USRE39167E1 - Adaptive variable-length coding and decoding methods for image data - Google Patents
Adaptive variable-length coding and decoding methods for image data Download PDFInfo
- Publication number
- USRE39167E1 USRE39167E1 US09/638,796 US63879695A USRE39167E US RE39167 E1 USRE39167 E1 US RE39167E1 US 63879695 A US63879695 A US 63879695A US RE39167 E USRE39167 E US RE39167E
- Authority
- US
- United States
- Prior art keywords
- variable
- length
- length coding
- data
- run
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/10527—Audio or video recording; Data buffering arrangements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/40—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
- H03M7/42—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code using table look-up for the coding or decoding process, e.g. using read-only memory
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/13—Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/91—Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
Definitions
- More than one reissue application has been filed for the reissue of U.S. Pat. No. 5 , 793 , 897 filed Nov. 3 , 1995 .
- the reissue applications are application Ser. Nos. 09 / 638 , 796 (the present application) filed Aug. 11 , 2000 , 09 / 654 , 939 filed Dec. 22 , 2000 , 11 / 017 , 697 filed Dec. 22 , 2004 , and 11 / 017 , 698 filed Dec. 22 , 2004 .
- Application Ser. No. 09 / 638 , 796 is a reissue of U.S. Pat. No. 5 , 793 , 897 .
- 09 / 654 , 939 is a divisional application of 09 / 638 , 796 and a reissue of U.S. Pat. No. 5 , 793 , 897 .
- Application Ser. No. 11 / 017 , 697 is a divisional application of Ser. No. 09 / 654 , 939 .
- Application Ser. No. 11 / 017 , 698 is a divisional application of Ser. No. 09 / 654 , 939 and a divisional application of Ser. No. 09 / 638 , 796 .
- the present invention relates to adaptive variablelength coding and decoding methods for digital image data, and more particularly, to adaptive variable-length coding and decoding methods which improve compression efficiency of transmission data by performing variable-length coding and decoding adaptively, according to statistical characteristics of image data.
- DCT discrete cosine transform
- DPCM differential pulse code modulation
- VLC variablelength coding
- FIG. 1 is a schematic block diagram of a general coding system for image data.
- the apparatus includes means 11 and 12 for performing a DCT function with respect to an N ⁇ N block and for quantizing DCT coefficients, means 13 and 14 for variable-length-coding the quantized data and for further compressing data quantity, and means 15 , 16 , 17 , 18 , 19 , A 1 , A 2 , SW 1 , and SW 2 related to the inverse quantization and DCT operations with respect to the quantized data to then perform a motion compensation, which codes image data in an intra mode or inter mode.
- the energy of transform coefficients is chiefly concentrated in a low frequency domain.
- Data transforms for each block are performed by a discrete cosine transform. Walsh-Hadamard transform, discrete Fourier transform, or discrete sine transform method.
- the transform coefficients are obtained by DCT operation.
- Quantizer 12 changes the DCT coefficients into representative values of a constant level through a predetermined quantization process.
- Variable-length encoder 13 variable-length-codes the representative values using their statistical characteristics, thereby further compressing the data.
- a quantization step size Q ss which is varied depending on the state (a fullness) of a buffer 14 wherein the variable-length-coded data is stored, controls quantizer 12 to thereby adjust a transmission bit rate.
- the quantization step size Q ss is also transmitted to a receiver side, to be used in a decoding system.
- a motion vector MV is obtained by estimating the motion, and data is compensated using the motion vector MV. Then, a differential signal between adjacently positioned screens becomes very small, thereby allowing transmission data to be more compressed.
- an inverse quantizer (Q ⁇ 1 ) 15 above in FIG. 1 inverse-quantizes the quantized data output from quantizer 12 . Thereafter, the inverse-quantized data is inverse-DCT-operated in an inverse DCT means (DCT ⁇ 1 ) 16 to then be a video signal of a spatial domain.
- the video signal output from inverse DCT means 16 is stored in a frame memory 17 in frame units.
- Motion estimator 18 searches a block having the most similar pattern to that of an N ⁇ N block of input port 10 among the frame data stored in frame memory 17 and estimates the motion between blocks to obtain a motion vector MV.
- the motion vector MV is transmitted to a receiver side to be used in a decoding system and is simultaneously transmitted to a motion compensator 19 .
- Motion compensator 19 receives the motion vector MV from motion estimator 18 and reads out an N ⁇ N block corresponding to the motion vector MV from the previous frame data output from frame memory 17 to then supply the read N ⁇ N block to a subtractor A 1 connected with input port 10 . Then, subtractor A 1 obtains the difference between the N ⁇ N block supplied to input port 10 and the N ⁇ N block having the similar pattern thereto supplied from motion compensator 19 .
- the output data of subtractor A 1 is coded and then transmitted to the receiver side, as described above. That is to say, initially, the video signal of one screen (intraframe) is coded wholly to then be transmitted. For the video signal of the following screen (interframe), only the differential signal due to the motion is coded to then be transmitted.
- the data whose motion is compensated in motion compensator 19 is summed with the video signal output from inverse DCT means 16 in an adder A 2 and is thereafter stored in frame memory 17 .
- Refresh switches SW 1 and SW 2 are turned off at a certain interval (here, the period is one group of pictures or a GOP period) by a control means (not shown), so that an input video signal is coded into a PCM mode to then be transmitted in the case of an intraframe mode and so that only the differental signal is coded to then be transmitted in the case of an interframe mode, thereby refreshing cumulative coding errors for a constant period (one GOP).
- a refresh switch SW 3 allows the transmission errors on a channel to deviate from the receiver side within the constant time period (one GOP).
- the coded image data V c is transmitted to the receiver side to then be input to the decoding system shown in FIG. 2 .
- the coded image data Vc is decoded through the reverse process to the coding process in a variable-length decoder 21 .
- the data output from variable-length decoder 21 is inverse-quantized in an inverse quantizer 22 .
- inverse quantizer 22 adjust the magnitude of the output DCT coefficients depending on the quantization step size Q ss supplied from the encoding system.
- An inverse DCT means 23 inverse-DCT-operates the DCT coefficients of a frequency domain, supplied from inverse quantizer 22 , into the image data of a spatial domain.
- the motion vector MV transmitted from coding system shown in FIG. 1 is supplied to a motion compensator 24 of decoding system.
- Motion compensation 24 reads out the N ⁇ N block corresponding to the motion vector MV from the previous frame data stored in a frame memory 25 , compensates the motion and then supplies the compensated N ⁇ N block to an adder A 3 .
- adder A 3 adds the inverse-DCT-operated DPCM data to the N ⁇ N block data supplied from motion compensator 24 to then output to a display.
- FIGS. 3A , 3 B and 3 C schematically show the process of coding image data.
- the sampling data of an N ⁇ N block shown in FIG. 3A is DCT-operated to be DCT coefficients of a frequency domain by the DCT method, etc., as shown in FIG. 3 B.
- the DCT coefficients are quantized and are scanned in a zigzag pattern, to then be coded in the form of runlength and level-length, as shown in FIG. 3 C.
- the run represents the number of 0's present between coefficients not being “0” among the quantized coefficients of an N ⁇ N block, and the level corresponds to the absolute value of the coefficient not being “0”.
- the run is distributed from “0” to “63” and the level varies depending to the data value output from a quantizer. That is to say, if the quantized output value is indicated as an integer ranging from “ ⁇ 255” to “+255,” the level has a value ranging from “1” to “+255.” At this time, the positive or negative sign is expressed by an extra sign bit. In this manner, when a [run, level] pair is set as a symbol, if the run or level is large, the probability of the symbol is statistically very low.
- the block is divided into a regular region and an escape region according to the probability of the symbol.
- a Huffman code is used in coding.
- the escape region where the probability of the symbol is low data of a predetermined fixed length is used in coding.
- the higher the probability of the symbol the shorter the code is set, and vice versa.
- the escape sequence ESQ in which data of escape region is coded is composed of an escape code ESC, run, level and sign data S, each having a predetermined number of bits, as expressed in the following equation (1).
- ESQ ESC+RUN+L+S (1)
- the escape sequence has a constant data length of 21 bits in total since the escape code data ESC is six bits, run data RUN is six bits, level data L is eight bits, and sign data S is one bit.
- variable-length coding method since various extra information is also transmitted together with coded data and the escape sequence set by one variable-length coding table depending on the statistical characteristics of data has a constant fixed length, there is a limit in compressing data quantity by coding transmitted data.
