part derived from human origin, and being characterized in that said antibody is an antibody of human subclass IgG1, containing at least one mutation in L234, L235, D270, N297, E318, K320, K322, P331 and/or P329 or is an antibody of human subclass IgG4 wherein S228 is replaced by P and L235 is replaced by E, wherein
    • (a) the antibody comprises at least one amino acid mutation in the Fc part causing non-binding to complement factor C1q;
    • (b) the human heavy chain constant region comprises the amino acid sequence independently selected from the group consisting of SEQ ID NO: 25, SEQ ID NO:26 and 28;
    • (c) the antibody comprises a K-light chain constant region as defined by SEQ ID NO:23;
    • (d) the antibody comprises at least one amino acid mutation causing non-binding to complement C1q;
    • (e) the antibody comprises a heavy chain constant region selected from the group consisting of IgG1v1, IgG1v2 and IgG4v1; or
    • (f) the antibody is a Fab, F(ab′)2 or a single-chain fragment.
In one embodiment the present invention provides an anti-P selectin antibody, characterized in that it a) is a human or humanized antibody, and b) binds at least 1000 fold more specifically to P-selectin than to E- or L-selectin as measured by EC50 values in an ELISA assay, wherein P- and E- and/or L-selectin are coated onto the microtiter plate. In another embodiment the antibody comprises the amino acid sequence as defined by SEQ ID NO:24, 25 or 26 γ1 heavy chain constant region or SEQ ID NO:27 or 28 γ4 heavy chain constant region. In still another embodiment the antibody is produced by a cell line selected from the group consisting of hu-Mab<P-selectin>LC 1004-001 (DSM ACC2640), hu-Mab<P-selectin>LC 1004-002 (DSM ACC2641) and hu-+Mab<P-selectin>LC 1004-017(DSM ACC2642).
It is to be understood that the invention provides the embodiments with the definitions as described in paragraphs above-.
The following examples, references, sequence listing and figures are provided to aid the understanding of the present invention, the true scope of which is set forth in the appended claims. It is understood that modifications can be made in the procedures set forth without departing from the spirit of the invention.
DESCRIPTION OF THE SEQUENCE LISTING
  • SEQ ID NO:1 LC1004-001 light chain, variable domain of HuMab 1004-001
  • SEQ ID NO:2 LC1004-001 heavy chain, variable domain of HuMab 1004-001
  • SEQ ID NO:3 LC 1004-002 light chain, variable domain of HuMab 002
  • SEQ ID NO:4 LC 1004-002 heavy chain, variable domain of HuMab 002
  • SEQ ID NO:5 LC 1004-003 light chain, variable domain of HuMab 003
  • SEQ ID NO:6 LC 1004-003 heavy chain, variable domain of HuMab 003
  • SEQ ID NO:7 LC 1004-004 light chain (I), variable domain of HuMab 004 (I)
  • SEQ ID NO:8 LC 1004-004 heavy chain (I), variable domain of HuMab 004 (I)
  • SEQ ID NO:9 LC 1004-004 light chain (II), variable domain of HuMab 004 (II)
  • SEQ ID NO:10 LC 1004-004 heavy chain (II), variable domain of HuMab 004 (II)
  • SEQ ID NO:11 Light chain, variable domain of HuMab 005
  • SEQ ID NO:12 Heavy chain, variable domain of HuMab 005
  • SEQ ID NO:13 Light chain, variable domain of HuMab 010 (I)
  • SEQ ID NO:14 Heavy chain, variable domain of HuMab 010 (I)
  • SEQ ID NO:15 Light chain, variable domain of HuMab 010 (II)
  • SEQ ID NO:16 Heavy chain, variable domain of HuMab 010 (II)
  • SEQ ID NO:17 Light chain, variable domain of HuMab 010 (III)
  • SEQ ID NO:18 Heavy chain, variable domain of HuMab 010 (III)
  • SEQ ID NO:19 Light chain, variable domain of HuMab 011
  • SEQ ID NO:20 Heavy chain, variable domain of HuMab 011
  • SEQ ID NO:21 Light chain, variable domain of HuMab 017
  • SEQ ID NO:22 Heavy chain, variable domain of HuMab 017
  • SEQ ID NO:23 κ light chain constant region
  • SEQ ID NO:24 γ1 heavy chain constant region
  • SEQ ID NO:25 γ1 heavy chain constant region PVA236/GLPSS331 (IgG1v1)
  • SEQ ID NO:26 γ1 heavy chain constant region L234A/L235A (IgG1v2)
  • SEQ ID NO:27 γ4 heavy chain constant region
  • SEQ ID NO:28 γ4 heavy chain constant region S228/L235E (IgG4v1)
  • SEQ ID NO:29-32 Heavy chain CDR1
  • SEQ ID NO:33-37 Heavy chain CDR2
  • SEQ ID NO:38-42 Heavy chain CDR3
  • SEQ ID NO:43-44 Light chain CDR1
  • SEQ ID NO:45-46 Light chain CDR2
  • SEQ ID NO:47-52 Light chain CDR3
  • SEQ ID NO:53-57 Various sequences of four or more amino acids as described herein.
Abbreviations
Amino acids are abbreviated either in the three (Leu) or one letter code (L) Antibody HuMab 00X is also named antibody 00X
  • L234 means amino acid leucine at position 234 according to EU numbering (Kabat)
  • L234A means amino acid leucine at position 234 is changed to alanine
  • PVA236 means that in the 236 region ELLG (SEQ ID NO: 53) of IgG1 or EFLG (SEQ ID NO: 56) of IgG4 is amended in PVA.
  • GLPSS331 means that in the 331 region ALPAP (SEQ ID NO: 54) of IgG1 or GLPAP (SEQ ID NO: 57) of IgG2 is changed to GLPSS (SEQ ID NO: 55).
  • Amendments in the other IgG subclasses analogously are analogous.
EXAMPLES Generation of a Hybridoma Cell Line Producing Anti-P-Selectin Antibodies
Culture of Hybridomas
HuMab hybridomas were cultured in IMDM (Cambrex), Fetal clone 1 Bovine serum (Perbio Science), origin Hybridoma cloning factor (Igen), sodium pyruvate, penicillin/streptomycin, 2-mercaptoethanol, HAT (Sigma-Aldrich) and Kanamycin (Invitrogen) in 37° C. and 5% CO2.
Generation of a Hybridoma Cell Line Producing Anti-P-Selectin Antibodies
Immunization Procedure of Transgenic Mice
Protocol A:
10 HCo7 transgenic mice (5 males and 5 females), strain GG2201 (Medarex, San Jose, Calif., USA) were immunized with a recombinant truncated form of P-selectin which lacks the transmembrane and cytoplasmic domain of P-selectin and which was purchased from R&D Systems. For the first immunization 50 μg recombinant P-selectin, dissolved in 100 μl PBS, was mixed with 100 μl complete Freunds' adjuvant. For the remaining immunizations recombinant P-selectin coupled to KLH was used. For the second immunization 50 μg KLH-coupled recombinant P-selectin was dissolved in 100 μl PBS and mixed with 100 μl incomplete Freunds' adjuvant. For the remaining immunizations 20 μg KLH-coupled recombinant P-selectin was dissolved in 100 μl PBS and mixed with 100 μl incomplete Freunds' adjuvant. Immunizations were administered alternating interperitoneal and subcutaneous starting with an interperitoneal immunization.
Protocol B:
3 HCo7 (all female) and 3 KM (all male) transgenic mice, strain GG2489 (Medarex, San Jose, Calif., USA) were immunized with full-length P-selectin purified from human outdated platelets by immunoaffinity chromatography (s. below). For the first immunization, 50 μg of the purified P-selectin, dissolved in 100 μl PBS, was mixed with 100 μl complete Freunds' adjuvant (CFA; Difco Laboratories, Detroit, USA). For the second immunization, 50 μg of the purified P-selectin, dissolved in 100 μl PBS, was mixed with 100 μl incomplete Freunds' adjuvant (ICFA; Difco).
For all other immunizations, 20 μg of the purified P-selectin was used and mixed with 100 μl incomplete Freunds' adjuvant.
Antigen Specific ELISA
Anti-P-selectin titers in sera of immunized mice were determined by antigen specific ELISA. Plate (96 flat bottom ELISA plate, Greiner) was coated with 0.1 μg/ml purified P-selectin dissolved in PBS and coated overnight at room temperature. Thereafter, wells were blocked with PBSTC (PBS containing 0.05% Tween 20 (Sigma-Aldrich Chemie BV) and 2% chickenserum (Gibco)) for 1 hour at room temperature.
Tested serum taps were diluted 1:100 in PBSTC and added to the wells. Serum obtained from mice prior to immunization was dissolved 1:100 in PBSTC and used as negative control. A mouse antibody directed against human P-selectin ( 1/7, produced in house by Roche Basel) was dissolved 1:100 in PBSTC and used as a positive control. Plates were incubated for 1 hour at room temperature. Subsequently, plates were washed twice using PBST (PBS containing 0.05% Tween 20. Gt-α-huIgG-HRP (Jackson) was diluted 1:5000 in PBSTC and added to the wells containing the tested taps and the negative control. Rb-α-mIgG (Jackson) was diluted 1:3000 in PBSTC and added to the wells containing the positive control. Plates were incubated for 1 hour at room temperature. Finally, plates were washed twice using PBST and developed with freshly prepared ABTS® solution (1 mg/ml) (ABTS: 2,2′-azino bis (3-ethylbenzthiazoline-6-sulfonic acid) for 30 minutes at room temperature (RT) in the dark. Absorbance was measured at 405 nm.
Boosting of Mice
When serum titers of anti-P-selectin were sufficient, mice were additionally boosted twice with 20 μg recombinant human P-selectin in 100 μl PBS, intraveneously 4 and 3 days before fusion.
Hybridoma Generation
Mice were sacrificed and the spleen and lymph nodes flanking the abdominal aorta and vena cava were collected. Fusion of splenocytes and lymph node cells with the fusion partner SP 2.0 cells was performed according to standard operating procedures.
Human monoclonal antibodies with variable heavy and light sequences of SEQ ID NOs 1-22 were obtained by the immunization procedure.
κ-ELISA
To determine whether hybridomas that resulted from the fusion generate human antibodies, a κ-ELISA was performed. ELISA plates were coated with rat anti-human IgG κ-light chain antibody (DAKO) diluted 1/10000 in PBS by overnight incubation at 4° C. After discarding the wells, plates were blocked by incubation with PBSTC for 1 hour at room temperature. Thereafter, wells were incubated with hybridoma culture supernatant, 1/2 diluted in PBSTC. Culture medium 1/2 diluted in PBSTC was used as negative control, κ-light positive mouse serum 1/100 diluted in PBSTC served as positive control. Subsequently, wells were washed thrice and were incubated with HRP-conjugated rat anti-human IgG F(ab′)2 (DAKO), diluted 1/2000 in PBSTC for 1 h at 37° C. Wells were washed thrice and assays were developed with freshly prepared ABTS® solution (1 mg/ml) for 30 minutes at room temperature (RT) in the dark. Absorbance was measured at 405 nm in an ELISA plate reader.
Cloning and Sequence Analysis of Anti-P-Selectin HuMab Variable Domains (κ-Light and γ1-Heavy Chains)
The nucleotide sequences coding for the light chain variable region VL and the heavy chain variable region VH of the P-selectin HuMabs were isolated by a standard cDNA synthesis/PCR procedure.
Total RNA was prepared from 1×106−1×107 hybridoma cells using the RNeasy® Mini Kit (Qiagen). Hybridoma derived RNA was used as a template for the 1st strand cDNA synthesis which was performed according to a conventional method making use of an oligo dT primer. 2nd-strand cDNA synthesis and further PCR amplification of VL and VH encoding cDNA fragments were performed with reverse light and heavy chain primers complementary to nucleotide sequences of the κ-light and γ1-heavy chain constant region and 5′-specific light and heavy chain primers, respectively. The PCR products were cloned using the TOPO® TA cloning kit from Invitrogen™ life technologies and pCR4-TOPO® as a cloning vector. Cloned PCR products were identified by restriction mapping of the appropriate plasmids using EcoRi for digestion and expected/calculated DNA fragment sizes of about 740 and 790 bp for VL and VH, respectively.
The DNA sequence of cloned PCR fragments was determined by double strand sequencing.
The GCG® (Genetics Computer Group, Madison, Wis.) software package version 10.2 was used for general data processing. DNA and protein sequences were aligned using the GCG® modul CLUSTALW. Sequence alignments were tabulated, edited and color-coded using the program GENEDOC® (version 2.1).
Construction of Expression Plasmids for an Anti-P-Selectin IgG1 HuMab
The anti-P-selectin HuMab light and heavy chain encoding genes were separately assembled in mammalian cell expression vectors.
Thereby the gene segments encoding the anti-P-selectin HuMab light chain variable region (VL) and the human κ-light chain constant region (CL) were joined as were gene segments for the anti-P-selectin HuMab heavy chain variable region (VH) and the human γ1-heavy chain constant region (CH1-Hinge-CH2-CH3).
General information regarding the nucleotide sequences of human light and heavy chains from which the codon usage can be deduced is given in: Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S., and Foeller, C. (1991) Sequences of Proteins of Immunological Interest, Fifth Ed., NIH Publication No 91-3242.
The transcription unit of the anti-P-selectin HuMab κ-light chain is composed of the following elements:
    • The immediate early enhancer and promoter from the human cytomegalovirus (HCMV),
    • A synthetic 5′-UT including a Kozak sequence,
    • A murine immunoglobulin heavy chain signal sequence including the signal sequence intron,
    • The cloned anti-P-selectin HuMab variable light chain cDNA arranged with a unique BsmI restriction site at the 5′ end and a splice donor site and a unique NotI restriction site at the 3′ end,
    • The genomic human κ-gene constant region, including the intron 2 mouse Ig-κ enhancer [Picard, D., and Schaffner, W. (1984) Nature 307, 80-82] and
    • The human immunoglobulin κ-polyadenylation (“poly A”) signal sequence.
The transcription unit of the anti-P-selectin HuMab γ1-heavy chain is composed of the following elements:
    • The immediate early enhancer and promoter from the human cytomegalovirus (HCMV),
    • A synthetic 5′-UT including a Kozak sequence,
    • A modified murine immunoglobulin heavy chain signal sequence including the signal sequence intron,
    • The cloned anti-P-selectin HuMab variable heavy chain cDNA arranged with a unique BsmI restriction site at the 5′ and a splice donor site and a unique NotI restriction site at the 3′ end,
    • The genomic human γ1-heavy gene constant region, including the mouse Ig μ-enhancer [Neuberger, M. S. (1983) Embo J 2, 1373-1378],
    • The human γ1-immunoglobulin polyadenylation (“poly A”) signal sequence.
Functional elements of the anti-P-selectin HuMab κ-light chain and γ1-heavy chain expression plasmids: Beside the anti-P-selectin HuMab κ-light chain or γ1-heavy chain expression cassette these plasmids contain
    • A hygromycin resistance gene
    • An origin of replication, oriP, of Epstein-Barr virus (EBV)
    • An origin of replication from the vector pUC18 which allows replication of this plasmid in E. coli, and
    • A β-lactamase gene which confers ampicillin resistance in E. coli.
Construction of Expression Plasmids for an Anti-P-Selectin IgG4 HuMab
An anti-P-selectin γ4-heavy chain prototype expression plasmid was derived from the anti-P-selectin γ1-heavy chain expression plasmid by replacing the human genomic γ1-constant region and γ1-immunoglobulin polyadenylation (“poly A”) signal sequence by the human genomic γ4-constant region and γ4-immunoglobulin polyadenylation-signal sequence.
For the expression of anti-P-selectin HuMab κ-light chains the same expression plasmids were used as described for IgG1 (see above).
Construction of Expression Plasmids for Mutant (Variant) Anti-P-Selectin IgG1 and IgG4
Expression plasmids encoding mutant anti-P-selectin γ1- and γ4-heavy chains were created by site-directed mutagenesis of the wild type expression plasmids using the QuickChange™ Site-Directed mutagenesis Kit (Stratagene).
The following mutants were generated for LC1004-002. Amino acids are numbered according to EU numbering [Edelman, G. M., Cunningham, B. A., Gall, W. E., Gottlieb, P. D., Rutishauser, U., and Waxdal, M. J. (1969) Proc Natl Acad Sci U S A 63, 78-85; Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S., and Foeller, C. (1991) Sequences of Proteins of Immunological Interest, Fifth Ed., NIH Publication No 91-3242].
TABLE 1
Isotype Abbreviation Mutations Description
IgG1 IgG1v1 PVA-236; The amino acid sequence
GLPSS331 Glu233Leu234Leu235G1y236 (SEQ ID
as specified NO: 53) of the human γ1-heavy
by chain is replaced by the amino acid
E233P; sequence Pro233Val234Ala235 of the
L234V; human γ2-heavy chain.
L235A; The amino acid sequence
delta G236; Ala327Leu328Pro329A1a330Pro331
A327G; (SEQ ID NO: 54) of the human
A330S; γ1-heavy chain is replaced by the
P331S amino acid sequence
SEQ ID Gly327Leu328Pro329Ser330Ser331
NO: 25 (SEQ ID NO: 55) of the human
γ4-heavy chain
IgG1 IgG1v2 L234A; The amino acid sequence
L235A Leu234Leu235 of the human γ1-heavy
SEQ ID chain is replaced by the amino acid
NO: 26 sequence Ala234A1a235
IgG4 IgG4v1 S228P; Ser228 of the human γ4-heavy chain
L235E is replaced by Pro228 and Leu235 of
SEQ ID the human γ4-heavy chain is
NO: 28 replaced by Glu235
Production of Recombinant Anti P-Selectin HuMabs
Recombinant HuMabs were generated by transient transfection of adherent HEK293-EBNA cells (ATTC # CRL-10852) cultivated in DMEM (Gibco) supplemented with 10% ultra-low IgG FCS (Gibco), 2 mM Glutamine (Gibco), 1% v/v nonessential aminoacids (Gibco) and 250 μg/ml G418 (Roche). For transfection Fugene™ 6 (Roche) Transfection Reagent was used in a ratio of reagent (μl) to DNA (μg) ranging from 3:1 to 6:1. Immunoglobulin light and heavy chains were expressed from two different plasmids using a molar ratio of light chain to heavy chain encoding plasmid from 1:2 to 2:1. HuMab containing cell culture supernatants were harvested at day 4 to 11 after transfection. Supernatants were stored at −20° C. until purification.
General information regarding the recombinant expression of human antibody in e.g. HEK293 is given in: Meissner, P., Pick, H., Kulangara, A., Chatellard, P., Friedrich, K., and Wurm, F. M. (2001) Biotechnol Bioeng 75, 197-203.
Determination of the Affinity of Anti-P-Selectin HuMabs
Equipment:
  • Instrument: BIACORE® 2000
  • Chip: CM5
  • Coupling: amine coupling
  • Buffer: HBS (HEPES, NaCl), pH 7.4, 25° C.
For affinity measurements rabbit anti human Fcγ antibodies (Dianova) have been coupled by amine coupling to the chip surface for presentation of the antibody against P-selectin. Approximately 400 RU of anti P-selectin antibodies were bound. Recombinant P-selectin (R&D Systems) was added in various concentrations between 0-50 nM. Association was measured by P-selectin-injection for 120 seconds; dissociation was measured by washing the chip surface with buffer for 180 seconds. The affinity data for different P-selectin antibodies are shown in Table 2. Using Biaevaluation Software the kinetic data were fitted to a 1:1 Langmuir binding model of P-selectin to the presented monoclonal antibody.
TABLE 2
Affinity data measured by SPR (BIACORE ® 2000)
Antibody
HuMab ka (1/Ms) kd (1/s) KA (1/M) KD (M)
001 6.08 × 105 4.19 × 10−4 1.45 × 109 6.89 × 10−10
002 8.10 × 105 2.13 × 10−3 3.81 × 109 2.63 × 10−9 
003 6.60 × 105 2.91 × 10−4 2.27 × 109 4.41 × 10−10
005 8.42 × 105 2.89 × 10−4 2.91 × 109 3.43 × 10−10
011 1.77 × 106 2.38 × 10−3 7.44 × 108 1.34 × 10−9 
012 1.08 × 106 1.25 × 10−4 8.65 × 109 1.16 × 10−10
013 1.46 × 106 2.02 × 10−4 7.22 × 109 1.39 × 10−10
017 7.79 × 105 1.39 × 10−5 5.59 × 109 1.79 × 10−11
Inhibitory Activity of the P-Selectin Antibodies in a Cell-Based Adhesion and Rosetting Assay
Materials and Methods:
Cell adhesion assay: In the adhesion assay the effect of the HuMabs on the adhesion of leukocyte-like HL60 cells (ATCC CCL 240) to P-selectin coated onto microtiter plates was evaluated. The HL60 cells were labeled with BCECF-AM (2′, 7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester; Cat.no 216254, Calbiochem). Full-length purified P-selectin (purification procedure s. above) at a concentration of 1 μg/ml in buffer containing 150 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 20 mM Tris (pH 7.4) plus 0.0005% T×100 was coated overnight at 4° C. to 96 wells plates (Nunc Immunoplate Maxisorp™ F96). Thereafter, the wells were blocked with the above-mentioned buffer containing 3.5% bovine serum albumin (BSA, Fluka) for 2 h at room temperature (RT). The wells were preincubated with 50 μl of different dilutions of the P-selectin HuMabs or reference mouse P-selectin antibodies (WAPS 12.2, respective hybridoma cell line provided by ATCC) in the above-mentioned buffer containing 1% BSA for 20 minutes at RT. The labeled HL60 cells (50 μl, 70,000 cells/well) were added and allowed to bind for 45 min at RT. In some experiments the HL60 cells were preincubated with 20 μg/ml of human IgG1 for 30 minutes prior to their addition to the wells in order to block Fc receptors. After removal of the unbound HL60 cells by gentle washing (4 times with the above-mentioned buffer), the adherent cells were lysed with 120 μl NP-40 (Fluka; 1% in H2O). 100 μl of the supernates were transferred to plates to measure the respective fluorescence at an excitation wavelength of 485 nm and an emission of 538 nm using a luminescence spectrometer LS 50B (Perkin Elmer).
Rosetting assay: To evaluate the effect of the antibodies on the interaction of activated platelets with HL60 cells a rosetting assay (Jungi et al, Blood 67:629 (1986)) in combination with double color cytofluorimetric analysis (Evangelista et al., Blood 88:4183 (1996) was applied. Washed human platelets were prepared as described (Fox et al, Methods Enzymol 215:45 (1992)). They were activated with thrombin (final conc 1 U/ml) for 5 min and labeled with a FITC-conjugated anti-human GPIIb antibody pl-36 (Kouns et al., J Biol Chem 267:18844 (1992)). Then 1.4−2×106 platelets within 70 μl of tyrode solution were incubated with different dilutions of HuMabs (100 μl) in the dark for 30 min at RT. 50 μl of HL60 cell suspension (in tyrode solution) adjusted to 20×106/ml was added. The HL60 cells were labeled by incubation with 20 μl of a PE (phycoerythrin)-conjugated anti-human CD45 Ab (Code No. 555483, Pharmingen). After having incubated the labeled HL60 cells with the platelets and the HuMabs for 30 min at room temperature in FACS® tubes (Becton Dickinson), the formation of mixed aggregates or rosettes was analyzed by measuring both platelet and HL60 cell marker fluorescence using a FACScan™ (Becton Dickinson). Forward and side scatter, as well as green (FITC) and red (PE) signals were acquired by logarithmic amplification with excitation wavelength of 488 nm and emission wavelength of 530 nm (FITC) and 570 nm (PE), respectively. Electronic compensation was used to remove spectral overlap. HL60 cells were identified on the basis of forward and side scatter. Gating on events identified as HL60 cells was performed to exclude single platelets. Five thousand HL60 cell-gated events were measured for each sample. A sample in which non-activated or thrombin-activated platelets were mixed with HL60 cells in the presence of EDTA (10 mmol/l) was used to set a threshold on the green fluorescence scale. The percentage of HL60 cells above the threshold represents the percentage of HL60 cell binding platelets. The shift of the platelet marker fluorescence towards lower fluorescence values reflects the reduction of the number of mixed aggregates with a higher number of adhering platelets in favor of an increase of the number of mixed aggregates with a low number of adhering platelets.
Results:
In the HL60 cell adhesion assay the P-selectin antibodies inhibited the adhesion of the HL60 cells to purified P-selectin with IC50 values in the range of 0.08-0.5 μg/ml, Although the mutations were introduced in the Fc portion of the antibody, both the IgG4 and IgG1 variants of HuMabs were more potent than the parent antibody with IC50 values of 0.08-0.11 μg/ml as illustrated in FIG. 1. When preincubating the HL60 cells with human IgG1, the potency of the parent non-mutated antibodies is also increased with an about 3 to 4-fold reduction of the IC50 value, as demonstrated for HuMab 002 in FIG. 1. This finding suggests that the increased efficacy of the mutants in the adhesion assay is primarily due to the elimination of the adhesion of the HL60 cells to P-selectin via the Fc portion of the antibody to the Fcγ receptors.
In the rosetting assay evaluating the adhesion of human activated platelets expressing P-selectin to HL60 cells the IC50 values of the HuMabs were even below those of the adhesion assay due to the lower number of P-selectin receptors in this assay (IC50: 0.05-0.3 μg/ml, preferably between 0.05 and 0.2 μg/ml). The efficacy of the Fc variants of the respective HuMabs tends to be increased as compared to the non-mutated parent antibody (FIG. 2). Preincubation of the HL60 cells with IgG1 and IgG4 prior to the incubation with the activated platelets did not significantly affect the inhibitory activity of both the mutants and the parent antibody, indicating a less pronounced role of the Fcγ receptor-mediated binding in the resetting assay as compared to the adhesion assay.
Cross-Reactivity of the P-Selectin Antibodies with P-Selectin from Animal Species
Materials and Methods: The cross-reactivity of the P-selectin HuMabs was evaluated by measuring (i) the binding of the HuMabs to activated platelets from rat and cynomologus monkey using FACS® analysis and (ii) their inhibitory activity in the rosetting assay evaluating the adhesion of rat and cynomologus platelets to HL60 cells.
To measure the binding of the HuMabs to activated rat and cynomologus platelets, washed rat and cynomologus platelets were prepared similar to preparing washed human platelets (s. above). They were activated with thrombin (final conc 1 U/ml) for 5 min. Activated platelets were incubated with different dilutions of the HuMabs (20 μl) for 30 min at RT. After binding of the HuMabs the platelets were fixed with PFA 2% at RT for 15 min. Samples were washed with Tyrode buffer and resuspended in 300 ml Tyrode. The binding of the HuMabs was detected with a FITC-conjugated F(ab′)2 fragment of rabbit anti-human IgG (Code No. F0056, Dako). As a control antibody inhibiting rat P-selectin a rabbit anti-human polyclonal anti-P-selectin antibody (Code No. 09361A, Pharmingen) was used.
To measure the inhibitory effect of the P-selectin HuMabs in the resetting assay, washed rat and cynomologus platelets were prepared as described above for human platelets. The rosetting assay was performed essentially as described for human platelets. For the labelling of the cynomologus platelets the FITC-conjugated anti-human GPIIb antibody pl-36 was used, whereas the rat platelets were labeled with the FITC-conjugated mouse anti-rat CD61 antibody (Code No. 554952, Pharmingen).
Results: None of the P-selectin specific antibodies of the invention which inhibit human P-selectin-mediated functions was shown to bind to rat P-selectin or to inhibit the formation of mixed aggregates consisting of rat platelets and HL60 cells, as shown for some examples in FIG. 3a. However, the P-selectin HuMabs bind to and inhibit cynomologus P-selectin (FIG. 3b).
Selectivity of the P-Selectin Antibodies vs E- and L-Selectin
Materials and Methods: The selectivity of the P-selectin HuMabs vs E- and L-selectin was determined in a cell-free ELISA measuring the binding of the antibodies to recombinant E- and L-selectin (ADP1 and ADP2, R&D Systems) and a cell-based ELISA measuring the binding of the antibodies to E-selectin-CHO transfectants and L-selectin-300.19 transfectants (transfectants were generated as described in Goetz et al., J Cell Biol 137:509 (1997); Ley et al., Blood 82:1632 (1993)).
In the cell-free ELISA recombinant P-, E-, or L-selectin at a concentration of 1 μg/ml in buffer containing 150 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 20 mM Tris (pH 7.4) plus 0.0005% Tx100 was coated overnight at 4° C. to 96 well plates (Nunc Immunoplate Maxisorp F96). Thereafter, the wells were blocked with the above-mentioned buffer containing 3.5% bovine serum albumin (BSA, Fluka) for 2 h at RT. The wells were preincubated with 50 μl of different dilutions of the P-selectin HuMabs or reference mouse P-, E-selectin antibody (BBA26; R&D Systems) and goat L-selectin antibody (AF728; R&D Systems) in the above-mentioned buffer containing 1% BSA overnight at RT. The binding of the HuMabs was detected by using a biotinylated anti-human IgG (Amersham, RPN1003, Final concentration 1:1000) or for the control antibodies the corresponding biotinylated anti-mouse or anti-goat IgG. After 1 h incubation, the wells were washed (3 times) with the above-mentioned buffer, and 0.1 ml of streptavidin-biotinylated peroxidase complex (Amersham, RPN1051), diluted 1:750 in the mentioned buffer containing 0.1% BSA was added for 30 min. The wells were then washed and 0.2 ml of peroxidase substrate solution containing ABTS (2.2′-azino-di-(3-ethylbenzthiazoline sulfonate, Boehringer, Mannheim) was added (ABTS stock solution: 1 ml 40 mM ABTS, 5 μl 30% H2O2 and 20 ml 0.1M Na-Acetat, 0.05 NaH2PO4). The reaction was stopped after around 10 min using 50 μl of 0.1 M citrate and 0.01% NaN3. The color reaction was read at 405 nm.
In the cell-based ELISA P- and E-selectin-CHO-transfectants, after detaching the cells with cell-dissociation solution (Sigma 05914), were seeded into each well of 96 well plates (TC Microwell F96 Nunc 167008) adjusted to 100,000 cells/well and cultivated in respective media overnight at 37° (medium for P-CHO-transfectants: DMEM+10% FCS+2 mM Glutamine+Penicillin 100 U/ml/Streptomycin 100 μg/ml; medium for E-selctin transfectants: HAM F-12+10% FCS+2 mM Glutamine+Penicillin 100 U/ml /Streptomycin 100 μg/ml+0.1% Fungizone+100 μg/ml Neomycin). After removal of the media and blocking the wells with A-T buffer (150mM NaCl, 1mM GaCl2, 1mM MgCl2, 20 mM Tris (pH 7.4)) containing 3% TopBlock™ (Code No. TB23201 0; Juro) for 1 h, 50 μl of different dilutions of the P-selectin HuMabs or reference mouse P- and E-selectin antibody (s. above) in the above-mentioned buffer containing 1% TopBlock™ and 0.1% azide were added and incubated for 60 min at RT. After washing the wells (4 times), the bound antibodies were detected using the same steps as mentioned above for the cell-free ELISA.
Since the L-selectin 300.19 cells are suspension cells, the cell-based ELISA format had to be modified by plating the L-selectin-300.19 transfectants into wells of 96 well polystyrene filter plates (Corning 3510). Using the filter plates blocking and incubation solutions were removed by filtering them through the bottom of the plates, but otherwise the protocol was similar to that using P- and E-selectin-CHO cells. As controls non-transfected CHO and 300.19 were used.
Results:
The antibodies of the invention were highly selective vs E- and L-selectin. They bound to P-selectin-CHO cells with EC50 values in the range of 0.01 to 0.08 μg/ml, preferably in the range of 0.01 to 0.04 μg/ml, whereas the EC50 values on E-selectin-CHO cells and L-selectin-300.19 were dearly above 50 μg/ml, preferably above 100 μg/ml. HuMab 002 had highest selectivity with a selectivity factor vs E- and L-selectin of more than 4,000 fold in the cell-based ELISA. Furthermore HuMab 002 does not bind to E- and L-selectin transfectants above baseline levels up to a concentration of 100 μg/ml. The selectivity of the Fc variants IgG4v1 and IgG1v1 of HuMab 002 is similar to that of the parent HuMab 002 (FIG. 4a-c).
Ex Vivo Inhibitory Activity of P-Selectin Antibodies in a Fully Human Blood Flow System Effect of P-Selectin HuMabs on Leukocyte Adhesion to a Platelet Monolayer
Materials and Methods:
To address the effect of the P-selectin antibodies on the recruitment of leukocytes to sites of vessel wall injury and platelet thrombi, a human blood flow system which allows the measurement of the interaction of human leukocytes with human platelets at different shear rates was used essentially as described (Kirchhofer et al., Blood 89:1270 (1997)). In a parallel plate perfusion device human whole blood drawn from the antecubital vein of a healthy donor was perfused over a collagen surface simulating an injured denuded vessel wall. Collagen-coated coverslips were prepared as described (Kirchhofer et al., Blood 89:1270 (1997)). They were positioned in three parallel plate perfusion chambers. To allow the measurement of different shear rates (65/s and 280/s) different dimensions of perfusion chambers were used and the blood was perfused over the collagen-coated coverslips at a constant blood flow of 1 ml/min which was controlled by individual roller pumps positioned distal to the perfusion device. Immediately after drawing the blood from the vein and separating the blood into three tubings, a GPIIb/IIIa inhibitor (0.5 μmol/lamifiban) is added to prevent platelet aggregation and to generate platelet monolayers. At the same time, the P-selectin antibodies (the HuMabs, mutants, respective reference antibodies or human IgG1 and IgG4 as controls) were administered at different concentrations and the blood-inhibitor mixture then entered the perfusion chamber containing the collagen-coated coverslips. After a 5.5 minute perfusion period, PBS is perfused through the perfusion chamber without interrupting the flow for 3 min. After a brief interruption of flow the chambers were fixed with 3% paraformaldehyde in PBS at 1 ml/min for 2 min. Then the coverslips were removed from the chambers, fixed again for 1 h in 3% paraformaldehyde in PBS at 4° C. and stored in PBS-0.03% sodium azide. To evaluate the number of leukocytes adhering to the platelet monolayer, after air-drying the coverslips were stained with Duff-Quick™ solution (Dade Behring AG) and embedded in Merckoglas™ (Merck, Germany). An image analysis system (MCID, Imaging Research Inc.) was used to determine the number of leukocytes adhering to a standard area oriented perpendicular to the blood flow 1 mm apart from the beginning of the coverslip. At a shear rate of 65/s and 280/s the area on which the number of leukocytes was counted comprised 3.1 mm2 and 2.1 mm2, respectively.
Results:
The P-selectin HuMabs inhibited the adhesion of leukocytes to the platelet monolayer in a concentration-dependent manner. At a shear rate of 65/s and a concentration of 10 μg/ml the HuMabs inhibited the adhesion of leukocytes by 60-99%, preferably 70-99 %. The inhibitory effect of the HuMabs was more pronounced at the higher shear rate of 280/s (closer to the arterial situation) as compared to the venous shear rate of 65/s. Overall, at a shear rate of 280/s the number of adhering leukocytes was lower than at 65/s. When comparing the Fc variants with the respective parent antibodies, they had similar inhibitory activity in the ex vivo perfusion chamber, as demonstrated for HuMab 002 and its variants IgG4v1 and IgG1v1 (FIG. 5). The increased inhibitory activity of the mutants vs the parent antibody found in the in vitro assays was not observed in the ex vivo perfusion chamber which may be due to the saturation of the Fcγ receptors of the leukocytes in whole human blood.
Effect of P-Selectin HuMabs on Leukocyte Adhesion to Endothelial Cells
Materials and Methods:
To address the anti-inflammatory potential of the P-selectin HuMabs under shear conditions, the above-mentioned human blood flow system was used in a set up in which endothelial cells were coated onto the coverslips. Human umbilical vein endothelial cells (HUVEC) from umbilical cords were isolated by digestion with collagenase Type II (Roche Switzerland) according to the method of Jaffe et al, Culture of human endothelial cells derived from umbilical veins. J. Olin. Invest. 52, 2745-2756 (1973). They were cultivated in 1% gelatine-coated tissue culture flasks in medium 199 (M199, Sigma, Germany) supplemented with 20% fetal calf serum (Gibco, Auckland), 100 IU/ml penicillin (Gibco, Auckland), 0.1 mg/ml streptomycin (Gibco, Auckland), 2mmol/l L-glutamine (Gibco, Auckland), 10 U/ml heparin (Sigma) and 50 μg/ml EC growth supplement (Sigma, Germany). HUVECs were grown to confluency (approx. 4 days), passaged with trypsin/ethylendiaminetetraacetic acid (Gibco, Auckland) and seeded onto Thermanox® plastic coverslips (approx 200,000 ECs/coverslip) previously coated with 1% gelatine (Fluka, Germany). The HUVECs were allowed to settle and became confluent over 1-2 days. They were stimulated with 20 ng/ml IL-4 (R&D Systems) 24 h before starting the perfusion and with 10−4 M histamine (Fluka, Germany) 5-10 min prior to the perfusion. Each experiment was performed with HUVECs at passage 1. The coverslips with confluent monolayers of stimulated HUVECs were positioned into the parallel plate perfusion chambers as described above. Similar to the perfusion experiments described above, whole blood was drawn from healthy donors. However in these experiments, the blood was anticoagulated with a thrombin inhibitor Ro-46-6240 (10 μM) and preincubated with different concentrations of the P-selectin antibodies (HuMabs, mutants, respective reference antibodies) or human IgG1 and IgG4 as controls for 5 min just prior to the perfusion over the activated endothelial cells. The blood flow was adjusted to 1 ml/min, the shear rate 65/s and the perfusion time 5.5 min. After a washing period of 3 min with PBS, the HUVECs with the adhering leukocytes were fixed with 3% paraformaldehyde for 2 min under the same flow conditions as described. Then the coverslips were removed from the chambers, immersed in fresh fixative for 1 h, and stored in PBS-0.02% sodium azide. For morphometric analysis, the leukocytes were stained with a mouse antibody against the leukocyte common antigen CD45, which was labeled beforehand using a modified biotinylated anti-mouse immunoglobulin (Animal Research Kit, Dako, USA). The nuclei were counterstained with hematoxylin (J.T Baker, Holland).
Results:
The stimulation of the HUVECs with the combination of IL-4 and histamine resulted in the expression of P-selectin and the adhesion of different types of leukocytes with granulocytes (including PMNs and eosinophils) constituting the prevailing portion of adhering leukocytes. The HuMabs of the invention inhibited the adhesion of the total leukocyte population by 60-90% at 3 μg/ml. Overall the inhibitory activity of the Fc variants was not significantly different from that of the non-mutated HuMabs.
The P-selectin HuMabs demonstrate a differential effect on the different leukocyte subtypes. The effect on granulocytes is more pronounced as compared to mononuclear leukocytes. The antibodies according to the invention inhibited the adhesion of granulocytes (including PMNs and eosinophils) by 90-99%, monocytes by 50-88%, and lymphocytes by 5-40%. The respective decrease in the absolute numbers of the different leukocyte subtypes is representatively given for IgG4v1 in FIG. 6.
Potential of P-Selectin HuMabs to Activate Complement System
C1q and C3c Binding ELISA:
To determine the ability of the antibodies of the invention to induce C1q binding and C3 activation, an ELISA approach was used. C1q is part of the adaptive immune system and, upon binding to immune complexes, triggers the sequential activation of several zymogens. The enzymes in turn, cause the cleavage of C3 molecules, which can result in the onset of inflammatory reactions, opsonization of foreign or aberrant particles and lysis of cell membranes.
In principle, the ELISA plate is coated with concentration ranges of the antibody, to which human C1q or human pooled serum, as a source of C3, is added. C1q or C3ε binding is detected by an antibody directed against human C1q or C3ε followed by a peroxidase-labeled conjugate.
HuMab 002 (the hybridoma- and the transient transfectoma-derived material, its mutant variants, and control antibodies were tested in concentrations of 0.16-20 μg/ml. As a negative control a human IgG4 (CLB, the Netherlands, 0.5 μg/ml stock), that binds C1q very weakly, was used. Human IgG1 (Sigma, 2 ug/ml stock) was incorporated as positive control. For the detection of C1q, a rabbit antibody directed against C1q (Dako) and a swine anti-rabbit IgG antibody, conjugated with horseradish peroxidase (Sigma) were used. For the detection of C3ε a mouse anti-human C3 antibody and a rabbit anti-mouse IgG antibody, conjugated with horseradish peroxidase (Sigma) were applied.
Calculations concerning EC50 values or maximum binding at 10 μg/ml (Bmax) of the HuMab tested were determined using nonlinear regression curve fitting (one site binding) using Graphpad® Prism software.
Results:
HuMab 002 according to the invention was able to bind C1q efficiently as indicated by EC50 values of 0.946 μg/ml and 1.159 μg/ml, and Bmax (OD405) values of 0.987 and 0.711 for the hybridoma- and transfectoma-derived material, respectively. As expected, the negative control human IgG4 did not bind C1q, as indicated by a Bmax value of 0.222 at OD405. However, all three Fc-variants tested (IgG4v1, IgG1v1, IgG1v2) had lost the capacity to bind C1q, as shown by OD405 Bmax values of 0.132, 0.119, and 0.132, respectively (Table 3). In line with the C1q binding capacities, C3 deposition to HuMab 002 (hybridoma- and transfectoma-derived) occurred in an antibody-concentration dependent manner, and EC50 values ranged between 2.7 μg/ml and 8.3 μg/ml. However, all three Fc-variants were unable to initiate C3 deposition, as indicated by OD405 Bmax values of 0.104, 0.156 and 0.133, respectively (Table 3).
As HuMab 002 interacts with complement components, this antibody has the intrinsic potential to induce CDC in vivo. Therefore, the Fc part of this antibody is modified according to the invention.
TABLE 3
Clq ELISA C3 ELISA
Bmax Bmax
(OD405 at Background (OD405 at Background
10 μg/ml) (OD405) 10 μg/ml) (OD405)
HuMab 002 0.987 0.079 4.47 0.098
(hybridoma)
IgG4v1 0.132 0.104
IgG1v1 0.0119 0.156
IgG1v2 0.132 0.133
HuMab 002 0.711 4.071
(transient)
IgG4 0.222 0.182
Potential of P-Selectin HuMabs to Bind to Fcγ Receptors
IgG antibody dependent cytotoxicity effects are mediated by Fcγ receptors on effector cells. Binding of hybridoma- and transfectoma-derived HuMab 002 as well as the mutant variants and control antibodies to FcγR expressing effector cells from human blood was studied by FACS® analysis.
Materials and Methods:
FcγRI IIA1.6 transfectants or freshly isolated effector cells were incubated with antibodies, and binding of antibody was detected with FITC-labeled rabbit-anti-human IgG F(ab)2 (DAKO), or FITC-labeled rabbit-anti-human IgG F(ab)2 (BD/Pharmingen). HuMab 002 (transient transfectoma- and/or hybridoma-derived material, and mutant variants) wase tested at a concentration of 1 μg/ml (IIA1.6 transfectants) or 10 μg/ml (effector cells). Absence of primary antibody or human IgG4 (10 μg/ml) was used as negative control. To detect FcγRI expression on IIA1.6 cells, FITC-labeled mouse anti-human CD64 (BD/Pharmingen) was used. In experiments using NK cell-enriched peripheral blood mononuclear cells, NK cells were identified by double staining using PE-labeled mouse-anti-human CD56 (BD/Pharmingen). Granulocytes and monocytes were identified based on FSC/SSC profile.
IIA1.6 cells, IIA1.6-FcγRI transfectant and freshly isolated effector cells were incubated with antibodies. Binding of antibody was detected with FITC-labeled Rb-α-huIgG F(ab)2 (DAKO), or FITC-labeled Rb-α-huIgG F(ab)2 (BD/Pharmingen).
HuMab 002 (transient transfectoma-, hybridoma derived- and mutant variant material) was tested at a concentration of 1 μg/ml in the IIA1.6-FcγRI transfectant binding assay. The IIA1.6 wild type cells were used as a negative control. As a control for FcγRI expression m-α-huCD64-FITC (BD/Pharmingen) was used.
HuMab 002 (transient transfectoma-, hybridoma derived- and mutant variant material) was tested at a concentration of 10 μg/ml in the effector cell binding assays. Transient transfectoma material was not tested in the granulocyte binding assay. IgG4 (10 μg/ml) was used as a negative control in all effector cell binding assays with the exception of the granulocyte binding assay.
Whole blood was enriched for NK cells using an NK isolation kit (Dynal Biotech ASA, Oslo, Norway). NK cells were identified by m-α-huCD56-FITC staining.
PBMCs (peripheral blood mononuclear cells) were obtained from whole blood using Ficoll procedure as described in the protocol enclosed with the NK isolation kit (Dynal Biotech ASA, Oslo, Norway). Monocytes were identified based on FSC/SSC profile. Granulocytes were isolated from whole blood using FACS lysis buffer and identified based on FSC/SSC profile.
Freshly isolated effector cells were incubated with antibodies, and binding of antibody was detected with FITC-labeled rabbit-anti-human IgG F(ab)2 (DAKO), or FITC-labeled rabbit-anti-human IgG F(ab)2 (BD/Pharmingen). HuMab 002 (transient transfectoma- and/or hybridoma-derived material, and mutant variants) were tested at a concentration of 10 μg/ml. Absence of primary antibody or human IgG4 (10 μg/ml) was used as negative control. NK cells were isolated from MNC samples by a NK isolation kit (Miltenyi Biotec, USA). In experiments using NK cell-enriched peripheral blood mononuclear cells, NK cells were identified by double staining using PE-labeled mouse-anti-human CD56 (BD/Pharmingen). Granulocytes and monocytes were isolated according to the state of the art from PBMC (e.g. Monocyte isolation kit (Miltenyi, see above). Granulocytes and monocytes were identified based on FSC/SSC profile.
Results:
HuMab 002 according to the invention was able to bind to FcR as indicated by binding to granulocytes, monocytes and NK cells. All three Fc-variants tested (IgG4v1, IgG1v1 and IgG1v2) had completely lost the capacity to bind to NK cells (Table 4). In addition, HuMab 002 bound efficiently to granulocytes and monocytes, whereas the mutant variants showed binding levels comparable to absence of primary antibody or human IgG4, as indicated by percentages of cells binding antibody in Tables 5 and 6. This indicates that the mutant variants lost the capacity to interact with FcR on effector cells.
As HuMab 002 can efficiently interact with FcR, this antibody has the intrinsic potential to induce antibody dependent cell-mediated cytotoxicity in vivo. Inactivation of the interaction with FcR as performed for the Fc-variants according to the invention prevents ADCC in an effective manner.
TABLE 4
NK cell binding
Antibody (% NK cells binding antibody)
No antibody 0.03
HuMab 002 (hybridoma) 90.92
HuMab 002 (transient) 37.40
Human IgG4 0.06
IgG4v1 0.06
IgG1v1 0.12
IgG1v2 0.00
TABLE 5
Monocyte binding
Antibody (% monocytes binding antibody)
No antibody 8.5
HuMab 002 (hybridoma) 38.4
HuMab 002 (transient) 31.3
Human IgG4 9.4
IgG4v1 14.5
IgG1v1 12.3
IgG1v2 14.0
TABLE 6
Granulocyte binding
Antibody (% granulocytes binding antibody)
No antibody 1.2
HuMab 002 (hybridoma) 63.6
IgG4v1 1.6
IgG1v1 2.1
IgG1v2 2.0

