USRE41154E1 - Adaptive variable-length coding and decoding methods for image data - Google Patents
Adaptive variable-length coding and decoding methods for image data Download PDFInfo
- Publication number
- USRE41154E1 USRE41154E1 US12/238,104 US23810495A USRE41154E US RE41154 E1 USRE41154 E1 US RE41154E1 US 23810495 A US23810495 A US 23810495A US RE41154 E USRE41154 E US RE41154E
- Authority
- US
- United States
- Prior art keywords
- variable
- length
- decoding
- data
- length coding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/10527—Audio or video recording; Data buffering arrangements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/40—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
- H03M7/42—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code using table look-up for the coding or decoding process, e.g. using read-only memory
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/13—Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/91—Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
Definitions
- More than one reissue application has been filed for the reissue of U.S. Pat. No. 5 , 793 , 897 filed Nov. 3 , 1995 .
- the reissue applications are application Ser. Nos. 09 / 638 , 796 filed Aug. 11 , 2000 , now U.S. Reissued Pat. RE 39 , 167 , 09 / 654 , 939 filed Aug. 31 , 2000 , application Ser. No. 11 / 017 , 697 filed Dec. 22 , 2004 , application Ser. No. 11 / 017 , 698 filed Dec. 22 , 2004 , application Ser. No. 11 / 416 , 183 filed May 3 , 2006 , application Ser. No.
- 11 / 017 , 698 is a divisional application of Ser. No. 09 / 654 , 939 .
- Application Ser. No. 11 / 416 , 183 is a divisional application of Ser. No. 11 / 017 , 697 .
- Application Ser. No. 11 / 416 , 312 is a divisional application of Ser. No. 11 / 017 , 698 .
- Application Ser. No. 11 / 738 , 415 is a divisional application of Ser. No. 09 / 654 , 939 .
- Application Ser. No. 11 / 738 , 419 is a divisional application of Ser. No. 09 / 654 , 939 .
- the present application is a divisional of application Ser. No.
- the present invention relates to adaptive variablelength coding and decoding methods for digital image data, and more particularly, to adaptive variable-length coding and decoding methods which improve compression efficiency of transmission data by performing variable-length coding and decoding adaptively, according to statistical characteristics of image data.
- DCT discrete cosine transform
- DPCM differential pulse code modulation
- VLC variablelength coding
- FIG. 1 is a schematic block diagram of a general coding system for image data.
- the apparatus includes means 11 and 12 for performing a DCT function with respect to an N ⁇ N block and for quantizing DCT coefficients, means 13 and 14 for variable-length-coding the quantized data and for further compressing data quantity, and means 15 , 16 , 17 , 18 , 19 , A 1 , A 2 , SW 1 and SW 2 related to the inverse quantization and DCT operations with respect to the quantized data to then perform a motion compensation, which codes image data in an intra mode or inter mode.
- FIG. 2 is a schematic block diagram of a general decoding system for image data.
- the apparatus decodes and reproduces the image data coded by the coding system shown in FIG. 1 .
- the energy of transform coefficients is chiefly concentrated in a low frequency domain.
- Data transforms for each block are performed by a discrete cosine transform. Walsh-Hadamard transform, discrete Fourier transform, or discrete sine transform method.
- the transform coefficients are obtained by DCT operation.
- Quantizer 12 changes the DCT coefficients into representative values of a constant level through a predetermined quantization process.
- Variable-length encoder 13 variable-length-codes the representative values using their statistical characteristics, thereby further compressing the data.
- a quantization step size Q ss which is varied depending on the state (a fullness) of a buffer 14 wherein the variable-length-coded data is stored, controls quantizer 12 to thereby adjust a transmission bit rate.
- the quantization step size Q ss is also transmitted to a receiver side, to be used in a decoding system.
- a motion vector MV is obtained by estimating the motion, and data is compensated using the motion vector MV. Then, a differential signal between adjacently positioned screens becomes very small, thereby allowing transmission data to be more compressed.
- an inverse quantizer (Q ⁇ 1 ) 15 shown in FIG. 1 inverse-quantizes the quantized data output from quantizer 12 . Thereafter, the inverse-quantized data is inverse-DCT-operated in an inverse DCT means (DCT ⁇ 1 ) 16 to then be a video signal of a spatial domain.
- the video signal output from inverse DCT means 16 is stored in a frame memory 17 in frame units.
- Motion estimator 18 searches a block having the most similar pattern to that of an N ⁇ N block of input port 10 among the frame data stored in frame memory 17 and estimates the motion between blocks to obtain a motion vector MV.
- the motion vector MV is transmitted to a receiver side to be used in a decoding system and is simultaneously transmitted to a motion compensator 19 .
- Motion compensator 19 receives the motion vector MV from motion estimator 18 and reads out an N ⁇ N block corresponding to the motion vector MV from the previous frame data output from frame memory 17 to then supply the read N ⁇ N block to a subtractor A 1 connected with input port 10 . Then, subtractor A 1 obtains the difference between the N ⁇ N block supplied to input port 10 and the N ⁇ N block having the similar pattern thereto supplied from motion compensator 19 .
- the output data of subtractor A 1 is coded and then transmitted to the receiver side, as described above. That is to say, initially, the video signal of one screen (intraframe) is coded wholly to then be transmitted. For the video signal of the following screen (interframe), only the differential signal due to the motion is coded to then be transmitted.
- the data whose motion is compensated in motion compensator 19 is summed with the video signal output from inverse DCT means 16 in an adder A 2 and is thereafter stored in frame memory 17 .
- Refresh switches SW 1 and SW 2 are turned off at a certain interval (here, the period is one group of pictures or a GOP period) by a control means (not shown), so that an input video signal is coded into a PCM mode to then be transmitted in the case of an intraframe mode and so that only the differential signal is coded to then be transmitted in the case of an interframe mode, thereby refreshing cumulative coding errors for a constant period (one GOP).
- a refresh switch SW 3 allows the transmission errors on a channel to deviate from the receiver side within the constant time period (one GOP).
- the coded image data V c is transmitted to the receiver side to then be input to the decoding system shown in FIG. 2 .