- an object of the present invention to provide an adaptive variable-length coding method which improves compression efficiency of data by selecting an optimal variable-length coding table among a plurality of variable-length coding tables according to the current scanning position and quantization step size while scanning in a zigzag pattern by block type, i.e., inter/intra mode.
- an adaptive variable-length coding method whereby quantized orthogonal transform coefficients are scanned in a zigzag pattern, are DCT-operated to be [run, level] data and then are variable-length-coded in a coding system for image data, the method comprising the steps of:
- the adaptive variable-length decoding method according to the present invention for decoding data coded by the adaptive variable-length coding method comprises the steps of:
- FIG. 1 is a block diagram of a general coding system for image data
- FIG. 2 is a block diagram of a general decoding system for image data
- FIGS. 3A-3C are schematic diagrams for explaining steps of the data processing process according to the apparatus shown in FIG. 1 ;
- FIG. 4 shows a conventional variable-length coding and decoding table
- FIG. 5 is a schematic block diagram of a variable-length encoder for implementing an adaptive variable-length coding method according to the present invention
- FIGS. 6A and 6B illustrate a method for selecting a variable-length coding table partitioned by a predetermined number in the adaptive variable-length coding method according to the present invention, wherein FIG. 6A represents the intra mode and FIG. 6B represents the inter mode; and
- FIGS. 7A , 7 B and 7 C are histograms [run, level] for each symbol at the first, second and Pth regions shown in FIGS. 6 A and 6 B.
- variable-length coding tables are used.
- the table is selected in accordance with a block type, quantization step size and a current scanning position while scanning a block in a zigzag pattern.
- This selection is in accordance with the statistical characteristics of [run, level] data which vary depending on block type, i.e., intra mode/inter mode or luminance signal/color signal, quantization step size and a current zigzag scanning position, and which will be described in more detail.
- the inter mode for coding the differential signal between the current block data and motion compensated block data generates most of the DCT coefficients as “0” but scarcely generates larger values, compared to the intra mode for coding input block image data sequentially. This is because the variation in a motion compensation estate error thereof is typically smaller than that of the original video signal.
- intra/inter mode and luminance/color information there may be four block types, i.e., (intra, luminance), (intra, color), (inter, luminance) and (inter, color).
- the luminance/color information is excluded and only the intra/inter mode is considered, because the color statistics are dependent on the downsampling structure of the color signal.
- DCT coefficients are not high in the high frequency components and many are generated as “0's” while the quantizer scans in a zigzag pattern. That is to say, in order to utilize the human visual characteristics, the DCT coefficients are divided into primary weightening matrices. Since the weighting matrix for high frequency component is large, when the current scanning is a high frequency component, small values (including “0”) are often produced but large values are scarcely generated.
- the present invention proposes an adaptive variable-length coding/decoding method using a plurality of variable-length coding/decoding tables in which the block type (intra/inter mode), scanning position and quantization step size are combined, which is called a Huffman code book.
- the present invention is adopted for a general coding system shown in FIG. 1 and for a general decoding system shown in FIG. 2 .
- FIG. 5 is a schematic block diagram of a variable-length encoder for implementing the adaptive variable-length coding method according to the present invention.
- quantized DCT coefficients are scanned in a zigzag pattern by zigzag scanner 31 .
- Variable-length coding table selector 32 outputs a control signal for selecting the corresponding first to Pth variable-length coding tables 33 . 1 , 33 . 2 , . . ., 33 .P according to the block type (intra/inter mode), quantization step size Qss, and scanning position SP.
- the quantized DCT coefficients output from zigzag scanner 31 are variable-length-coded in accordance with the selected variable-length coding table, to then be transmitted to buffer 14 shown in FIG. 1 .
- Variable-length decoder 21 of the decoding system shown in FIG. 2 variable-length-decodes data coded in the reverse order to that of the variable-length coding process as shown in FIG. 5 .
- FIG. 6A shows P variable-length coding tables T 1 , T 2 , . . . T p selected in accordance with quantization step size Q ss and the current scanning position SP (during zigzag scanning) for the intra mode.
- FIG. 6B shows P variable-length coding tables T 1 , T 2 , . . ., T p selected in accordance with quantization step size Q ss and the current scanning position SP (during zigzag scanning) for the inter mode.
- the “0” scanning position SP corresponds to the DC component
- the “ 63 ” scanning position SP represents the last scanning position in the corresponding block
- quantization step size Q ss has values ranging from “ 0 ” to “ 62 .”
- the blocks for selecting the variable-length coding tables T 1 , T 2 , . . ., T p are different depending on the mode.
- the intra mode has larger selection blocks for the first and second variable-length coding tables T 1 and T 2 and a smaller selection block for the Pth variable-length coding table T p .
- Quantized DCT coefficients are variable-length-coded in accordance with the selected variable-length coding table.
- the proper partition as above can be sought empirically based on sufficient statistical analysis for various experimental states. These states include such factors as video sequence, bit rate, GOP and partitioning method.
- FIGS. 7A , 7 B and 7 C show examples of the variable-length coding tables shown in FIGS. 6A and 6B .
- variable-length coding tables have a regular region and escape region which differ depending on the statistical characteristics of [run, level].
- the [run, level] symbol is likely to have a low probability thereof if the run and/or level lengths have a large value.
- the respective symbols of the escape region has a fixed length of 21 bits obtained by adding a six-bit escape code, an eight-bit run, one-bit sign data.
- the data quantity may be reduced. That is to say, the bit number required for expressing run is dependent on the scanning position during zigzag scanning for two dimensional DCT coefficients and the bit number required for expressing level is dependent on the quantization step size. Also, quantization weighting matrices of intra-coded blocks and inter-coded blocks are different from each other.
- the new escape sequence ESQ having a fixed length of 21 bits can be modified into that having a variable length using the aforementioned characteristics according to Equation (1) above, where ESQ is composed of six bits, RUN is composed of zero to six bits. L is composed of one to eight bits, S is composed of one bit, the run data is dependent upon scanning position and the level is dependent upon quantizer.
- the modified escape sequence has a variable length ranging from eight to 21 bits, compared to the fixed length of 21 bits, image data can be further compressed.
- the number of bits required for expressing the run value can be matched without transmitting extra information. Also, in the case of the level length, since the quantization step is transmitted to the decoding system for inverse quantization, the transmitted quantization step size can be used in synchronizing the number of bits required for expressing level, which requires no extra information to be transmitted.
- variable-length coding table selected during coding can be identified from the mode and quantization step size information transmitted from the coding side and the position information automatically calculated from the run value in the decoding side. Then, the same variable-length coding table as that adopted for coding is used for decoding the transmitted block data.
- the method according to the present invention can increase data compression efficiency such that image data coded and decoded by selecting one of a plurality of variable-length coding tables having a regular region and an escape region, using mode, quantization step size and zigzag scanning position information.
- An adaptive variable-length coding/decoding method can improve the compression efficiency of digitally transmitted data and is applicable to various technological fields including digital communication, multimedia and personal computer systems, and digital video apparatuses such as a high definition television or digital videocassette recorder.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
An adaptive variable-length coding/decoding method performs an optimal variable-length coding and decoding depending on an intro mode/inter mode condition, quantization step size and a current zigzag scanning position, such that a plurality of variable-length coding tables having different patterns of a regular region and an escape region according to statistical characteristics of the run level data are set. One of the variable-length coding tables is selected according to mode, quantization step size and scanning position, and the orthogonal transform coefficients according to the selected variable-length coding table are variable-length-coded.
Description
More than one reissue application has been filed for the reissue of U.S. Pat. No. 5,793,897 filed Nov. 3, 1995. The reissue applications are application Ser. Nos. 09/638,796 (the present application) filed Aug. 11, 2000, 09/654,939 filed Dec. 22, 2000, 11/017,697 filed Dec. 22, 2004, and 11/017,698 filed Dec. 22, 2004. Application Ser. No. 09/638,796 is a reissue of U.S. Pat. No. 5,793,897. Application Ser. No. 09/654,939 is a divisional application of 09/638,796 and a reissue of U.S. Pat. No. 5,793,897. Application Ser. No. 11/017,697 is a divisional application of Ser. No. 09/654,939. Application Ser. No. 11/017,698 is a divisional application of Ser. No. 09/654,939 and a divisional application of Ser. No. 09/638,796.
The present invention relates to adaptive variablelength coding and decoding methods for digital image data, and more particularly, to adaptive variable-length coding and decoding methods which improve compression efficiency of transmission data by performing variable-length coding and decoding adaptively, according to statistical characteristics of image data.