Claims (141)

1. A humanized or human antibody that binds to P-selectin comprising 3 complementarity determining regions in the light chain variable region and 3 complementarity determining regions in the heavy chain variable region selected from the group consisting of:
(a) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 47 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 33 for CDR2, and SEQ ID NO: 38 for CDR3;
(b) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 48 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 30 for CDR1, SEQ ID NO: 34 for CDR2, and SEQ ID NO: 39 for CDR3;
(c) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3;
(d) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3;
(e) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3;
(f) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3;
(g) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3;
(h) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3; and
(i) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 52 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
2. An antibody of claim 1 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28.
3. An antibody of claim 1 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 48 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 30 for CDR1, SEQ ID NO: 34 for CDR2, and SEQ ID NO: 39 for CDR3.
4. An antibody of claim 3 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28.
5. An antibody of claim 3 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
6. An antibody of claim 3 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28 and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
7. An antibody of claim 1 selected from the group consisting of:
(a) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 1 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 2;
(b) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 3 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 4;
(c) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 5 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 6;
(d) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 7 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 8;
(e) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 9 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 10;
(f) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 11 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 12;
(g) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 13 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 14;
(h) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 15 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 16; and
(i) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 17 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 18.
8. An antibody of claim 7 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28.
9. An antibody of claim 7 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
10. An antibody of claim 7 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28; and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
11. An antibody of claim 7 wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 3 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 4.
12. An antibody of claim 11 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28.
13. An antibody of claim 11 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
14. An antibody of claim 11 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28 and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
15. A humanized or human antibody that binds to P-selectin comprising a light chain variable region having an amino acid sequence selected from the group consisting of: SEQ ID NO: 1; SEQ ID NO: 3; SEQ ID NO: 5; SEQ ID NO: 7; SEQ ID NO: 9; SEQ ID NO: 11; SEQ ID NO: 13; SEQ ID NO: 15; SEQ ID NO: 17; SEQ ID NO: 19; and SEQ ID NO: 21; or a heavy chain variable region having an amino acid sequence selected from the group consisting of: SEQ ID NO: 2; SEQ ID NO: 4; SEQ ID NO: 6; SEQ ID NO: 8; SEQ ID NO: 10; SEQ ID NO: 12; SEQ ID NO: 14; SEQ ID NO: 16; SEQ ID NO: 18; SEQ ID NO: 20; and SEQ ID NO: 22.
16. An antibody of claim 15 comprising a light chain variable region having the amino acid sequence of SEQ ID NO: 3.
17. An antibody of claim 15 comprising a heavy chain variable region having the amino acid sequence of SEQ ID NO: 4.
18. A humanized or human antibody that binds to P-selectin comprising 3 complementarity determining regions in the light chain variable region and 3 complementarity determining regions in the heavy chain variable region selected from the group consisting of:
(a) an antibody wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 19; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 20; and
(b) an antibody wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 21; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 22.
19. An antibody of claim 18 wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 19; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 20.
20. An antibody of claim 18 wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 21; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 22.
21. An antibody of claim 1 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 47 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 33 for CDR2, and SEQ ID NO: 38 for CDR3.
22. An antibody of claim 1 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3.
23. An antibody of claim 1 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3.
24. An antibody of claim 1 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3.
25. An antibody of claim 1 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3.
26. An antibody of claim 1 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
27. An antibody of claim 1 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
28. An antibody of claim 1 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 52 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
29. A pharmaceutical composition comprising an antibody of claim 1.
30. The pharmaceutical composition of claim 29, further comprising at least one pharmaceutically acceptable excipient.
31. A pharmaceutical composition comprising an antibody of claim 3.
32. The pharmaceutical composition of claim 31, further comprising at least one pharmaceutically acceptable excipient.
33. A kit to detect the presence of P-selectin protein comprising an antibody of claim 1.
34. A kit to detect the presence of P-selectin protein comprising an antibody of claim 3.
35. A humanized antibody that binds to P-selectin comprising 3 complementarity determining regions in the light chain variable region and 3 complementarity determining regions in the heavy chain variable region selected from the group consisting of:
(a) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 47 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 33 for CDR2, and SEQ ID NO: 38 for CDR3;
(b) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 48 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 30 for CDR1, SEQ ID NO: 34 for CDR2, and SEQ ID NO: 39 for CDR3;
(c) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3;
(d) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3;
(e) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3;
(f) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3;
(g) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3;
(h) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3; and
(i) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 52 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
36. An antibody of claim 35 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28.
37. An antibody of claim 35 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 48 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 30 for CDR1, SEQ ID NO: 34 for CDR2, and SEQ ID NO: 39 for CDR3.
38. An antibody of claim 37 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28.
39. An antibody of claim 37 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
40. An antibody of claim 37 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28 and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
41. An antibody of claim 35 selected from the group consisting of:
(a) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 1 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 2;
(b) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 3 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 4;
(c) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 5 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 6;
(d) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 7 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 8;
(e) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 9 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 10;
(f) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 11 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 12;
(g) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 13 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 14;
(h) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 15 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 16; and
(i) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 17 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 18.
42. An antibody of claim 41 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28.
43. An antibody of claim 41 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
44. An antibody of claim 41 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28; and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
45. An antibody of claim 41 wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 3 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 4.
46. An antibody of claim 45 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28.
47. An antibody of claim 45 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
48. An antibody of claim 45 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28 and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
49. A humanized antibody that binds to P-selectin comprising a light chain variable region having an amino acid sequence selected from the group consisting of: SEQ ID NO: 1; SEQ ID NO: 3; SEQ ID NO: 5; SEQ ID NO: 7; SEQ ID NO: 9; SEQ ID NO: 11; SEQ ID NO: 13; SEQ ID NO: 15; SEQ ID NO: 17; SEQ ID NO: 19; and SEQ ID NO: 21; or a heavy chain variable region having an amino acid sequence selected from the group consisting of: SEQ ID NO: 2; SEQ ID NO: 4; SEQ ID NO: 6; SEQ ID NO: 8; SEQ ID NO: 10; SEQ ID NO: 12; SEQ ID NO: 14; SEQ ID NO: 16; SEQ ID NO: 18; SEQ ID NO: 20; and SEQ ID NO: 22.
50. An antibody of claim 49 comprising a light chain variable region having the amino acid sequence of SEQ ID NO: 3.
51. An antibody of claim 49 comprising a heavy chain variable region having the amino acid sequence of SEQ ID NO: 4.
52. A humanized antibody that binds to P-selectin comprising 3 complementarity determining regions in the light chain variable region and 3 complementarity determining regions in the heavy chain variable region selected from the group consisting of:
(a) an antibody wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 19; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 20; and
(b) an antibody wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 21; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 22.
53. An antibody of claim 52 wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 19; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 20.
54. An antibody of claim 52 wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 21; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 22.
55. An antibody of claim 35 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 47 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 33 for CDR2, and SEQ ID NO: 38 for CDR3.
56. An antibody of claim 35 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3.
57. An antibody of claim 35 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3.
58. An antibody of claim 35 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3.
59. An antibody of claim 35 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3.
60. An antibody of claim 35 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
61. An antibody of claim 35 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
62. An antibody of claim 35 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 52 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
63. A pharmaceutical composition comprising an antibody of claim 35.
64. The pharmaceutical composition of claim 63, further comprising at least one pharmaceutically acceptable excipient.
65. A pharmaceutical composition comprising an antibody of claim 37.
66. The pharmaceutical composition of claim 65, further comprising at least one pharmaceutically acceptable excipient.
67. A kit to detect the presence of P-selectin protein comprising an antibody of claim 35.
68. A kit to detect the presence of P-selectin protein comprising an antibody of claim 37.
69. A human antibody that binds to P-selectin comprising 3 complementarity determining regions in the light chain variable region and 3 complementarity determining regions in the heavy chain variable region selected from the group consisting of:
(a) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 47 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 33 for CDR2, and SEQ ID NO: 38 for CDR3;
(b) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 48 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 30 for CDR1, SEQ ID NO: 34 for CDR2, and SEQ ID NO: 39 for CDR3;
(c) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3;
(d) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3;
(e) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3;
(f) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3;
(g) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3;
(h) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3; and
(i) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 52 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
70. An antibody of claim 69 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28.
71. An antibody of claim 69 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 48 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 30 for CDR1, SEQ ID NO: 34 for CDR2, and SEQ ID NO: 39 for CDR3.
72. An antibody of claim 71 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28.
73. An antibody of claim 71 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
74. An antibody of claim 71 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28 and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
75. An antibody of claim 69 selected from the group consisting of:
(a) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 1 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 2;
(b) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 3 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 4;
(c) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 5 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 6;
(d) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 7 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 8;
(e) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 9 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 10;
(f) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 11 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 12;
(g) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 13 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 14;
(h) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 15 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 16; and
(i) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 17 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 18.
76. An antibody of claim 75 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28.
77. An antibody of claim 75 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
78. An antibody of claim 75 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28; and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
79. An antibody of claim 75 wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 3 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 4.
80. An antibody of claim 79 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28.
81. An antibody of claim 79 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
82. An antibody of claim 79 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28 and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
83. A human antibody that binds to P-selectin comprising a light chain variable region having an amino acid sequence selected from the group consisting of: SEQ ID NO: 1; SEQ ID NO: 3; SEQ ID NO: 5; SEQ ID NO: 7; SEQ ID NO: 9; SEQ ID NO: 11; SEQ ID NO: 13; SEQ ID NO: 15; SEQ ID NO: 17; SEQ ID NO: 19; and SEQ ID NO: 21; or a heavy chain variable region having an amino acid sequence selected from the group consisting of: SEQ ID NO: 2; SEQ ID NO: 4; SEQ ID NO: 6; SEQ ID NO: 8; SEQ ID NO: 10; SEQ ID NO: 12; SEQ ID NO: 14; SEQ ID NO: 16; SEQ ID NO: 18; SEQ ID NO: 20; and SEQ ID NO: 22.
84. An antibody of claim 83 comprising a light chain variable region having the amino acid sequence of SEQ ID NO: 3.
85. An antibody of claim 83 comprising a heavy chain variable region having the amino acid sequence of SEQ ID NO: 4.
86. A human antibody that binds to P-selectin comprising 3 complementarity determining regions in the light chain variable region and 3 complementarity determining regions in the heavy chain variable region selected from the group consisting of:
(a) an antibody wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 19; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 20; and
(b) an antibody wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 21; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 22.
87. An antibody of claim 86 wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 19; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 20.
88. An antibody of claim 86 wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 21; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 22.
89. An antibody of claim 69 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 47 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 33 for CDR2, and SEQ ID NO: 38 for CDR3.
90. An antibody of claim 69 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3.
91. An antibody of claim 69 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3.
92. An antibody of claim 69 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3.
93. An antibody of claim 69 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3.
94. An antibody of claim 69 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
95. An antibody of claim 69 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
96. An antibody of claim 69 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 52 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
97. A pharmaceutical composition comprising an antibody of claim 69.
98. The pharmaceutical composition of claim 97, further comprising at least one pharmaceutically acceptable excipient.
99. A pharmaceutical composition comprising an antibody of claim 71.
100. The pharmaceutical composition of claim 99, further comprising at least one pharmaceutically acceptable excipient.
101. A kit to detect the presence of P-selectin protein comprising an antibody of claim 69.
102. A kit to detect the presence of P-selectin protein comprising an antibody of claim 71.
103. An antibody that binds to P-selectin comprising 3 complementarity determining regions in the light chain variable region and 3 complementarity determining regions in the heavy chain variable region selected from the group consisting of:
(a) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 47 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 33 for CDR2, and SEQ ID NO: 38 for CDR3;
(b) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 48 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 30 for CDR1, SEQ ID NO: 34 for CDR2, and SEQ ID NO: 39 for CDR3;
(c) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3;
(d) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3;
(e) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3;
(f) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3;
(g) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3;
(h) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3; and
(i) an antibody wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 52 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
104. An antibody of claim 103 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28.
105. An antibody of claim 103 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 48 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 30 for CDR1, SEQ ID NO: 34 for CDR2, and SEQ ID NO: 39 for CDR3.
106. An antibody of claim 105 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28.
107. An antibody of claim 105 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
108. An antibody of claim 105 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28 and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
109. An antibody of claim 103 selected from the group consisting of:
(a) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 1 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 2;
(b) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 3 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 4;
(c) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 5 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 6;
(d) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 7 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 8;
(e) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 9 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 10;
(f) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 11 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 12;
(g) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 13 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 14;
(h) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 15 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 16; and
(i) an antibody wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 17 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 18.
110. An antibody of claim 109 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28.
111. An antibody of claim 109 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
112. An antibody of claim 109 further comprising a heavy chain constant region having an amino acid sequence of SEQ ID NO: 25, SEQ ID NO: 26, or SEQ ID NO: 28; and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
113. An antibody of claim 109 wherein the light chain variable region has the amino acid sequence of SEQ ID NO: 3 and the heavy chain variable region has the amino acid sequence of SEQ ID NO: 4.
114. An antibody of claim 113 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28.
115. An antibody of claim 113 further comprising a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
116. An antibody of claim 113 further comprising a heavy chain constant region having the amino acid sequence of SEQ ID NO: 28 and a light chain constant region having the amino acid sequence of SEQ ID NO: 23.
117. An antibody that binds to P-selectin comprising a light chain variable region having an amino acid sequence selected from the group consisting of: SEQ ID NO: 1; SEQ ID NO: 3; SEQ ID NO: 5; SEQ ID NO: 7; SEQ ID NO: 9; SEQ ID NO: 11; SEQ ID NO: 13; SEQ ID NO: 15; SEQ ID NO: 17; SEQ ID NO: 19; and SEQ ID NO: 21; or a heavy chain variable region having an amino acid sequence selected from the group consisting of: SEQ ID NO: 2; SEQ ID NO: 4; SEQ ID NO: 6; SEQ ID NO: 8; SEQ ID NO: 10; SEQ ID NO: 12; SEQ ID NO: 14; SEQ ID NO: 16; SEQ ID NO: 18; SEQ ID NO: 20; and SEQ ID NO: 22.
118. An antibody of claim 117 comprising a light chain variable region having the amino acid sequence of SEQ ID NO: 3.
119. An antibody of claim 117 comprising a heavy chain variable region having the amino acid sequence of SEQ ID NO: 4.
120. An antibody that binds to P-selectin comprising 3 complementarity determining regions in the light chain variable region and 3 complementarity determining regions in the heavy chain variable region selected from the group consisting of:
(a) an antibody wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 19; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 20; and
(b) an antibody wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 21; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 22.
121. An antibody of claim 120 wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 19; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 20.
122. An antibody of claim 120 wherein the light chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 21; and the heavy chain variable region comprises the 3 complementarity determining regions in SEQ ID NO: 22.
123. An antibody of claim 103 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 47 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 33 for CDR2, and SEQ ID NO: 38 for CDR3.
124. An antibody of claim 103 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3.
125. An antibody of claim 103 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 49 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3.
126. An antibody of claim 103 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 32 for CDR1, SEQ ID NO: 36 for CDR2, and SEQ ID NO: 41 for CDR3.
127. An antibody of claim 103 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 50 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 31 for CDR1, SEQ ID NO: 35 for CDR2, and SEQ ID NO: 40 for CDR3.
128. An antibody of claim 103 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
129. An antibody of claim 103 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 44 for CDR1, SEQ ID NO: 46 for CDR2, and SEQ ID NO: 51 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
130. An antibody of claim 103 wherein the light chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 43 for CDR1, SEQ ID NO: 45 for CDR2, and SEQ ID NO: 52 for CDR3; and the heavy chain variable region comprises 3 complementarity determining regions having the amino acid sequences of: SEQ ID NO: 29 for CDR1, SEQ ID NO: 37 for CDR2, and SEQ ID NO: 42 for CDR3.
131. A pharmaceutical composition comprising an antibody of claim 103.
132. The pharmaceutical composition of claim 131, further comprising at least one pharmaceutically acceptable excipient.
133. A pharmaceutical composition comprising an antibody of claim 105.
134. The pharmaceutical composition of claim 133, further comprising at least one pharmaceutically acceptable excipient.
135. A kit to detect the presence of P-selectin protein comprising an antibody of claim 103.
136. A kit to detect the presence of P-selectin protein comprising an antibody of claim 105.
137. An antibody that binds to P-selectin comprising a light chain variable region, a light chain constant region, a heavy chain variable region, and a heavy chain constant region, wherein the light chain variable region has the amino acid sequence of SEQ ID NO:3, the light chain constant region has the amino acid sequence of SEQ ID NO:23, the heavy chain variable region has the amino acid sequence of SEQ ID NO:4, and the heavy chain constant region has the amino acid sequence of SEQ ID NO:28.
138. A pharmaceutical composition comprising an antibody of claim 137.
139. The pharmaceutical composition of claim 138, further comprising at least one pharmaceutically acceptable excipient.
140. A kit to detect the presence of P-selectin protein comprising an antibody of claim 137.
141. A kit to detect the presence of P-selectin protein comprising a pharmaceutical composition according to claim 139.
US13/187,586 2004-04-13 2011-07-21 Anti-P-selectin antibodies Active 2026-03-17 USRE43568E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/187,586 USRE43568E1 (en) 2004-04-13 2011-07-21 Anti-P-selectin antibodies

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP04008722 2004-04-13
EP04008722 2004-04-13
US11/102,403 US7563441B2 (en) 2004-04-13 2005-04-08 Anti-P-selectin antibodies
US13/187,586 USRE43568E1 (en) 2004-04-13 2011-07-21 Anti-P-selectin antibodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/102,403 Reissue US7563441B2 (en) 2004-04-13 2005-04-08 Anti-P-selectin antibodies

Publications (1)

Publication Number Publication Date
USRE43568E1 true USRE43568E1 (en) 2012-08-07

Family

ID=34966035

Family Applications (6)

Application Number Title Priority Date Filing Date
US11/102,403 Ceased US7563441B2 (en) 2004-04-13 2005-04-08 Anti-P-selectin antibodies
US12/481,623 Ceased US7754867B2 (en) 2004-04-13 2009-06-10 Nucleic acid molecules encoding anti-P-selectin antibodies
US12/768,150 Ceased US7824684B2 (en) 2004-04-13 2010-04-27 Methods of inhibiting the binding of P-selectin to PSGL-1 with anti-P-selectin antibodies
US13/187,586 Active 2026-03-17 USRE43568E1 (en) 2004-04-13 2011-07-21 Anti-P-selectin antibodies
US13/471,899 Expired - Lifetime USRE44359E1 (en) 2004-04-13 2012-05-15 Nucleic acid molecules encoding anti-P-selectin antibodies
US13/653,597 Expired - Lifetime USRE44389E1 (en) 2004-04-13 2012-10-17 Methods of inhibiting the binding of P-selectin to PSGL-1 with anti-P-selectin antibodies

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/102,403 Ceased US7563441B2 (en) 2004-04-13 2005-04-08 Anti-P-selectin antibodies
US12/481,623 Ceased US7754867B2 (en) 2004-04-13 2009-06-10 Nucleic acid molecules encoding anti-P-selectin antibodies
US12/768,150 Ceased US7824684B2 (en) 2004-04-13 2010-04-27 Methods of inhibiting the binding of P-selectin to PSGL-1 with anti-P-selectin antibodies

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/471,899 Expired - Lifetime USRE44359E1 (en) 2004-04-13 2012-05-15 Nucleic acid molecules encoding anti-P-selectin antibodies
US13/653,597 Expired - Lifetime USRE44389E1 (en) 2004-04-13 2012-10-17 Methods of inhibiting the binding of P-selectin to PSGL-1 with anti-P-selectin antibodies

Country Status (25)

Country Link
US (6) US7563441B2 (en)
EP (5) EP1737891B1 (en)
JP (3) JP4633788B2 (en)
KR (1) KR100891620B1 (en)
CN (1) CN1942483B (en)
AR (2) AR048599A1 (en)
AU (1) AU2005233259B2 (en)
BR (2) BR122019012028B1 (en)
CA (2) CA2885854C (en)
CY (1) CY1114080T1 (en)
DK (1) DK1737891T3 (en)
ES (1) ES2403055T3 (en)
HR (1) HRP20130440T1 (en)
IL (2) IL178070A (en)
MY (2) MY143957A (en)
NO (1) NO340443B1 (en)
NZ (2) NZ549872A (en)
PL (1) PL1737891T3 (en)
PT (1) PT1737891E (en)
RU (1) RU2368622C2 (en)
SG (1) SG172616A1 (en)
SI (1) SI1737891T1 (en)
TW (2) TWI310039B (en)
WO (1) WO2005100402A1 (en)
ZA (1) ZA200608234B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44359E1 (en) * 2004-04-13 2013-07-09 Hoffmann-La Roche Inc Nucleic acid molecules encoding anti-P-selectin antibodies