- the coded image data Vc is decoded through the reverse process to the coding process in a variable-length decoder 21 .
- the data output from variable-length decoder 21 is inverse-quantized in an inverse quantizer 22 .
- inverse quantizer 22 adjusts the magnitude of the output DCT coefficients depending on the quantization step size Q ss supplied from the encoding system.
- An inverse DCT means 23 inverse-DCT-operates the DCT coefficients of a frequency domain, supplied from inverse quantizer 22 , into the image data of a spatial domain.
- the motion vector MV transmitted from coding system shown in FIG. 1 is supplied to a motion compensator 24 of decoding system.
- Motion compensator 24 reads out the N ⁇ N block corresponding to the motion vector MV from the previous frame data stored in a frame memory 25 , compensates the motion and then supplies the compensated N ⁇ N block to an adder A 3 .
- adder A 3 adds the inverse-DCT-operated DPCM data to the N ⁇ N block data supplied from motion compensator 24 to then output to a display.
- FIGS. 3A , 3 B and 3 C schematically show the process of coding image data.
- the sampling data of an N ⁇ N block shown in FIG. 3A is DCT-operated to be DCT coefficients of a frequency domain by the DCT method, etc., as shown in FIG. 3 B.
- the DCT coefficients are quantized and are scanned in a zigzag pattern, to then be coded in the form of runlength and level-length, as shown in FIG. 3 C.
- the run represents the number of 0 's present between coefficients not being “0” among the quantized coefficients of an N ⁇ N block, and the level corresponds to the absolute value of the coefficient not being “0”.
- the run is distributed from “0” to “63” and the level varies depending to the data value output from a quantizer. That is to say, if the quantized output value is indicated as an integer ranging from “ ⁇ 255” to “+255,” the level has a value ranging from “1” to “+255.” At this time, the positive or negative sign is expressed by an extra sign bit. In this manner, when a [run, level] pair is set as a symbol, if the run or level is large, the probability of the symbol is statistically very low.
- the block is divided into a regular region and an escape region according to the probability of the symbol.
- a Huffman code is used in coding.
- the escape region where the probability of the symbol is low data of a predetermined fixed length is used in coding.
- the higher the probability of the symbol the shorter the code is set, and vice versa.
- the escape sequence ESQ in which data of escape region is coded is composed of an escape code ESC, run, level and sign data S, each having a predetermined number of bits, as expressed in the following equation (1).
- ESQ ESC +RUN +L +S (1)
- the escape sequence has a constant data length of 21 bits in total since the escape code data ESC is six bits, run data RUN is six bits, level data L is eight bits, and sign data S is one bit.
- variable-length coding method since various extra information is also transmitted together with coded data and the escape sequence set by one variable-length coding table depending on the statistical characteristics of data has a constant fixed length, there is a limit in compressing data quantity by coding transmitted data.
- an object of the present invention to provide an adaptive variable-length coding method which improves compression efficiency of data by selecting an optimal variable-length coding table among a plurality of variable-length coding tables according to the current scanning position and quantization step size while scanning in a zigzag pattern by block type, i.e., inter/intra mode.
- an adaptive variable-length coding method whereby quantized orthogonal transform coefficients are scanned in a zigzag pattern, are DCT-operated to be [run, level] data and then are variable-length-coded in a coding system for image data, the method comprising the steps of:
- the adaptive variable-length decoding method according to the present invention for decoding data coded by the adaptive variable-length coding method comprises the steps of:
- FIG. 1 is a block diagram of a general coding system for image data
- FIG. 2 is a block diagram of a general decoding system for image data
- FIGS. 3A-3C are schematic diagrams for explaining steps of the data processing process according to the apparatus shown in FIG. 1 ;
- FIG. 4 shows a conventional variable-length coding and decoding table
- FIG. 5 is a schematic block diagram of a variable-length encoder for implementing an adaptive variable-length coding method according to the present invention
- FIGS. 6A and 6B illustrate a method for selecting a variable-length coding table partitioned by a predetermined number in the adaptive variable-length coding method according to the present invention, wherein FIG. 6A represents the intra mode and FIG. 6B represents the inter mode; and
- FIGS. 7A , 7 B and 7 C are histograms [run, level] for each symbol at the first, second and Pth regions shown in FIGS. 6 A and 6 B.
- variable-length coding tables are used.
- the table is selected in accordance with a block type, quantization step size and a current scanning position while scanning a block in a zigzag pattern.
- This selection is in accordance with the statistical characteristics of [run, level] data which vary depending on block type, i.e., intra mode/inter mode or luminance signal/color signal, quantization step size and a current zigzag scanning position, and which will be described in more detail.
- the inter mode for coding the differential signal between the current block data and motion compensated block data generates most of the DCT coefficients as “0” but scarcely generates larger values, compared to the intra mode for coding input block image data sequentially. This is because the variation in a motion compensation estate error thereof is typically smaller than that of the original video signal.
- intra/inter mode and luminance/color information there may be four block types, i.e., (intra, luminance), (intra, color), (inter, luminance) and (inter, color).
- the luminance/color information is excluded and only the intra/inter mode is considered, because the color statistics are dependent on the downsampling structure of the color signal.
- DCT coefficients are not high in the high frequency components and many are generated as “0's” while the quantizer scans in a zigzag pattern. That is to say, in order to utilize the human visual characteristics, the DCT coefficients are divided into primary weighting matrices. Since the weighting matrix for high frequency component is large, when the current scanning is a high frequency component, small values (including “0”) are often produced but large values are scarcely generated.
- the present invention proposes an adaptive variable-length coding/decoding method using a plurality of variable-length coding/decoding tables in which the block type (intra/inter mode), scanning position and quantization step size are combined, which is called a Huffman code book.
- the present invention is adopted for a general coding system shown in FIG. 1 and for a general decoding system shown in FIG. 2 .
- FIG. 5 is a schematic block diagram of a variable-length encoder for implementing the adaptive variable-length coding method according to the present invention.
- quantized DCT coefficients are scanned in a zigzag pattern by zigzag scanner 31 .
- Variable-length coding table selector 32 outputs a control signal for selecting the corresponding first to Pth variable-length coding tables 33 . 1 , 33 . 2 , . . . , 33 .P according to the block type (intra/inter mode), quantization step size Qss, and scanning position SP.