Recently, in an apparatus for transmitting and receiving video and audio signals, a method by which the video and audio signals are coded to be digital signals to then be transmitted or stored in a memory and the digital signals are decoded to then be reproduced, has been widely adopted.
However, in the case of coding a video signal into digital data, the data quantity is large. Thus, in order to decrease the overall data quantity by removing redundant data contained in the digital video signal, discrete cosine transform (DCT) coding, differential pulse code modulation (DPCM), vector quantization, or variablelength coding (VLC) should be performed.
The operation of the coding and decoding systems respectively shown in FIGS. 1 and 2 will be briefly described.
In FIG. 1 the video signal input through an input port 10 becomes a signal of a frequency domain in the units of N×N blocks in DCT 11, where although the magnitude of a block is generally N1×N2, it is assumed that N1=N2=N, for the sake of convenience. The energy of transform coefficients is chiefly concentrated in a low frequency domain. Data transforms for each block are performed by a discrete cosine transform. Walsh-Hadamard transform, discrete Fourier transform, or discrete sine transform method. Here, the transform coefficients are obtained by DCT operation.
Variable-length encoder 13 variable-length-codes the representative values using their statistical characteristics, thereby further compressing the data.
Meanwhile, a quantization step size Qss, which is varied depending on the state (a fullness) of a buffer 14 wherein the variable-length-coded data is stored, controls quantizer 12 to thereby adjust a transmission bit rate. The quantization step size Qss is also transmitted to a receiver side, to be used in a decoding system.
Also, in general, there are many similar portions between consecutive screens. Therefore, in the case of a screen having motion, a motion vector MV is obtained by estimating the motion, and data is compensated using the motion vector MV. Then, a differential signal between adjacently positioned screens becomes very small, thereby allowing transmission data to be more compressed.
In order to perform such motion compensation, an inverse quantizer (Q−1) 15 above in FIG. 1 inverse-quantizes the quantized data output from quantizer 12. Thereafter, the inverse-quantized data is inverse-DCT-operated in an inverse DCT means (DCT−1) 16 to then be a video signal of a spatial domain. The video signal output from inverse DCT means 16 is stored in a frame memory 17 in frame units. Motion estimator 18 searches a block having the most similar pattern to that of an N×N block of input port 10 among the frame data stored in frame memory 17 and estimates the motion between blocks to obtain a motion vector MV. The motion vector MV is transmitted to a receiver side to be used in a decoding system and is simultaneously transmitted to a motion compensator 19.
Meanwhile, the data whose motion is compensated in motion compensator 19 is summed with the video signal output from inverse DCT means 16 in an adder A2 and is thereafter stored in frame memory 17.
Refresh switches SW1 and SW2 are turned off at a certain interval (here, the period is one group of pictures or a GOP period) by a control means (not shown), so that an input video signal is coded into a PCM mode to then be transmitted in the case of an intraframe mode and so that only the differental signal is coded to then be transmitted in the case of an interframe mode, thereby refreshing cumulative coding errors for a constant period (one GOP). Also, a refresh switch SW3 allows the transmission errors on a channel to deviate from the receiver side within the constant time period (one GOP).
In this manner, the coded image data Vc is transmitted to the receiver side to then be input to the decoding system shown in FIG. 2. The coded image data Vc is decoded through the reverse process to the coding process in a variable-length decoder 21. The data output from variable-length decoder 21 is inverse-quantized in an inverse quantizer 22. At this time, inverse quantizer 22 adjust the magnitude of the output DCT coefficients depending on the quantization step size Qss supplied from the encoding system.
An inverse DCT means 23 inverse-DCT-operates the DCT coefficients of a frequency domain, supplied from inverse quantizer 22, into the image data of a spatial domain.
Also, the motion vector MV transmitted from coding system shown in FIG. 1 is supplied to a motion compensator 24 of decoding system. Motion compensation 24 reads out the N×N block corresponding to the motion vector MV from the previous frame data stored in a frame memory 25, compensates the motion and then supplies the compensated N×N block to an adder A3. Then, adder A3 adds the inverse-DCT-operated DPCM data to the N×N block data supplied from motion compensator 24 to then output to a display.
While the scanning is performed from a low frequency component to a high frequency component in scanning the N×N block, as shown in FIG. 3C , a “run” and “level” and set as a pair expressed as [run, level], and is then coded.
Here, the run represents the number of 0's present between coefficients not being “0” among the quantized coefficients of an N×N block, and the level corresponds to the absolute value of the coefficient not being “0”.
For example, in the case of an 8×8 block, the run is distributed from “0” to “63” and the level varies depending to the data value output from a quantizer. That is to say, if the quantized output value is indicated as an integer ranging from “−255” to “+255,” the level has a value ranging from “1” to “+255.” At this time, the positive or negative sign is expressed by an extra sign bit. In this manner, when a [run, level] pair is set as a symbol, if the run or level is large, the probability of the symbol is statistically very low.
Therefore, as shown in FIG. 4 , the block is divided into a regular region and an escape region according to the probability of the symbol. For the regular region where the probability of the symbol is relatively high, a Huffman code is used in coding. For the escape region where the probability of the symbol is low, data of a predetermined fixed length is used in coding. Here, according to the Huffman code, the higher the probability of the symbol, the shorter the code is set, and vice versa.
Also, the escape sequence ESQ in which data of escape region is coded is composed of an escape code ESC, run, level and sign data S, each having a predetermined number of bits, as expressed in the following equation (1).
ESQ=ESC+RUN+L+S (1)
ESQ=ESC+RUN+L+S (1)
For example, as described above, if the quantized value is from “−255” to +255” in an 8×8 block, the escape sequence has a constant data length of 21 bits in total since the escape code data ESC is six bits, run data RUN is six bits, level data L is eight bits, and sign data S is one bit.
In this manner, according to the conventional variable-length coding method, since various extra information is also transmitted together with coded data and the escape sequence set by one variable-length coding table depending on the statistical characteristics of data has a constant fixed length, there is a limit in compressing data quantity by coding transmitted data.
Therefore, it is an object of the present invention to provide an adaptive variable-length coding method which improves compression efficiency of data by selecting an optimal variable-length coding table among a plurality of variable-length coding tables according to the current scanning position and quantization step size while scanning in a zigzag pattern by block type, i.e., inter/intra mode.
It is another object of the present invention to provide a method for decoding data coded by the above adaptive variable-length coding method.
To accomplish the above object, there is provided an adaptive variable-length coding method according to the present invention whereby quantized orthogonal transform coefficients are scanned in a zigzag pattern, are DCT-operated to be [run, level] data and then are variable-length-coded in a coding system for image data, the method comprising the steps of:
-
- setting a plurality of variable-length coding tables having different patterns of a regular region and an escape region according to statistical characteristics of the [run, level] data;
- selecting one of the plurality of variable-length coding tables according to intra/inter mode information of the currently processed block, zigzag scanning position and quantization step size; and
- variable-length-coding the orthogonal transform coefficients according to the selected variable-length coding table.
In a decoding system for image data, the adaptive variable-length decoding method according to the present invention for decoding data coded by the adaptive variable-length coding method, comprises the steps of:
-
- setting a plurality of variable-length decoding tables having different patterns of a regular region and an escape region according to statistical characteristics of the [run, level] data;
- inputting intra/inter mode information transmitted from the coding system;
- inputting quantization step size transmitted from the coding system;
- detecting position information while zigzag-scanning by accumulating run values of [run, level] data;
- selecting one of the plurality of variable-length decoding tables according to the intra/inter mode information, quantization step size and position information; and
- variable-length-decoding the data received according to the selected variable-length decoding table.
Hereinbelow, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
In the adaptive variable-length coding method according to the present invention, a plurality of variable-length coding tables are used. The table is selected in accordance with a block type, quantization step size and a current scanning position while scanning a block in a zigzag pattern. This selection is in accordance with the statistical characteristics of [run, level] data which vary depending on block type, i.e., intra mode/inter mode or luminance signal/color signal, quantization step size and a current zigzag scanning position, and which will be described in more detail.
The inter mode for coding the differential signal between the current block data and motion compensated block data generates most of the DCT coefficients as “0” but scarcely generates larger values, compared to the intra mode for coding input block image data sequentially. This is because the variation in a motion compensation estate error thereof is typically smaller than that of the original video signal.
Also, the statistical characteristics of color which depend on the decimation in the spatial domain and narrow bandwidth are different from those of luminance.