Families Citing this family (781)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR045563A1 (en) * 2003-09-10 2005-11-02 Warner Lambert Co ANTIBODIES DIRECTED TO M-CSF
HRP20080028A2 (en) 2005-06-20 2009-08-31 Medarex Cd19 antibodies and their uses
JP4294082B2 (en) * 2006-03-23 2009-07-08 協和発酵キリン株式会社 Agonist antibody to human thrombopoietin receptor
EA200970250A1 (en) * 2006-09-05 2010-02-26 Медарекс, Инк. ANTIBODIES TO BONE MORPHOGENETIC PROTEINS AND THEIR RECEPTORS AND METHODS OF THEIR APPLICATION
EP1914242A1 (en) * 2006-10-19 2008-04-23 Sanofi-Aventis Novel anti-CD38 antibodies for the treatment of cancer
US20110212096A1 (en) 2006-12-01 2011-09-01 Scott Rollins Anti-p-selectin antibodies and methods of their use and identification
LT2662091T (en) * 2006-12-01 2018-12-10 Novartis Ag Anti-P-selectin antibodies and methods of using the same to treat inflammatory diseases
US8945565B2 (en) 2006-12-01 2015-02-03 Selexys Pharmaceuticals Corporation Methods of treating inflammatory or thrombotic conditions with anti-P-selectin antibodies
CL2007003622A1 (en) * 2006-12-13 2009-08-07 Medarex Inc Human anti-cd19 monoclonal antibody; composition comprising it; and tumor cell growth inhibition method.
US20110014117A1 (en) * 2007-06-28 2011-01-20 Schering Corporation Anti-igf1r
DK2167540T3 (en) 2007-06-29 2018-04-30 Hoffmann La Roche Heavy chain mutant leading to improved immunoglobulin production
BRPI0813823B8 (en) 2007-07-17 2021-05-25 Hoffmann La Roche methods for concentrating an immunoglobulin solution by tangential flow filtration, and for producing an immunoglobulin
ES2566957T3 (en) 2007-09-26 2016-04-18 Chugai Seiyaku Kabushiki Kaisha Constant region of modified antibody
DK2592148T3 (en) 2007-10-12 2018-12-10 Hoffmann La Roche Protein expression from multiple nucleic acids
BRPI0907735B1 (en) * 2008-02-08 2021-10-05 Astrazeneca Ab MODIFIED IGG-CLASS MONOCLONAL ANTIBODY SPECIFIC TO IFNAR1, ISOLATED NUCLEIC ACID AND PHARMACEUTICAL COMPOSITION
NZ589086A (en) 2008-04-11 2012-09-28 Merrimack Pharmaceuticals Inc Human serum albumin (HSA) linkers and conjugates thereof
AR072999A1 (en) 2008-08-11 2010-10-06 Medarex Inc HUMAN ANTIBODIES THAT JOIN GEN 3 OF LYMPHOCYTARY ACTIVATION (LAG-3) AND THE USES OF THESE
KR20140019035A (en) * 2008-09-19 2014-02-13 에프. 호프만-라 로슈 아게 Novel antibody formulation
WO2010041060A1 (en) * 2008-10-08 2010-04-15 Medimmune Limited Targeted binding agents directed to heparanase and uses thereof 463
WO2010059315A1 (en) 2008-11-18 2010-05-27 Merrimack Pharmaceuticals, Inc. Human serum albumin linkers and conjugates thereof
KR20150036824A (en) 2009-03-20 2015-04-07 제넨테크, 인크. Bispecific anti-her antibodies
BRPI1006270B1 (en) 2009-03-25 2022-08-16 Genentech, Inc ANTI-A5SS1 ANTIBODY, IMMUNOCONJUGATE, PHARMACEUTICAL COMPOSITION, IN VITRO OR EX VIVO METHOD TO DETECT A5SS1 PROTEIN, USE OF AN ANTIBODY AND KIT TO DETECT A5SS1 PROTEIN
PT2417156E (en) 2009-04-07 2015-04-29 Roche Glycart Ag Trivalent, bispecific antibodies
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
ES2864049T3 (en) * 2009-06-29 2021-10-13 Bioarctic Ab Selective antibodies to protofibrils / oligomers of amyloid-P truncated at the N-terminus
PL2483304T3 (en) 2009-09-29 2016-11-30 Pre-filtration adjustment of buffer solutes for high concentration immunoglobulin preparation
CN102656460B (en) 2009-10-19 2016-03-02 弗·哈夫曼-拉罗切有限公司 Non-cross-reactive anti-IgG antibodies
MY160556A (en) 2010-02-18 2017-03-15 Genentech Inc Neuregulin antagonists and use thereof in treating cancer
CA2789564C (en) 2010-03-10 2019-08-13 F. Hoffmann-La Roche Ag Method for purifying immunoglobulin solutions
US8846041B2 (en) 2010-03-24 2014-09-30 Genentech, Inc. Anti-LRP6 antibodies
WO2011147834A1 (en) 2010-05-26 2011-12-01 Roche Glycart Ag Antibodies against cd19 and uses thereof
EP3098240B1 (en) 2010-06-18 2021-04-07 F. Hoffmann-La Roche AG Anti-axl antibodies and methods of use
WO2011161119A1 (en) 2010-06-22 2011-12-29 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
CA2803792A1 (en) 2010-07-09 2012-01-12 Genentech, Inc. Anti-neuropilin antibodies and methods of use
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
CA2805564A1 (en) 2010-08-05 2012-02-09 Stefan Jenewein Anti-mhc antibody anti-viral cytokine fusion protein
KR101653030B1 (en) 2010-08-13 2016-08-31 로슈 글리카트 아게 Anti-tenascin-c a2 antibodies and methods of use
PH12013500159B1 (en) 2010-08-13 2018-09-26 Roche Glycart Ag Anti-fap antibodies and methods of use
WO2012022682A1 (en) 2010-08-17 2012-02-23 F. Hoffmann-La Roche Ag Anti-human igg1 antibody
ES2553262T3 (en) 2010-08-25 2015-12-07 F. Hoffmann-La Roche Ag Antibodies against IL-18R1 and their uses
MX346500B (en) 2010-11-10 2017-03-22 Genentech Inc * Methods and compositions for neural disease immunotherapy.
BR122020012255B1 (en) 2010-12-16 2022-08-09 Genentech, Inc USE OF AN ANTI-IL-13 ANTIBODY, USES OF A TH2 PATHWAY INHIBITOR AND ANTI-PERIOSTIN ANTIBODIES
BR112013014527A2 (en) 2010-12-20 2017-03-07 Genentech Inc isolated antibody, isolated nucleic acid, host cell, method for producing an antibody, immunoconjugate, pharmaceutical formulation, use of immunoconjugate, method for treating an individual who has mesothelin positive cancer, for inhibiting proliferation of a mesothelin positive cell, for detecting human mesothelin in a biological sample and for detecting mesothelin positive cancer
CN103874503A (en) * 2010-12-21 2014-06-18 瑟莱克斯制药公司 Anti-P-selectin antibodies and methods of use and identification thereof
AR084456A1 (en) 2010-12-22 2013-05-15 Genentech Inc ANTI-PCSK9 ANTIBODY AND METHODS OF USE
US9540433B2 (en) * 2011-02-01 2017-01-10 Genmab A/S Human antibodies and antibody-drug conjugates against CD74
PT2673373T (en) 2011-02-08 2018-12-05 Medimmune Llc Antibodies that specifically bind staphylococcus aureus alpha toxin and methods of use
BR112013019083A2 (en) 2011-02-10 2017-04-04 Roche Glycart Ag combination of (a) an immunoconjugate, pharmaceutical composition, use of (a) an immunoconjugate, method of treating a disease in an individual, method of stimulating cellular function in an individual, and kit for treating a disease.
RU2597288C2 (en) * 2011-02-23 2016-09-10 Ф. Хоффманн-Ля Рош Аг Antibodies against human il33r and use thereof
MX342034B (en) 2011-02-28 2016-09-12 Hoffmann La Roche Monovalent antigen binding proteins.
CA2825081A1 (en) 2011-02-28 2012-09-07 Birgit Bossenmaier Antigen binding proteins
SG193554A1 (en) 2011-03-29 2013-11-29 Roche Glycart Ag Antibody fc variants
BR112013024717A2 (en) 2011-04-07 2017-08-08 Genentech Inc isolated antibody, isolated nucleic acid, host cell, immunoconjugate, pharmaceutical formulation, method of treating an individual who has cancer and method of inhibiting cell proliferation in an individual
WO2012146630A1 (en) 2011-04-29 2012-11-01 F. Hoffmann-La Roche Ag N-terminal acylated polypeptides, methods for their production and uses thereof
EA201892619A1 (en) 2011-04-29 2019-04-30 Роше Гликарт Аг IMMUNOCONJUGATES CONTAINING INTERLEUKIN-2 MUTANT POLYPETIPS
CN103608684B (en) 2011-05-12 2016-05-04 基因泰克公司 A Multiple Reaction Monitoring LC-MS/MS Method for the Detection of Therapeutic Antibodies in Animal Samples Using Framework Signature Peptides
MX370233B (en) 2011-05-16 2019-12-06 Genentech Inc Fgfr1 agonists and methods of use.
CN108892726A (en) * 2011-06-13 2018-11-27 艾比吉诺米克斯合作公司 Anti- PSGL-1 antibody and application thereof
US8623666B2 (en) 2011-06-15 2014-01-07 Hoffmann-La Roche Inc. Method for detecting erythropoietin (EPO) receptor using anti-human EPO receptor antibodies
MX354663B (en) 2011-06-22 2018-03-14 Hoffmann La Roche Removal of target cells by circulating virus-specific cytotoxic t-cells using mhc class i comprising complexes.
PT2726092T (en) 2011-06-28 2019-10-08 Lp Inhibrx SERPINE FUSION POLYPEPTIDES AND METHODS FOR THEIR USE
US10400029B2 (en) 2011-06-28 2019-09-03 Inhibrx, Lp Serpin fusion polypeptides and methods of use thereof
CN103781493A (en) 2011-06-30 2014-05-07 霍夫曼-拉罗奇有限公司 Anti-c-met antibody formulations
CN103890007A (en) 2011-08-17 2014-06-25 霍夫曼-拉罗奇有限公司 Neuregulin antibodies and uses thereof
MX2014002053A (en) 2011-08-23 2014-04-25 Roche Glycart Ag Anti-mcsp antibodies.
SI2748201T1 (en) 2011-08-23 2018-03-30 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
CN103764681B (en) 2011-08-23 2018-06-19 罗切格利卡特公司 Bispecific antigen binding molecules
US20130078250A1 (en) 2011-08-23 2013-03-28 Oliver Ast Bispecific t cell activating antigen binding molecules
CA2846083A1 (en) 2011-09-15 2013-03-21 Genentech, Inc. Methods of promoting differentiation
US9663573B2 (en) 2011-10-05 2017-05-30 Genentech, Inc. Methods of treating liver conditions using Notch2 antagonists
HRP20181457T1 (en) 2011-10-14 2018-11-16 F. Hoffmann - La Roche Ag ANTI-HTRA1 ANTIBODIES AND USE PROCEDURES
MX2014004426A (en) 2011-10-15 2014-07-09 Genentech Inc Scd1 antagonists for treating cancer.
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
IN2014CN03062A (en) 2011-10-28 2015-07-31 Hoffmann La Roche
CA2854477A1 (en) 2011-11-21 2013-05-30 Genentech, Inc. Purification of anti-c-met antibodies
WO2013083497A1 (en) 2011-12-06 2013-06-13 F. Hoffmann-La Roche Ag Antibody formulation
SG10201601882PA (en) 2011-12-22 2016-04-28 Hoffmann La Roche Expression Vector Organization, Novel Production Cell Generation Methods And Their Use For The Recombinant Production Of Polypeptides
SG10201700169PA (en) 2011-12-22 2017-02-27 Hoffmann La Roche Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides
WO2013096791A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Process for making high concentration protein formulations
JP6684490B2 (en) 2012-01-09 2020-04-22 ザ・スクリップス・リサーチ・インスティテュート Ultralong complementarity determining regions and uses thereof
CN104411717A (en) 2012-01-09 2015-03-11 斯克利普斯研究所 Humanized antibodies with ultralong CDR3S
CN104168920A (en) 2012-01-18 2014-11-26 霍夫曼-拉罗奇有限公司 Methods of using FGF19 modulators
KR20140116490A (en) 2012-01-18 2014-10-02 제넨테크, 인크. Anti-lrp5 antibodies and methods of use
KR102148303B1 (en) 2012-02-11 2020-08-26 제넨테크, 인크. R-spondin translocations and methods using the same
WO2013120929A1 (en) 2012-02-15 2013-08-22 F. Hoffmann-La Roche Ag Fc-receptor based affinity chromatography
AR090244A1 (en) 2012-03-08 2014-10-29 Hoffmann La Roche FORMULATION OF ANTI-SELECTINE ANTIBODY P
CN104220457A (en) 2012-03-27 2014-12-17 霍夫曼-拉罗奇有限公司 Diagnosis and treatments relating to her3 inhibitors
AR090549A1 (en) 2012-03-30 2014-11-19 Genentech Inc ANTI-LGR5 AND IMMUNOCATE PLAYERS
WO2013165940A1 (en) 2012-05-01 2013-11-07 Genentech, Inc. Anti-pmel17 antibodies and immunoconjugates
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
EP3605090A1 (en) 2012-05-23 2020-02-05 F. Hoffmann-La Roche AG Selection method for therapeutic agents
KR102172897B1 (en) 2012-06-08 2020-11-02 서트로 바이오파마, 인크. Antibodies comprising site-specific non-natural amino acid residues, methods of their preparation and methods of their use
BR112014031310A2 (en) 2012-06-15 2017-07-25 Genentech Inc anti-pcsk9 antibodies, formulations, dosage and methods of use
AR091476A1 (en) 2012-06-21 2015-02-04 Univ Indiana Res & Tech Corp REGION FUSION POLYPEPTIDES Fc POLYPEPTIDE BINDING RECEIVER OF INCRETINA AND CONJUGADOS WITH EFECTIVE FUNCTION Fc ALTERED
EP3135690A1 (en) 2012-06-26 2017-03-01 Sutro Biopharma, Inc. Modified fc proteins comprising site-specific non-natural amino acid residues, conjugates of the same, methods of their preparation and methods of their use
UY34887A (en) 2012-07-02 2013-12-31 Bristol Myers Squibb Company Una Corporacion Del Estado De Delaware OPTIMIZATION OF ANTIBODIES THAT FIX THE LYMPHOCYTE ACTIVATION GEN 3 (LAG-3) AND ITS USES
EP2869837B1 (en) 2012-07-04 2016-09-14 F. Hoffmann-La Roche AG Anti-theophylline antibodies and methods of use
KR102090849B1 (en) 2012-07-04 2020-03-19 에프. 호프만-라 로슈 아게 Covalently linked antigen-antibody conjugates
KR20150030755A (en) 2012-07-04 2015-03-20 에프. 호프만-라 로슈 아게 Anti-biotin antibodies and methods of use
WO2014008391A1 (en) 2012-07-05 2014-01-09 Genentech, Inc. Expression and secretion system
EP2869845B1 (en) * 2012-07-06 2019-08-28 Genmab B.V. Dimeric protein with triple mutations
EA201590172A1 (en) 2012-07-09 2015-09-30 Дженентек, Инк. IMMUNOCONGATES CONTAINING ANTIBODIES TO CD79b
BR112015000439A2 (en) 2012-07-09 2017-12-19 Genentech Inc immunoconjugate, pharmaceutical formulation and methods of treating an individual and inhibiting proliferation
MX2015000359A (en) 2012-07-09 2015-04-14 Genentech Inc Immunoconjugates comprising anti-cd79b antibodies.
MX2015000357A (en) 2012-07-09 2015-05-12 Genentech Inc Immunoconjugates comprising anti-cd22 antibodies.
AU2013288641B2 (en) 2012-07-13 2017-07-06 Roche Glycart Ag Bispecific anti-VEGF/anti-ANG-2 antibodies and their use in the treatment of ocular vascular diseases
ES2700978T3 (en) 2012-08-07 2019-02-20 Roche Glycart Ag Composition comprising two antibodies engineered to have a reduced and increased effector function
MX2015001675A (en) 2012-08-08 2015-04-10 Roche Glycart Ag Interleukin-10 fusion proteins and uses thereof.
RU2015107891A (en) 2012-08-09 2016-09-27 Роше Гликарт Аг ANTIBODIES TO ASGPR AND THEIR APPLICATION
US20140044675A1 (en) 2012-08-10 2014-02-13 Roche Glycart Ag Interleukin-2 fusion proteins and uses thereof
US20150202287A1 (en) 2012-08-30 2015-07-23 Merrimack Pharmaceuticals, Inc. Combination therapies comprising anti-erbb3 agents
EP2912065A4 (en) 2012-10-25 2016-10-19 True North Therapeutics Inc ANTIBODY ANTIBODY ANTIBODIES AND USES THEREOF
CA2889197A1 (en) 2012-11-02 2014-05-08 True North Therapeutics, Inc. Anti-complement c1s antibodies and uses thereof
EP2914622B1 (en) 2012-11-05 2023-06-07 Foundation Medicine, Inc. Novel fusion molecules and uses thereof
EP2914621B1 (en) 2012-11-05 2023-06-07 Foundation Medicine, Inc. Novel ntrk1 fusion molecules and uses thereof
KR20150064205A (en) 2012-11-08 2015-06-10 에프. 호프만-라 로슈 아게 Her3 antigen binding proteins binding to the beta-hairpin of her3
PH12019501031A1 (en) 2012-11-13 2022-11-14 Genentech Inc Anti-hemagglutinin antibodies and methods of use
ES2700984T3 (en) 2012-12-21 2019-02-20 Hoffmann La Roche Multifunctional proteins comprising MHC class I multivalent disulfide-linked
WO2014107739A1 (en) 2013-01-07 2014-07-10 Eleven Biotherapeutics, Inc. Antibodies against pcsk9
AU2014207342C1 (en) 2013-01-18 2019-04-04 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
TWI682941B (en) 2013-02-01 2020-01-21 美商再生元醫藥公司 Antibodies comprising chimeric constant domains
US10081678B2 (en) * 2013-02-04 2018-09-25 Emory University Specific binding antibodies of glycoprotein IB alpha as selective ectodomain shedding inhibitors
WO2014128235A1 (en) 2013-02-22 2014-08-28 F. Hoffmann-La Roche Ag Methods of treating cancer and preventing drug resistance
CA2896259A1 (en) 2013-02-26 2014-09-04 Roche Glycart Ag Anti-mcsp antibodies
EP2961773B1 (en) 2013-02-26 2019-03-20 Roche Glycart AG Bispecific t cell activating antigen binding molecules
MY199162A (en) 2013-02-26 2023-10-18 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
JP2016512421A (en) 2013-02-26 2016-04-28 ロシュ グリクアート アーゲー Bispecific T cell activation antigen binding molecule
JP2016510751A (en) 2013-03-06 2016-04-11 ジェネンテック, インコーポレイテッド Methods of treating and preventing anticancer drug resistance
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
KR20150127216A (en) 2013-03-14 2015-11-16 제넨테크, 인크. Methods of treating cancer and preventing cancer drug resistance
BR112015022576A2 (en) 2013-03-14 2017-10-24 Genentech Inc pharmaceutical product and its use, kit and method for treating hyperproliferative dysfunction
BR112015022019A2 (en) 2013-03-14 2017-08-29 Genentech Inc ISOLATED ANTIBODIES, NUCLEIC ACID, HOST CELL, METHOD OF PRODUCING ANTIBODIES, IMMUNOCONJUGATE, PHARMACEUTICAL FORMULATION, METHODS FOR TREATMENT OF INDIVIDUALS, INHIBITION OF CELL PROLIFERATION, DETECTION OF HUMAN B7-H4 AND CANCER DETECTION
CN105143265A (en) 2013-03-15 2015-12-09 豪夫迈·罗氏有限公司 Anti-crth2 antibodies and their use
US9598485B2 (en) 2013-03-15 2017-03-21 Ac Immune S.A. Anti-tau antibodies and methods of use
CA2902765A1 (en) 2013-03-15 2014-09-25 Genentech, Inc. Compositions and methods for diagnosis and treatment of hepatic cancers
CN105339001A (en) 2013-03-15 2016-02-17 基因泰克公司 Methods of treating cancer and preventing cancer drug resistance
KR20230070054A (en) 2013-03-15 2023-05-19 제넨테크, 인크. Biomarkers and methods of treating pd-1 and pd-l1 related conditions
SG11201507429TA (en) 2013-03-15 2015-10-29 Genentech Inc Il-22 polypeptides and il-22 fc fusion proteins and methods of use
UA118028C2 (en) 2013-04-03 2018-11-12 Рош Глікарт Аг Bispecific antibodies specific for fap and dr5, antibodies specific for dr5 and methods of use
WO2014177460A1 (en) 2013-04-29 2014-11-06 F. Hoffmann-La Roche Ag Human fcrn-binding modified antibodies and methods of use
PL2992010T3 (en) 2013-04-29 2021-08-23 F.Hoffmann-La Roche Ag Fc-receptor binding modified asymmetric antibodies and methods of use
PE20151926A1 (en) 2013-05-20 2016-01-07 Genentech Inc ANTI-TRANSFERRIN RECEPTOR ANTIBODIES AND METHODS OF USE
RS60131B1 (en) 2013-07-05 2020-05-29 Genmab As Humanized or chimeric cd3 antibodies
EP3019522B1 (en) 2013-07-10 2017-12-13 Sutro Biopharma, Inc. Antibodies comprising multiple site-specific non-natural amino acid residues, methods of their preparation and methods of their use
CN105814074B (en) 2013-07-18 2020-04-21 图鲁斯生物科学有限责任公司 Humanized antibodies with ultralong complementarity determining regions
WO2015017146A2 (en) 2013-07-18 2015-02-05 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
HK1218124A1 (en) 2013-09-17 2017-02-03 豪夫迈.罗氏有限公司 Methods of using anti-lgr5 antibodies
BR122023024195A2 (en) 2013-09-20 2023-12-26 Bristol-Myers Squibb Company USES OF ANTI-LAG-3 ANTIBODIES AND ANTI-PD-1 ANTIBODIES
EP3055329B1 (en) 2013-10-11 2018-06-13 F. Hoffmann-La Roche AG Multispecific domain exchanged common variable light chain antibodies
CN105814078A (en) 2013-10-11 2016-07-27 豪夫迈·罗氏有限公司 Nsp4 inhibitors and methods of use
CN105744954B (en) 2013-10-18 2021-03-05 豪夫迈·罗氏有限公司 anti-RSPO 2 and/or anti-RSPO 3 antibodies and uses thereof
JP6715767B2 (en) 2013-10-23 2020-07-01 ジェネンテック, インコーポレイテッド Method for diagnosing and treating eosinophilic disease
CN104623637A (en) 2013-11-07 2015-05-20 健能隆医药技术(上海)有限公司 Application of IL-22 dimer in preparation of intravenous injection drugs
LT3071597T (en) 2013-11-21 2020-10-12 F. Hoffmann-La Roche Ag ANTIBODIES TO ALPHA-SUNUCLEIN AND THEIR USES
JP6502942B2 (en) 2013-12-13 2019-04-17 ジェネンテック, インコーポレイテッド Anti-CD33 antibody and immunoconjugate
AU2014364601A1 (en) 2013-12-17 2016-07-07 Genentech, Inc. Methods of treating HER2-positive cancers using PD-1 axis binding antagonists and anti-HER2 antibodies
RU2016128726A (en) 2013-12-17 2018-01-23 Дженентек, Инк. METHODS FOR TREATING MALIGNANT TUMORS USING PD-1 BINDING ANTAGONISTS AND ANTIBODIES AGAINST CD20
RS60443B1 (en) 2013-12-17 2020-07-31 Genentech Inc Anti-cd3 antibodies and methods of use
KR20160099092A (en) 2013-12-17 2016-08-19 제넨테크, 인크. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
LT3083680T (en) 2013-12-20 2020-04-10 F. Hoffmann-La Roche Ag HUMANIZED ANTI-Tau(pS422) ANTIBODIES AND METHODS OF USE
TWI670283B (en) 2013-12-23 2019-09-01 美商建南德克公司 Antibodies and methods of use
WO2015101587A1 (en) 2014-01-03 2015-07-09 F. Hoffmann-La Roche Ag Covalently linked helicar-anti-helicar antibody conjugates and uses thereof
MX373017B (en) 2014-01-03 2020-04-28 Hoffmann La Roche COVALENTLY LINKED POLYPEPTIDE TOXIN-ANTIBODY CONJUGATES.
JP6476194B2 (en) 2014-01-03 2019-02-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Bispecific anti-hapten / anti-blood brain barrier receptor antibodies, complexes thereof, and their use as blood brain barrier shuttles
ES2864160T3 (en) 2014-01-06 2021-10-13 Hoffmann La Roche Monovalent Blood Brain Barrier Shuttle Modules
CA2931986A1 (en) 2014-01-15 2015-07-23 F. Hoffmann-La Roche Ag Fc-region variants with modified fcrn- and maintained protein a-binding properties
TWI681969B (en) 2014-01-23 2020-01-11 美商再生元醫藥公司 Human antibodies to pd-1
TWI680138B (en) 2014-01-23 2019-12-21 美商再生元醫藥公司 Human antibodies to pd-l1
JOP20200094A1 (en) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc Antibody Molecules of PD-1 and Their Uses
BR112016015693A2 (en) 2014-01-24 2017-10-24 Genentech Inc Method To Treat Prostate Cancer And Antibody
EP3508496A1 (en) 2014-02-06 2019-07-10 F. Hoffmann-La Roche AG Interleukin-2 fusion proteins and uses thereof
US20150246963A1 (en) 2014-02-08 2015-09-03 Genentech, Inc. Methods of treating alzheimer's disease
CA2938731A1 (en) 2014-02-08 2015-08-13 Genentech, Inc. Methods of treating alzheimer's disease
ES2685424T3 (en) 2014-02-12 2018-10-09 F. Hoffmann-La Roche Ag Anti-Jagged1 antibodies and procedures for use
CR20160379A (en) 2014-02-21 2016-10-07 Genentech Inc BISPECIFIC ANTIBODIES ANTI-IL 13 / IL-17 AND ITS USES
EA201691765A1 (en) 2014-03-14 2016-12-30 Новартис Аг ANTIBODY MOLECULES AGAINST LAG-3 AND THEIR APPLICATIONS
TWI754319B (en) 2014-03-19 2022-02-01 美商再生元醫藥公司 Methods and antibody compositions for tumor treatment
US20170107294A1 (en) 2014-03-21 2017-04-20 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
LT3126394T (en) 2014-03-31 2020-01-27 F. Hoffmann-La Roche Ag Anti-ox40 antibodies and methods of use
CA2943834A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
AU2015247459A1 (en) 2014-04-18 2016-10-27 Acceleron Pharma, Inc. Methods for increasing red blood cell levels and treating sickle-cell disease
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
CA2946662A1 (en) 2014-05-22 2015-11-26 Genentech, Inc. Anti-gpc3 antibodies and immunoconjugates
CA2944717A1 (en) 2014-05-23 2015-11-26 Genentech, Inc. Mit biomarkers and methods using the same
EP3151921B1 (en) 2014-06-06 2019-08-28 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
WO2015191715A1 (en) 2014-06-11 2015-12-17 Genentech, Inc. Anti-lgr5 antibodies and uses thereof
US20230190750A1 (en) 2014-06-13 2023-06-22 Genentech, Inc. Methods of treating and preventing cancer drug resistance
BR122023023170A2 (en) 2014-06-13 2024-02-20 Acceleron Pharma Inc. USE OF AN ACTRII ANTAGONIST IN THE TREATMENT OR PREVENTION OF SKIN ULCERS ASSOCIATED WITH BETA-THALASSEMIA
AR100978A1 (en) 2014-06-26 2016-11-16 Hoffmann La Roche ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME
WO2015197736A1 (en) 2014-06-26 2015-12-30 F. Hoffmann-La Roche Ag Anti-brdu antibodies and methods of use
CN106488775A (en) 2014-07-11 2017-03-08 基因泰克公司 NOTCH approach suppresses
KR102360693B1 (en) 2014-07-11 2022-02-08 벤타나 메디컬 시스템즈, 인코포레이티드 Anti-pd-l1 antibodies and diagnostic uses thereof
DK3172233T3 (en) 2014-07-22 2019-11-11 Sutro Biopharma Inc ANTI-CD74 ANTIBODIES, COMPOSITIONS CONTAINING ANTI-CD74 ANTIBODIES AND PROCEDURES FOR USING ANTI-CD74 ANTIBODIES
KR102067092B1 (en) 2014-08-04 2020-01-17 에프. 호프만-라 로슈 아게 Bispecific t cell activating antigen binding molecules
MX2017002605A (en) 2014-08-28 2017-05-19 Bioatla Llc Conditionally active chimeric antigen receptors for modified t-cells.
AU2015314954B2 (en) 2014-09-12 2021-05-13 Genentech, Inc. Anti-HER2 antibodies and immunoconjugates
BR112017003236A2 (en) 2014-09-12 2017-11-28 Genentech Inc cysteine engineered antibodies, drug conjugates and antibodies, drug and antibody conjugate preparation method and pharmaceutical composition
CR20170095A (en) 2014-09-12 2017-07-19 Genentech Inc ANTI-CLL-1 ANTIBODIES AND IMMUNOCATE PLAYERS RECIPROCAL REFERENCES WITH RELATED APPLICATIONS
CN106804108B (en) 2014-09-12 2021-08-10 基因泰克公司 anti-B7-H4 antibodies and immunoconjugates
EP3197500A1 (en) 2014-09-17 2017-08-02 Genentech, Inc. Immunoconjugates comprising anti-her2 antibodies and pyrrolobenzodiazepines
RS60349B8 (en) 2014-09-23 2022-10-31 Hoffmann La Roche Method of using anti-cd79b immunoconjugates
WO2016061389A2 (en) 2014-10-16 2016-04-21 Genentech, Inc. Anti-alpha-synuclein antibodies and methods of use
EP3215850B1 (en) 2014-11-03 2019-07-03 F. Hoffmann-La Roche AG Assays for detecting t cell immune subsets and methods of use thereof
KR20170074246A (en) 2014-11-03 2017-06-29 제넨테크, 인크. Methods and biomarkers for predicting efficacy and evaluation of an 0x40 agonist treatment
HRP20201351T1 (en) 2014-11-05 2020-11-27 Genentech, Inc. PROCEDURES FOR THE PRODUCTION OF TWO - CHAIN PROTEINS IN BACTERIA
RU2705274C2 (en) 2014-11-05 2019-11-06 Дженентек, Инк. Methods for producing double-stranded proteins in bacteria
CN107108720A (en) 2014-11-06 2017-08-29 豪夫迈·罗氏有限公司 Fc region variants and its application method that FCRN with change is combined
KR20170072343A (en) 2014-11-06 2017-06-26 제넨테크, 인크. Combination therapy comprising ox40 binding agonists and tigit inhibitors
AR102522A1 (en) 2014-11-06 2017-03-08 Hoffmann La Roche FC REGION VARIATIONS WITH MODIFIED PROPERTIES OF UNION TO FCRN AND PROTEIN A
WO2016073157A1 (en) 2014-11-06 2016-05-12 Genentech, Inc. Anti-ang2 antibodies and methods of use thereof
KR20170080604A (en) 2014-11-10 2017-07-10 제넨테크, 인크. Anti-interleukin-33 antibodies and uses thereof
JP2018500882A (en) 2014-11-10 2018-01-18 ジェネンテック, インコーポレイテッド Animal model of nephropathy and drug for treating it
CR20170194A (en) 2014-11-14 2017-07-10 Hoffmann La Roche ANTIGEN UNION MOLECULES UNDERSTANDING A TNF FAMILY BINDING TRIMMER
SI3699198T1 (en) 2014-11-17 2025-06-30 Regeneron Pharmaceuticals, Inc. Methods for tumor treatment using cd3xcd20 bispecific antibody
CA2967368A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
CN107001473B (en) 2014-11-19 2021-07-09 豪夫迈·罗氏有限公司 Anti-transferrin receptor antibodies and methods of use
CN107250158B (en) 2014-11-19 2022-03-25 基因泰克公司 Anti-transferrin receptor/anti-BACE 1 multispecific antibodies and methods of use
WO2016081639A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Antibodies against bace1 and use thereof for neural disease immunotherapy
MY192999A (en) 2014-11-20 2022-09-20 Hoffmann La Roche Combination therapy of t cell activating bispecific antigen binding molecules and pd-1 axis binding antagonists
MX381724B (en) 2014-11-20 2025-03-13 Hoffmann La Roche COMMON LIGHT CHAINS AND METHODS OF USE.
JP6721590B2 (en) 2014-12-03 2020-07-15 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Multispecific antibody
MA41119A (en) 2014-12-03 2017-10-10 Acceleron Pharma Inc METHODS OF TREATMENT OF MYELODYSPLASIC SYNDROMES AND SIDEROBLASTIC ANEMIA
HRP20191584T1 (en) 2014-12-05 2019-11-29 Hoffmann La Roche ANTI-CD79B ANTIBODIES AND METHODS OF ADMINISTRATION
KR20170085595A (en) 2014-12-10 2017-07-24 제넨테크, 인크. Blood brain barrier receptor antibodies and methods of use
CN107278206B (en) 2014-12-19 2021-04-02 雷根尼桑斯公司 Antibodies that bind to human C6 and uses thereof
PE20221834A1 (en) 2014-12-19 2022-11-29 Chugai Pharmaceutical Co Ltd ANTIMYOSTATIN ANTIBODIES
EP3981794A1 (en) 2014-12-19 2022-04-13 Chugai Seiyaku Kabushiki Kaisha Anti-c5 antibodies and methods of use
CN113956354A (en) 2015-01-22 2022-01-21 中外制药株式会社 Combinations and methods of use of two or more anti-C5 antibodies
TWI844507B (en) 2015-02-05 2024-06-11 日商中外製藥股份有限公司 Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, and uses therof
HK1247287A1 (en) 2015-03-16 2018-09-21 F. Hoffmann-La Roche Ag Methods of detecting and quantifying il-13 and uses in diagnosing and treating th2-associated diseases
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
EP3277725B1 (en) 2015-03-30 2020-11-25 Regeneron Pharmaceuticals, Inc. Heavy chain constant regions with reduced binding to fc gamma receptors
KR102721595B1 (en) 2015-04-03 2024-10-23 유레카 쎄라퓨틱스, 인코포레이티드 Constructs targeting AFP peptide/MHC complexes and uses thereof
MA41919A (en) 2015-04-06 2018-02-13 Acceleron Pharma Inc ALK4 HETEROMULTIMERS: ACTRIIB AND THEIR USES
MX389703B (en) 2015-04-06 2025-03-20 Bioverativ Usa Inc HUMANIZED ANTI-C1S ANTIBODIES AND METHODS OF USING THEM.
KR20180002661A (en) 2015-04-06 2018-01-08 악셀레론 파마 인코포레이티드 ALK7: ActRIIB heteropolymers and their uses
CA2981183A1 (en) 2015-04-07 2016-10-13 Greg Lazar Antigen binding complex having agonistic activity and methods of use
PL3283508T3 (en) 2015-04-17 2021-10-11 Alpine Immune Sciences, Inc. Immunomodulatory proteins with tunable affinities
HRP20211159T1 (en) 2015-04-24 2021-10-29 F. Hoffmann - La Roche Ag Methods of identifying bacteria comprising binding polypeptides
HK1252158A1 (en) 2015-05-01 2019-05-17 Genentech, Inc. Masked anti-cd3 antibodies and methods of use
JP6963508B2 (en) 2015-05-11 2021-11-10 ジェネンテック, インコーポレイテッド Compositions and Methods for Treating Lupus Nephritis
CA2983282A1 (en) 2015-05-12 2016-11-17 Genentech, Inc. Therapeutic and diagnostic methods for cancer
ES2852973T3 (en) 2015-05-15 2021-09-14 Hope City Chimeric antigen receptor compositions
EP4335931A3 (en) 2015-05-29 2024-06-19 F. Hoffmann-La Roche AG Therapeutic and diagnostic methods for cancer
JP2018520658A (en) 2015-05-29 2018-08-02 ジェネンテック, インコーポレイテッド Humanized anti-Ebola virus glycoprotein antibodies and uses thereof
CN107810012A (en) 2015-06-02 2018-03-16 豪夫迈·罗氏有限公司 Use the composition and method of the anti-Antybody therapy sacred diseases of IL 34
JP6812364B2 (en) 2015-06-03 2021-01-13 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Anti-GITR antibody for cancer diagnosis
EP3303386B1 (en) 2015-06-05 2024-08-28 Genentech, Inc. Anti-tau antibodies and methods of use
AU2016274584A1 (en) 2015-06-08 2018-01-04 Genentech, Inc. Methods of treating cancer using anti-OX40 antibodies and PD-1 axis binding antagonists
AU2016274585A1 (en) 2015-06-08 2017-12-14 Genentech, Inc. Methods of treating cancer using anti-OX40 antibodies
CN108064246A (en) 2015-06-15 2018-05-22 基因泰克公司 Antibody and immune conjugate
EP3310814B1 (en) 2015-06-16 2023-08-02 F. Hoffmann-La Roche AG Humanized and affinity matured antibodies to fcrh5 and methods of use
EP3310378B1 (en) 2015-06-16 2024-01-24 F. Hoffmann-La Roche AG Anti-cll-1 antibodies and methods of use
JP2018526972A (en) 2015-06-16 2018-09-20 ジェネンテック, インコーポレイテッド Anti-CD3 antibody and method of use
CN116327953A (en) 2015-06-17 2023-06-27 豪夫迈·罗氏有限公司 Methods of treating locally advanced or metastatic breast cancer using PD-1 axis binding antagonists and taxanes
DK3310812T3 (en) 2015-06-17 2025-09-29 Hoffmann La Roche Anti-HER2 antibodies and methods of use
WO2016207245A1 (en) 2015-06-24 2016-12-29 F. Hoffmann-La Roche Ag Humanized anti-tau(ps422) antibodies and methods of use
EP3313890A1 (en) 2015-06-24 2018-05-02 H. Hoffnabb-La Roche Ag Trispecific antibodies specific for her2 and a blood brain barrier receptor and methods of use
CN107810199B (en) 2015-06-24 2021-11-09 豪夫迈·罗氏有限公司 Anti-transferrin receptor antibodies with tailored affinity
BR112017027736A2 (en) 2015-06-29 2018-10-09 Genentech Inc anti-cd20 type ii antibody for use in organ transplantation
CA3162816A1 (en) 2015-06-29 2017-01-05 Ventana Medical Systems, Inc. Materials and methods for performing histochemical assays for human pro-epiregulin and amphiregulin
JP7320350B2 (en) 2015-08-04 2023-08-03 アクセルロン ファーマ インコーポレイテッド Methods for treating myeloproliferative disorders
CN105384825B (en) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 A kind of bispecific chimeric antigen receptor and its application based on single domain antibody
WO2017040342A1 (en) 2015-08-28 2017-03-09 Genentech, Inc. Anti-hypusine antibodies and uses thereof
BR112018002432A2 (en) 2015-09-18 2018-09-18 Chugai Pharmaceutical Co Ltd il-8 binding antibodies and uses thereof
CA2999369C (en) 2015-09-22 2023-11-07 Spring Bioscience Corporation Anti-ox40 antibodies and diagnostic uses thereof
CN108137681B (en) 2015-09-23 2024-06-18 豪夫迈·罗氏有限公司 Optimized variants of anti-VEGF antibodies
KR20180083313A (en) 2015-09-24 2018-07-20 에이비비트로, 엘엘씨 HIV antibody compositions and methods of use
TWI811892B (en) 2015-09-25 2023-08-11 美商建南德克公司 Anti-tigit antibodies and methods of use
AR106188A1 (en) 2015-10-01 2017-12-20 Hoffmann La Roche ANTI-CD19 HUMANIZED HUMAN ANTIBODIES AND METHODS OF USE
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
WO2017055393A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules
WO2017055385A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xgd2 bispecific t cell activating antigen binding molecules
EP3356417A1 (en) 2015-10-02 2018-08-08 H. Hoffnabb-La Roche Ag Bispecific t cell activating antigen binding molecules binding mesothelin and cd3
US20180282410A1 (en) 2015-10-02 2018-10-04 Hoffmann-La Roche Inc. Anti-cd3xrob04 bispecific t cell activating antigen binding molecules
BR112018000835A2 (en) 2015-10-02 2018-09-11 Hoffmann La Roche molecule, one or more polynucleotides, one or more vectors, cell, molecule production method, composition, use of the molecule, method of treating a disease and method for inducing lysis of a target cell
CN114057884A (en) 2015-10-02 2022-02-18 豪夫迈·罗氏有限公司 Bispecific anti-human CD20/human transferrin receptor antibody and methods of use
WO2017055314A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific anti-cd19xcd3 t cell activating antigen binding molecules
AR106199A1 (en) 2015-10-02 2017-12-20 Hoffmann La Roche T-CELL ACTIVATING ANTIGEN BINDING MOLECULES OF ANTIGEN
WO2017055392A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules
AR106189A1 (en) 2015-10-02 2017-12-20 Hoffmann La Roche BIESPECTIFIC ANTIBODIES AGAINST HUMAN A-b AND THE HUMAN TRANSFERRINE RECEIVER AND METHODS OF USE
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
MA43354A (en) 2015-10-16 2018-08-22 Genentech Inc CONJUGATE DRUG CONJUGATES WITH CLOUDY DISULPHIDE
MA45326A (en) 2015-10-20 2018-08-29 Genentech Inc CALICHEAMICIN-ANTIBODY-DRUG CONJUGATES AND METHODS OF USE
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
WO2017072210A1 (en) 2015-10-29 2017-05-04 F. Hoffmann-La Roche Ag Anti-variant fc-region antibodies and methods of use
DK3368578T3 (en) 2015-10-30 2021-05-25 Hoffmann La Roche Anti-HtrA1 Antibodies and Methods of Using Them
TW201730211A (en) 2015-10-30 2017-09-01 建南德克公司 Anti-Factor D antibodies and conjugates
EP3370754A4 (en) 2015-11-04 2019-10-23 Acceleron Pharma Inc. METHODS FOR INCREASING ERYTHROCYTE RATES AND TREATING INEFFECTIVE ERYTHROPOISIS
CN108602884B (en) 2015-11-08 2024-06-25 豪夫迈·罗氏有限公司 Method for screening multispecific antibodies
AU2016356780A1 (en) 2015-11-19 2018-06-28 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (GITR) and uses thereof
US20190330336A1 (en) 2015-11-19 2019-10-31 Sutro Biopharma, Inc. Anti-lag3 antibodies, compositions comprising anti-lag3 antibodies and methods of making and using anti-lag3 antibodies
AU2016359695A1 (en) 2015-11-23 2018-06-14 Acceleron Pharma Inc. Methods for treating eye disorders
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
MX2018005229A (en) 2015-12-09 2019-04-29 F Hoffmann­La Roche Ag ANTIBODY ANTI-CD20 TYPE II AND USES OF THE SAME.
EA201891420A1 (en) 2015-12-18 2019-02-28 Чугаи Сейяку Кабусики Кайся ANTIBODIES TO MYOSTATIN, POLYPEPTIDES, CONTAINING OPTIONS OF FC-REGIONS, AND METHODS OF THEIR APPLICATION
PT3390442T (en) 2015-12-18 2024-01-08 Chugai Pharmaceutical Co Ltd Anti-c5 antibodies and methods of use
SMT202300304T1 (en) 2015-12-22 2023-11-13 Regeneron Pharma Combination of anti-pd-1 antibodies and bispecific anti-cd20/anti-cd3 antibodies to treat cancer
BR112018011029A2 (en) 2016-01-08 2018-11-21 Hoffmann La Roche methods for treating or delaying cancer progression and improving immune function in a cancer individual, uses of a binding antagonist and a bispecific antibody, compositions and kits
CN108602883A (en) 2016-01-20 2018-09-28 基因泰克公司 High-dose treatment for Alzheimer's disease
CA3011455A1 (en) 2016-01-27 2017-08-03 Sutro Biopharma, Inc. Anti-cd74 antibody conjugates, compositions comprising anti-cd74 antibody conjugates and methods of using anti-cd74 antibody conjugates
AU2017225854B2 (en) 2016-02-29 2020-11-19 Foundation Medicine, Inc. Therapeutic and diagnostic methods for cancer
US11767362B1 (en) 2016-03-15 2023-09-26 Chugai Seiyaku Kabushiki Kaisha Methods of treating cancers using PD-1 axis binding antagonists and anti-GPC3 antibodies
PE20181891A1 (en) 2016-03-22 2018-12-11 Hoffmann La Roche BISPECIFIC MOLECULES OF T-CELLS ACTIVATED BY PROTEASES
US20170315132A1 (en) 2016-03-25 2017-11-02 Genentech, Inc. Multiplexed total antibody and antibody-conjugated drug quantification assay
EP3439741A4 (en) 2016-04-06 2020-05-06 Acceleron Pharma Inc. ALK7 ANTAGONISTS AND USES THEREOF
US20170319688A1 (en) 2016-04-14 2017-11-09 Genentech, Inc. Anti-rspo3 antibodies and methods of use
CN109328069B (en) 2016-04-15 2023-09-01 亿一生物医药开发(上海)有限公司 Use of IL-22 in the treatment of necrotizing enterocolitis
ES2850428T3 (en) 2016-04-15 2021-08-30 Hoffmann La Roche Cancer monitoring and treatment procedures
MA43552A (en) 2016-04-15 2018-11-07 Alpine Immune Sciences Inc CD80 VARIANT IMMUNOMODULATOR PROTEINS AND THEIR USES
MX2018012493A (en) 2016-04-15 2019-06-06 Genentech Inc Methods for monitoring and treating cancer.
KR20250095754A (en) 2016-04-15 2025-06-26 알파인 이뮨 사이언시즈, 인코포레이티드 Icos ligand variant immunomodulatory proteins and uses thereof
JP6675017B2 (en) 2016-05-02 2020-04-01 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Contrast body-single chain target binding substance
JP7285076B2 (en) 2016-05-11 2023-06-01 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Antigen-binding molecule comprising a TNF family ligand trimer and a tenascin-binding portion
EP3243836A1 (en) 2016-05-11 2017-11-15 F. Hoffmann-La Roche AG C-terminally fused tnf family ligand trimer-containing antigen binding molecules
EP3455252B1 (en) 2016-05-11 2022-02-23 F. Hoffmann-La Roche AG Modified anti-tenascin antibodies and methods of use
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
HUE060072T2 (en) 2016-05-13 2023-01-28 Bioatla Inc Anti-ror2 antibodies, antibody fragments, their immunoconjugates and uses thereof
TWI822521B (en) 2016-05-13 2023-11-11 美商再生元醫藥公司 Methods of treating skin cancer by administering a pd-1 inhibitor
WO2017201449A1 (en) 2016-05-20 2017-11-23 Genentech, Inc. Protac antibody conjugates and methods of use
JP7022080B2 (en) 2016-05-27 2022-02-17 ジェネンテック, インコーポレイテッド Biochemical analytical methods for the characterization of site-specific antibody-drug conjugates
WO2018220099A1 (en) 2017-06-02 2018-12-06 F. Hoffmann-La Roche Ag Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
EP3252078A1 (en) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
CN109476648B (en) 2016-06-06 2022-09-13 豪夫迈·罗氏有限公司 Sevelamer antibody-drug conjugates and methods of use
EP3472197A1 (en) 2016-06-15 2019-04-24 Sutro Biopharma, Inc. Antibodies with engineered ch2 domains, compositions thereof and methods of using the same
KR102306744B1 (en) 2016-06-17 2021-09-28 추가이 세이야쿠 가부시키가이샤 Anti-myostatin antibodies and methods of use
JP7133477B2 (en) 2016-06-24 2022-09-08 ジェネンテック, インコーポレイテッド Anti-polyubiquitin multispecific antibody
JP6983824B2 (en) 2016-07-04 2021-12-17 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft New antibody format
RU2748278C2 (en) 2016-07-15 2021-05-21 Акселерон Фарма Инк. Compositions and methods of pulmonary hypertension treatment
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
MA45811A (en) 2016-07-27 2019-06-05 Acceleron Pharma Inc METHODS AND COMPOSITIONS OF TREATMENT OF DISEASE.
EP3491013A1 (en) 2016-07-28 2019-06-05 Alpine Immune Sciences, Inc. Cd155 variant immunomodulatory proteins and uses thereof
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
US11834490B2 (en) 2016-07-28 2023-12-05 Alpine Immune Sciences, Inc. CD112 variant immunomodulatory proteins and uses thereof
US20190185578A1 (en) 2016-07-29 2019-06-20 Chugai Seiyaku Kabushiki Kaisha Bispecific antibody exhibiting increased alternative fviii-cofactor-function activity
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
US11046776B2 (en) 2016-08-05 2021-06-29 Genentech, Inc. Multivalent and multiepitopic antibodies having agonistic activity and methods of use
CN109476748B (en) 2016-08-08 2023-05-23 豪夫迈·罗氏有限公司 Methods for the treatment and diagnosis of cancer
EP3496763A1 (en) 2016-08-11 2019-06-19 Genentech, Inc. Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
EP3515932B1 (en) 2016-09-19 2023-11-22 F. Hoffmann-La Roche AG Complement factor based affinity chromatography
IL265473B2 (en) 2016-09-23 2024-01-01 Genentech Inc Uses of il-13 antagonists for treating atopic dermatitis
ES2897217T3 (en) 2016-09-30 2022-02-28 Hoffmann La Roche Bispecific antibodies against p95HER2
US11976111B2 (en) 2016-10-05 2024-05-07 Acceleron Pharma Inc. ActRIIa and ALK4 polypeptides for treating kidney fibrosis, inflammation and injury
JP7050770B2 (en) 2016-10-05 2022-04-08 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Method for preparing antibody drug conjugate
AU2017339517B2 (en) 2016-10-06 2024-03-14 Foundation Medicine, Inc. Therapeutic and diagnostic methods for cancer
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
WO2018071597A1 (en) 2016-10-12 2018-04-19 Sutro Biopharma, Inc. Anti-folate receptor antibodies, compositions comprising anti-folate receptor antibodies and methods of making and using anti-folate receptor antibodies
AR110677A1 (en) * 2016-10-12 2019-04-24 Bioverativ Usa Inc ANTI-C1S ANTIBODIES AND METHODS TO USE THEM
CN110267678A (en) 2016-10-29 2019-09-20 霍夫曼-拉罗奇有限公司 Anti-MIC antibodies and methods of use
TWI791471B (en) 2016-11-15 2023-02-11 美商建南德克公司 Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
TW201829463A (en) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 anti-HLA-G antibody and use thereof
JOP20190100A1 (en) 2016-11-19 2019-05-01 Potenza Therapeutics Inc Anti-gitr antigen-binding proteins and methods of use thereof
CN110023334B (en) 2016-11-21 2023-11-14 科雅博有限责任公司 anti-GP 73 antibodies and immunoconjugates
EP3551655A2 (en) 2016-12-07 2019-10-16 Genentech, Inc. Anti-tau antibodies and methods of their use
TW202328181A (en) 2016-12-07 2023-07-16 美商建南德克公司 Anti-tau antibodies and methods of use
MX2019006331A (en) 2016-12-12 2019-07-12 Genentech Inc Methods of treating cancer using anti-pd-l1 antibodies and antiandrogens.
CA3039430A1 (en) 2016-12-19 2018-06-28 F. Hoffmann-La Roche Ag Combination therapy with targeted 4-1bb (cd137) agonists
EP3559034B1 (en) 2016-12-20 2020-12-02 H. Hoffnabb-La Roche Ag Combination therapy of anti-cd20/anti-cd3 bispecific antibodies and 4-1bb (cd137) agonists
JOP20190134A1 (en) 2016-12-23 2019-06-02 Potenza Therapeutics Inc Anti-neuropilin antigen-binding proteins and methods of use thereof
EP3568468A4 (en) 2017-01-12 2020-12-30 Eureka Therapeutics, Inc. AGAINST HISTONE H3 PEPTIDE / MHC COMPLEX CONSTRUCTS AND USES THEREOF
IL268327B2 (en) 2017-01-31 2025-09-01 Chugai Pharmaceutical Co Ltd A pharmaceutical composition for use in the treatment or prevention of a c5-related disease and a method for treating or preventing a c5-related disease
TW201839136A (en) 2017-02-06 2018-11-01 瑞士商諾華公司 Composition and method for treating hemochromatosis
CR20190387A (en) 2017-02-10 2019-09-25 Genentech Inc ANTIBODIES AGAINST TRYPTASE, COMPOSITIONS OF THESE AND USES OF THEM
EP3585813A1 (en) 2017-02-22 2020-01-01 Sutro Biopharma, Inc. Pd-1/tim-3 bi-specific antibodies, compositions thereof, and methods of making and using the same
WO2018160841A1 (en) 2017-03-01 2018-09-07 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2018167119A1 (en) 2017-03-15 2018-09-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Pharmaceutical compositions for the treatment of thrombosis in patients suffering from a myeloproliferative neoplasm
HRP20231382T1 (en) 2017-03-16 2024-02-16 Alpine Immune Sciences, Inc. PD-L1 VARIANT OF IMMUNOMODULATING PROTEINS AND THEIR USE
KR20190141146A (en) 2017-03-16 2019-12-23 알파인 이뮨 사이언시즈, 인코포레이티드 PD-L2 variant immunomodulatory protein and uses thereof
MX2019010887A (en) 2017-03-16 2019-10-15 Alpine Immune Sciences Inc Cd80 variant immunomodulatory proteins and uses thereof.
KR20190138636A (en) 2017-03-22 2019-12-13 제넨테크, 인크. Optimized Antibody Compositions for the Treatment of Eye Disorders
SG11201908796XA (en) 2017-03-27 2019-10-30 Hoffmann La Roche Improved antigen binding receptors
CN110494446A (en) 2017-03-28 2019-11-22 基因泰克公司 The method for treating neurodegenerative disease
JOP20190203A1 (en) 2017-03-30 2019-09-03 Potenza Therapeutics Inc Anti-tigit antigen-binding proteins and methods of use thereof
EP3606947B1 (en) 2017-04-03 2022-12-21 F. Hoffmann-La Roche AG Immunoconjugates of il-2 with an anti-pd-1 and tim-3 bispecific antibody
MA49289A (en) 2017-04-03 2020-02-12 Hoffmann La Roche ANTIBODIES BINDING TO STEAP-1
CA3053357A1 (en) 2017-04-03 2018-10-11 F. Hoffmann-La Roche Ag Immunoconjugates of an anti-pd-1 antibody with a mutant il-2 or with il-15
AU2018247797B2 (en) 2017-04-05 2024-10-10 F. Hoffmann-La Roche Ag Anti-LAG3 antibodies
US11603407B2 (en) 2017-04-06 2023-03-14 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
TWI871272B (en) 2017-04-11 2025-02-01 美商因荷布瑞克斯生物科學公司 Multispecific polypeptide constructs having constrained cd3 binding and methods of using the same
BR112019021411A2 (en) 2017-04-13 2020-05-05 Hoffmann La Roche methods to treat or slow the progression of cancer and to improve function, uses of an immunoconjugate, an agonist, an antagonist, compositions, kit and invention
MX2019012192A (en) 2017-04-14 2020-01-21 Genentech Inc Diagnostic and therapeutic methods for cancer.
PE20200150A1 (en) 2017-04-21 2020-01-17 Genentech Inc USE OF KLK5 ANTAGONISTS FOR THE TREATMENT OF A DISEASE
JP7295030B2 (en) 2017-04-26 2023-06-20 ユーリカ セラピューティックス, インコーポレイテッド Construct that specifically recognizes glypican 3 and use thereof
SG10201913677SA (en) 2017-04-27 2020-03-30 Tesaro Inc Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof
CN110869392A (en) 2017-05-16 2020-03-06 百时美施贵宝公司 Treatment of cancer with anti-GITR agonistic antibodies
EP3630292A2 (en) 2017-05-24 2020-04-08 Sutro Biopharma, Inc. Pd-1/lag3 bi-specific antibodies, compositions thereof, and methods of making and using the same
DK3631454T3 (en) 2017-05-30 2023-12-04 Bristol Myers Squibb Co TREATMENT OF LAYER-3 POSITIVE TUMORS
CA3065304A1 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody
EP3642631B1 (en) 2017-06-20 2022-03-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for identifying whether patients with acute decompensated heart failure (adhf) exhibit a hypercoagulable state
CA3062194A1 (en) 2017-06-20 2018-12-27 Amgen Inc. Method of treating or ameliorating metabolic disorders using binding proteins for gastric inhibitory peptide receptor (gipr) in combination with glp-1 agonists