- the quantized DCT coefficients output from zigzag scanner 31 are variable-length-coded in accordance with the selected variable-length coding table, to then be transmitted to buffer 14 shown in FIG. 1 .
- Variable-length decoder 21 of the decoding system shown in FIG. 2 variable-length-decodes data coded in the reverse order to that of the variable-length coding process as shown in FIG. 5 .
- FIG. 6A shows P variable-length coding tables T 1 , T 2 , . . . , T p selected in accordance with quantization step size Q ss and the current scanning position SP (during zigzag scanning) for the intra mode.
- FIG. 6B shows P variable-length coding tables T 1 , T 2 , . . . , T p selected in accordance with quantization step size Q ss and the current scanning position SP (during zigzag scanning) for the inter mode.
- the “0” scanning position SP corresponds to the DC component
- the “ 63 ” scanning position SP represents the last scanning position in the corresponding block
- quantization step size Q ss has values ranging from “ 0 ” to “ 62 .”
- the blocks for selecting the variable-length coding tables T 1 , T 2 , . . . , T p are different depending on the mode.
- the intra mode has larger selection blocks for the first and second variable-length coding tables T 1 and T 2 and a smaller selection block for the Pth variable-length coding table T p .
- the first, second or Pth variable-length coding table T 1 , T 2 or T p are selected in accordance with quantization step size Q ss and scanning position SP.
- Quantized DCT coefficients are variable-length-coded in accordance with the selected variable-length coding table.
- region 2 L 1 ⁇ SP+Q ss ⁇ L 2 ;
- the proper partition as above can be sought empirically based on sufficient statistical analysis for various experimental states. These states include such factors as video sequence, bit rate, GOP and partitioning method.
- FIGS. 7A , 7 B and 7 C show examples of the variable-length coding tables shown in FIGS. 6A and 6B .
- variable-length coding tables have a regular region and escape region which differ depending on the statistical characteristics of [run, level].
- the first, second, . . . , Pth tables T 1 , T 2 . . . , T p have the regular region and escape region having different patterns and the Pth table T p has a smaller regular region than that of the first or second tables T 1 or T 2 .
- the [run, level] symbol is likely to have a low probability thereof if the run and/or level lengths have a large value.
- the respective symbols of the escape region has a fixed length of 21 bits obtained by adding a six-bit escape code, an eight-bit run, one-bit sign data.
- the data quantity may be reduced. That is to say, the bit number required for expressing run is dependent on the scanning position during zigzag scanning for two dimensional DCT coefficients and the bit number required for expressing level is dependent on the quantization step size. Also, quantization weighting matrices of intra-coded blocks and inter-coded blocks are different from each other.
- the new escape sequence ESQ having a fixed length of 21 bits can be modified into that having a variable length using the aforementioned characteristics according to Equation (1) above, where ESQ is composed of six bits, RUN is composed of zero to six bits. L is composed of one to eight bits, S is composed of one bit, the run data is dependent upon scanning position, and the level is dependent upon quantizer.
- the modified escape sequence has a variable length ranging from eight to 21 bits, compared to the fixed length of 21 bits, image data can be further compressed.
- the quantization step size can be used in synchronizing the number of bits required for expressing level, which requires no extra information to be transmitted.
- variable-length coding and decoding methods which improve compression efficiency by adjusting the length of the escape sequence variably are disclosed in the U.S. pat. application Ser. No. 08/069,914 filed on Jun. 1, 1993 by the assignee of the present invention.
- variable-length tables are provided for both the coding and decoding sides, which may be slightly more complex in hardware, compared to the case of using a conventional single table.
- the present invention is adopted for the case when a high data compression rate is necessary.
- the corresponding mode, quantization step size and scanning position information generated in coding side is transmitted to the decoding side.
- the mode and quantization step size information is transmitted in a constant period of time or is transmitted whenever there is a change.
- the scanning position information is not transmitted separately but is obtained automatically by accumulating the run values after obtaining [run, level] values of the decoding side.
- variable-length coding table selected during coding can be identified from the mode and quantization step size information transmitted from the coding side and the position information automatically calculated from the run value in the decoding side. Then, the same variable-length coding table as that adopted for coding is used for decoding the transmitted block data.
- the method according to the present invention can increase data compression efficiency such that image data coded and decoded by selecting one of a plurality of variable-length coding tables having a regular region and an escape region, using mode, quantization step size and zigzag scanning position information.
- the transmission data can be further compressed by adjusting variably the run and level lengths of the data to be coded in the escape region of the selected variable-length coding table.