Therefore, in accordance with intra/inter mode and luminance/color information, there may be four block types, i.e., (intra, luminance), (intra, color), (inter, luminance) and (inter, color). However, for the block type in the present invention, the luminance/color information is excluded and only the intra/inter mode is considered, because the color statistics are dependent on the downsampling structure of the color signal.
Also, in the case of a large quantization step size, DCT coefficients are not high in the high frequency components and many are generated as “0's” while the quantizer scans in a zigzag pattern. That is to say, in order to utilize the human visual characteristics, the DCT coefficients are divided into primary weightening matrices. Since the weighting matrix for high frequency component is large, when the current scanning is a high frequency component, small values (including “0”) are often produced but large values are scarcely generated.
Therefore, the present invention proposes an adaptive variable-length coding/decoding method using a plurality of variable-length coding/decoding tables in which the block type (intra/inter mode), scanning position and quantization step size are combined, which is called a Huffman code book.
Also, the present invention is adopted for a general coding system shown in FIG. 1 and for a general decoding system shown in FIG. 2.
According to FIG. 5 , quantized DCT coefficients are scanned in a zigzag pattern by zigzag scanner 31.
Variable-length coding table selector 32 outputs a control signal for selecting the corresponding first to Pth variable-length coding tables 33.1, 33.2, . . ., 33.P according to the block type (intra/inter mode), quantization step size Qss, and scanning position SP.
The quantized DCT coefficients output from zigzag scanner 31 are variable-length-coded in accordance with the selected variable-length coding table, to then be transmitted to buffer 14 shown in FIG. 1.
Variable-length decoder 21 of the decoding system shown in FIG. 2 variable-length-decodes data coded in the reverse order to that of the variable-length coding process as shown in FIG. 5.
Subsequently, the method for selecting a plurality of variable-length coding/decoding tables will be described in detail with reference to FIGS. 6A , 6B and 7A to 7C.
The “0” scanning position SP corresponds to the DC component, the “63” scanning position SP represents the last scanning position in the corresponding block, and quantization step size Qss has values ranging from “0” to “62.”
First, in order to select one of P variable-length coding tables T1, T2, . . ., Tp, it is determined whether the currently process block mode is an inter mode or intra mode.
That is to say, as shown in FIGS. 6A and 6B , the blocks for selecting the variable-length coding tables T1, T2, . . ., Tp are different depending on the mode. In other words, compared to the inter mode, the intra mode has larger selection blocks for the first and second variable-length coding tables T1 and T2 and a smaller selection block for the Pth variable-length coding table Tp.
In the determined mode, the first, second or Pth variable-length coding table T1, T2 or Tp are selected in accordance with quantization step size Qss and scanning position SP.
Quantized DCT coefficients are variable-length-coded in accordance with the selected variable-length coding table.
Here, an example of P regions partitioned on a (SP, Qss) plane in accordance with intra and inter modes shown in FIGS. 6A and 6B can be expressed as follows.
In the intra mode:
-
- region 1: SP+Qss<K1;
- region 2: K1 ≦SP+Qss<K2; and
- region P: Kp−1≦SP+Q ss<KpIn the inter mode:
- region 1: SP+Qss<L1;
- region 2: L1≦SP+Qss<L2; and
- region P:
L p−1≦SP+Qss<Lp
The proper partition as above can be sought empirically based on sufficient statistical analysis for various experimental states. These states include such factors as video sequence, bit rate, GOP and partitioning method.
The variable-length coding tables have a regular region and escape region which differ depending on the statistical characteristics of [run, level].
That is to say, the first, second, . . ., Pth tables T1, T2, . . ., Tp have the regular region and escape region having different patterns and the Pth table Tp has a smaller regular region than that of the first or second tables T1 or T2.
Meanwhile, the [run, level] symbol is likely to have a low probability thereof if the run and/or level lengths have a large value. As shown in FIG. 4 the respective symbols of the escape region has a fixed length of 21 bits obtained by adding a six-bit escape code, an eight-bit run, one-bit sign data.
However, in escape coding, since there is redundancy in the run and level fields, the data quantity may be reduced. That is to say, the bit number required for expressing run is dependent on the scanning position during zigzag scanning for two dimensional DCT coefficients and the bit number required for expressing level is dependent on the quantization step size. Also, quantization weighting matrices of intra-coded blocks and inter-coded blocks are different from each other.
The new escape sequence ESQ having a fixed length of 21 bits can be modified into that having a variable length using the aforementioned characteristics according to Equation (1) above, where ESQ is composed of six bits, RUN is composed of zero to six bits. L is composed of one to eight bits, S is composed of one bit, the run data is dependent upon scanning position and the level is dependent upon quantizer.
Therefore, since the modified escape sequence has a variable length ranging from eight to 21 bits, compared to the fixed length of 21 bits, image data can be further compressed.
In decoding the new escape sequence, since the respective current scanning positions are automatically matched for the coding system and decoding system, the number of bits required for expressing the run value can be matched without transmitting extra information. Also, in the case of the level length, since the quantization step is transmitted to the decoding system for inverse quantization, the transmitted quantization step size can be used in synchronizing the number of bits required for expressing level, which requires no extra information to be transmitted.
The above-described variable-length coding and decoding methods which improve compression efficiency by adjusting the length of the escape sequence variably are disclosed in the U.S. patent application Ser. No. 08/069,914 filed on Jun. 1, 1993 by the assignee of the present invention.
According to the present invention, a plurality of variable-length tables are provided for both the coding and decoding sides, which may be slightly more complex in hardware, compared to the case of using a conventional single table. However, the present invention is adopted for the case when a high data compression rate is necessary. Also, the corresponding mode, quantization step size and scanning position information generated in coding side is transmitted to the decoding side. The mode and quantization step size information is transmitted in a constant period of time or is transmitted whenever there is a change. The scanning position information is not transmitted separately but is obtained automatically by accumulating the run values after obtaining [run, level] values of the decoding side.
Therefore, although the information on the selected variable-length coding table is not transmitted separately with respect to the block data transmitted to the decoding side, the variable-length coding table selected during coding can be identified from the mode and quantization step size information transmitted from the coding side and the position information automatically calculated from the run value in the decoding side. Then, the same variable-length coding table as that adopted for coding is used for decoding the transmitted block data.
The described above, the method according to the present invention can increase data compression efficiency such that image data coded and decoded by selecting one of a plurality of variable-length coding tables having a regular region and an escape region, using mode, quantization step size and zigzag scanning position information.
Also, according to the present invention, no extra bit which expresses the variable-length coding table selected during coding is necessary to be transmitted for decoding. The transmission data can be further compressed by adjusting variably the run and level lengths of the data to be coded in the escape region of the selected variable-length coding table.
An adaptive variable-length coding/decoding method according to the present invention can improve the compression efficiency of digitally transmitted data and is applicable to various technological fields including digital communication, multimedia and personal computer systems, and digital video apparatuses such as a high definition television or digital videocassette recorder.
Claims (13)
1. An adaptive variable-length coding method whereby quantized orthogonal transform coefficients are scanned in a zigzag pattern, are modified into run, level data and then are variable-length coded in a coding system for image data, said method comprising the steps of:
setting a plurality of variable-length coding tables having different patterns of a regular region and an escape region according to statistical characteristics of said run, level data;
selecting one of said plurality of variable-length coding tables according to intra/inter mode information of the currently processed block, zigzag scanning position and quantization step size; and
variable-length coding the orthogonal transform coefficients according to said selected variable-length coding table, wherein said selecting step has the selecting range of a plurality of variable-length coding tables having different patterns of a regular region and an escape region according to said intra/inter mode information of the currently Processed block.
2. The adaptive variable-length coding method as claimed in claim 1 , wherein said variable-length coding table is selected in accordance with said zigzag scanning position and quantization step size within the range determined by the corresponding mode.
3. The adaptive variable-length coding method as claimed in claim 1 , wherein data of said escape region of said variable-length coding table selected in said variable-length-coding step is coded into data having variable run-length and level-length.