MX2020000604A (en) 2017-07-21 2020-09-10 Genentech Inc Therapeutic and diagnostic methods for cancer.
WO2019023316A1 (en) 2017-07-26 2019-01-31 Sutro Biopharma, Inc. Methods of using anti-cd74 antibodies and antibody conjugates in treatment of t-cell lymphoma
US10961318B2 (en) 2017-07-26 2021-03-30 Forty Seven, Inc. Anti-SIRP-α antibodies and related methods
CN110869391A (en) 2017-07-26 2020-03-06 豪夫迈·罗氏有限公司 Combination therapy with BET inhibitors, Bcl-2 inhibitors and anti-CD 20 antibodies
WO2019025847A1 (en) 2017-08-04 2019-02-07 Novartis Ag Treatment regimens
KR102713874B1 (en) 2017-08-11 2024-10-10 제넨테크, 인크. Anti-CD8 antibodies and uses thereof
WO2019055931A1 (en) 2017-09-18 2019-03-21 Sutro Biopharma, Inc. Anti- folate receptor alpha antibody conjugates and their uses
WO2019059411A1 (en) 2017-09-20 2019-03-28 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
JP6496095B1 (en) 2017-09-29 2019-04-03 中外製薬株式会社 Multispecific antigen-binding molecule having blood coagulation factor VIII (FVIII) cofactor function alternative activity and pharmaceutical preparation containing the molecule as an active ingredient
CN111801347A (en) 2017-10-10 2020-10-20 高山免疫科学股份有限公司 CTLA-4 variant immunomodulatory proteins and uses thereof
EP3694890A4 (en) 2017-10-12 2021-11-03 Immunowake Inc. LIGHT CHAIN ANTIBODY FUSION PROTEIN WITH VEGFR
AU2018347607B2 (en) 2017-10-14 2025-08-21 Cytomx Therapeutics, Inc. Antibodies, activatable antibodies, bispecific antibodies, and bispecific activatable antibodies and methods of use thereof
TW202500579A (en) 2017-10-18 2025-01-01 美商艾爾潘免疫科學有限公司 Variant icos ligand immunomodulatory proteins and related compositions and methods
CN111246885B (en) 2017-10-20 2024-06-11 豪夫迈·罗氏有限公司 Methods for generating multispecific antibodies from monospecific antibodies
JP7438942B2 (en) 2017-10-30 2024-02-27 エフ. ホフマン-ラ ロシュ アーゲー Methods for in vivo generation of multispecific antibodies from monospecific antibodies
WO2019086499A1 (en) 2017-11-01 2019-05-09 F. Hoffmann-La Roche Ag Novel tnf family ligand trimer-containing antigen binding molecules
TWI829658B (en) 2017-11-01 2024-01-21 瑞士商赫孚孟拉羅股份公司 Bispecific 2+1 contorsbodies
AU2018359506A1 (en) 2017-11-01 2020-04-23 F. Hoffmann-La Roche Ag Combination therapy with targeted OX40 agonists
ES2984919T3 (en) 2017-11-06 2024-10-31 Hoffmann La Roche Diagnostic and therapeutic procedures for cancer
AU2018390881A1 (en) 2017-12-21 2020-07-02 F. Hoffmann-La Roche Ag Antibodies binding to HLA-A2/WT1
US20190211098A1 (en) 2017-12-22 2019-07-11 Genentech, Inc. Use of pilra binding agents for treatment of a disease
TW201930350A (en) 2017-12-28 2019-08-01 大陸商南京傳奇生物科技有限公司 Antibodies and variants thereof against PD-L1
JP7369127B2 (en) 2017-12-28 2023-10-25 ナンジン レジェンド バイオテック カンパニー,リミテッド Single domain antibodies against TIGIT and variants thereof
EP3731864A1 (en) 2017-12-29 2020-11-04 F. Hoffmann-La Roche SA Anti-vegf antibodies and methods of use
EP3735417A1 (en) 2018-01-03 2020-11-11 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
IL315325B1 (en) 2018-01-04 2025-07-01 Iconic Therapeutics Inc Anti-tissue factor antibodies, antibody-drug conjugates, and related methods
US11466077B2 (en) 2018-01-05 2022-10-11 Ac Immune Sa Misfolded TDP-43 binding molecules
WO2019139987A1 (en) 2018-01-09 2019-07-18 Elstar Therapeutics, Inc. Calreticulin binding constructs and engineered t cells for the treatment of diseases
EP3740507A4 (en) 2018-01-15 2022-08-24 Nanjing Legend Biotech Co., Ltd. SINGLE-DOMAIN ANTIBODIES AND VARIANTS THEREOF AGAINST PD-1
EP3740505A1 (en) 2018-01-16 2020-11-25 Lakepharma Inc. Bispecific antibody that binds cd3 and another target
SG11202006259SA (en) 2018-01-26 2020-08-28 Genentech Inc Il-22 fc fusion proteins and methods of use
JP7345479B2 (en) 2018-01-26 2023-09-15 ジェネンテック, インコーポレイテッド Composition and method of use
AU2019214183B2 (en) 2018-02-01 2022-04-07 Innovent Biologics (Suzhou) Co., Ltd. Fully human anti-B cell maturation antigen (BCMA) single chain variable fragment, and application thereof
CA3089287A1 (en) 2018-02-08 2019-08-15 Genentech, Inc. Bispecific antigen-binding molecules and methods of use
TWI829667B (en) 2018-02-09 2024-01-21 瑞士商赫孚孟拉羅股份公司 Antibodies binding to gprc5d
AU2019218128A1 (en) 2018-02-09 2020-09-17 Genentech, Inc. Therapeutic and diagnostic methods for mast cell-mediated inflammatory diseases
US12364736B2 (en) 2018-02-09 2025-07-22 Acceleron Pharma Inc. Methods for treating heterotopic ossification
JP7350756B2 (en) 2018-02-14 2023-09-26 アバ セラピューティクス アーゲー Anti-human PD-L2 antibody
EP3755364A1 (en) 2018-02-21 2020-12-30 F. Hoffmann-La Roche AG Dosing for treatment with il-22 fc fusion proteins
US20200399376A1 (en) 2018-02-26 2020-12-24 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
AU2019229885A1 (en) 2018-03-08 2020-09-10 Anna Rita Franco MIGLIACCIO Use of an anti-P-selectin antibody
TWI841551B (en) 2018-03-13 2024-05-11 瑞士商赫孚孟拉羅股份公司 Combination therapy with targeted 4-1bb (cd137) agonists
CN119074915A (en) 2018-03-13 2024-12-06 豪夫迈·罗氏有限公司 Therapeutic combinations of 4-1BB agonists and anti-CD20 antibodies
WO2019178364A2 (en) * 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
EP3765517A1 (en) 2018-03-14 2021-01-20 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
CN116327926A (en) 2018-03-15 2023-06-27 中外制药株式会社 Anti-dengue virus antibodies with cross-reactivity to Zika virus and methods of use
WO2019190969A1 (en) 2018-03-26 2019-10-03 Sutro Biopharma, Inc. Anti-bcma receptor antibodies, compositions comprising anti bcma receptor antibodies and methods of making and using anti-bcma antibodies
KR20200135510A (en) 2018-03-29 2020-12-02 제넨테크, 인크. Regulation of lactation stimulating activity in mammalian cells
JP7346790B2 (en) 2018-03-30 2023-09-20 ナンジン レジェンド バイオテック カンパニー,リミテッド Single domain antibodies against LAG-3 and their uses
TW202011029A (en) 2018-04-04 2020-03-16 美商建南德克公司 Methods for detecting and quantifying FGF21
SG11202009804RA (en) 2018-04-11 2020-11-27 Inhibrx Inc Multispecific polypeptide constructs having constrained cd3 binding and related methods and uses
SG11202007961QA (en) 2018-04-13 2020-09-29 Hoffmann La Roche Her2-targeting antigen binding molecules comprising 4-1bbl
AR115052A1 (en) 2018-04-18 2020-11-25 Hoffmann La Roche MULTI-SPECIFIC ANTIBODIES AND THE USE OF THEM
AR114789A1 (en) 2018-04-18 2020-10-14 Hoffmann La Roche ANTI-HLA-G ANTIBODIES AND THE USE OF THEM
WO2019227490A1 (en) 2018-06-01 2019-12-05 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and methods for imaging
US11987629B2 (en) 2018-06-01 2024-05-21 Tayu Huaxia Biotech Medical Group Co., Ltd. Compositions and uses thereof for treating disease or condition
US20210238308A1 (en) 2018-06-04 2021-08-05 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule showing changed half-life in cytoplasm
WO2019241758A1 (en) 2018-06-15 2019-12-19 Alpine Immune Sciences, Inc. Pd-1 variant immunomodulatory proteins and uses thereof
SG11202012342WA (en) 2018-06-18 2021-01-28 Eureka Therapeutics Inc Constructs targeting prostate-specific membrane antigen (psma) and uses thereof
SG11202012446UA (en) 2018-06-23 2021-01-28 Genentech Inc Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
WO2020010250A2 (en) 2018-07-03 2020-01-09 Elstar Therapeutics, Inc. Anti-tcr antibody molecules and uses thereof
AU2019305637A1 (en) 2018-07-18 2021-03-11 Genentech, Inc. Methods of treating lung cancer with a PD-1 axis binding antagonist, an antimetabolite, and a platinum agent
SG11202100373VA (en) 2018-07-20 2021-02-25 Surface Oncology Inc Anti-cd112r compositions and methods
WO2020023553A1 (en) 2018-07-24 2020-01-30 Inhibrx, Inc. Multispecific polypeptide constructs containing a constrained cd3 binding domain and a receptor binding region and methods of using the same
HUE067057T2 (en) 2018-08-01 2024-09-28 Chugai Pharmaceutical Co Ltd Medicinal product for use in the treatment or prevention of C5-related disease
WO2020027330A1 (en) 2018-08-03 2020-02-06 中外製薬株式会社 Antigen-binding molecule containing two antigen-binding domains that are linked to each other
UA128584C2 (en) 2018-08-10 2024-08-21 Чугаі Сейяку Кабусікі Кайся Anti-cd137 antigen-binding molecule and utilization thereof
TW202021618A (en) 2018-08-17 2020-06-16 美商23與我有限公司 Anti-il1rap antibodies and methods of use thereof
WO2020037258A1 (en) 2018-08-17 2020-02-20 Ab Studio Inc. Catabodies and methods of use thereof
ES3009025T3 (en) 2018-08-31 2025-03-25 Regeneron Pharma Dosing strategy that mitigates cytokine release syndrome for cd3/cd20 bispecific antibodies
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
CN112673022B (en) 2018-09-10 2024-07-09 南京传奇生物科技有限公司 Single domain antibodies to CD33 and constructs thereof
EP3852811A1 (en) 2018-09-17 2021-07-28 Sutro Biopharma, Inc. Combination therapies with anti-folate receptor antibody conjugates
US20220177587A1 (en) 2018-09-19 2022-06-09 Alpine Immune Sciences, Inc. Methods and uses of variant cd80 fusion proteins and related constructs
EP3853611A1 (en) 2018-09-19 2021-07-28 F. Hoffmann-La Roche AG Therapeutic and diagnostic methods for bladder cancer
CA3111809A1 (en) 2018-09-21 2020-03-26 Genentech, Inc. Diagnostic methods for triple-negative breast cancer
TWI828767B (en) 2018-09-27 2024-01-11 美商提聖納醫療公司 Anti-hla-g antibodies, compositions comprising anti-hla-g antibodies and methods of using anti-hla-g antibodies
TW202035443A (en) 2018-10-09 2020-10-01 美商麥迪紐有限責任公司 Combinations of anti-staphylococcus aureus antibodies
TW202028245A (en) 2018-10-11 2020-08-01 美商英伊布里克斯公司 Dll3 single domain antibodies and therapeutic compositions thereof
CN113518647A (en) 2018-10-11 2021-10-19 印希比股份有限公司 5T4 single domain antibody and therapeutic composition thereof
CA3115082A1 (en) 2018-10-11 2020-04-16 Inhibrx, Inc. B7h3 single domain antibodies and therapeutic compositions thereof
AU2019356573A1 (en) 2018-10-11 2021-05-27 Inhibrx Biosciences, Inc. PD-1 single domain antibodies and therapeutic compositions thereof
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
MX2021004348A (en) 2018-10-18 2021-05-28 Genentech Inc DIAGNOSTIC AND THERAPEUTIC PROCEDURES FOR SARCOMATOID KIDNEY CANCER.
EP3877407A1 (en) 2018-11-05 2021-09-15 F. Hoffmann-La Roche AG Methods of producing two chain proteins in prokaryotic host cells
MX2021005751A (en) 2018-11-16 2021-10-01 Memorial Sloan Kettering Cancer Center ANTIBODIES AGAINST MUCIN 16 AND METHODS OF USE THEREOF.
JP7713886B2 (en) 2018-11-30 2025-07-28 アルパイン イミューン サイエンシズ インコーポレイテッド CD86 variant immunomodulatory proteins and uses thereof
KR20210100656A (en) 2018-12-05 2021-08-17 제넨테크, 인크. Diagnostic methods and compositions for cancer immunotherapy
JP2022513708A (en) 2018-12-05 2022-02-09 モルフォシス・アーゲー Multispecific antigen-binding molecule
MX2021006573A (en) 2018-12-06 2021-07-15 Genentech Inc Combination therapy of diffuse large b-cell lymphoma comprising an anti-cd79b immunoconjugates, an alkylating agent and an anti-cd20 antibody.
CN113227119A (en) 2018-12-10 2021-08-06 基因泰克公司 Photocrosslinked peptides for site-specific conjugation to Fc-containing proteins
EP3898667A2 (en) 2018-12-20 2021-10-27 F. Hoffmann-La Roche AG Modified antibody fcs and methods of use
AR117327A1 (en) 2018-12-20 2021-07-28 23Andme Inc ANTI-CD96 ANTIBODIES AND METHODS OF USE OF THEM
AU2019403313A1 (en) 2018-12-21 2021-07-15 Genentech, Inc. Methods of producing polypeptides using a cell line resistant to apoptosis
WO2020127628A1 (en) 2018-12-21 2020-06-25 F. Hoffmann-La Roche Ag Tumor-targeted superagonistic cd28 antigen binding molecules
CR20210332A (en) 2018-12-21 2021-09-09 Hoffmann La Roche Antibody that binds to vegf and il-1beta and methods of use
MA54513A (en) 2018-12-21 2022-03-30 Hoffmann La Roche CD28 ANTIGEN BINDING MOLECULES TUMOR TARGETING AGONISTS
EP3898673A1 (en) 2018-12-21 2021-10-27 23Andme, Inc. Anti-il-36 antibodies and methods of use thereof
KR20240155361A (en) 2018-12-21 2024-10-28 에프. 호프만-라 로슈 아게 Antibodies binding to cd3
WO2020141145A1 (en) 2018-12-30 2020-07-09 F. Hoffmann-La Roche Ag Anti-rabbit cd19 antibodies and methods of use
CA3124837A1 (en) 2019-01-14 2020-07-23 Genentech, Inc. Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine
AU2020211974A1 (en) 2019-01-22 2021-08-05 Genentech, Inc. Immunoglobulin a antibodies and methods of production and use
KR102794884B1 (en) 2019-01-23 2025-04-15 제넨테크, 인크. Method for producing multimeric proteins in eukaryotic host cells
JP7538130B2 (en) 2019-01-23 2024-08-21 タユー ファシャ バイオテック メディカル グループ カンパニー, リミテッド Anti-PD-L1 diabodies and uses thereof
US20220089770A1 (en) 2019-01-24 2022-03-24 Chugai Seiyaku Kabushiki Kaisha Novel cancer antigens and antibodies of said antigens
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
SG11202108955QA (en) 2019-02-21 2021-09-29 Marengo Therapeutics Inc Antibody molecules that bind to nkp30 and uses thereof
SG11202109061YA (en) 2019-02-21 2021-09-29 Marengo Therapeutics Inc Multifunctional molecules that bind to t cell related cancer cells and uses thereof
CN113874051A (en) 2019-02-27 2021-12-31 安吉克公司 Antibody-drug conjugates comprising anti-TM4SF1 antibodies and methods of using the same
BR112021016923A2 (en) 2019-02-27 2021-11-03 Genentech Inc Methods for treating a patient with hematologic cancer, methods for treating a patient with relapsed or refractory mm, methods for treating a patient having a relapsed or refractory lnh, and kits
BR112021017144A2 (en) 2019-03-08 2021-11-09 Genentech Inc Assay to detect a membrane-associated protein, methods to quantify the concentration of circulating protein, to determine whether a patient with b-cell lymphoma is likely to exhibit a response to an anti-cd20 therapy, to determine the affinity of an anti-cd20 antibody cd20, to determine the activation of t cells and method of treating a tumor
MX2021010996A (en) 2019-03-14 2021-11-04 Genentech Inc Treatment of cancer with her2xcd3 bispecific antibodies in combination with anti-her2 mab.
JP7301155B2 (en) 2019-04-12 2023-06-30 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Bispecific antigen-binding molecules containing lipocalin muteins
BR112021020447A2 (en) 2019-04-17 2022-05-17 Alpine Immune Sciences Inc Methods and uses of variant icos ligand fusion proteins (icosl)
JP7593939B2 (en) 2019-04-19 2024-12-03 ジェネンテック, インコーポレイテッド Anti-MERTK antibodies and methods of use thereof
WO2020227105A1 (en) 2019-05-03 2020-11-12 Sutro Biopharma, Inc. Anti-bcma antibody conjugates
CN114269376A (en) 2019-05-03 2022-04-01 豪夫迈·罗氏有限公司 Methods of treating cancer with anti-PD-L1 antibodies
CN113966344A (en) 2019-05-03 2022-01-21 细胞基因公司 anti-BCMA antibody conjugates, compositions comprising the same, and methods of making and using the same
BR112021022815A2 (en) 2019-05-14 2021-12-28 Genentech Inc Methods to treat follicular lymphoma, kits, immunoconjugates and polatuzumab vedotin
TW202110879A (en) 2019-05-23 2021-03-16 瑞士商Ac 免疫有限公司 Anti-tdp-43 binding molecules and uses thereof
WO2020247698A1 (en) 2019-06-07 2020-12-10 Novartis Ag Use of an anti-p-selectin antibody
CN114127123A (en) 2019-06-26 2022-03-01 豪夫迈·罗氏有限公司 Fusion of CEA-binding antibodies to 4-1BBL
EP3994169A1 (en) 2019-07-02 2022-05-11 F. Hoffmann-La Roche AG Immunoconjugates comprising a mutant interleukin-2 and an anti-cd8 antibody
AR119382A1 (en) 2019-07-12 2021-12-15 Hoffmann La Roche PRE-TARGETING ANTIBODIES AND METHODS OF USE
AR119393A1 (en) 2019-07-15 2021-12-15 Hoffmann La Roche ANTIBODIES THAT BIND NKG2D
BR112022001460A2 (en) 2019-07-31 2022-03-22 Hoffmann La Roche Bispecific antigen-binding molecules, one or more isolated polynucleotides, host cell, method for producing a bispecific antigen-binding molecule and for treating a disease in an individual, pharmaceutical composition, use of the bispecific antigen-binding molecule and invention
JP2022543551A (en) 2019-07-31 2022-10-13 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Antibody that binds to GPRC5D
KR102618269B1 (en) 2019-07-31 2023-12-27 에프. 호프만-라 로슈 아게 Dosage and administration regimen for treatment or prevention of C5-related diseases by use of anti-C5 antibody crovalimab
CN115068604A (en) 2019-07-31 2022-09-20 豪夫迈·罗氏有限公司 Dosage and administration regimen for treating or preventing C5-related diseases by using anti-C5 antibody covalenzumab
TWI832183B (en) 2019-08-06 2024-02-11 香港商新旭生技股份有限公司 Antibodies that bind to pathological tau species and uses thereof
WO2021024220A1 (en) 2019-08-08 2021-02-11 Novartis Ag Use of the anti-p-selectin antibody crizanlizumab for treating sickle cell nephropathy and chronic kidney disease associated with sickle cell disease
EP4438057A3 (en) 2019-09-12 2025-01-01 F. Hoffmann-La Roche AG Compositions and methods of treating lupus nephritis
US12312414B2 (en) 2019-09-18 2025-05-27 Genentech, Inc. Anti-KLK7 antibodies, anti-KLK5 antibodies, multispecific anti-KLK5/KLK7 antibodies, and methods of use
TW202126699A (en) 2019-09-20 2021-07-16 美商建南德克公司 Dosing for anti-tryptase antibodies
JP2022548978A (en) 2019-09-27 2022-11-22 ジェネンテック, インコーポレイテッド Dosing for Treatment with Drugs Anti-TIGIT and Anti-PD-L1 Antagonist Antibodies
JP2022550067A (en) 2019-09-27 2022-11-30 ヤンセン バイオテツク,インコーポレーテツド Anti-CEACAM antibody and use thereof
KR20220086618A (en) 2019-10-18 2022-06-23 제넨테크, 인크. Methods of Use of Anti-CD79b Immunoconjugates to Treat Diffuse Large B-Cell Lymphoma
US20220389103A1 (en) 2019-11-06 2022-12-08 Genentech, Inc. Diagnostic and therapeutic methods for treatment of hematologic cancers
WO2021096888A1 (en) 2019-11-12 2021-05-20 Foundation Medicine, Inc. Methods of detecting a fusion gene encoding a neoantigen
WO2021119505A1 (en) 2019-12-13 2021-06-17 Genentech, Inc. Anti-ly6g6d antibodies and methods of use
WO2021122875A1 (en) 2019-12-18 2021-06-24 F. Hoffmann-La Roche Ag Antibodies binding to hla-a2/mage-a4
US20230279394A1 (en) 2019-12-18 2023-09-07 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
EP4077363A1 (en) 2019-12-20 2022-10-26 F. Hoffmann-La Roche AG Il-37 fusion proteins and uses thereof
CA3162444C (en) 2019-12-27 2024-04-30 Hitoshi KATADA Anti-ctla-4 antibody and use thereof
CN113045655A (en) 2019-12-27 2021-06-29 高诚生物医药(香港)有限公司 anti-OX 40 antibodies and uses thereof
IL294330B1 (en) 2020-01-06 2025-07-01 Vaccinex Inc Anti-CCR8 antibodies and their uses
CA3162009A1 (en) 2020-01-09 2021-07-15 F. Hoffmann-La Roche Ag New 4-1bbl trimer-containing antigen binding molecules
CN110818795B (en) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 anti-TIGIT antibodies and methods of use
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
IL294879A (en) 2020-01-29 2022-09-01 Inhibrx Inc Monodomain antibodies of cd28 and their multivalent and multispecific constructs
MX2022009391A (en) 2020-01-31 2022-09-26 Genentech Inc Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine.
IL295382A (en) 2020-02-12 2022-10-01 Chugai Pharmaceutical Co Ltd An anti-cd137 antigen-binding molecule for use in cancer therapy
EP4110826A4 (en) 2020-02-28 2024-08-14 Shanghai Henlius Biotech, Inc. Anti-cd137 constructs, multispecific antibody and uses thereof
CN115066440A (en) 2020-02-28 2022-09-16 上海复宏汉霖生物技术股份有限公司 anti-CD 137 constructs and uses thereof
EP4118114A1 (en) 2020-03-13 2023-01-18 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
EP4121163A1 (en) 2020-03-19 2023-01-25 Genentech, Inc. Isoform-selective anti-tgf-beta antibodies and methods of use
EP4126949A1 (en) 2020-03-24 2023-02-08 Genentech, Inc. Tie2-binding agents and methods of use
EP4127153A2 (en) 2020-03-26 2023-02-08 Genentech, Inc. Modified mammalian cells having reduced host cell proteins
CN115397850A (en) 2020-03-30 2022-11-25 豪夫迈·罗氏有限公司 Antibodies that bind to VEGF and PDGF-B and methods of use thereof
WO2021202959A1 (en) 2020-04-03 2021-10-07 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2021207662A1 (en) 2020-04-10 2021-10-14 Genentech, Inc. Use of il-22fc for the treatment or prevention of pneumonia, acute respiratory distress syndrome, or cytokine release syndrome
BR112022020629A2 (en) 2020-04-15 2022-11-29 Hoffmann La Roche INTERLEUKIN-7 (IL-7) POLYPEPTIDE, IMMUNOCONJUGATE, ONE OR MORE POLYNUCLEOTIDES ISOLATED, HOST CELL, METHODS FOR PRODUCING AN IL-7 POLYPEPTIDE MUTANT OR AN IMMUNOCONJUGATE, FOR TREAT A DISEASE, AND FOR STIMULATING THE IMMUNE SYSTEM, IL-7 POLYPEPTIDE OR IMMUNOCONJUGATE 7 MUTANT, PHARMACEUTICAL COMPOSITION, USE OF THE IL-7 MUTANT POLYPEPTIDE AND INVENTION
BR112022021077A2 (en) * 2020-04-20 2022-12-13 Genzyme Corp COMPLEMENT BB ANTI-FACTOR HUMANIZED ANTIBODIES AND THEIR USE
AU2021259861A1 (en) 2020-04-24 2022-11-17 Genentech, Inc. Methods of using anti-CD79b immunoconjugates
WO2021217120A2 (en) * 2020-04-24 2021-10-28 Administrators Of The Tulane Educational Fund Compositions and methods for preventing or reducing the effects of infections by coronaviruses that bind the extracellular domain of the ace2 receptor
EP4143345A1 (en) 2020-04-28 2023-03-08 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
KR20230087414A (en) 2020-05-03 2023-06-16 레베나 (쑤저우) 바이오파마 컴퍼니 리미티드 Antibody-drug conjugates (ADCS) comprising an anti-Trop-2 antibody, compositions comprising the ADCS, and methods of making and using the same
IL297980A (en) 2020-05-08 2023-01-01 Alpine Immune Sciences Inc April and baff inhibitory immunomodulatory proteins and methods of use thereof
CN113993900B (en) 2020-05-27 2023-08-04 舒泰神(北京)生物制药股份有限公司 Antibody specifically recognizing nerve growth factor and use thereof
CR20220608A (en) 2020-05-29 2023-01-26 23Andme Inc Anti-cd200r1 antibodies and methods of use thereof
CN116529260A (en) 2020-06-02 2023-08-01 当康生物技术有限责任公司 anti-CD 93 constructs and uses thereof
EP4157462A1 (en) 2020-06-02 2023-04-05 Dynamicure Biotechnology LLC Anti-cd93 constructs and uses thereof
JP2023527918A (en) 2020-06-08 2023-06-30 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Anti-HBV antibody and method of use
WO2021252977A1 (en) 2020-06-12 2021-12-16 Genentech, Inc. Methods and compositions for cancer immunotherapy
MX2022015877A (en) 2020-06-16 2023-01-24 Genentech Inc Methods and compositions for treating triple-negative breast cancer.
KR20230024368A (en) 2020-06-18 2023-02-20 제넨테크, 인크. Treatment with anti-TIGIT antibodies and PD-1 axis binding antagonists
TWI811703B (en) 2020-06-19 2023-08-11 瑞士商赫孚孟拉羅股份公司 Antibodies binding to cd3 and cd19
WO2021255146A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and cea
BR112022025809A2 (en) 2020-06-19 2023-01-10 Hoffmann La Roche ANTIBODIES, ISOLATED POLYNUCLEOTIDE, HOST CELL, METHOD FOR PRODUCING AN ANTIBODY, USE OF THE ANTIBODY, METHOD FOR TREATING A DISEASE AND INVENTION
MX2022015203A (en) 2020-06-19 2023-01-05 Hoffmann La Roche Immune activating fc domain binding molecules.
PH12022500027A1 (en) 2020-06-19 2024-03-25 Hoffmann La Roche Antibodies binding to cd3
WO2021255137A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Protease-activated t cell bispecific antibodies
CA3183475A1 (en) 2020-06-22 2021-12-30 Thomas Huber Anti-il-36 antibodies and methods of use thereof
PH12022553167A1 (en) 2020-06-23 2024-03-04 Hoffmann La Roche Agonistic cd28 antigen binding molecules targeting her2
EP4172192A1 (en) 2020-06-24 2023-05-03 Genentech, Inc. Apoptosis resistant cell lines
EP4172203A1 (en) 2020-06-25 2023-05-03 F. Hoffmann-La Roche AG Anti-cd3/anti-cd28 bispecific antigen binding molecules
MX2023000339A (en) 2020-07-10 2023-02-09 Hoffmann La Roche Antibodies which bind to cancer cells and target radionuclides to said cells.
TW202216780A (en) 2020-07-17 2022-05-01 美商建南德克公司 Anti-notch2 antibodies and methods of use
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
US20230322935A1 (en) 2020-07-29 2023-10-12 Dynamicure Biotechnology Llc Anti-cd93 constructs and uses thereof
WO2022029051A1 (en) 2020-08-03 2022-02-10 F. Hoffmann-La Roche Ag Improved antigen binding receptors
WO2022031749A1 (en) 2020-08-03 2022-02-10 Genentech, Inc. Diagnostic and therapeutic methods for lymphoma
JP2023537761A (en) 2020-08-14 2023-09-05 エイシー イミューン ソシエテ アノニム Humanized anti-TDP-43 binding molecules and uses thereof
WO2022043517A2 (en) 2020-08-27 2022-03-03 Cureab Gmbh Anti-golph2 antibodies for macrophage and dendritic cell differentiation
KR20230056766A (en) 2020-08-28 2023-04-27 제넨테크, 인크. CRISPR/Cas9 multiple knockout of host cell proteins
JP7158626B1 (en) 2020-09-04 2022-10-21 エフ.ホフマン-ラ ロシュ アーゲー Antibodies that bind to VEGF-A and ANG2 and methods of use
MX2023002901A (en) 2020-09-14 2023-06-01 Ichnos Sciences SA Antibodies that bind to il1rap and uses thereof.
IL301763A (en) 2020-09-28 2023-05-01 Angitia Biomedicines Ltd Antisclerostin structures and their uses
TW202446417A (en) 2020-10-05 2024-12-01 美商建南德克公司 Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
AR123855A1 (en) 2020-10-20 2023-01-18 Genentech Inc PEG-CONJUGATED ANTI-MERTK ANTIBODIES AND METHODS OF USE
CN116507640A (en) 2020-10-28 2023-07-28 豪夫迈·罗氏有限公司 Improved Antigen Binding Receptor
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
US12351643B2 (en) 2020-11-04 2025-07-08 Genentech, Inc. Dosing for treatment with anti-CD20/anti-CD3 bispecific antibodies
WO2022098628A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
IL302217A (en) 2020-11-04 2023-06-01 Genentech Inc Dosage for treatment with bispecific anti-CD20/anti-CD3 antibodies and anti-CD79B drug antibody conjugates
WO2022101458A1 (en) 2020-11-16 2022-05-19 F. Hoffmann-La Roche Ag Combination therapy with fap-targeted cd40 agonists
US20230416357A1 (en) 2020-12-07 2023-12-28 UCB Biopharma SRL Antibodies against interleukin-22
EP4255926A1 (en) 2020-12-07 2023-10-11 UCB Biopharma SRL Multi-specific antibodies and antibody combinations
IL303656A (en) 2020-12-17 2023-08-01 Hoffmann La Roche ANTI-HLA-G antibodies and their use
WO2022140797A1 (en) 2020-12-23 2022-06-30 Immunowake Inc. Immunocytokines and uses thereof
WO2022148853A1 (en) 2021-01-11 2022-07-14 F. Hoffmann-La Roche Ag Immunoconjugates
JP2024504931A (en) 2021-01-12 2024-02-02 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Split antibodies that bind to cancer cells and target radionuclides to said cells
EP4277668A1 (en) 2021-01-13 2023-11-22 F. Hoffmann-La Roche AG Combination therapy
AU2022218137A1 (en) 2021-02-03 2023-08-24 Mozart Therapeutics, Inc. Binding agents and methods of using the same
WO2022169872A1 (en) 2021-02-03 2022-08-11 Genentech, Inc. Multispecific binding protein degrader platform and methods of use
EP4301418A1 (en) 2021-03-03 2024-01-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates comprising an anti-bcma antibody
EP4301472A1 (en) 2021-03-05 2024-01-10 Dynamicure Biotechnology LLC Anti-vista constructs and uses thereof
KR20230148226A (en) 2021-03-10 2023-10-24 이뮤노웨이크 인크. Immunomodulatory Molecules and Their Uses
JP2024512377A (en) 2021-03-12 2024-03-19 ジェネンテック, インコーポレイテッド Anti-KLK7 antibodies, anti-KLK5 antibodies, multispecific anti-KLK5/KLK7 antibodies, and methods of use
JP2024511970A (en) 2021-03-15 2024-03-18 ジェネンテック, インコーポレイテッド Compositions and methods for the treatment of lupus nephritis
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
TW202300648A (en) 2021-03-25 2023-01-01 美商當康生物科技有限公司 Anti-igfbp7 constructs and uses thereof
US20240209080A1 (en) 2021-04-10 2024-06-27 Profoundbio Us Co. Folr1 binding agents, conjugates thereof and methods of using the same
AR125344A1 (en) 2021-04-15 2023-07-05 Chugai Pharmaceutical Co Ltd ANTI-C1S ANTIBODY
KR20230173164A (en) 2021-04-19 2023-12-26 제넨테크, 인크. modified mammalian cells
JP7742892B2 (en) 2021-04-23 2025-09-22 ジェンマブ エー/エス Anti-CD70 antibodies, conjugates thereof and methods of using same
JP2024517759A (en) 2021-04-28 2024-04-23 ミノトール セラピューティクス インコーポレイテッド Humanized chimeric bovine antibodies and methods of use
KR20240004659A (en) 2021-04-30 2024-01-11 셀진 코포레이션 Combination therapy using an anti-BCMA antibody-drug conjugate (ADC) in combination with a gamma secretase inhibitor (GSI)
WO2022228706A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody
CN117321078A (en) 2021-04-30 2023-12-29 豪夫迈·罗氏有限公司 Administration for combination therapy with anti-CD 20/anti-CD 3 bispecific antibody and anti-CD 79B antibody drug conjugates
CN117642428A (en) 2021-05-03 2024-03-01 Ucb生物制药有限责任公司 Antibody
CA3216795A1 (en) 2021-05-07 2022-11-10 Alpine Immune Sciences, Inc. Methods of dosing and treatment with a taci-fc fusion immunomodulatory protein
WO2022241446A1 (en) 2021-05-12 2022-11-17 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
WO2022241235A1 (en) 2021-05-14 2022-11-17 Genentech, Inc. Methods for treatment of cd20-positive proliferative disorder with mosunetuzumab and polatuzumab vedotin
BR112023023777A2 (en) 2021-05-14 2024-01-30 Genentech Inc ISOLATED ANTIBODIES, PHARMACEUTICAL COMPOSITION, ISOLATED NUCLEIC ACID, ISOLATED VECTOR, ISOLATED HOST CELL, METHOD FOR PRODUCING AN ANTIBODY, METHOD FOR TREATING A CONDITION ASSOCIATED WITH LOSS OF TREM2 FUNCTION, METHOD FOR REDUCING STREM2 LEVELS AND USE OF AN ANTIBODY
US20240366777A1 (en) 2021-05-19 2024-11-07 Sutro Biopharma, Inc. Anti-folate receptor conjugate combination therapy with bevacizumab
EP4341385A1 (en) 2021-05-21 2024-03-27 Genentech, Inc. Modified cells for the production of a recombinant product of interest
AR126009A1 (en) 2021-06-02 2023-08-30 Hoffmann La Roche CD28 ANTIGEN-BINDING AGONIST MOLECULES THAT TARGET EPCAM
TW202306994A (en) 2021-06-04 2023-02-16 日商中外製藥股份有限公司 Anti-ddr2 antibodies and uses thereof
WO2022266660A1 (en) 2021-06-17 2022-12-22 Amberstone Biosciences, Inc. Anti-cd3 constructs and uses thereof
US20250127809A1 (en) 2021-06-23 2025-04-24 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
CA3220353A1 (en) 2021-06-25 2022-12-29 Chugai Seiyaku Kabushiki Kaisha Use of anti-ctla-4 antibody
PE20242297A1 (en) 2021-06-25 2024-12-11 Chugai Pharmaceutical Co Ltd ANTI-CTLA-4 ANTIBODY
TW202320857A (en) 2021-07-06 2023-06-01 美商普方生物製藥美國公司 Linkers, drug linkers and conjugates thereof and methods of using the same
WO2023283611A1 (en) 2021-07-08 2023-01-12 Staidson Biopharma Inc. Antibodies specifically recognizing tnfr2 and uses thereof
EP4370545A1 (en) 2021-07-12 2024-05-22 Genentech, Inc. Structures for reducing antibody-lipase binding
EP4371572A4 (en) 2021-07-14 2025-08-06 Staidson Beijing Biopharmaceuticals Co Ltd ANTIBODIES WITH SPECIFIC RECOGNITION OF CD40 AND APPLICATION THEREOF
WO2023288241A1 (en) 2021-07-14 2023-01-19 Genentech, Inc. Anti-c-c motif chemokine receptor 8 (ccr8) antibodies and methods of use
KR20240036570A (en) 2021-07-22 2024-03-20 에프. 호프만-라 로슈 아게 Heterodimeric Fc domain antibodies
WO2023004386A1 (en) 2021-07-22 2023-01-26 Genentech, Inc. Brain targeting compositions and methods of use thereof
EP4380980A1 (en) 2021-08-03 2024-06-12 F. Hoffmann-La Roche AG Bispecific antibodies and methods of use
US20240336697A1 (en) 2021-08-07 2024-10-10 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
WO2023019239A1 (en) 2021-08-13 2023-02-16 Genentech, Inc. Dosing for anti-tryptase antibodies
JP2024534067A (en) 2021-08-19 2024-09-18 エフ. ホフマン-ラ ロシュ アーゲー Multivalent anti-variant fc region antibodies and methods of use
GB202111905D0 (en) 2021-08-19 2021-10-06 UCB Biopharma SRL Antibodies
WO2023028501A1 (en) 2021-08-23 2023-03-02 Immunitas Therapeutics, Inc. Anti-cd161 antibodies and uses thereof
KR20240049296A (en) 2021-08-27 2024-04-16 제넨테크, 인크. How to Treat Tauopathy
WO2023034750A1 (en) 2021-08-30 2023-03-09 Genentech, Inc. Anti-polyubiquitin multispecific antibodies
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023056069A1 (en) 2021-09-30 2023-04-06 Angiex, Inc. Degrader-antibody conjugates and methods of using same
AU2022362681A1 (en) 2021-10-14 2024-04-04 F. Hoffmann-La Roche Ag New interleukin-7 immunoconjugates
JP2024537096A (en) 2021-10-14 2024-10-10 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Alternative PD1-IL7v immunoconjugates for the treatment of cancer
WO2023076876A1 (en) 2021-10-26 2023-05-04 Mozart Therapeutics, Inc. Modulation of immune responses to viral vectors
AU2022379952A1 (en) 2021-11-05 2024-05-16 Mab Biotec, Inc. Monoclonal antibodies against carcinoembryonic antigens, and their uses
EP4430072A1 (en) 2021-11-10 2024-09-18 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
KR20240102971A (en) 2021-11-16 2024-07-03 제넨테크, 인크. Method and composition for treating systemic lupus erythematosus (SLE) using mosunetuzumab
EP4433167A1 (en) 2021-11-16 2024-09-25 AC Immune SA Novel molecules for therapy and diagnosis
CN118302443A (en) 2021-11-25 2024-07-05 豪夫迈·罗氏有限公司 Improved antigen binding receptors
WO2023102077A1 (en) 2021-12-01 2023-06-08 Sutro Biopharma, Inc. Anti-folate receptor conjugate cancer therapy
EP4445911A1 (en) 2021-12-06 2024-10-16 Beijing SoloBio Genetechnology Co., Ltd. Bispecific antibody that specifically binds to klebsiella pneumoniae o2 and o1 antigens, and composition
AR127887A1 (en) 2021-12-10 2024-03-06 Hoffmann La Roche ANTIBODIES THAT BIND CD3 AND PLAP
TW202330582A (en) 2021-12-15 2023-08-01 美商建南德克公司 Stabilized il-18 polypeptides and uses thereof
EP4448579A1 (en) 2021-12-17 2024-10-23 Shanghai Henlius Biotech, Inc. Anti-ox40 antibodies and methods of use
CA3240585A1 (en) 2021-12-17 2023-06-22 Wenfeng Xu Anti-ox40 antibodies, multispecific antibodies and methods of use
CN118974083A (en) 2022-01-07 2024-11-15 强生企业创新公司 Materials and Methods for IL-1β Binding Protein
US20230322958A1 (en) 2022-01-19 2023-10-12 Genentech, Inc. Anti-Notch2 Antibodies and Conjugates and Methods of Use
IL315043A (en) 2022-02-16 2024-10-01 Ac Immune Sa Humanized molecules that bind TDP-43 and uses thereof
EP4490173A1 (en) 2022-03-07 2025-01-15 Alpine Immune Sciences, Inc. Immunomodulatory proteins of variant cd80 polypeptides, cell therapies thereof and related methods and uses
WO2023173026A1 (en) 2022-03-10 2023-09-14 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
IL314211A (en) 2022-03-23 2024-09-01 Genentech Inc Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
WO2023179740A1 (en) 2022-03-25 2023-09-28 Shanghai Henlius Biotech , Inc. Anti-msln antibodies and methods of use
AR128876A1 (en) 2022-03-28 2024-06-19 Hoffmann La Roche ENHANCED FOLR1 PROTEASE ACTIVATABLE T LYMPHOCYTE BISPECIFIC ANTIBODIES
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
AU2023250038A1 (en) 2022-04-08 2024-11-14 Ac Immune Sa Anti-tdp-43 binding molecules
US20230406930A1 (en) 2022-04-13 2023-12-21 Genentech, Inc. Pharmaceutical compositions of therapeutic proteins and methods of use
EP4508081A1 (en) 2022-04-13 2025-02-19 F. Hoffmann-La Roche AG Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use
TW202406934A (en) 2022-05-03 2024-02-16 美商建南德克公司 Anti-ly6e antibodies, immunoconjugates, and uses thereof
EP4524158A1 (en) 2022-05-09 2025-03-19 Staidson (Beijing) Biopharmaceuticals Co., Ltd. Antibody that specifically recognizes gdf15 and use thereof
AR129268A1 (en) 2022-05-11 2024-08-07 Hoffmann La Roche ANTIBODY THAT BINDS TO VEGF-A AND IL6 AND METHODS OF USE
IL316738A (en) 2022-05-11 2024-12-01 Genentech Inc Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
KR20250022049A (en) 2022-06-07 2025-02-14 제넨테크, 인크. Method for determining the efficacy of a treatment for lung cancer comprising an anti-PD-L1 antagonist and an anti-TIGIT antagonist antibody
WO2023239803A1 (en) 2022-06-08 2023-12-14 Angiex, Inc. Anti-tm4sf1 antibody-drug conjugates comprising cleavable linkers and methods of using same
JP2025525445A (en) 2022-06-30 2025-08-05 ストロ バイオファーマ インコーポレーテッド Anti-ROR1 antibodies and antibody conjugates, compositions comprising anti-ROR1 antibodies or antibody conjugates, and methods of making and using anti-ROR1 antibodies and antibody conjugates
AU2023305619A1 (en) 2022-07-13 2025-01-23 F. Hoffmann-La Roche Ag Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
CN120322455A (en) 2022-07-19 2025-07-15 舒泰神(加州)生物科技有限公司 Antibodies specifically recognizing B and T lymphocyte attenuator (BTLA) and their applications
EP4558524A1 (en) 2022-07-19 2025-05-28 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
TW202417504A (en) 2022-07-22 2024-05-01 美商建南德克公司 Anti-steap1 antigen-binding molecules and uses thereof
AU2023320333A1 (en) 2022-08-01 2025-01-16 Flagship Pioneering Innovations Vii, Llc Immunomodulatory proteins and related methods
WO2024030956A2 (en) 2022-08-03 2024-02-08 Mozart Therapeutics, Inc. Cd39-specific binding agents and methods of using the same
JP2025525969A (en) 2022-08-05 2025-08-07 ヤンセン バイオテツク,インコーポレーテツド CD98-binding constructs for treating brain tumors
MA71684A (en) 2022-08-05 2025-05-30 Janssen Biotech, Inc. TRANSFERRIN RECEPTOR-BINDING PROTEINS FOR THE TREATMENT OF BRAIN TUMORS
AU2023326720A1 (en) 2022-08-18 2025-04-03 Immunocore Ltd T cell receptor fusion proteins specific for mage a4
AU2023325906A1 (en) 2022-08-19 2025-02-13 Evive Biotechnology (Shanghai) Ltd Formulations comprising g-csf and uses thereof
KR20250071294A (en) 2022-08-22 2025-05-21 압데라 테라퓨틱스 인크. DLL3 binding molecules and uses thereof
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
CN120077071A (en) 2022-09-07 2025-05-30 当康生物技术有限责任公司 Anti-VISTA constructs and uses thereof
EP4596580A1 (en) 2022-09-27 2025-08-06 Staidson (Beijing) Biopharmaceuticals Co., Ltd. Antibody for specifically recognizing light and use thereof
WO2024068572A1 (en) 2022-09-28 2024-04-04 F. Hoffmann-La Roche Ag Improved protease-activatable t cell bispecific antibodies
KR20250099778A (en) 2022-10-04 2025-07-02 알파인 이뮨 사이언시즈, 인코포레이티드 Mutated TACI-FC fusion proteins for use in the treatment of autoantibody-mediated diseases
KR20250075711A (en) 2022-10-06 2025-05-28 비카라 테라퓨틱스 인크. Multispecific proteins and related methods
TW202421664A (en) 2022-10-07 2024-06-01 美商建南德克公司 Methods of treating cancer with anti-c-c motif chemokine receptor 8 (ccr8) antibodies
TW202423969A (en) 2022-10-10 2024-06-16 瑞士商赫孚孟拉羅股份公司 Combination therapy of a gprc5d tcb and proteasome inhibitors
TW202430211A (en) 2022-10-10 2024-08-01 瑞士商赫孚孟拉羅股份公司 Combination therapy of a gprc5d tcb and imids
TW202423970A (en) 2022-10-10 2024-06-16 瑞士商赫孚孟拉羅股份公司 Combination therapy of a gprc5d tcb and cd38 antibodies
AU2023365967A1 (en) 2022-10-20 2025-06-05 Beijing Solobio Genetechnology Co., Ltd. Antibody combination specifically binding to trail or fasl, and bispecific antibody
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
WO2024094741A1 (en) 2022-11-03 2024-05-10 F. Hoffmann-La Roche Ag Combination therapy with anti-cd19/anti-cd28 bispecific antibody
AU2023375342A1 (en) 2022-11-08 2025-04-24 F. Hoffmann-La Roche Ag Compositions and methods of treating childhood onset idiopathic nephrotic syndrome
WO2024100170A1 (en) 2022-11-11 2024-05-16 F. Hoffmann-La Roche Ag Antibodies binding to hla-a*02/foxp3
EP4619428A1 (en) 2022-11-15 2025-09-24 F. Hoffmann-La Roche AG Antigen binding molecules
AR131163A1 (en) 2022-11-25 2025-02-19 Chugai Pharmaceutical Co Ltd METHODS FOR PRODUCING PROTEINS
EP4631974A1 (en) 2022-12-08 2025-10-15 Nanjing Vazyme Biotech Co., Ltd. Antibody specifically binding to rsv
IL321915A (en) 2023-01-09 2025-09-01 Odyssey Therapeutics Inc Anti-tnfr2 antigen-binding proteins and uses thereof
TW202432607A (en) 2023-01-18 2024-08-16 美商建南德克公司 Multispecific antibodies and uses thereof
KR20250135861A (en) 2023-01-20 2025-09-15 에프. 호프만-라 로슈 아게 Combination therapy with recombinant Fc domain-IL2 variant polypeptide and membrane-anchored antigen-binding polypeptide
CN120569410A (en) 2023-01-25 2025-08-29 豪夫迈·罗氏有限公司 Antibodies that bind to CSF1R and CD3
US20240269263A1 (en) 2023-02-06 2024-08-15 Flagship Pioneering Innovations Vii, Llc Immunomodulatory compositions and related methods
CN120712282A (en) 2023-02-17 2025-09-26 阿布林克斯有限公司 Polypeptides that bind neonatal FC receptors
WO2024184287A1 (en) 2023-03-06 2024-09-12 F. Hoffmann-La Roche Ag Combination therapy of an anti-egfrviii/anti-cd3 antibody and an tumor-targeted 4-1bb agonist
WO2024184494A1 (en) 2023-03-08 2024-09-12 Ac Immune Sa Anti-tdp-43 binding molecules and uses thereof
WO2024191785A1 (en) 2023-03-10 2024-09-19 Genentech, Inc. Fusions with proteases and uses thereof
AU2024234615A1 (en) 2023-03-14 2025-08-21 Odyssey Therapeutics, Inc. Anti-cd25 antigen-binding proteins and uses thereof
US20240327522A1 (en) 2023-03-31 2024-10-03 Genentech, Inc. Anti-alpha v beta 8 integrin antibodies and methods of use
WO2024208777A1 (en) 2023-04-03 2024-10-10 F. Hoffmann-La Roche Ag All-in-one agonistic antibodies
WO2024208776A1 (en) 2023-04-03 2024-10-10 F. Hoffmann-La Roche Ag Agonistic split antibodies
WO2024211235A1 (en) 2023-04-05 2024-10-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024211236A2 (en) 2023-04-05 2024-10-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024211234A1 (en) 2023-04-05 2024-10-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024212827A1 (en) 2023-04-12 2024-10-17 Shanghai Kangabio Co., Limited Multifunctional molecules comprising masked interleukin 12 and methods of use
WO2024220546A2 (en) 2023-04-17 2024-10-24 Peak Bio, Inc. Antibodies and antibody-drug conjugates and methods of use and synthetic processes and intermediates
WO2024233341A1 (en) 2023-05-05 2024-11-14 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024231320A1 (en) 2023-05-08 2024-11-14 F. Hoffmann-La Roche Ag Targeted interferon alpha fusion proteins and methods of use
WO2024233646A1 (en) 2023-05-10 2024-11-14 Genentech, Inc. Methods and compositions for treating cancer
TW202509065A (en) 2023-05-16 2025-03-01 瑞士商赫孚孟拉羅股份公司 Pd-1-regulated il-2 immunoconjugates and uses thereof
WO2024238790A1 (en) 2023-05-17 2024-11-21 Odyssey Therapeutics, Inc. Modified single-domain antibodies
WO2024243423A1 (en) 2023-05-24 2024-11-28 Mozart Therapeutics, Inc. Cd8-specific binding proteins and methods of using the same
WO2024246086A1 (en) 2023-06-01 2024-12-05 F. Hoffmann-La Roche Ag Immunostimulatory antigen binding molecules that specifically bind to bcma
TW202504918A (en) 2023-06-01 2025-02-01 瑞士商赫孚孟拉羅股份公司 Bispecific antibodies targeting bcma and cd28
WO2024254455A1 (en) 2023-06-08 2024-12-12 Genentech, Inc. Macrophage signatures for diagnostic and therapeutic methods for lymphoma
WO2024261013A1 (en) 2023-06-21 2024-12-26 F. Hoffmann-La Roche Ag Combination therapy with fap-targeted lymphotoxin beta receptor agonists
WO2024263761A1 (en) 2023-06-22 2024-12-26 Genentech, Inc. Antibodies and uses thereof
TW202504929A (en) 2023-06-22 2025-02-01 美商建南德克公司 Methods and compositions for cancer treatment
TW202515917A (en) 2023-06-29 2025-04-16 美商奧迪希治療公司 Anti-trailr2 antigen-binding proteins and uses thereof
WO2025002410A1 (en) 2023-06-30 2025-01-02 Evive Biotechnology (Shanghai) Ltd G-csf dimer for use in the treatment or prevention of chemotherapy or radiotherapy induced neutropenia
WO2025024334A1 (en) 2023-07-21 2025-01-30 Marrow Therapeutics, Inc. Hematopoietic cell targeting conjugates and related methods
WO2025021838A1 (en) 2023-07-26 2025-01-30 F. Hoffmann-La Roche Ag Antibodies binding to cd3
WO2025034806A1 (en) 2023-08-08 2025-02-13 Wisconsin Alumni Research Foundation Single-domain antibodies and variants thereof against fibroblast activation protein
WO2025032069A1 (en) 2023-08-09 2025-02-13 F. Hoffmann-La Roche Ag Mono and multispecific anti-trem2 antibodies, methods and uses thereof
WO2025032070A1 (en) 2023-08-09 2025-02-13 F. Hoffmann-La Roche Ag Anti-a-beta protein antibodies, methods and uses thereof
WO2025032071A1 (en) 2023-08-09 2025-02-13 F. Hoffmann-La Roche Ag Mono and multispecific anti-trem2 antibodies, methods and uses thereof
WO2025040567A1 (en) 2023-08-18 2025-02-27 F. Hoffmann-La Roche Ag Protease activatable fc domain binding molecules
WO2025045251A2 (en) 2023-09-03 2025-03-06 Kira Pharmaceuticals (Us) Llc Multispecific constructs comprising anti-factor d moiety
WO2025054320A1 (en) 2023-09-05 2025-03-13 Tizona Therapeutics Anti-ackr4 antibodies, compositions and uses thereof
TW202525856A (en) 2023-09-08 2025-07-01 美商Mlab生物科學有限公司 Bifunctional proteins and uses thereof
TW202517673A (en) 2023-09-25 2025-05-01 瑞士商赫孚孟拉羅股份公司 Antibody that binds to c3bbb
WO2025072406A1 (en) 2023-09-26 2025-04-03 Profoundbio Us Co. Ptk7 binding agents, conjugates thereof and methods of using the same
WO2025081117A2 (en) 2023-10-13 2025-04-17 Sutro Biopharma, Inc. Anti-tissue factor antibodies and antibody conjugates, compositions comprising anti-tissue factor antibodies or antibody conjugates, and methods of making and using anti-tissue factor antibodies and antibody conjugates
WO2025080751A2 (en) 2023-10-13 2025-04-17 Odyssey Therapeutics, Inc. Anti-cdh17 antigen-binding proteins and uses thereof
WO2025087681A1 (en) 2023-10-26 2025-05-01 Morphosys Ag Bispecific antibodies against cd3 and cd20
WO2025099120A1 (en) 2023-11-09 2025-05-15 F. Hoffmann-La Roche Ag Multispecific antibodies with conditional activity
WO2025106474A1 (en) 2023-11-14 2025-05-22 Genentech, Inc. Therapeutic and diagnostic methods for treating cancer with anti-fcrh5/anti-cd3 bispecific antibodies
WO2025117639A1 (en) 2023-11-27 2025-06-05 Profoundbio Us Co. Antibodies and methods for ptk7 detection
WO2025125118A1 (en) 2023-12-11 2025-06-19 F. Hoffmann-La Roche Ag Protease activatable fc domain binding molecules
WO2025125386A1 (en) 2023-12-14 2025-06-19 F. Hoffmann-La Roche Ag Antibodies that bind to folr1 and methods of use
WO2025132503A1 (en) 2023-12-20 2025-06-26 F. Hoffmann-La Roche Ag Antibodies binding to ceacam5
WO2025133290A1 (en) 2023-12-21 2025-06-26 Temper Bio Protein for immune regulation
WO2025133042A2 (en) 2023-12-22 2025-06-26 F. Hoffmann-La Roche Ag Activatable fusion proteins and methods of use
US20250296992A1 (en) 2024-01-10 2025-09-25 Genmab A/S Slitrk6 binding agents, conjugates thereof and methods of using the same
WO2025149633A1 (en) 2024-01-12 2025-07-17 Laigo Bio B.V. Bispecific antigen binding proteins
WO2025149667A1 (en) 2024-01-12 2025-07-17 Pheon Therapeutics Ltd Antibody drug conjugates and uses thereof
WO2025160334A1 (en) 2024-01-26 2025-07-31 Flagship Pioneering Innovations Vii, Llc Immunoreceptor inhibitory proteins and related methods
WO2025181219A1 (en) 2024-02-29 2025-09-04 Genmab A/S Egfr and c-met bispecific binding agents, conjugates thereof and methods of using the same
WO2025181189A1 (en) 2024-03-01 2025-09-04 F. Hoffmann-La Roche Ag Antibodies binding to cd3
WO2025186332A1 (en) 2024-03-05 2025-09-12 Ac Immune Sa Vectorized anti-tdp-43 antibodies
WO2025199118A1 (en) 2024-03-18 2025-09-25 Willow Neuroscience, Inc. Anti-trem1 antibody constructs, compositions comprising anti-trem1 antibody constructs and methods of using anti-trem1 antibody constructs
WO2025202147A1 (en) 2024-03-27 2025-10-02 F. Hoffmann-La Roche Ag Interleukin-7 immunoconjugates