- An adaptive variable-length coding/decoding method can improve the compression efficiency of digitally transmitted data and is applicable to various technological fields including digital communication, multimedia and personal computer systems, and digital video apparatuses such as a high definition television or digital videocassette recorder.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/238,104 USRE41154E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR930028074 | 1993-12-16 | ||
KR93-28074 | 1993-12-16 | ||
KR94-34497 | 1994-12-15 | ||
KR1019940034497A KR0155784B1 (ko) | 1993-12-16 | 1994-12-15 | 영상데이타의 적응형 가변장 부호화/복호화방법 |
US09/654,939 USRE40980E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
PCT/KR1994/000177 WO1995017073A1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US12/238,104 USRE41154E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US09/638,796 USRE39167E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/017,698 USRE41124E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US08/495,591 US5793897A (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE41154E1 true USRE41154E1 (en) | 2010-03-02 |
Family
ID=39358031
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/738,419 Expired - Lifetime USRE40783E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US09/654,939 Expired - Lifetime USRE40980E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/017,697 Expired - Lifetime USRE41026E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US12/238,083 Expired - Lifetime USRE41435E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/416,312 Expired - Lifetime USRE40909E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/416,183 Expired - Lifetime USRE40981E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/017,698 Expired - Lifetime USRE41124E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US09/638,796 Expired - Lifetime USRE39167E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US08/495,591 Ceased US5793897A (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US12/238,104 Expired - Lifetime USRE41154E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/738,415 Expired - Lifetime USRE40782E1 (en) | 1993-12-16 | 1995-11-03 | Adaptive variable-length coding and decoding methods for image data |
US12/238,120 Expired - Lifetime USRE41458E1 (en) | 1993-12-16 | 2008-09-25 | Adaptive variable-length coding and decoding methods for image data |
Family Applications Before (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/738,419 Expired - Lifetime USRE40783E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US09/654,939 Expired - Lifetime USRE40980E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/017,697 Expired - Lifetime USRE41026E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US12/238,083 Expired - Lifetime USRE41435E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/416,312 Expired - Lifetime USRE40909E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/416,183 Expired - Lifetime USRE40981E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/017,698 Expired - Lifetime USRE41124E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US09/638,796 Expired - Lifetime USRE39167E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US08/495,591 Ceased US5793897A (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/738,415 Expired - Lifetime USRE40782E1 (en) | 1993-12-16 | 1995-11-03 | Adaptive variable-length coding and decoding methods for image data |
US12/238,120 Expired - Lifetime USRE41458E1 (en) | 1993-12-16 | 2008-09-25 | Adaptive variable-length coding and decoding methods for image data |
Country Status (8)
Country | Link |
---|---|
US (12) | USRE40783E1 (de) |
EP (13) | EP1863291A3 (de) |
JP (1) | JP2898757B2 (de) |
KR (1) | KR0155784B1 (de) |
CN (6) | CN1222110C (de) |
DE (6) | DE69434369T2 (de) |
HK (5) | HK1033507A1 (de) |
WO (1) | WO1995017073A1 (de) |
Families Citing this family (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07123269A (ja) * | 1993-10-22 | 1995-05-12 | Fuji Xerox Co Ltd | 画像信号の符号化装置 |
KR0155784B1 (ko) * | 1993-12-16 | 1998-12-15 | 김광호 | 영상데이타의 적응형 가변장 부호화/복호화방법 |
WO1997024434A1 (en) * | 1995-12-29 | 1997-07-10 | Alg Company | Expansion of bone marrow stromal cells |
US7116829B1 (en) | 1996-11-06 | 2006-10-03 | Matsushita Electric Industrial Co., Ltd. | Image coding and decoding methods, image coding and decoding apparatuses, and recording media for image coding and decoding programs |
DE69720559T2 (de) * | 1996-11-06 | 2004-02-12 | Matsushita Electric Industrial Co., Ltd., Kadoma | Methode zur Bildkodierung mit Kodes variabler Länge |
US6549671B1 (en) * | 1998-02-19 | 2003-04-15 | Matsushita Electric Industrial Co., Ltd. | Picture data encoding apparatus with bit amount adjustment |
US6983018B1 (en) * | 1998-11-30 | 2006-01-03 | Microsoft Corporation | Efficient motion vector coding for video compression |
KR100325884B1 (ko) * | 1999-04-06 | 2002-03-07 | 이민화 | 3차원 칼라 초음파영상의 부호화 및 복호화시스템 |
JP3600487B2 (ja) * | 1999-08-31 | 2004-12-15 | 株式会社東芝 | 可変長復号器及びこれを用いた動画像復号装置 |
EP1124376A1 (de) * | 2000-02-09 | 2001-08-16 | Deutsche Thomson-Brandt Gmbh | Verfahren und Einrichtung zur Erzeugung eines kryptographisch geschützten Datenstroms |
EP1124378A3 (de) * | 2000-02-09 | 2004-12-08 | Deutsche Thomson-Brandt Gmbh | Verfahren, Koder und Dekoder zur Schützung eines Datenstroms unter Verwendung von Verschlüsselung oder zur Dekodierung eines geschütztes Datenstroms unter Verwendung von Entschlüsselung |