4. An adaptive variable-length decoding method for decoding the data coded by said adaptive variable-length coding method as claimed in claim 1 , an adaptive variable-length coding method whereby quantized orthogonal transform coefficients are scanned in a zigzag pattern, are modified into run, level data and then are variable-length coded in a coding system for image data, said adaptive variable-length coding method comprising the steps of:
setting a plurality of variable-length coding tables having different patterns of a regular region and an escape region according to statistical characteristics of said run, level data;
selecting one of said plurality of variable-length coding tables according to intra/inter mode information of the currently processed block, zigzag scanning position and quantization step size; and
variable-length coding the orthogonal transform coefficients according to said selected variable-length coding table, wherein said selecting step has the selecting range of a plurality of variable-length coding tables having different patterns of a regular region and an escape region according to said intra/inter mode information of the currently Processed block, in a decoding system for image data, said decoding method comprises the steps of:
setting a plurality of variable-length decoding tables having different patterns of a regular region and an escape region according to statistical characteristics of the run, level data;
inputting intra/inter mode information transmitted from said coding system;
inputting quantization step size transmitted from said coding system;
detecting position information while zigzag-scanning by accumulating run values of run, level data;
selecting one of said plurality of variable-length coding tables according to said intra/inter mode information, quantization step size and position information; and
variable-length decoding the data received according to said selected variable-length coding table.
5. The adaptive variable-length decoding method as claimed in claim 4 , wherein said variable-length decoding table selecting step has the selection range of a plurality of variable-length coding tables having different patterns of a regular region and an escape region according to said intra/inter mode information of the currently processed block in said mode information inputting step.
6. The adaptive variable-length decoding method as claimed in claim 5 , wherein said variable-length decoding table is selected in accordance with said zigzag scanning position and quantization step size within the range determined by the corresponding mode.
7. The adaptive variable-length decoding method as claimed in claim 4 , wherein data of said escape region of said variable-length decoding table selected in said variable-length-decoding step is decoded into run, level data corresponding to variable run-length and level-length.
8. An adaptive variable-length decoding method for decoding the data coded by an adaptive variable-length coding method, in a decoding system for image data, said decoding method comprising the steps of:
receiving intra/inter mode information;
receiving quantization step size information;
detecting scanning position information;
selecting one of a plurality of variable-length decoding tables according to said intra/inter mode information, quantization step size information and scanning position information; and
variable-length decoding the data received according to said selected variable-length decoding table.
9. The adaptive variable-length decoding method of claim 8 , wherein said detecting position information step is performed by in accordance with run, level data.
10. The adaptive variable-length decoding method as claimed in claim 9 , wherein said variable-length decoding table selecting step has the selection range of a plurality of variable-length decoding tables having different patterns of a regular region and an escape region according to said intra/inter mode information of the currently processed block in said mode information inputting step.
11. The adaptive variable-length decoding method as claimed in claim 10 , wherein said variable-length decoding table is selected in accordance with said zigzag scanning position and quantization step size within the range determined in accordance with said intra/inter mode information.
12. The adaptive variable-length decoding method as claimed in claim 11 , wherein data of said escape region of said variable-length decoding table selected in said variable-length decoding step is decoded into run, level data corresponding to variable run-length and level-length.
13. The adaptive variable-length decoding method of claim 12 , wherein said detecting position information step is performed by accumulating the number positions indicated by a run value and level data.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/654,939 USRE40980E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US12/238,104 USRE41154E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR930028074 | 1993-12-16 | ||
KR1019940034497A KR0155784B1 (en) | 1993-12-16 | 1994-12-15 | Adaptable variable coder/decoder method of image data |
PCT/KR1994/000177 WO1995017073A1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US08/495,591 US5793897A (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE39167E1 true USRE39167E1 (en) | 2006-07-11 |
Family
ID=39358031
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/738,419 Expired - Lifetime USRE40783E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US09/654,939 Expired - Lifetime USRE40980E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/017,697 Expired - Lifetime USRE41026E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US12/238,083 Expired - Lifetime USRE41435E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/416,312 Expired - Lifetime USRE40909E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/416,183 Expired - Lifetime USRE40981E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/017,698 Expired - Lifetime USRE41124E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US09/638,796 Expired - Lifetime USRE39167E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US08/495,591 Ceased US5793897A (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US12/238,104 Expired - Lifetime USRE41154E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/738,415 Expired - Lifetime USRE40782E1 (en) | 1993-12-16 | 1995-11-03 | Adaptive variable-length coding and decoding methods for image data |
US12/238,120 Expired - Lifetime USRE41458E1 (en) | 1993-12-16 | 2008-09-25 | Adaptive variable-length coding and decoding methods for image data |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/738,419 Expired - Lifetime USRE40783E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US09/654,939 Expired - Lifetime USRE40980E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/017,697 Expired - Lifetime USRE41026E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US12/238,083 Expired - Lifetime USRE41435E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/416,312 Expired - Lifetime USRE40909E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/416,183 Expired - Lifetime USRE40981E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/017,698 Expired - Lifetime USRE41124E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/495,591 Ceased US5793897A (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US12/238,104 Expired - Lifetime USRE41154E1 (en) | 1993-12-16 | 1994-12-16 | Adaptive variable-length coding and decoding methods for image data |
US11/738,415 Expired - Lifetime USRE40782E1 (en) | 1993-12-16 | 1995-11-03 | Adaptive variable-length coding and decoding methods for image data |
US12/238,120 Expired - Lifetime USRE41458E1 (en) | 1993-12-16 | 2008-09-25 | Adaptive variable-length coding and decoding methods for image data |
Country Status (8)
Country | Link |
---|---|
US (12) | USRE40783E1 (en) |
EP (13) | EP1863291A3 (en) |
JP (1) | JP2898757B2 (en) |
KR (1) | KR0155784B1 (en) |
CN (6) | CN1222110C (en) |
DE (6) | DE69434369T2 (en) |
HK (5) | HK1033507A1 (en) |
WO (1) | WO1995017073A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070024474A1 (en) * | 2001-11-22 | 2007-02-01 | Shinya Kadono | Variable length coding method and variable length decoding method |