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0182634A2 (en) 1984-11-15 1986-05-28 New England Medical Center Hospitals, Inc. Diagnostic methods employing antibodies
US4783399A (en) 1984-05-04 1988-11-08 Scripps Clinic And Research Foundation Diagnostic system for the detection of cytomegalovirus
WO1993006863A1 (en) 1991-09-30 1993-04-15 Biogen, Inc. Inhibition of vascular narrowing using anti-padgem antibodies
WO1993021956A1 (en) 1992-05-05 1993-11-11 Cytel Corporation Antibodies to p-selectin and their uses
WO1994025067A1 (en) 1993-05-04 1994-11-10 Cytel Corporation Antibodies to p-selectin and their uses
WO1994029351A2 (en) 1993-06-16 1994-12-22 Celltech Limited Antibodies
WO1997020932A1 (en) 1995-12-07 1997-06-12 Cambridge Antibody Technology Limited Specific binding members for human carcinoembryonic antigen, materials and methods
US5800815A (en) 1903-05-05 1998-09-01 Cytel Corporation Antibodies to P-selectin and their uses
WO2003064606A2 (en) 2002-01-28 2003-08-07 Medarex, Inc. Human monoclonal antibodies to prostate specific membrane antigen (psma)
WO2003074679A2 (en) 2002-03-01 2003-09-12 Xencor Antibody optimization
WO2003075840A2 (en) 2002-03-04 2003-09-18 Imclone Systems Incorporated Human antibodies specific to kdr and uses thereof
US20060024298A1 (en) 2002-09-27 2006-02-02 Xencor, Inc. Optimized Fc variants
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US7563441B2 (en) * 2004-04-13 2009-07-21 Hoffman-La Roche Inc. Anti-P-selectin antibodies