KR100856398B1 (ko) | 2000-05-17 | 2008-09-04 | 삼성전자주식회사 | 복수 매핑 테이블을 이용한 가변장 부호화 및 복호화방법과 그 장치 |
GB0120442D0 (en) * | 2001-08-22 | 2001-10-17 | Nds Ltd | Non-standard coding systems |
US6937770B1 (en) | 2000-12-28 | 2005-08-30 | Emc Corporation | Adaptive bit rate control for rate reduction of MPEG coded video |
US7023924B1 (en) | 2000-12-28 | 2006-04-04 | Emc Corporation | Method of pausing an MPEG coded video stream |
JP2002261623A (ja) * | 2001-02-28 | 2002-09-13 | Canon Inc | 復号装置、復号方法、記憶媒体及びプログラムソフトウェア |
DE10231285B4 (de) * | 2001-03-21 | 2004-10-21 | T-Mobile Deutschland Gmbh | Verfahren zur Komprimierung und Dekomprimierung von Videodaten |
DE10113880B4 (de) * | 2001-03-21 | 2004-04-29 | T-Mobile Deutschland Gmbh | Verfahren zur Komprimierung und Dekomprimierung von Videodaten |
US6907081B2 (en) * | 2001-03-30 | 2005-06-14 | Emc Corporation | MPEG encoder control protocol for on-line encoding and MPEG data storage |
US7174561B2 (en) * | 2001-04-13 | 2007-02-06 | Emc Corporation | MPEG dual-channel decoder data and control protocols for real-time video streaming |
US6980594B2 (en) | 2001-09-11 | 2005-12-27 | Emc Corporation | Generation of MPEG slow motion playout |
DE10145374C1 (de) * | 2001-09-14 | 2003-02-27 | Siemens Ag | Verfahren und Vorrichtung zur verbesserten Videocodierung |
US6968091B2 (en) * | 2001-09-18 | 2005-11-22 | Emc Corporation | Insertion of noise for reduction in the number of bits for variable-length coding of (run, level) pairs |
US6959116B2 (en) * | 2001-09-18 | 2005-10-25 | Emc Corporation | Largest magnitude indices selection for (run, level) encoding of a block coded picture |
WO2003043346A1 (en) * | 2001-11-16 | 2003-05-22 | Ntt Docomo, Inc. | Image encoding method, image decoding method, image encoder, image decode, program, computer data signal, and image transmission system |
CN101005625B (zh) * | 2001-11-22 | 2010-06-02 | 松下电器产业株式会社 | 可变长度编码方法以及可变长度解码方法 |
PT2268034T (pt) * | 2001-11-22 | 2016-11-18 | Godo Kaisha Ip Bridge 1 | Método de codificação de comprimento variável e método de descodificação de comprimento variável |
AU2007202520B2 (en) * | 2001-11-22 | 2009-11-26 | Godo Kaisha Ip Bridge 1 | Variable length coding method and variable length decoding method |
US6663244B1 (en) | 2001-12-14 | 2003-12-16 | Infocus Corporation | Illumination field blending for use in subtitle projection systems |
CN101448162B (zh) | 2001-12-17 | 2013-01-02 | 微软公司 | 处理视频图像的方法 |
JP4447197B2 (ja) * | 2002-01-07 | 2010-04-07 | 三菱電機株式会社 | 動画像符号化装置および動画像復号装置 |
US20040125204A1 (en) * | 2002-12-27 | 2004-07-01 | Yoshihisa Yamada | Moving picture coding apparatus and moving picture decoding apparatus |
US7099387B2 (en) * | 2002-03-22 | 2006-08-29 | Realnetorks, Inc. | Context-adaptive VLC video transform coefficients encoding/decoding methods and apparatuses |
DE10230812B4 (de) | 2002-07-08 | 2004-11-25 | T-Mobile Deutschland Gmbh | Verfahren zur Übertragung von zusätzlichen Informationen bei Verwendung eines Verfahrens zur Komprimierung von Daten mittels einer priorisierenden Pixelübertragung |
DE10231286B4 (de) * | 2002-07-10 | 2004-05-19 | T-Mobile Deutschland Gmbh | Verfahren zur Übertragung von zusätzlichen Daten innerhalb einer Videodatenübertragung |
DE10308810B4 (de) * | 2002-07-10 | 2005-04-21 | T-Mobile Deutschland Gmbh | Verfahren zur komprimierten Übertragung von Bilddaten für eine 3-dimensionale Darstellung von Szenen und Objekten |
ES2297083T3 (es) | 2002-09-04 | 2008-05-01 | Microsoft Corporation | Codificacion entropica por adaptacion de la codificacion entre modos por longitud de ejecucion y por nivel. |
US7433824B2 (en) * | 2002-09-04 | 2008-10-07 | Microsoft Corporation | Entropy coding by adapting coding between level and run-length/level modes |
KR20040039809A (ko) * | 2002-11-05 | 2004-05-12 | 엘지전자 주식회사 | 동영상 부호화기 및 이를 이용한 부호화 방법 |
US7212681B1 (en) | 2003-01-15 | 2007-05-01 | Cisco Technology, Inc. | Extension of two-dimensional variable length coding for image compression |
EP1590767A1 (de) * | 2003-01-23 | 2005-11-02 | Koninklijke Philips Electronics N.V. | Einbettung eines wasserzeichens in ein codiertes signal |
WO2004077838A1 (de) | 2003-02-27 | 2004-09-10 | T-Mobile Deutschland Gmbh | Verfahren zur komprimierten übertragung von bilddaten für eine 3-dimensionale darstellung von szenen und objekten |
US7194137B2 (en) * | 2003-05-16 | 2007-03-20 | Cisco Technology, Inc. | Variable length coding method and apparatus for video compression |
US10554985B2 (en) | 2003-07-18 | 2020-02-04 | Microsoft Technology Licensing, Llc | DC coefficient signaling at small quantization step sizes |
US20050013498A1 (en) | 2003-07-18 | 2005-01-20 | Microsoft Corporation | Coding of motion vector information |
US7499495B2 (en) | 2003-07-18 | 2009-03-03 | Microsoft Corporation | Extended range motion vectors |
EP1509046A1 (de) * | 2003-08-22 | 2005-02-23 | Alcatel | Fehlerresistentes Übertragungsverfahren für Bild- und Videodaten mit Kodes variabler Länge (VLC) |
US8064520B2 (en) * | 2003-09-07 | 2011-11-22 | Microsoft Corporation | Advanced bi-directional predictive coding of interlaced video |
US7577200B2 (en) | 2003-09-07 | 2009-08-18 | Microsoft Corporation | Extended range variable length coding/decoding of differential motion vector information |