US10772082B2 (en) | 2007-12-20 | 2020-09-08 | Optis Wireless Technology, Llc | Control channel signaling using a common signaling field for transport format, redundancy version, and new data indicator |
Families Citing this family (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07123269A (en) * | 1993-10-22 | 1995-05-12 | Fuji Xerox Co Ltd | Corder for picture signal |
KR0155784B1 (en) * | 1993-12-16 | 1998-12-15 | 김광호 | Adaptable variable coder/decoder method of image data |
WO1997024434A1 (en) * | 1995-12-29 | 1997-07-10 | Alg Company | Expansion of bone marrow stromal cells |
US7116829B1 (en) | 1996-11-06 | 2006-10-03 | Matsushita Electric Industrial Co., Ltd. | Image coding and decoding methods, image coding and decoding apparatuses, and recording media for image coding and decoding programs |
DE69720559T2 (en) * | 1996-11-06 | 2004-02-12 | Matsushita Electric Industrial Co., Ltd., Kadoma | Image encoding method with variable length codes |
US6549671B1 (en) * | 1998-02-19 | 2003-04-15 | Matsushita Electric Industrial Co., Ltd. | Picture data encoding apparatus with bit amount adjustment |
US6983018B1 (en) * | 1998-11-30 | 2006-01-03 | Microsoft Corporation | Efficient motion vector coding for video compression |
KR100325884B1 (en) * | 1999-04-06 | 2002-03-07 | 이민화 | System for encoding and decoding a 3-D color ultrasonic wave image |
JP3600487B2 (en) * | 1999-08-31 | 2004-12-15 | 株式会社東芝 | Variable length decoder and moving picture decoding apparatus using the same |
EP1124376A1 (en) * | 2000-02-09 | 2001-08-16 | Deutsche Thomson-Brandt Gmbh | Method and apparatus for generating a data stream protected by encryption |
EP1124378A3 (en) * | 2000-02-09 | 2004-12-08 | Deutsche Thomson-Brandt Gmbh | Method, encoding apparatus and decoding apparatus for protecting a data stream using encryption or for decoding a protected data stream using decryption |
KR100856398B1 (en) | 2000-05-17 | 2008-09-04 | 삼성전자주식회사 | Variable-length coding and decoding method and apparatus using plural mapping tables |
GB0120442D0 (en) * | 2001-08-22 | 2001-10-17 | Nds Ltd | Non-standard coding systems |
US6937770B1 (en) | 2000-12-28 | 2005-08-30 | Emc Corporation | Adaptive bit rate control for rate reduction of MPEG coded video |
US7023924B1 (en) | 2000-12-28 | 2006-04-04 | Emc Corporation | Method of pausing an MPEG coded video stream |
JP2002261623A (en) * | 2001-02-28 | 2002-09-13 | Canon Inc | Decoding device, decoding method, storage medium and program software |
DE10231285B4 (en) * | 2001-03-21 | 2004-10-21 | T-Mobile Deutschland Gmbh | Method for compressing and decompressing video data |
DE10113880B4 (en) * | 2001-03-21 | 2004-04-29 | T-Mobile Deutschland Gmbh | Method for compressing and decompressing video data |
US6907081B2 (en) * | 2001-03-30 | 2005-06-14 | Emc Corporation | MPEG encoder control protocol for on-line encoding and MPEG data storage |
US7174561B2 (en) * | 2001-04-13 | 2007-02-06 | Emc Corporation | MPEG dual-channel decoder data and control protocols for real-time video streaming |
US6980594B2 (en) | 2001-09-11 | 2005-12-27 | Emc Corporation | Generation of MPEG slow motion playout |
DE10145374C1 (en) * | 2001-09-14 | 2003-02-27 | Siemens Ag | Video coding method identifies monotonously decreasing level sequence for using different entropy coding to provide monotomy information and entropy coding value |
US6968091B2 (en) * | 2001-09-18 | 2005-11-22 | Emc Corporation | Insertion of noise for reduction in the number of bits for variable-length coding of (run, level) pairs |
US6959116B2 (en) * | 2001-09-18 | 2005-10-25 | Emc Corporation | Largest magnitude indices selection for (run, level) encoding of a block coded picture |
WO2003043346A1 (en) * | 2001-11-16 | 2003-05-22 | Ntt Docomo, Inc. | Image encoding method, image decoding method, image encoder, image decode, program, computer data signal, and image transmission system |
CN101005625B (en) * | 2001-11-22 | 2010-06-02 | 松下电器产业株式会社 | Variable length coding method and variable length decoding method |
AU2007202520B2 (en) * | 2001-11-22 | 2009-11-26 | Godo Kaisha Ip Bridge 1 | Variable length coding method and variable length decoding method |
US6663244B1 (en) | 2001-12-14 | 2003-12-16 | Infocus Corporation | Illumination field blending for use in subtitle projection systems |
CN101448162B (en) | 2001-12-17 | 2013-01-02 | 微软公司 | Method for processing video image |
JP4447197B2 (en) * | 2002-01-07 | 2010-04-07 | 三菱電機株式会社 | Moving picture encoding apparatus and moving picture decoding apparatus |
US20040125204A1 (en) * | 2002-12-27 | 2004-07-01 | Yoshihisa Yamada | Moving picture coding apparatus and moving picture decoding apparatus |
US7099387B2 (en) * | 2002-03-22 | 2006-08-29 | Realnetorks, Inc. | Context-adaptive VLC video transform coefficients encoding/decoding methods and apparatuses |
DE10230812B4 (en) | 2002-07-08 | 2004-11-25 | T-Mobile Deutschland Gmbh | Method for transmitting additional information when using a method for compressing data by means of a prioritizing pixel transmission |
DE10231286B4 (en) * | 2002-07-10 | 2004-05-19 | T-Mobile Deutschland Gmbh | Method for the transmission of additional data within a video data transmission |
DE10308810B4 (en) * | 2002-07-10 | 2005-04-21 | T-Mobile Deutschland Gmbh | Method for the compressed transmission of image data for a 3-dimensional representation of scenes and objects |
ES2297083T3 (en) | 2002-09-04 | 2008-05-01 | Microsoft Corporation | ENTROPIC CODIFICATION BY ADAPTATION OF THE CODIFICATION BETWEEN MODES BY LENGTH OF EXECUTION AND BY LEVEL. |
US7433824B2 (en) * | 2002-09-04 | 2008-10-07 | Microsoft Corporation | Entropy coding by adapting coding between level and run-length/level modes |
KR20040039809A (en) * | 2002-11-05 | 2004-05-12 | 엘지전자 주식회사 | Moving picture encoder and method for coding using the same |
US7212681B1 (en) | 2003-01-15 | 2007-05-01 | Cisco Technology, Inc. | Extension of two-dimensional variable length coding for image compression |
EP1590767A1 (en) * | 2003-01-23 | 2005-11-02 | Koninklijke Philips Electronics N.V. | Embedding a watermark in a coded signal |
WO2004077838A1 (en) | 2003-02-27 | 2004-09-10 | T-Mobile Deutschland Gmbh | Method for the compressed transmission of image data for three-dimensional representation of scenes and objects |
US7194137B2 (en) * | 2003-05-16 | 2007-03-20 | Cisco Technology, Inc. | Variable length coding method and apparatus for video compression |
US10554985B2 (en) | 2003-07-18 | 2020-02-04 | Microsoft Technology Licensing, Llc | DC coefficient signaling at small quantization step sizes |
US20050013498A1 (en) | 2003-07-18 | 2005-01-20 | Microsoft Corporation | Coding of motion vector information |
US7499495B2 (en) | 2003-07-18 | 2009-03-03 | Microsoft Corporation | Extended range motion vectors |
EP1509046A1 (en) * | 2003-08-22 | 2005-02-23 | Alcatel | Error resistant encoded image and video transmission using variable length codes (VLC) |
US8064520B2 (en) * | 2003-09-07 | 2011-11-22 | Microsoft Corporation | Advanced bi-directional predictive coding of interlaced video |
US7577200B2 (en) | 2003-09-07 | 2009-08-18 | Microsoft Corporation | Extended range variable length coding/decoding of differential motion vector information |
US7317839B2 (en) | 2003-09-07 | 2008-01-08 | Microsoft Corporation | Chroma motion vector derivation for interlaced forward-predicted fields |
US7620106B2 (en) | 2003-09-07 | 2009-11-17 | Microsoft Corporation | Joint coding and decoding of a reference field selection and differential motion vector information |
US7623574B2 (en) | 2003-09-07 | 2009-11-24 | Microsoft Corporation | Selecting between dominant and non-dominant motion vector predictor polarities |
US7724827B2 (en) | 2003-09-07 | 2010-05-25 | Microsoft Corporation | Multi-layer run level encoding and decoding |
US7567617B2 (en) | 2003-09-07 | 2009-07-28 | Microsoft Corporation | Predicting motion vectors for fields of forward-predicted interlaced video frames |
US7616692B2 (en) | 2003-09-07 | 2009-11-10 | Microsoft Corporation | Hybrid motion vector prediction for interlaced forward-predicted fields |
US7599438B2 (en) | 2003-09-07 | 2009-10-06 | Microsoft Corporation | Motion vector block pattern coding and decoding |
CN1214649C (en) * | 2003-09-18 | 2005-08-10 | 中国科学院计算技术研究所 | Entropy encoding method for encoding video predictive residual error coefficient |
US7548658B1 (en) * | 2003-09-24 | 2009-06-16 | Cognitech, Inc. | Lossless video data compressor with very high data rate |