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
JPS6023084B2 (en) 1979-07-11 1985-06-05 味の素株式会社 blood substitute
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
EP0206448B1 (en) 1985-06-19 1990-11-14 Ajinomoto Co., Inc. Hemoglobin combined with a poly(alkylene oxide)
EP0272253A4 (en) 1986-03-07 1990-02-05 Massachusetts Inst Technology Method for enhancing glycoprotein stability.
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
EP0307434B2 (en) 1987-03-18 1998-07-29 Scotgen Biopharmaceuticals, Inc. Altered antibodies
US5202238A (en) 1987-10-27 1993-04-13 Oncogen Production of chimeric antibodies by homologous recombination
US5204244A (en) 1987-10-27 1993-04-20 Oncogen Production of chimeric antibodies by homologous recombination
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
KR100272077B1 (en) 1990-08-29 2000-11-15 젠팜인터내셔날,인코포레이티드 Transgenic non-human animals capable of producing heterologous antibodies
AU2235992A (en) 1991-06-14 1993-01-12 Genpharm International, Inc. Transgenic immunodeficient non-human animals
WO1993001227A1 (en) 1991-07-08 1993-01-21 University Of Massachusetts At Amherst Thermotropic liquid crystal segmented block copolymer
EP0752248B1 (en) 1992-11-13 2000-09-27 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
JPH08509612A (en) 1993-04-26 1996-10-15 ジェンファーム インターナショナル インコーポレイテッド Transgenic non-human animal capable of producing heterologous antibody
JP3713045B2 (en) * 1993-05-04 2005-11-02 アエレス バイオメディカル リミテッド Antibodies against P-selectin and their use
GB2301366B (en) * 1994-03-29 1998-07-29 Celltech Therapeutics Ltd Antibodies against E-selectin
HUP0104865A3 (en) * 1999-01-15 2004-07-28 Genentech Inc Polypeptide variants with altered effector function
KR20020047132A (en) 1999-08-24 2002-06-21 메다렉스, 인코포레이티드 Human ctla-4 antibodies and their uses
ES2405944T3 (en) 2000-11-30 2013-06-04 Medarex, Inc. Nucleic acids encoding reorganized human immunoglobulin sequences from transgenic transchromosomal mice zadas
CN101987871A (en) * 2002-09-27 2011-03-23 赞科股份有限公司 Optimized fc variants and methods for their generation
US20040119010A1 (en) 2002-11-01 2004-06-24 The Regents Of The University Of Colorado Quantitative analysis of protein isoforms using matrix-assisted laser desorption/ionization time of flight mass spectrometry