US7317839B2 (en) | 2003-09-07 | 2008-01-08 | Microsoft Corporation | Chroma motion vector derivation for interlaced forward-predicted fields |
US7620106B2 (en) | 2003-09-07 | 2009-11-17 | Microsoft Corporation | Joint coding and decoding of a reference field selection and differential motion vector information |
US7623574B2 (en) | 2003-09-07 | 2009-11-24 | Microsoft Corporation | Selecting between dominant and non-dominant motion vector predictor polarities |
US7724827B2 (en) | 2003-09-07 | 2010-05-25 | Microsoft Corporation | Multi-layer run level encoding and decoding |
US7567617B2 (en) | 2003-09-07 | 2009-07-28 | Microsoft Corporation | Predicting motion vectors for fields of forward-predicted interlaced video frames |
US7616692B2 (en) | 2003-09-07 | 2009-11-10 | Microsoft Corporation | Hybrid motion vector prediction for interlaced forward-predicted fields |
US7599438B2 (en) | 2003-09-07 | 2009-10-06 | Microsoft Corporation | Motion vector block pattern coding and decoding |
CN1214649C (zh) * | 2003-09-18 | 2005-08-10 | 中国科学院计算技术研究所 | 用于视频预测残差系数编码的熵编码方法 |
US7548658B1 (en) * | 2003-09-24 | 2009-06-16 | Cognitech, Inc. | Lossless video data compressor with very high data rate |
US7519229B2 (en) * | 2004-03-30 | 2009-04-14 | Apple, Inc. | Video coding system providing separate coding chains for dynamically selected small-size or full-size playback |
CN100405850C (zh) * | 2004-05-19 | 2008-07-23 | 凌阳科技股份有限公司 | 可纵向解码输出的区块解码方法及装置 |
KR100695125B1 (ko) * | 2004-05-28 | 2007-03-14 | 삼성전자주식회사 | 디지털 신호 부호화/복호화 방법 및 장치 |
US7454073B2 (en) * | 2004-06-15 | 2008-11-18 | Cisco Technology, Inc. | Video compression using multiple variable length coding processes for multiple classes of transform coefficient blocks |
US7492956B2 (en) * | 2004-08-18 | 2009-02-17 | Cisco Technology, Inc. | Video coding using multi-dimensional amplitude coding and 2-D non-zero/zero cluster position coding |
US7499596B2 (en) | 2004-08-18 | 2009-03-03 | Cisco Technology, Inc. | Amplitude coding for clustered transform coefficients |
US7454076B2 (en) * | 2004-06-15 | 2008-11-18 | Cisco Technology, Inc. | Hybrid variable length coding method for low bit rate video coding |
US7471841B2 (en) | 2004-06-15 | 2008-12-30 | Cisco Technology, Inc. | Adaptive breakpoint for hybrid variable length coding |
US7499595B2 (en) * | 2004-08-18 | 2009-03-03 | Cisco Technology, Inc. | Joint amplitude and position coding for photographic image and video coding |
US7471840B2 (en) * | 2004-08-18 | 2008-12-30 | Cisco Technology, Inc. | Two-dimensional variable length coding of runs of zero and non-zero transform coefficients for image compression |
CN101032081B (zh) * | 2004-07-14 | 2010-05-26 | 喷流数据有限公司 | 用于数据压缩优化的方法和系统 |
US7680349B2 (en) | 2004-08-18 | 2010-03-16 | Cisco Technology, Inc. | Variable length coding for clustered transform coefficients in video compression |
US7620258B2 (en) * | 2004-08-18 | 2009-11-17 | Cisco Technology, Inc. | Extended amplitude coding for clustered transform coefficients |
CN100428634C (zh) * | 2005-03-09 | 2008-10-22 | 浙江大学 | 数字信号处理中联合变长编解码的方法和装置 |
US7693709B2 (en) * | 2005-07-15 | 2010-04-06 | Microsoft Corporation | Reordering coefficients for waveform coding or decoding |
US7684981B2 (en) * | 2005-07-15 | 2010-03-23 | Microsoft Corporation | Prediction of spectral coefficients in waveform coding and decoding |
US7599840B2 (en) * | 2005-07-15 | 2009-10-06 | Microsoft Corporation | Selectively using multiple entropy models in adaptive coding and decoding |
US7933337B2 (en) | 2005-08-12 | 2011-04-26 | Microsoft Corporation | Prediction of transform coefficients for image compression |
US7565018B2 (en) | 2005-08-12 | 2009-07-21 | Microsoft Corporation | Adaptive coding and decoding of wide-range coefficients |
CN100525446C (zh) * | 2005-12-26 | 2009-08-05 | 凌阳科技股份有限公司 | 可纵向译码输出的区块译码方法及装置 |
US7242328B1 (en) * | 2006-02-03 | 2007-07-10 | Cisco Technology, Inc. | Variable length coding for sparse coefficients |
US9319700B2 (en) * | 2006-10-12 | 2016-04-19 | Qualcomm Incorporated | Refinement coefficient coding based on history of corresponding transform coefficient values |
US8565314B2 (en) * | 2006-10-12 | 2013-10-22 | Qualcomm Incorporated | Variable length coding table selection based on block type statistics for refinement coefficient coding |
US8599926B2 (en) * | 2006-10-12 | 2013-12-03 | Qualcomm Incorporated | Combined run-length coding of refinement and significant coefficients in scalable video coding enhancement layers |
US8325819B2 (en) * | 2006-10-12 | 2012-12-04 | Qualcomm Incorporated | Variable length coding table selection based on video block type for refinement coefficient coding |
CN101175210B (zh) * | 2006-10-30 | 2010-08-11 | 中国科学院计算技术研究所 | 用于视频预测残差系数解码的熵解码方法及熵解码装置 |
US8184710B2 (en) * | 2007-02-21 | 2012-05-22 | Microsoft Corporation | Adaptive truncation of transform coefficient data in a transform-based digital media codec |
CN101335897B (zh) * | 2007-06-28 | 2010-08-25 | 联想(北京)有限公司 | 图像压缩/解码方法及系统 |
NO20074463A (no) * | 2007-09-03 | 2009-02-02 | Tandberg Telecom As | Metode for entropikoding av transformasjonskoeffisienter i videokomprimeringssystemer |
EP2383920B1 (de) | 2007-12-20 | 2014-07-30 | Optis Wireless Technology, LLC | Steuerkanalsignalisierung über ein herkömmliches Signalisierungsfeld für Transportformat und Redundanzversion |
US8179974B2 (en) | 2008-05-02 | 2012-05-15 | Microsoft Corporation | Multi-level representation of reordered transform coefficients |
CN101309423B (zh) * | 2008-06-26 | 2011-07-20 | 四川虹微技术有限公司 | 一种解码非零系数个数和拖尾系数个数的方法 |
US8406307B2 (en) | 2008-08-22 | 2013-03-26 | Microsoft Corporation | Entropy coding/decoding of hierarchically organized data |
WO2010041488A1 (ja) * | 2008-10-10 | 2010-04-15 | 株式会社東芝 | 動画像符号化装置 |
JP4661973B2 (ja) * | 2009-07-30 | 2011-03-30 | 三菱電機株式会社 | 動画像符号化装置および動画像復号装置 |
TR201001101A2 (tr) * | 2010-02-12 | 2011-09-21 | Vestel Elektroni̇k Sanayi̇ Ve Ti̇caret A.Ş. | Bir veri sıkıştırma metodu. |
US8410959B2 (en) * | 2010-04-09 | 2013-04-02 | Qualcomm, Incorporated | Variable length codes for coding of video data |
JP5547335B2 (ja) * | 2010-04-09 | 2014-07-09 | クゥアルコム・インコーポレイテッド | ビデオデータのコーディングのための可変長コード |
CN102256139B (zh) * | 2010-05-19 | 2013-10-02 | 晨星软件研发(深圳)有限公司 | 媒体编码系统、量化系数编码装置及量化系数编码方法 |
US9025661B2 (en) | 2010-10-01 | 2015-05-05 | Qualcomm Incorporated | Indicating intra-prediction mode selection for video coding |
US9490839B2 (en) | 2011-01-03 | 2016-11-08 | Qualcomm Incorporated | Variable length coding of video block coefficients |
US8913662B2 (en) | 2011-01-06 | 2014-12-16 | Qualcomm Incorporated | Indicating intra-prediction mode selection for video coding using CABAC |
US9743116B2 (en) | 2012-01-19 | 2017-08-22 | Huawei Technologies Co., Ltd. | High throughput coding for CABAC in HEVC |
US9860527B2 (en) | 2012-01-19 | 2018-01-02 | Huawei Technologies Co., Ltd. | High throughput residual coding for a transform skipped block for CABAC in HEVC |
US10616581B2 (en) | 2012-01-19 | 2020-04-07 | Huawei Technologies Co., Ltd. | Modified coding for a transform skipped block for CABAC in HEVC |
US9654139B2 (en) | 2012-01-19 | 2017-05-16 | Huawei Technologies Co., Ltd. | High throughput binarization (HTB) method for CABAC in HEVC |
US20130188736A1 (en) | 2012-01-19 | 2013-07-25 | Sharp Laboratories Of America, Inc. | High throughput significance map processing for cabac in hevc |
US10448058B2 (en) | 2015-05-21 | 2019-10-15 | Qualcomm Incorporated | Grouping palette index at the end and index coding using palette size and run value |
US10171810B2 (en) | 2015-06-22 | 2019-01-01 | Cisco Technology, Inc. | Transform coefficient coding using level-mode and run-mode |
US10839562B2 (en) * | 2018-04-04 | 2020-11-17 | Xerox Corporation | Methods and systems for enabling object attribute driven super resolution encoding |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4908862A (en) | 1986-11-10 | 1990-03-13 | Kokusai Denshin Denwa Co., Ltd. | Encoding system capable of accomplishing a high efficiency by anterior and/or posterior processing to quantization |
EP0447234A2 (de) | 1990-03-14 | 1991-09-18 | C-Cube Microsystems | System und Verfahren zur Kompression und Dekompression von Daten |
EP0469835A2 (de) | 1990-07-31 | 1992-02-05 | Canon Kabushiki Kaisha | Verfahren und Gerät zur Bildverarbeitung |
EP0536630A2 (de) | 1991-09-30 | 1993-04-14 | Kabushiki Kaisha Toshiba | Einrichtung zur Verarbeitung von bandkomprimierten Signalen |
EP0542474A2 (de) | 1991-11-15 | 1993-05-19 | AT&T Corp. | Adaptive Kodierung und Dekodierung von Vollbildern und Halbbildern von Videosignalen |
GB2267410A (en) | 1992-05-30 | 1993-12-01 | Samsung Electronics Co Ltd | Variable length coding. |
US5329318A (en) | 1993-05-13 | 1994-07-12 | Intel Corporation | Method for optimizing image motion estimation |
US5377051A (en) | 1993-01-13 | 1994-12-27 | Hitachi America, Ltd. | Digital video recorder compatible receiver with trick play image enhancement |
US5402244A (en) | 1992-10-26 | 1995-03-28 | Daewoo Electronics Co., Ltd. | Video signal transmission system with adaptive variable length coder/decoder |
US5559557A (en) | 1992-09-28 | 1996-09-24 | Sony Corporation | Motion video coding with adaptive precision for DC component coefficient quantization and variable length coding |
US5982437A (en) | 1992-10-26 | 1999-11-09 | Sony Corporation | Coding method and system, and decoding method and system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69031106D1 (de) * | 1989-10-09 | 1997-09-04 | Fujitsu Ltd | System zum Übertragen von Bilddaten |
JP2909239B2 (ja) * | 1991-03-27 | 1999-06-23 | 株式会社東芝 | 高能率符号化記録再生装置 |
JP3158370B2 (ja) * | 1991-07-12 | 2001-04-23 | ソニー株式会社 | ディスクデータ再生装置 |
US5233348A (en) * | 1992-03-26 | 1993-08-03 | General Instrument Corporation | Variable length code word decoder for use in digital communication systems |
KR0155784B1 (ko) * | 1993-12-16 | 1998-12-15 | 김광호 | 영상데이타의 적응형 가변장 부호화/복호화방법 |
-
1994
- 1994-12-15 KR KR1019940034497A patent/KR0155784B1/ko not_active IP Right Cessation
- 1994-12-16 WO PCT/KR1994/000177 patent/WO1995017073A1/en active IP Right Grant
- 1994-12-16 EP EP20070115839 patent/EP1863291A3/de not_active Ceased
- 1994-12-16 EP EP20070115842 patent/EP1863292A3/de not_active Ceased
- 1994-12-16 EP EP20070115838 patent/EP1863290A3/de not_active Withdrawn
- 1994-12-16 EP EP20040019814 patent/EP1484926A3/de not_active Ceased
- 1994-12-16 US US11/738,419 patent/USRE40783E1/en not_active Expired - Lifetime
- 1994-12-16 US US09/654,939 patent/USRE40980E1/en not_active Expired - Lifetime
- 1994-12-16 EP EP20040019817 patent/EP1487218A1/de not_active Ceased
- 1994-12-16 DE DE1994634369 patent/DE69434369T2/de not_active Expired - Lifetime
- 1994-12-16 CN CNB001083686A patent/CN1222110C/zh not_active Expired - Lifetime
- 1994-12-16 US US11/017,697 patent/USRE41026E1/en not_active Expired - Lifetime
- 1994-12-16 CN CNB2004100786186A patent/CN100355288C/zh not_active Expired - Lifetime
- 1994-12-16 CN CNB2004100786171A patent/CN100355287C/zh not_active Expired - Lifetime
- 1994-12-16 US US12/238,083 patent/USRE41435E1/en not_active Expired - Lifetime
- 1994-12-16 EP EP20040006479 patent/EP1441536B1/de not_active Expired - Lifetime
- 1994-12-16 DE DE1994634271 patent/DE69434271D1/de not_active Expired - Lifetime
- 1994-12-16 CN CNB2004100786190A patent/CN100355289C/zh not_active Expired - Lifetime
- 1994-12-16 EP EP20040019815 patent/EP1494484A1/de not_active Ceased
- 1994-12-16 US US11/416,312 patent/USRE40909E1/en not_active Expired - Lifetime
- 1994-12-16 CN CN94191195A patent/CN1071526C/zh not_active Expired - Lifetime
- 1994-12-16 JP JP51668095A patent/JP2898757B2/ja not_active Expired - Lifetime
- 1994-12-16 EP EP95903454A patent/EP0685137B1/de not_active Expired - Lifetime
- 1994-12-16 EP EP19990124622 patent/EP0987899B1/de not_active Expired - Lifetime
- 1994-12-16 US US11/416,183 patent/USRE40981E1/en not_active Expired - Lifetime
- 1994-12-16 EP EP20040006480 patent/EP1445962B1/de not_active Expired - Lifetime
- 1994-12-16 DE DE1994634271 patent/DE69434271T4/de not_active Expired - Lifetime
- 1994-12-16 CN CNB2004100786167A patent/CN100355286C/zh not_active Expired - Lifetime
- 1994-12-16 US US11/017,698 patent/USRE41124E1/en not_active Expired - Lifetime
- 1994-12-16 DE DE1994634667 patent/DE69434667T2/de not_active Expired - Lifetime
- 1994-12-16 US US09/638,796 patent/USRE39167E1/en not_active Expired - Lifetime
- 1994-12-16 DE DE69425047T patent/DE69425047T2/de not_active Expired - Lifetime
- 1994-12-16 EP EP19990124631 patent/EP0987900B1/de not_active Expired - Lifetime
- 1994-12-16 EP EP20080100822 patent/EP1914997A3/de not_active Ceased
- 1994-12-16 EP EP20040019816 patent/EP1515568A1/de not_active Withdrawn
- 1994-12-16 US US08/495,591 patent/US5793897A/en not_active Ceased
- 1994-12-16 US US12/238,104 patent/USRE41154E1/en not_active Expired - Lifetime
- 1994-12-16 DE DE1994634668 patent/DE69434668T2/de not_active Expired - Lifetime
-
1995
- 1995-11-03 US US11/738,415 patent/USRE40782E1/en not_active Expired - Lifetime
-
2001
- 2001-06-13 HK HK01104035A patent/HK1033507A1/xx not_active IP Right Cessation
-
2005
- 2005-04-08 HK HK05102965A patent/HK1070516A1/xx not_active IP Right Cessation
- 2005-07-11 HK HK05105805A patent/HK1073198A1/xx not_active IP Right Cessation
- 2005-07-11 HK HK05105793A patent/HK1073196A1/xx not_active IP Right Cessation
- 2005-07-11 HK HK05105794A patent/HK1073197A1/xx not_active IP Right Cessation
-
2008
- 2008-09-25 US US12/238,120 patent/USRE41458E1/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4908862A (en) | 1986-11-10 | 1990-03-13 | Kokusai Denshin Denwa Co., Ltd. | Encoding system capable of accomplishing a high efficiency by anterior and/or posterior processing to quantization |
EP0447234A2 (de) | 1990-03-14 | 1991-09-18 | C-Cube Microsystems | System und Verfahren zur Kompression und Dekompression von Daten |
EP0469835A2 (de) | 1990-07-31 | 1992-02-05 | Canon Kabushiki Kaisha | Verfahren und Gerät zur Bildverarbeitung |
EP0536630A2 (de) | 1991-09-30 | 1993-04-14 | Kabushiki Kaisha Toshiba | Einrichtung zur Verarbeitung von bandkomprimierten Signalen |
EP0542474A2 (de) | 1991-11-15 | 1993-05-19 | AT&T Corp. | Adaptive Kodierung und Dekodierung von Vollbildern und Halbbildern von Videosignalen |
GB2267410A (en) | 1992-05-30 | 1993-12-01 | Samsung Electronics Co Ltd | Variable length coding. |
US5559557A (en) | 1992-09-28 | 1996-09-24 | Sony Corporation | Motion video coding with adaptive precision for DC component coefficient quantization and variable length coding |
US5402244A (en) | 1992-10-26 | 1995-03-28 | Daewoo Electronics Co., Ltd. | Video signal transmission system with adaptive variable length coder/decoder |
US5982437A (en) | 1992-10-26 | 1999-11-09 | Sony Corporation | Coding method and system, and decoding method and system |
US5377051A (en) | 1993-01-13 | 1994-12-27 | Hitachi America, Ltd. | Digital video recorder compatible receiver with trick play image enhancement |
US5329318A (en) | 1993-05-13 | 1994-07-12 | Intel Corporation | Method for optimizing image motion estimation |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE41154E1 (en) | Adaptive variable-length coding and decoding methods for image data | |
US5461421A (en) | Encoding and decoding method and apparatus thereof | |
US5136371A (en) | Digital image coding using random scanning | |
US5640420A (en) | Variable length coder using two VLC tables | |
JPH0686262A (ja) | 画像符号化装置 | |
JPH09191448A (ja) | 映像信号符号化装置及び方法 | |
JPH06125543A (ja) | 符号化装置 | |
US5742342A (en) | Apparatus for encoding an image signal using vector quantization technique | |
JPH0522715A (ja) | 画像符号化装置 | |
JP3089941B2 (ja) | 画像間予測符号化装置 | |
US20020118757A1 (en) | Motion image decoding apparatus and method reducing error accumulation and hence image degradation | |
JP3190164B2 (ja) | 符号量見積り装置 | |
JPH06284395A (ja) | 画像圧縮符号化器 | |
KR950014019B1 (ko) | 디지탈 동영상 복호 시스템에서의 가변 길이 복호화 장치의 제어방법 | |
KR0157463B1 (ko) | 영상데이타의 적응가변장 부호화/복호화방법 | |
KR0152025B1 (ko) | 이.오비 블럭데이타의 부호화방법 및 그 장치 | |
JPH05130424A (ja) | 画像符号化装置 | |
JPH06284405A (ja) | 画像符号化記録再生装置 | |
JPH09135418A (ja) | 画像記録装置 |