US7519229B2 (en) * | 2004-03-30 | 2009-04-14 | Apple, Inc. | Video coding system providing separate coding chains for dynamically selected small-size or full-size playback |
CN100405850C (en) * | 2004-05-19 | 2008-07-23 | 凌阳科技股份有限公司 | Block decoding method and system capable of decoding and outputting longitudinally |
KR100695125B1 (en) * | 2004-05-28 | 2007-03-14 | 삼성전자주식회사 | Digital signal encoding/decoding method and apparatus |
US7454073B2 (en) * | 2004-06-15 | 2008-11-18 | Cisco Technology, Inc. | Video compression using multiple variable length coding processes for multiple classes of transform coefficient blocks |
US7492956B2 (en) * | 2004-08-18 | 2009-02-17 | Cisco Technology, Inc. | Video coding using multi-dimensional amplitude coding and 2-D non-zero/zero cluster position coding |
US7499596B2 (en) | 2004-08-18 | 2009-03-03 | Cisco Technology, Inc. | Amplitude coding for clustered transform coefficients |
US7454076B2 (en) * | 2004-06-15 | 2008-11-18 | Cisco Technology, Inc. | Hybrid variable length coding method for low bit rate video coding |
US7471841B2 (en) | 2004-06-15 | 2008-12-30 | Cisco Technology, Inc. | Adaptive breakpoint for hybrid variable length coding |
US7499595B2 (en) * | 2004-08-18 | 2009-03-03 | Cisco Technology, Inc. | Joint amplitude and position coding for photographic image and video coding |
US7471840B2 (en) * | 2004-08-18 | 2008-12-30 | Cisco Technology, Inc. | Two-dimensional variable length coding of runs of zero and non-zero transform coefficients for image compression |
CN101032081B (en) * | 2004-07-14 | 2010-05-26 | 喷流数据有限公司 | Method and system for optimization of data compression |
US7680349B2 (en) | 2004-08-18 | 2010-03-16 | Cisco Technology, Inc. | Variable length coding for clustered transform coefficients in video compression |
US7620258B2 (en) * | 2004-08-18 | 2009-11-17 | Cisco Technology, Inc. | Extended amplitude coding for clustered transform coefficients |
CN100428634C (en) * | 2005-03-09 | 2008-10-22 | 浙江大学 | Method and device of joint variable-length coding decoding in digital signal processing |
US7693709B2 (en) * | 2005-07-15 | 2010-04-06 | Microsoft Corporation | Reordering coefficients for waveform coding or decoding |
US7684981B2 (en) * | 2005-07-15 | 2010-03-23 | Microsoft Corporation | Prediction of spectral coefficients in waveform coding and decoding |
US7599840B2 (en) * | 2005-07-15 | 2009-10-06 | Microsoft Corporation | Selectively using multiple entropy models in adaptive coding and decoding |
US7933337B2 (en) | 2005-08-12 | 2011-04-26 | Microsoft Corporation | Prediction of transform coefficients for image compression |
US7565018B2 (en) | 2005-08-12 | 2009-07-21 | Microsoft Corporation | Adaptive coding and decoding of wide-range coefficients |
CN100525446C (en) * | 2005-12-26 | 2009-08-05 | 凌阳科技股份有限公司 | Block decoding method and device capable of longitudinally outputting decipher |
US7242328B1 (en) * | 2006-02-03 | 2007-07-10 | Cisco Technology, Inc. | Variable length coding for sparse coefficients |
US9319700B2 (en) * | 2006-10-12 | 2016-04-19 | Qualcomm Incorporated | Refinement coefficient coding based on history of corresponding transform coefficient values |
US8565314B2 (en) * | 2006-10-12 | 2013-10-22 | Qualcomm Incorporated | Variable length coding table selection based on block type statistics for refinement coefficient coding |
US8599926B2 (en) * | 2006-10-12 | 2013-12-03 | Qualcomm Incorporated | Combined run-length coding of refinement and significant coefficients in scalable video coding enhancement layers |
US8325819B2 (en) * | 2006-10-12 | 2012-12-04 | Qualcomm Incorporated | Variable length coding table selection based on video block type for refinement coefficient coding |
CN101175210B (en) * | 2006-10-30 | 2010-08-11 | 中国科学院计算技术研究所 | Entropy decoding method and device used for decoding video estimation residual error coefficient |
US8184710B2 (en) * | 2007-02-21 | 2012-05-22 | Microsoft Corporation | Adaptive truncation of transform coefficient data in a transform-based digital media codec |
CN101335897B (en) * | 2007-06-28 | 2010-08-25 | 联想(北京)有限公司 | Image compression/decoding method and system |
NO20074463A (en) * | 2007-09-03 | 2009-02-02 | Tandberg Telecom As | Method for entropy coding of transform coefficients in video compression systems |
US8179974B2 (en) | 2008-05-02 | 2012-05-15 | Microsoft Corporation | Multi-level representation of reordered transform coefficients |
CN101309423B (en) * | 2008-06-26 | 2011-07-20 | 四川虹微技术有限公司 | Method for decoding number of non-zero coefficient and number tailing coefficient |
US8406307B2 (en) | 2008-08-22 | 2013-03-26 | Microsoft Corporation | Entropy coding/decoding of hierarchically organized data |
WO2010041488A1 (en) * | 2008-10-10 | 2010-04-15 | 株式会社東芝 | Dynamic image encoding device |
JP4661973B2 (en) * | 2009-07-30 | 2011-03-30 | 三菱電機株式会社 | Moving picture encoding apparatus and moving picture decoding apparatus |
TR201001101A2 (en) * | 2010-02-12 | 2011-09-21 | Vestel Elektroni̇k Sanayi̇ Ve Ti̇caret A.Ş. | A data compression method. |
US8410959B2 (en) * | 2010-04-09 | 2013-04-02 | Qualcomm, Incorporated | Variable length codes for coding of video data |
JP5547335B2 (en) * | 2010-04-09 | 2014-07-09 | クゥアルコム・インコーポレイテッド | Variable length code for video data coding |
CN102256139B (en) * | 2010-05-19 | 2013-10-02 | 晨星软件研发(深圳)有限公司 | Medium coding system, quantized coefficient coding device and quantized coefficient coding method |
US9025661B2 (en) | 2010-10-01 | 2015-05-05 | Qualcomm Incorporated | Indicating intra-prediction mode selection for video coding |
US9490839B2 (en) | 2011-01-03 | 2016-11-08 | Qualcomm Incorporated | Variable length coding of video block coefficients |
US8913662B2 (en) | 2011-01-06 | 2014-12-16 | Qualcomm Incorporated | Indicating intra-prediction mode selection for video coding using CABAC |
US9743116B2 (en) | 2012-01-19 | 2017-08-22 | Huawei Technologies Co., Ltd. | High throughput coding for CABAC in HEVC |
US9860527B2 (en) | 2012-01-19 | 2018-01-02 | Huawei Technologies Co., Ltd. | High throughput residual coding for a transform skipped block for CABAC in HEVC |
US10616581B2 (en) | 2012-01-19 | 2020-04-07 | Huawei Technologies Co., Ltd. | Modified coding for a transform skipped block for CABAC in HEVC |
US9654139B2 (en) | 2012-01-19 | 2017-05-16 | Huawei Technologies Co., Ltd. | High throughput binarization (HTB) method for CABAC in HEVC |
US20130188736A1 (en) | 2012-01-19 | 2013-07-25 | Sharp Laboratories Of America, Inc. | High throughput significance map processing for cabac in hevc |
US10448058B2 (en) | 2015-05-21 | 2019-10-15 | Qualcomm Incorporated | Grouping palette index at the end and index coding using palette size and run value |
US10171810B2 (en) | 2015-06-22 | 2019-01-01 | Cisco Technology, Inc. | Transform coefficient coding using level-mode and run-mode |
US10839562B2 (en) * | 2018-04-04 | 2020-11-17 | Xerox Corporation | Methods and systems for enabling object attribute driven super resolution encoding |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0469835A2 (en) | 1990-07-31 | 1992-02-05 | Canon Kabushiki Kaisha | Image processing apparatus and method |
EP0536630A2 (en) | 1991-09-30 | 1993-04-14 | Kabushiki Kaisha Toshiba | Band-compressed signal processing apparatus |
EP0542474A2 (en) | 1991-11-15 | 1993-05-19 | AT&T Corp. | Adaptive coding and decoding of frames and fields of video signals |
GB2267410A (en) | 1992-05-30 | 1993-12-01 | Samsung Electronics Co Ltd | Variable length coding. |
US5329318A (en) * | 1993-05-13 | 1994-07-12 | Intel Corporation | Method for optimizing image motion estimation |
US5377051A (en) * | 1993-01-13 | 1994-12-27 | Hitachi America, Ltd. | Digital video recorder compatible receiver with trick play image enhancement |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1296430C (en) * | 1986-11-10 | 1992-02-25 | Masahide Kaneko | Encoding system capable of accomplishing a high efficiency by anterior and/or posterior processing to quantization |
DE69031106D1 (en) * | 1989-10-09 | 1997-09-04 | Fujitsu Ltd | System for transferring image data |
CA2038131A1 (en) | 1990-03-14 | 1991-09-15 | Alexandre Balkanski | System for compression and decompression of video data using discrete cosine transform and coding techniques |
JP2909239B2 (en) * | 1991-03-27 | 1999-06-23 | 株式会社東芝 | High-efficiency coded recording / reproducing device |