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800815A (en) 1903-05-05 1998-09-01 Cytel Corporation Antibodies to P-selectin and their uses
US4783399A (en) 1984-05-04 1988-11-08 Scripps Clinic And Research Foundation Diagnostic system for the detection of cytomegalovirus
EP0182634A2 (en) 1984-11-15 1986-05-28 New England Medical Center Hospitals, Inc. Diagnostic methods employing antibodies
WO1993006863A1 (en) 1991-09-30 1993-04-15 Biogen, Inc. Inhibition of vascular narrowing using anti-padgem antibodies
WO1993021956A1 (en) 1992-05-05 1993-11-11 Cytel Corporation Antibodies to p-selectin and their uses
WO1994025067A1 (en) 1993-05-04 1994-11-10 Cytel Corporation Antibodies to p-selectin and their uses
WO1994029351A2 (en) 1993-06-16 1994-12-22 Celltech Limited Antibodies
WO1997020932A1 (en) 1995-12-07 1997-06-12 Cambridge Antibody Technology Limited Specific binding members for human carcinoembryonic antigen, materials and methods
WO2003064606A2 (en) 2002-01-28 2003-08-07 Medarex, Inc. Human monoclonal antibodies to prostate specific membrane antigen (psma)
WO2003074679A2 (en) 2002-03-01 2003-09-12 Xencor Antibody optimization
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
WO2003075840A2 (en) 2002-03-04 2003-09-18 Imclone Systems Incorporated Human antibodies specific to kdr and uses thereof
US20060024298A1 (en) 2002-09-27 2006-02-02 Xencor, Inc. Optimized Fc variants
US7563441B2 (en) * 2004-04-13 2009-07-21 Hoffman-La Roche Inc. Anti-P-selectin antibodies

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Brekke, J. of Immunology (XP000567079), 24(10.01):2542-2547 (1994).
European Journal of immunology, vol. 24, No. 10.01. (Oct. 1994) pp. 2542-2547, XP000567079.
Geng et al., J. Bio. Chem. 266(33):22313-22318 (1991).
Geng et al., J. Bio. Chem., 266, pp. 22313-22318 (1991).
Hezareh, Journal of Virology (XP002339184), 75(24):12161-12168 (2001).
Idusogie, J. of Immunology (XP002965858), 164:4178-4184 (2000).
Kurome et al., J. Biochem. 115:608-614 (1994).
Morgan et al., Immunology 86(2):319-324 (1995).
Reddy et al., Journal of Immunology 164:1925-1933 (2000).

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44359E1 (en) * 2004-04-13 2013-07-09 Hoffmann-La Roche Inc Nucleic acid molecules encoding anti-P-selectin antibodies
USRE44389E1 (en) 2004-04-13 2013-07-23 Hoffman-La Roche Inc. Methods of inhibiting the binding of P-selectin to PSGL-1 with anti-P-selectin antibodies

Also Published As

Publication number Publication date
JP2010172339A (en) 2010-08-12
IL178070A (en) 2013-04-30
IL212350A (en) 2014-05-28
EP1737891A1 (en) 2007-01-03
NO340443B1 (en) 2017-04-24
RU2368622C2 (en) 2009-09-27
JP2008508852A (en) 2008-03-27
USRE44389E1 (en) 2013-07-23
JP5714554B2 (en) 2015-05-07
ZA200608234B (en) 2010-01-27
EP2357201B1 (en) 2017-08-30
BRPI0509847B8 (en) 2021-05-25
TW200840824A (en) 2008-10-16
HK1104562A1 (en) 2008-01-18
EP2360186B1 (en) 2017-08-30
PT1737891E (en) 2013-04-16
EP2067789A1 (en) 2009-06-10
WO2005100402A1 (en) 2005-10-27
TW200538467A (en) 2005-12-01
TWI473816B (en) 2015-02-21
IL212350A0 (en) 2011-06-30
NZ549872A (en) 2009-09-25
JP2013063079A (en) 2013-04-11
NZ578643A (en) 2010-11-26
TWI310039B (en) 2009-05-21
US20050226876A1 (en) 2005-10-13
CA2885854C (en) 2017-02-21
CA2561533A1 (en) 2005-10-27
EP1737891B1 (en) 2013-03-06
BRPI0509847B1 (en) 2019-11-19
AU2005233259A1 (en) 2005-10-27
US20090311779A1 (en) 2009-12-17
SG172616A1 (en) 2011-07-28
JP4633788B2 (en) 2011-02-16
CN1942483A (en) 2007-04-04
EP2360186A1 (en) 2011-08-24
EP2357201A1 (en) 2011-08-17
ES2403055T3 (en) 2013-05-13
MY153628A (en) 2015-02-27
CY1114080T1 (en) 2016-07-27
EP2374817B1 (en) 2017-09-06
SI1737891T1 (en) 2013-05-31
US7563441B2 (en) 2009-07-21
CA2561533C (en) 2015-06-16
US7824684B2 (en) 2010-11-02
KR20070002053A (en) 2007-01-04
DK1737891T3 (en) 2013-03-25
HRP20130440T1 (en) 2013-06-30
CN1942483B (en) 2012-09-26
AR048599A1 (en) 2006-05-10
EP2374817A1 (en) 2011-10-12
IL178070A0 (en) 2006-12-31
BRPI0509847A (en) 2007-10-09
US7754867B2 (en) 2010-07-13
JP5184569B2 (en) 2013-04-17
RU2006139822A (en) 2008-05-20
NO20065096L (en) 2006-11-30
PL1737891T3 (en) 2013-08-30
US20100209423A1 (en) 2010-08-19
AU2005233259B2 (en) 2011-12-15
AR084538A2 (en) 2013-05-22
USRE44359E1 (en) 2013-07-09
BR122019012028B1 (en) 2023-09-26
CA2885854A1 (en) 2005-10-27
KR100891620B1 (en) 2009-04-02
MY143957A (en) 2011-07-29

Similar Documents

Publication Publication Date Title
USRE43568E1 (en) Anti-P-selectin antibodies
AU2012200852B2 (en) Anti-P-selectin antibodies
HK1104562B (en) Anti-p-selectin antibodies
MXPA06011468A (en) Anti-p-selectin antibodies

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12