JP3158370B2 (en) * | 1991-07-12 | 2001-04-23 | ソニー株式会社 | Disc data playback device |
US5233348A (en) * | 1992-03-26 | 1993-08-03 | General Instrument Corporation | Variable length code word decoder for use in digital communication systems |
JP3348310B2 (en) | 1992-09-28 | 2002-11-20 | ソニー株式会社 | Moving picture coding method and moving picture coding apparatus |
US5982437A (en) | 1992-10-26 | 1999-11-09 | Sony Corporation | Coding method and system, and decoding method and system |
KR0129558B1 (en) | 1992-10-26 | 1998-04-10 | 배순훈 | Adaptive variable length coding method and apparatus |
KR0155784B1 (en) * | 1993-12-16 | 1998-12-15 | 김광호 | Adaptable variable coder/decoder method of image data |
-
1994
- 1994-12-15 KR KR1019940034497A patent/KR0155784B1/en not_active IP Right Cessation
- 1994-12-16 WO PCT/KR1994/000177 patent/WO1995017073A1/en active IP Right Grant
- 1994-12-16 EP EP20070115839 patent/EP1863291A3/en not_active Ceased
- 1994-12-16 EP EP20070115842 patent/EP1863292A3/en not_active Ceased
- 1994-12-16 EP EP20070115838 patent/EP1863290A3/en not_active Withdrawn
- 1994-12-16 EP EP20040019814 patent/EP1484926A3/en not_active Ceased
- 1994-12-16 US US11/738,419 patent/USRE40783E1/en not_active Expired - Lifetime
- 1994-12-16 US US09/654,939 patent/USRE40980E1/en not_active Expired - Lifetime
- 1994-12-16 EP EP20040019817 patent/EP1487218A1/en not_active Ceased
- 1994-12-16 DE DE1994634369 patent/DE69434369T2/en not_active Expired - Lifetime
- 1994-12-16 CN CNB001083686A patent/CN1222110C/en not_active Expired - Lifetime
- 1994-12-16 US US11/017,697 patent/USRE41026E1/en not_active Expired - Lifetime
- 1994-12-16 CN CNB2004100786186A patent/CN100355288C/en not_active Expired - Lifetime
- 1994-12-16 CN CNB2004100786171A patent/CN100355287C/en not_active Expired - Lifetime
- 1994-12-16 US US12/238,083 patent/USRE41435E1/en not_active Expired - Lifetime
- 1994-12-16 EP EP20040006479 patent/EP1441536B1/en not_active Expired - Lifetime
- 1994-12-16 DE DE1994634271 patent/DE69434271D1/en not_active Expired - Lifetime
- 1994-12-16 CN CNB2004100786190A patent/CN100355289C/en not_active Expired - Lifetime
- 1994-12-16 EP EP20040019815 patent/EP1494484A1/en not_active Ceased
- 1994-12-16 US US11/416,312 patent/USRE40909E1/en not_active Expired - Lifetime
- 1994-12-16 CN CN94191195A patent/CN1071526C/en not_active Expired - Lifetime
- 1994-12-16 JP JP51668095A patent/JP2898757B2/en not_active Expired - Lifetime
- 1994-12-16 EP EP95903454A patent/EP0685137B1/en not_active Expired - Lifetime
- 1994-12-16 EP EP19990124622 patent/EP0987899B1/en not_active Expired - Lifetime
- 1994-12-16 US US11/416,183 patent/USRE40981E1/en not_active Expired - Lifetime
- 1994-12-16 EP EP20040006480 patent/EP1445962B1/en not_active Expired - Lifetime
- 1994-12-16 DE DE1994634271 patent/DE69434271T4/en not_active Expired - Lifetime
- 1994-12-16 CN CNB2004100786167A patent/CN100355286C/en not_active Expired - Lifetime
- 1994-12-16 US US11/017,698 patent/USRE41124E1/en not_active Expired - Lifetime
- 1994-12-16 DE DE1994634667 patent/DE69434667T2/en not_active Expired - Lifetime
- 1994-12-16 US US09/638,796 patent/USRE39167E1/en not_active Expired - Lifetime
- 1994-12-16 DE DE69425047T patent/DE69425047T2/en not_active Expired - Lifetime
- 1994-12-16 EP EP19990124631 patent/EP0987900B1/en not_active Expired - Lifetime
- 1994-12-16 EP EP20080100822 patent/EP1914997A3/en not_active Ceased
- 1994-12-16 EP EP20040019816 patent/EP1515568A1/en not_active Withdrawn
- 1994-12-16 US US08/495,591 patent/US5793897A/en not_active Ceased
- 1994-12-16 US US12/238,104 patent/USRE41154E1/en not_active Expired - Lifetime
- 1994-12-16 DE DE1994634668 patent/DE69434668T2/en not_active Expired - Lifetime
-
1995
- 1995-11-03 US US11/738,415 patent/USRE40782E1/en not_active Expired - Lifetime
-
2001
- 2001-06-13 HK HK01104035A patent/HK1033507A1/en not_active IP Right Cessation
-
2005
- 2005-04-08 HK HK05102965A patent/HK1070516A1/en not_active IP Right Cessation
- 2005-07-11 HK HK05105805A patent/HK1073198A1/en not_active IP Right Cessation
- 2005-07-11 HK HK05105793A patent/HK1073196A1/en not_active IP Right Cessation
- 2005-07-11 HK HK05105794A patent/HK1073197A1/en not_active IP Right Cessation
-
2008
- 2008-09-25 US US12/238,120 patent/USRE41458E1/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0469835A2 (en) | 1990-07-31 | 1992-02-05 | Canon Kabushiki Kaisha | Image processing apparatus and method |
EP0536630A2 (en) | 1991-09-30 | 1993-04-14 | Kabushiki Kaisha Toshiba | Band-compressed signal processing apparatus |
EP0542474A2 (en) | 1991-11-15 | 1993-05-19 | AT&T Corp. | Adaptive coding and decoding of frames and fields of video signals |
US5227878A (en) * | 1991-11-15 | 1993-07-13 | At&T Bell Laboratories | Adaptive coding and decoding of frames and fields of video |
GB2267410A (en) | 1992-05-30 | 1993-12-01 | Samsung Electronics Co Ltd | Variable length coding. |
US5377051A (en) * | 1993-01-13 | 1994-12-27 | Hitachi America, Ltd. | Digital video recorder compatible receiver with trick play image enhancement |
US5329318A (en) * | 1993-05-13 | 1994-07-12 | Intel Corporation | Method for optimizing image motion estimation |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070024474A1 (en) * | 2001-11-22 | 2007-02-01 | Shinya Kadono | Variable length coding method and variable length decoding method |
US7312730B2 (en) * | 2001-11-22 | 2007-12-25 | Matsushita Electric Industrial Co., Ltd. | Variable length coding method and variable length decoding method |
US7312731B2 (en) * | 2001-11-22 | 2007-12-25 | Matsushita Electric Industrial Co., Ltd. | Variable length coding method and variable length decoding method |
US7339506B2 (en) * | 2001-11-22 | 2008-03-04 | Matsushita Electric Industrial Co., Ltd. | Variable length coding method and variable length decoding method |
US20080074296A1 (en) * | 2001-11-22 | 2008-03-27 | Shinya Kadono | Variable length coding method and variable length decoding method |
US7714752B2 (en) | 2001-11-22 | 2010-05-11 | Panasonic Corporation | Variable length coding method and variable length decoding method |
US20100141485A1 (en) * | 2001-11-22 | 2010-06-10 | Shinya Kadono | Variable length coding method and variable length decoding method |
US7956774B2 (en) | 2001-11-22 | 2011-06-07 | Panasonic Corporation | Variable length coding method and variable length decoding method |
US8604947B2 (en) | 2001-11-22 | 2013-12-10 | Panasonic Corporation | Variable length coding method and variable length decoding method |
US8941514B2 (en) | 2001-11-22 | 2015-01-27 | Panasonic Intellectual Property Corporation Of America | Image coding and decoding system using variable length coding and variable length decoding |
US10772082B2 (en) | 2007-12-20 | 2020-09-08 | Optis Wireless Technology, Llc | Control channel signaling using a common signaling field for transport format, redundancy version, and new data indicator |
US11477767B2 (en) | 2007-12-20 | 2022-10-18 | Optis Wireless Technology, Llc | Control channel signaling using a common signaling field for transport format, redundancy version, and new data indicator |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE39167E1 (en) | Adaptive variable-length coding and decoding methods for image data | |
US5461421A (en) | Encoding and decoding method and apparatus thereof | |
US5136371A (en) | Digital image coding using random scanning | |
US5640420A (en) | Variable length coder using two VLC tables | |
JPH0686262A (en) | Apparatus for encoding of image | |
JPH09191448A (en) | Video signal coder and its method | |
US5991445A (en) | Image processing apparatus | |
US5742342A (en) | Apparatus for encoding an image signal using vector quantization technique | |
JPH0522715A (en) | Picture encoder | |
US20020118757A1 (en) | Motion image decoding apparatus and method reducing error accumulation and hence image degradation | |
JP3190164B2 (en) | Code amount estimation device | |
JPH06284395A (en) | Image compression-encoder | |
KR950014019B1 (en) | Variable length decoding apparatus controlled method of digital moving image decoder | |
KR0157463B1 (en) | Adaptive variable length encoding/decoding method for image data | |
KR0152025B1 (en) | Encoding method and apparatus of e.o.b block data | |
JPH05130424A (en) | Picture coder | |
JPH0686268A (en) | Encoder for video signal | |
JPH09135418A (en) | Image recording device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction |