USRE39051E1 - Fuzzy logic tuning of RF matching network - Google Patents

Fuzzy logic tuning of RF matching network Download PDF

Info

Publication number
USRE39051E1
USRE39051E1 US09/712,596 US71259600A USRE39051E US RE39051 E1 USRE39051 E1 US RE39051E1 US 71259600 A US71259600 A US 71259600A US RE39051 E USRE39051 E US RE39051E
Authority
US
United States
Prior art keywords
fuzzy
impedance
phase
signal
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/712,596
Inventor
Sean Harnett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Barclays Bank PLC
Original Assignee
Eni Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eni Technology Inc filed Critical Eni Technology Inc
Priority to US09/712,596 priority Critical patent/USRE39051E1/en
Application granted granted Critical
Publication of USRE39051E1 publication Critical patent/USRE39051E1/en
Assigned to MKS INSTRUMENTS, INC. reassignment MKS INSTRUMENTS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ENI TECHNOLOGY, INC.
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH reassignment DEUTSCHE BANK AG NEW YORK BRANCH SECURITY AGREEMENT Assignors: MKS INSTRUMENTS, INC., NEWPORT CORPORATION
Assigned to BARCLAYS BANK PLC reassignment BARCLAYS BANK PLC SECURITY AGREEMENT Assignors: MKS INSTRUMENTS, INC., NEWPORT CORPORATION
Anticipated expiration legal-status Critical
Assigned to NEWPORT CORPORATION, MKS INSTRUMENTS, INC. reassignment NEWPORT CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEUTSCHE BANK AG NEW YORK BRANCH
Assigned to BARCLAYS BANK PLC, AS COLLATERAL AGENT reassignment BARCLAYS BANK PLC, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT (ABL) Assignors: ELECTRO SCIENTIFIC INDUSTRIES, INC., MKS INSTRUMENTS, INC., NEWPORT CORPORATION
Assigned to BARCLAYS BANK PLC, AS COLLATERAL AGENT reassignment BARCLAYS BANK PLC, AS COLLATERAL AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE U.S. PATENT NO.7,919,646 PREVIOUSLY RECORDED ON REEL 048211 FRAME 0312. ASSIGNOR(S) HEREBY CONFIRMS THE PATENT SECURITY AGREEMENT (ABL). Assignors: ELECTRO SCIENTIFIC INDUSTRIES, INC., MKS INSTRUMENTS, INC., NEWPORT CORPORATION
Assigned to ELECTRO SCIENTIFIC INDUSTRIES, INC., MKS INSTRUMENTS, INC., NEWPORT CORPORATION reassignment ELECTRO SCIENTIFIC INDUSTRIES, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BARCLAYS BANK PLC
Assigned to NEWPORT CORPORATION, ELECTRO SCIENTIFIC INDUSTRIES, INC., MKS INSTRUMENTS, INC. reassignment NEWPORT CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BARCLAYS BANK PLC
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/0275Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using fuzzy logic only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Definitions

  • This invention relates to plasma generation equipment, and is particularly directed to an automatic RF matching network to match the impedance of a reactive plasma chamber or similar non-linear load to a constant impedance (e.g., 50 ohms) output of an RF generator or similar RF source.
  • the invention is more particularly concerned with a fuzzy logic technique that is capable of controlling two, or more, tunable elements in the matching network using both the phase error signal and magnitude error signal associated with the matching network.
  • a high power RF source produces an RF wave at a preset frequency, i.e., 13.56 MHZ, and this is furnished along a power conduit to a plasma chamber.
  • the RF power is also typically provided at a fixed, known impedance, e.g., 50 ohms. Because there is typically a severe impedance mismatch between the RF power source and the plasma chamber, an impedance matching network is interposed between the two. There are non-linearities in the plasma chamber which make it difficult to simply set the impedance match network at fixed positions for a plasma process.
  • phase and magnitude error detector At the input to the matching network there is located a phase and magnitude error detector that produces two (or more) error signals representing the magnitude of impedance error and phase error.
  • Magnitude error is the difference between the magnitude of the nominal input impedance (typically 50 ⁇ and the magnitude of the actual input impedance.
  • Phase error is the deviation between the phase at the nominal input impedance (typically zero degrees) and the phase at the actual input impedance.
  • the error signals also indicate the direction or sign (+ or ⁇ ) of the magnitude error and phase error.
  • the conventional matching network uses these two error signals to control two variable tuning elements: phase error being used to control one tuning element and magnitude error being used to control the other tuning element.
  • the phase and magnitude error signals drive motors associated with variable capacitors or perhaps a tuning slug of a variable inductor.
  • the error signals drop to a low or zero level when a matched condition has been achieved.
  • the conventional system has experienced difficulty in quickly achieving matched impedance under a number of conditions.
  • One primary problem is that the current design does not address the fact that each tuning element affects both error signals. Because of this effect, the error signals may drive one or both of the tuning elements away from the match or tune point. This prolongs the tuning process, and causes slower, less reliable tuning.
  • Another problem arises because the phase and magnitude error signals alone do not always provide enough information to drive the matching network to the tune point. This means that the matching network may have “lost conditions” where it will be unable to reach impedance match.
  • a third problem is that the error signal produced by a given movement of a tuning element varies with the tuning element's position.
  • a lost-recovery approach has been proposed to address the second problem mentioned above, namely the “lost conditions” problem.
  • the system detects that impedance match has been lost, and then moves the tuning elements to predetermined “lost recovery” positions, from which it can tune to a match.
  • This approach wastes considerable time in recovering impedance match, and may not work with every load in the tuning range.
  • Fuzzy logic has been employed as a control algorithm in many applications, and has the advantage of reducing a complex multi-dimensional treatment to a rather straight-forward algorithm based on a simple set of rules. Fuzzy logic is based on Fuzzy Set Theory, a branch of mathematics developed by Prof. Lofti A. Zadeh in the 1960's. Fuzzy logic provides a robust, non-linear and efficient approach to control by mapping inputs to outputs using a minimal amount of code. The basis for fuzzy logic and fuzzy controls has been explained in many places in the mathematical and engineering literature. Basically, the fuzzy logic control process can be described as a small number steps or stages.
  • the process control engineer establishes a number of overlapping fuzzy sets, e.g., “high positive,” “medium positive,” “zero” or small, “medium negative,” and “high negative.”
  • fuzzy discrete input values are fuzzified, that is, they are converted into appropriate degrees of membership in overlapping fuzzy sets.
  • rules are applied to define the relation between the input variables and the output variables. These rules are provided in terms of a “fuzzy interference function” and represent a relation that should be intuitive to the process engineer. These can be a series of IF-AND-THEN statements, or can be constructed as a straightforward table, grid or matrix.
  • An output or defuzzification stage converts the fuzzy variables to crisp output values that are applied as control values or signals to a control device, such as the rotor of a variable capacitor.
  • a fuzzy logic method is employed for tuning an RF matching network of the type having an input at which is applied RF power at a given frequency and at a given impedance, and an output which applies such power to an RF load having a non-constant impedance, such as an RF plasma chamber.
  • the matching network has a phase-magnitude error detector providing a phase error signal and a magnitude error signal related respectively to the differences between nominal and actual input phase angle, i.e., ⁇ and between nominal and actual impedance ⁇ Z.
  • the matching network has at least a first variable impedance having a driven element for varying its impedance, and a second variable impedance having a driven element for varying its impedance.
  • the fuzzy logic control technique involves the steps of supplying the phase and the magnitude error signals to a fuzzy logic controller, wherein each error signal has a magnitude and direction. Then the error signals are each applied to a fuzzy logic inference function based on membership in one or more fuzzy sets, which may be overlapping fuzzy sets. The value, i.e., the size and direction of each error signal enjoys membership in one, two, or more overlapping fuzzy sets. Fuzzy logic rules are applied to the phase and magnitude error signals according to the fuzzy sets for which said first and second error signals enjoy membership. A plurality of drive signal values are obtained, based on the fuzzy logic rules for each of the phase and magnitude error signals. The drive signal values are weighted according to respective fuzzy interference functions for which the error signals enjoy membership.
  • the weighted drive signal values are combined to produce an output drive signal for the first variable impedance-device driven element.
  • a similar process creates an output drive signal for the second variable impedance.
  • the phase and magnitude error signals are used jointly to obtain each of the output drive signals.
  • the fuzzy logic rules can be expressed as a matrix of N ⁇ M drive current values, where N is the number of fuzzy sets of said first error signal and M is the number of fuzzy sets of said second error signal.
  • N is the number of fuzzy sets of said first error signal
  • M is the number of fuzzy sets of said second error signal.
  • a fuzzy logic controller is provided according to another aspect of this invention for tuning an RF matching network, wherein the matching network is positioned between a source of applied RF power at a given frequency and at a given impedance, and an RF load, such as an RF plasma chamber, having a non-constant impedance.
  • a phase-magnitude error detector produces a phase error signal and a magnitude error signal related respectively to the phase error and magnitude error in input impedance, as discussed earlier.
  • the matching network also has at least a first variable impedance having a driven element for varying the impedance thereof and a second variable impedance having a driven element for varying the impedance thereof.
  • the fuzzy logic controller has input means to receive the values of the phase and magnitude error signals.
  • the controller applies these values of error signals to a fuzzy logic inference function based on a number of overlapping fuzzy sets.
  • the values of error signals enjoy membership in one, two, or more overlapping fuzzy sets.
  • Fuzzy logic rules are applied to the phase and magnitude error signals, with the rules depending on the fuzzy sets for which the error signals enjoy membership.
  • Drive signal values are obtained according to the fuzzy logic rules for each fuzzy set for which the error signals enjoy membership.
  • the drive signal values are weighted according to the respective fuzzy inference functions for the values of these error signals. Then the weighted drive signal values are combined to produce an output drive signal for the first variable impedance device driven element.
  • Additional drive signal values are obtained based on additional fuzzy logic rules for each of the phase and magnitude error signals. Then these additional drive signal values are weighted according to additional respective fuzzy inference functions, and the weighted drive signal values are combined to produce an output drive signal for the second variable impedance device driven element.
  • the fuzzy logic controller quickly drives the turning elements to a matched impedance state, and avoids lost condition problems.
  • the fuzzy logic controller can be implemented in hardware, or can be based on a programmed device such as a digital signal processor (DSP) or a microprocessor.
  • DSP digital signal processor
  • the fuzzy logic controller function can operate in background, or can employ a separate hardware device to free the DSP for other functions such as signal processing, motor control, user interface, or other functions.
  • a separate independent PC can be employed to carry out the fuzzy logic tuning.
  • tuning element positions can be used as inputs to linearize loop gain as a function of position. This can achieve higher overall loop gain and faster tuning speeds.
  • a reduction or elimination of lost conditions can be achieved by using additional sensors, e.g., voltage and current at the RF plasma chamber, and then applying the detected levels as additional inputs to the fuzzy logic controller.
  • the improvements of this invention use fuzzy logic to provide a practical method to analyze multiple inputs and to produce signals which will drive multiple tuning elements.
  • the fuzzy controller inputs can consist of phase and magnitude errors
  • the fuzzy outputs can consist of one or both of the drive signals for the tuning elements.
  • the invention can be easily extended to control of three or more variable tuning devices.
  • FIG. 1 is a system block diagram of an RF plasma process incorporating an impedance match net with a fuzzy logic control system according to one embodiment of this invention.
  • FIG. 2 is an enlarged schematic diagram of the match net and control system of this embodiment.
  • FIGS. 3 and 4 are charts of the fuzzy logic inference functions or membership functions with respect to the fuzzy sets of impedance magnitude error and phase angle error, respectively.
  • FIGS. 5A and 5B are fuzzy logic rule application matrices for first and second variable impedance tuning drive signals according to an embodiment of this invention.
  • FIGS. 6A and 6B are fuzzy logic rule application matrices for first and second variable impedance tuning drive signals according to another embodiment of this invention.
  • FIG. 7 illustrates a three-dimensional fuzzy logic rule application matrix that can be employed with additional embodiments of this invention.
  • an RF plasma processing system 10 is shown for purposes of example.
  • a plasma generator 12 provides RF electrical power at a predetermined frequency, i.e., 13.56 MHz.
  • the output of the generator 12 is followed by a harmonic/subharmonic filter 14 , which is then followed by an impedance matching network 16 , which supplies the electrical power through a voltage/current sensor system 18 to an input of a plasma chamber 20 .
  • the matching network 16 comprises a controllable impedance matching unit 22 , with a phase/magnitude sensor 24 connected at its input.
  • the sensor provides a phase error signal ⁇ that is proportional to the difference between the nominal input impedance phase angle and the actual phase angle ( ⁇ - ⁇ o ) of the impedance matching unit, and also provides a magnitude error signal ⁇ Z that is proportional to the difference between the nominal input impedance and actual input impedance (Z-Z o ).
  • a fuzzy logic controller 26 has inputs to receive the phase error signal ⁇ and to receive the magnitude error signal ⁇ Z, and respective control signal outputs CS 1 and CS 2 for controlling respective first and second variable impedance devices within the unit 22 .
  • An optional third control signal output CS 3 is shown in ghost lines.
  • Additional sensors 28 can optionally provide the fuzzy logic controller 26 with additional input signals, e.g., time rate of change of phase error.
  • the fuzzy logic controller can be a separate unit, but may also be incorporated into the housing of the impedance matching network 16 .
  • the operating codes, including the fuzzy logic rule matrix and fuzzy logic inference function algorithm can be stored in a memory device (not shown) of the controller 26 .
  • This memory device can be a programmable read-only memory, such as an E-PROM, capable of storing downloaded program codes, and providing for revision of the codes to optimize the tuning of the matching network 16 . It is also possible to employ a “fixed match” arrangement, and use the error signals ⁇ and ⁇ Z to control the frequency of the plasma generator 12 .
  • FIG. 2 shows details of the match net unit 22 and the fuzzy logic controller 26 from which the operation of this invention can be explained.
  • the match net unit 22 includes a number of variable impedance devices for effecting tuning to establish an impedance match between the 50 ohms of the RF generator 12 and the unknown impedance of the RF plasma chamber 20 .
  • the fixed impedances there can be a first tuning capacitor C 1 and a second capacitor C 2 .
  • the first and second tuning capacitors each have a tuning element motor M 1 and M 2 , respectively. If additional tuning elements are desired, a third tuning element motor M 3 can be provided for the third capacitor C 3 .
  • a motor (not shown) can be provided for the tuning slug of the tunable inductor L.
  • the fuzzy logic controller 26 here accomplishes three operations on the input signals, which are here shown as the phase error signal ⁇ , the impedance magnitude error signal ⁇ Z, and any additional error signals, e.g., from other sensors 28 .
  • the error signals are first applied to a fuzzification stage 29 , where the error signals are applied to respective fuzzy inference functions 30 , 32 , 34 . These functions here are shown as sequences of overlapping triangular or trapezoidal ramp functions, and will be explained in detail shortly. Then, in a rule evaluation stage 35 , predetermined rules are applied, depending on the fuzzy sets in the fuzzification stage 29 to which each of the error signals enjoys membership.
  • IF-AND-THEN logic statements such as IF the phase error is negative and large, AND IF the magnitude error is positive and medium, THEN apply a positive large drive signal as CS 1 and apply a negative medium drive signal as CS 2 .
  • the rules for all combinations of fuzzy set memberships of phase error and magnitude error can be considered as a matrix of N ⁇ M rules, where N is the number of fuzzy sets of phase error and M is the number of fuzzy sets of magnitude error.
  • the several drive signal values obtained in the rule elevation stage 35 are then converted to discrete drive signal values CS 1 , CS 2 , CS 3 , etc., in a defuzzification stage 37 .
  • ramp-shaped membership functions, or fuzzy inference functions 32 and 30 are employed, as shown in FIGS. 3 and 4 , respectively for the impedance magnitude error ⁇ Z, and for the phase error ⁇ .
  • These are overlapping functions, as shown, so that the respective error signal values are partly members of one fuzzy set and also partly members of an overlapping fuzzy set.
  • the magnitude error ⁇ Z is of a positive value, and has a membership of 35% of zero error, and 65% positive medium error.
  • the phase error ⁇ has a negative value, and enjoys a 25% membership in the zero error fuzzy set and a 75% membership in the negative medium fuzzy set.
  • a weighting factor is applied to the drive signal values that are obtained, based on the conditions of magnitude error positive medium, phase error negative medium; magnitude error positive medium, phase error zero; magnitude error zero, phase error negative medium; and magnitude error zero, phase error zero (for the example in FIGS. 3 and 4 ). These are weighted according to their respective membership values, and are combined for each drive signal CS 1 , CS 2 , CS 3 , etc. This results in bringing each of the tuning devices quickly to a tuned condition, and accounts for the effect of each device on the phase error and magnitude error signals. The amount of movement for each tuning device also depends on the size and sign (positive or negative) of the phase and magnitude error. Thus, this system avoided the major pitfalls of prior art impedance match networks, as mentioned previously.
  • FIGS. 5A and 5B are matrices of typical fuzzy logic rules for a given impedance match network.
  • the notation used in the grid squares indicates the size and direction of motor current to be applied to the first tuning capacitor ( FIG. 5A ) and to be applied to the second tuning capacitor (FIG. 5 B).
  • These are PL—positive large; PM—positive medium; Ze—zero; NM—negative medium; and NL—negative large.
  • the labels on the vertical and horizontal axes represent the fuzzy sets for the magnitude error and phase error, namely NL—negative large; NM—negative medium; Ze—zero; PM—positive medium; and PL—positive large.
  • these matrices are somewhat asymmetric or unbalanced, as they have to account for the problems of non-linearity, cross-over, and lost conditions, as mentioned before.
  • These matrices can be arrived at rather quickly by the process engineer, starting with orthogonal or symmetric matrices, where he drive current values depend on only one error signal.
  • a pair of orthogonal matrices are shown in FIGS. 6A and 6B .
  • the process engineer can try modified rule sets against a synthetic load.
  • the matrices can be changed incrementally, as need be, for each iteration. Within a reasonable number of trials, the process engineer will arrive at an optimal pair of rule set matrices, like those of FIGS. 5A and 5B .
  • the fuzzy logic tuning process of this invention achieves a good impedance match rapidly, without undue hunting and without encountering the problems noted above.
  • FIG. 7 illustrates a possible rules matrix showing error signal variables along its three axes, namely, magnitude error, phase error, and time rate of change of phase error.
  • the number of input variables is not limited to only three.
  • the rotor positions of the tuning capacitors C 1 , C 2 , and C 3 can be included as inputs to the fuzzy logic controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

A fuzzy logic control arrangement is provided for an impedance match network of the type that is typically employed between a source of RF power at a given impedance, e.g., 50 ohms, and a non-linear load whose impedance can vary in magnitude and phase, e.g., an RF plasma. The fuzzy logic controller fuzzifies the phase and the magnitude error signals. The error signals are applied to a fuzzy logic interference function based on a number of fuzzy sets. The values of the error signals enjoy some degree of membership in one or more fuzzy sets. Fuzzy logic rules are applied to the phase and magnitude error signals. In a defuzzification stage, drive signal values are obtained for moving the tuning elements of the variable impedances. The drive signal values are weighted according to respective fuzzy inference functions for which the error signals enjoy membership. Then the weighted drive signal values are combined to produce output drive signals.

Description

BACKGROUND OF THE INVENTION
This invention relates to plasma generation equipment, and is particularly directed to an automatic RF matching network to match the impedance of a reactive plasma chamber or similar non-linear load to a constant impedance (e.g., 50 ohms) output of an RF generator or similar RF source. The invention is more particularly concerned with a fuzzy logic technique that is capable of controlling two, or more, tunable elements in the matching network using both the phase error signal and magnitude error signal associated with the matching network.
In a typical RF plasma generator arrangement, a high power RF source produces an RF wave at a preset frequency, i.e., 13.56 MHZ, and this is furnished along a power conduit to a plasma chamber. The RF power is also typically provided at a fixed, known impedance, e.g., 50 ohms. Because there is typically a severe impedance mismatch between the RF power source and the plasma chamber, an impedance matching network is interposed between the two. There are non-linearities in the plasma chamber which make it difficult to simply set the impedance match network at fixed positions for a plasma process. At the input to the matching network there is located a phase and magnitude error detector that produces two (or more) error signals representing the magnitude of impedance error and phase error. Magnitude error is the difference between the magnitude of the nominal input impedance (typically 50Ω and the magnitude of the actual input impedance. Phase error is the deviation between the phase at the nominal input impedance (typically zero degrees) and the phase at the actual input impedance. The error signals also indicate the direction or sign (+ or −) of the magnitude error and phase error.
The conventional matching network uses these two error signals to control two variable tuning elements: phase error being used to control one tuning element and magnitude error being used to control the other tuning element. The phase and magnitude error signals drive motors associated with variable capacitors or perhaps a tuning slug of a variable inductor. The error signals drop to a low or zero level when a matched condition has been achieved.
The conventional system has experienced difficulty in quickly achieving matched impedance under a number of conditions. One primary problem is that the current design does not address the fact that each tuning element affects both error signals. Because of this effect, the error signals may drive one or both of the tuning elements away from the match or tune point. This prolongs the tuning process, and causes slower, less reliable tuning. Another problem arises because the phase and magnitude error signals alone do not always provide enough information to drive the matching network to the tune point. This means that the matching network may have “lost conditions” where it will be unable to reach impedance match. A third problem is that the error signal produced by a given movement of a tuning element varies with the tuning element's position. In other words, if the tuning element is near the minimum end of its travel, a 10% change in position may produce a 50% change in error signal amplitude, but if the tuning element is near the maximum end of its travel, the same 10% change might produce only a 5% change in error signal amplitude. This will cause the control loop stability to vary depending upon the position of the tuning elements. However, at the present time, no practical system even tracks the tuning element (e.g., rotor) position as an input.
A cross-point approach to address the first-mentioned problem has been proposed previously, but still uses only a single error signal for each of two tuning elements. Another problem is that this approach requires a hard, fixed threshold rather than a gradual transition.
A lost-recovery approach has been proposed to address the second problem mentioned above, namely the “lost conditions” problem. In this approach the system detects that impedance match has been lost, and then moves the tuning elements to predetermined “lost recovery” positions, from which it can tune to a match. This approach wastes considerable time in recovering impedance match, and may not work with every load in the tuning range.
The industry does not seem to have recognized the third problem arising from the non-linearity of the error signal across its range. Also, the desirability of using more than one error signal to control each tuning element has not been recognized, nor has any process been proposed for combining multiple error signals to control each of the tuning elements associated with the impedance matching network.
Fuzzy logic has been employed as a control algorithm in many applications, and has the advantage of reducing a complex multi-dimensional treatment to a rather straight-forward algorithm based on a simple set of rules. Fuzzy logic is based on Fuzzy Set Theory, a branch of mathematics developed by Prof. Lofti A. Zadeh in the 1960's. Fuzzy logic provides a robust, non-linear and efficient approach to control by mapping inputs to outputs using a minimal amount of code. The basis for fuzzy logic and fuzzy controls has been explained in many places in the mathematical and engineering literature. Basically, the fuzzy logic control process can be described as a small number steps or stages. First, the process control engineer establishes a number of overlapping fuzzy sets, e.g., “high positive,” “medium positive,” “zero” or small, “medium negative,” and “high negative.” In the first stage, i.e., “fuzzification,” crisp, discrete input values are fuzzified, that is, they are converted into appropriate degrees of membership in overlapping fuzzy sets. Then, in a rule application stage, rules are applied to define the relation between the input variables and the output variables. These rules are provided in terms of a “fuzzy interference function” and represent a relation that should be intuitive to the process engineer. These can be a series of IF-AND-THEN statements, or can be constructed as a straightforward table, grid or matrix. An output or defuzzification stage converts the fuzzy variables to crisp output values that are applied as control values or signals to a control device, such as the rotor of a variable capacitor.
No one has previously considered employing fuzzy logic to the control the tuning of an impedance match network, and no one has previously appreciated that an application of fuzzy logic would resolve the three problems mentioned above.
OBJECTS AND SUMMARY OF THE INVENTION
It is an object of this invention to provide the scheme for controlling the tuning of an RF matching network that avoids the drawbacks of the prior art.
It is another object of this invention to provide automatic tuning of an RF matching network that avoids problems of single variable control of the tuning elements, “lost conditions” and non-linearity across the tuning range.
It is a further object to provide automatic tuning of the RF matching network which is fast and reliable, and which is easily implemented and adjusted.
According to an aspect of this invention, a fuzzy logic method is employed for tuning an RF matching network of the type having an input at which is applied RF power at a given frequency and at a given impedance, and an output which applies such power to an RF load having a non-constant impedance, such as an RF plasma chamber. The matching network has a phase-magnitude error detector providing a phase error signal and a magnitude error signal related respectively to the differences between nominal and actual input phase angle, i.e., Δφ and between nominal and actual impedance ΔZ. The matching network has at least a first variable impedance having a driven element for varying its impedance, and a second variable impedance having a driven element for varying its impedance. The fuzzy logic control technique involves the steps of supplying the phase and the magnitude error signals to a fuzzy logic controller, wherein each error signal has a magnitude and direction. Then the error signals are each applied to a fuzzy logic inference function based on membership in one or more fuzzy sets, which may be overlapping fuzzy sets. The value, i.e., the size and direction of each error signal enjoys membership in one, two, or more overlapping fuzzy sets. Fuzzy logic rules are applied to the phase and magnitude error signals according to the fuzzy sets for which said first and second error signals enjoy membership. A plurality of drive signal values are obtained, based on the fuzzy logic rules for each of the phase and magnitude error signals. The drive signal values are weighted according to respective fuzzy interference functions for which the error signals enjoy membership. Then the weighted drive signal values are combined to produce an output drive signal for the first variable impedance-device driven element. A similar process creates an output drive signal for the second variable impedance. According to the fuzzy logic rules, the phase and magnitude error signals are used jointly to obtain each of the output drive signals.
The fuzzy logic rules can be expressed as a matrix of N×M drive current values, where N is the number of fuzzy sets of said first error signal and M is the number of fuzzy sets of said second error signal. Here, to obtain each drive current value, there is a given set of rules applying the first error signal and the second error signal.
A fuzzy logic controller is provided according to another aspect of this invention for tuning an RF matching network, wherein the matching network is positioned between a source of applied RF power at a given frequency and at a given impedance, and an RF load, such as an RF plasma chamber, having a non-constant impedance. A phase-magnitude error detector produces a phase error signal and a magnitude error signal related respectively to the phase error and magnitude error in input impedance, as discussed earlier. The matching network also has at least a first variable impedance having a driven element for varying the impedance thereof and a second variable impedance having a driven element for varying the impedance thereof. The fuzzy logic controller has input means to receive the values of the phase and magnitude error signals. The controller applies these values of error signals to a fuzzy logic inference function based on a number of overlapping fuzzy sets. The values of error signals enjoy membership in one, two, or more overlapping fuzzy sets. Fuzzy logic rules are applied to the phase and magnitude error signals, with the rules depending on the fuzzy sets for which the error signals enjoy membership. Drive signal values are obtained according to the fuzzy logic rules for each fuzzy set for which the error signals enjoy membership. The drive signal values are weighted according to the respective fuzzy inference functions for the values of these error signals. Then the weighted drive signal values are combined to produce an output drive signal for the first variable impedance device driven element. Additional drive signal values are obtained based on additional fuzzy logic rules for each of the phase and magnitude error signals. Then these additional drive signal values are weighted according to additional respective fuzzy inference functions, and the weighted drive signal values are combined to produce an output drive signal for the second variable impedance device driven element.
The fuzzy logic controller quickly drives the turning elements to a matched impedance state, and avoids lost condition problems. The fuzzy logic controller can be implemented in hardware, or can be based on a programmed device such as a digital signal processor (DSP) or a microprocessor. The fuzzy logic controller function can operate in background, or can employ a separate hardware device to free the DSP for other functions such as signal processing, motor control, user interface, or other functions. A separate independent PC can be employed to carry out the fuzzy logic tuning.
Further enhancements in performance can be obtained by employing additional inputs. For example, tuning element positions can be used as inputs to linearize loop gain as a function of position. This can achieve higher overall loop gain and faster tuning speeds. A reduction or elimination of lost conditions can be achieved by using additional sensors, e.g., voltage and current at the RF plasma chamber, and then applying the detected levels as additional inputs to the fuzzy logic controller.
The improvements of this invention use fuzzy logic to provide a practical method to analyze multiple inputs and to produce signals which will drive multiple tuning elements. In a minimal system, the fuzzy controller inputs can consist of phase and magnitude errors, and the fuzzy outputs can consist of one or both of the drive signals for the tuning elements.
The invention can be easily extended to control of three or more variable tuning devices.
The above and many other objects, features, and advantages of this invention will become apparent from the ensuing description of a preferred embodiment, which is to be read in conjunction with the accompanying Drawing.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a system block diagram of an RF plasma process incorporating an impedance match net with a fuzzy logic control system according to one embodiment of this invention.
FIG. 2 is an enlarged schematic diagram of the match net and control system of this embodiment.
FIGS. 3 and 4 are charts of the fuzzy logic inference functions or membership functions with respect to the fuzzy sets of impedance magnitude error and phase angle error, respectively.
FIGS. 5A and 5B are fuzzy logic rule application matrices for first and second variable impedance tuning drive signals according to an embodiment of this invention.
FIGS. 6A and 6B are fuzzy logic rule application matrices for first and second variable impedance tuning drive signals according to another embodiment of this invention.
FIG. 7 illustrates a three-dimensional fuzzy logic rule application matrix that can be employed with additional embodiments of this invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
With reference to the Drawing figures, and initially to FIG. 1, an RF plasma processing system 10 is shown for purposes of example. A plasma generator 12 provides RF electrical power at a predetermined frequency, i.e., 13.56 MHz. The output of the generator 12 is followed by a harmonic/subharmonic filter 14, which is then followed by an impedance matching network 16, which supplies the electrical power through a voltage/current sensor system 18 to an input of a plasma chamber 20. The matching network 16 comprises a controllable impedance matching unit 22, with a phase/magnitude sensor 24 connected at its input. The sensor provides a phase error signal Δφ that is proportional to the difference between the nominal input impedance phase angle and the actual phase angle (φ-φo) of the impedance matching unit, and also provides a magnitude error signal ΔZ that is proportional to the difference between the nominal input impedance and actual input impedance (Z-Zo).
A fuzzy logic controller 26 has inputs to receive the phase error signal Δφ and to receive the magnitude error signal ΔZ, and respective control signal outputs CS1 and CS2 for controlling respective first and second variable impedance devices within the unit 22. An optional third control signal output CS3 is shown in ghost lines. Additional sensors 28 can optionally provide the fuzzy logic controller 26 with additional input signals, e.g., time rate of change of phase error. The fuzzy logic controller can be a separate unit, but may also be incorporated into the housing of the impedance matching network 16. The operating codes, including the fuzzy logic rule matrix and fuzzy logic inference function algorithm can be stored in a memory device (not shown) of the controller 26. This memory device can be a programmable read-only memory, such as an E-PROM, capable of storing downloaded program codes, and providing for revision of the codes to optimize the tuning of the matching network 16. It is also possible to employ a “fixed match” arrangement, and use the error signals Δφ and ΔZ to control the frequency of the plasma generator 12.
FIG. 2 shows details of the match net unit 22 and the fuzzy logic controller 26 from which the operation of this invention can be explained. The match net unit 22 includes a number of variable impedance devices for effecting tuning to establish an impedance match between the 50 ohms of the RF generator 12 and the unknown impedance of the RF plasma chamber 20. Besides the fixed impedances (not shown) there can be a first tuning capacitor C1 and a second capacitor C2. Optionally, there can also be a third tuning capacitor C3 and/or a tunable inductor L. The first and second tuning capacitors each have a tuning element motor M1 and M2, respectively. If additional tuning elements are desired, a third tuning element motor M3 can be provided for the third capacitor C3. Also, a motor (not shown) can be provided for the tuning slug of the tunable inductor L.
The fuzzy logic controller 26 here accomplishes three operations on the input signals, which are here shown as the phase error signal Δφ, the impedance magnitude error signal ΔZ, and any additional error signals, e.g., from other sensors 28. The error signals are first applied to a fuzzification stage 29, where the error signals are applied to respective fuzzy inference functions 30, 32, 34. These functions here are shown as sequences of overlapping triangular or trapezoidal ramp functions, and will be explained in detail shortly. Then, in a rule evaluation stage 35, predetermined rules are applied, depending on the fuzzy sets in the fuzzification stage 29 to which each of the error signals enjoys membership. These can be expressed as IF-AND-THEN logic statements, such as IF the phase error is negative and large, AND IF the magnitude error is positive and medium, THEN apply a positive large drive signal as CS1 and apply a negative medium drive signal as CS2. The rules for all combinations of fuzzy set memberships of phase error and magnitude error can be considered as a matrix of N×M rules, where N is the number of fuzzy sets of phase error and M is the number of fuzzy sets of magnitude error. The several drive signal values obtained in the rule elevation stage 35 are then converted to discrete drive signal values CS1, CS2, CS3, etc., in a defuzzification stage 37.
In the fuzzification stage 29, ramp-shaped membership functions, or fuzzy inference functions 32 and 30 are employed, as shown in FIGS. 3 and 4, respectively for the impedance magnitude error ΔZ, and for the phase error Δφ. These are overlapping functions, as shown, so that the respective error signal values are partly members of one fuzzy set and also partly members of an overlapping fuzzy set. In the example shown here in FIG. 3, the magnitude error ΔZ is of a positive value, and has a membership of 35% of zero error, and 65% positive medium error. At the same time, as shown in FIG. 4, the phase error Δφ has a negative value, and enjoys a 25% membership in the zero error fuzzy set and a 75% membership in the negative medium fuzzy set. These membership values are used for weighting and combining the respective drive signal values that are obtained according to the fuzzy rules application stage 35.
In the defuzzification stage 37, a weighting factor is applied to the drive signal values that are obtained, based on the conditions of magnitude error positive medium, phase error negative medium; magnitude error positive medium, phase error zero; magnitude error zero, phase error negative medium; and magnitude error zero, phase error zero (for the example in FIGS. 3 and 4). These are weighted according to their respective membership values, and are combined for each drive signal CS1, CS2, CS3, etc. This results in bringing each of the tuning devices quickly to a tuned condition, and accounts for the effect of each device on the phase error and magnitude error signals. The amount of movement for each tuning device also depends on the size and sign (positive or negative) of the phase and magnitude error. Thus, this system avoided the major pitfalls of prior art impedance match networks, as mentioned previously.
FIGS. 5A and 5B are matrices of typical fuzzy logic rules for a given impedance match network. Here, the notation used in the grid squares indicates the size and direction of motor current to be applied to the first tuning capacitor (FIG. 5A) and to be applied to the second tuning capacitor (FIG. 5B). These are PL—positive large; PM—positive medium; Ze—zero; NM—negative medium; and NL—negative large. The labels on the vertical and horizontal axes represent the fuzzy sets for the magnitude error and phase error, namely NL—negative large; NM—negative medium; Ze—zero; PM—positive medium; and PL—positive large. As is apparent, these matrices are somewhat asymmetric or unbalanced, as they have to account for the problems of non-linearity, cross-over, and lost conditions, as mentioned before. These matrices can be arrived at rather quickly by the process engineer, starting with orthogonal or symmetric matrices, where he drive current values depend on only one error signal. A pair of orthogonal matrices are shown in FIGS. 6A and 6B. Based on the engineer's experience and by making intuitive adjustments to the matrix, in particular at the conditions where cross-over and lost conditions may be likely to occur the process engineer can try modified rule sets against a synthetic load. By obtaining the results of the tuning algorithm the matrices can be changed incrementally, as need be, for each iteration. Within a reasonable number of trials, the process engineer will arrive at an optimal pair of rule set matrices, like those of FIGS. 5A and 5B.
The fuzzy logic tuning process of this invention achieves a good impedance match rapidly, without undue hunting and without encountering the problems noted above.
It is also possible to employ rule sets of three, or more, variables to control the impedance match net in a more complex environment. For example, FIG. 7 illustrates a possible rules matrix showing error signal variables along its three axes, namely, magnitude error, phase error, and time rate of change of phase error. Of course, there are many other possibilities, and the number of input variables is not limited to only three. To account for the differences in error signal that vary with tuning element position, the rotor positions of the tuning capacitors C1, C2, and C3 can be included as inputs to the fuzzy logic controller. Also, rather than overlapping fuzzy sets, as shown here, it is possible that at least some of the fuzzy sets not overlap, or that the variables enjoy membership in three or more fuzzy sets.
While the invention has been described above in respect to an embodiment of the invention, it should be understood that the invention is not limited to that precise embodiment. Rather, many modifications and variations will present themselves to persons skilled in the art without departure from the scope and spirit of the invention, which is defined in the appended claims.

Claims (33)

1. Fuzzy logic method of tuning an RF a radio frequency (RF) matching network of the type having an input at which is applied RF power at a given frequency and at a given impedance, and an output which applies said power to an RF load having a non-constant impedance, said matching network including a phase-magnitude error detector means providing a phase error signal and a magnitude error signal related respectively to impedance phase angle error and impedance magnitude error, and said matching network comprising at least a first variable impedance device having a driven element for varying the impedance thereof and a second variable impedance device having a driven element for varying the impedance thereof; the method comprising:
supplying said phase and said magnitude error signals to a fuzzy logic controller, wherein each of said error signal signals has a magnitude and direction, ;
applying each of said phase and magnitude error signal signals to a fuzzy logic inference function based on a number of overlapping fuzzy sets, and where the a value of each of said phase and magnitude error signal signals enjoys membership in one or more fuzzy sets;
applying fuzzy logic rules to said phase and magnitude error signals according to the said one or more fuzzy sets for which said first and second phase and magnitude error signals enjoy membership;
obtaining drive signal values based on said fuzzy logic rules for each of said phase and magnitude error signals;
weighting said drive signal values according to the respective one or more fuzzy sets inference functions for which said phase and magnitude error signals enjoy membership; and
combining said weighted drive signal values to produce an output drive signal for the the driven element of said first variable impedance device driven element .
2. Fuzzy logic method of tuning an RF matching network according to claim 1, further comprising:
obtaining additional drive signal values based on additional fuzzy logic rules for each of said first and second phase and magnitude error signals;
weighting said additional drive signal values according to additional respective fuzzy inference functions; and
combining such said weighted additional drive signal values to produce an output drive signal for the driven element of said second variable impedance device driven element .
3. Fuzzy logic method for tuning an RF matching network according to claim 2, wherein said fuzzy logic rules and said additional fuzzy logic rules comprise a matrix of N×M drive signal values, where N is the number of fuzzy sets of said phase error signal and M is the number of fuzzy sets of said magnitude error signal, and each of said drive signal value values and said additional drive signal values corresponds to a given set of said phase signal and a given set of said magnitude error signal.
4. Fuzzy logic method of tuning an RF matching network according to claim 1 wherein said number of overlapping fuzzy sets being are centered respectively about zero, a medium positive value, a medium negative value, a high positive value, and a high negative value.
5. A fuzzy logic controller for tuning an RF a radio frequency (RF) matching network, wherein said matching network is positioned between a source of applied RF power at a given frequency and at a given impedance, and an RF load having a non-constant impedance, said matching network including a phase-magnitude error detector means providing a phase error signal and a magnitude error signal related respectively to impedance phase angle error and impedance magnitude error, and said matching network comprising at least a first variable impedance device having a driven element for varying the impedance thereof and a second variable impedance device having a driven element for varying the impedance thereof; the fuzzy logic controller comprising:
an input means receiving values of said phase and magnitude error signals;
means for applying the values of said phase and magnitude error signals to a fuzzy logic inference function based on a number of overlapping fuzzy sets, and where a the values value of each of said phase and magnitude error signals enjoy membership in one or more fuzzy sets;
means for applying fuzzy logic rules to said phase and magnitude error signals according to fuzzy sets for which said error signals enjoy membership;
means for obtaining drive signal values according to said fuzzy logic rules for each set of said fuzzy sets for which said error signals enjoy membership;
means for weighting said drive signal values according to the respective fuzzy inference functions for the values of said phase and magnitude error signals; and
means for combining said weighted drive signal values to produce an output drive signal for said first variable impedance device driven element.
6. Fuzzy logic controller according to claim 5, further comprising:
means for obtaining additional drive signal values based on additional fuzzy logic rules for each of said phase and magnitude error signals;
means for weighting said additional drive signal values according to additional respective fuzzy inference functions; and
means for combining such said weighted additional drive signal values to produce an output drive signal for said second variable impedance device driven element.
7. Fuzzy logic method of tuning a tunable RF radio frequency (RF) device of the type having an input at which is applied RF power at a given frequency and at a given impedance, and an output, including an error detector means providing a first error signal and a second error signal, and said tunable RF means device including at least a first variable impedance device having a driven element for varying the impedance thereof and a second variable impedance device having a driven element for varying the impedance thereof; the method comprising:
supplying said first and said second error signals to a fuzzy logic controller, wherein each of said first and said second error signal signals has a magnitude and direction, :
applying each of said first and said second error signal signals to a fuzzy logic inference function based on a number of overlapping fuzzy sets, and generating a membership value that corresponds to the an amount of overlapping membership of the error signal value signals in one or more fuzzy sets;
applying a plurality of fuzzy logic rules to said first and second error signals according to the fuzzy sets for which said first and second error signals enjoy membership;
obtaining a plurality of drive signal values based on said plurality of fuzzy logic rules for each of said first and second error signals;
weighting said drive signal values according to the respective membership values for said first and second error signals; and
combining said weighted drive signal values to produce an output drive signal for said first variable impedance having said first variable impedance device driven element.
8. Fuzzy logic method of tuning a tunable RF device according to claim 7, further comprising:
obtaining a plurality of additional drive signal values based on additional fuzzy logic rules for each of said first and second error signals;
weighting said additional drive signal values according to a plurality of additional respective fuzzy inference functions; and
combining such weighted additional drive signal values to produce an output drive signal for said second variable impedance device driven element.
9. An electrical network comprising:
a radio frequency (RF) generator for generating an RF signal, the RF generator having a source impedance;
a load receiving the RF signal, the RF signal providing a driving energy to the load, the load having a variable load impedance;
a matching network interposed between the RF generator and the load, the matching network having a variable network impedance, the matching network detecting at least one of an impedance phase and an impedance magnitude error and generating at least one of a respective phase error signal and a magnitude error signal, the matching network varying at least one of the impedance phase and the impedance magnitude error in order to vary the network impedance;
a fuzzy inference module receiving the at least one of the respective phase and magnitude error signals and defining a membership value that varies in accordance with membership in at least one fuzzy set; and
a controller receiving the at least one respective phase error signal and magnitude error signal, the controller applying fuzzy logic rules to the at least one of the respective impedance phase error signal and the impedance magnitude error signal according to the fuzzy sets for which said error signals enjoy membership in order to generate at least one control signal to vary the network impedance, thereby matching the source impedance and the load impedance.
10. The network of claim 9 wherein the controller further comprises a rules module having a set of rules applied in accordance with the membership value, the rules module generating at least one fuzzy output.
11. The network of claim 10, wherein the controller further comprises a defuzzification module, the defuzzification module converting the at least one fuzzy output to the at least one control signal.
12. The network of claim 9 wherein the matching network further comprises at least one of a variable capacitance and a variable inductance.
13. The network of claim 9, wherein the matching network further comprises a circuit for varying the network impedance.
14. The network of claim 9 wherein the load is a RF plasma chamber.
15. An electrical network comprising:
a radio frequency (RF) generator for generating an RF signal, the RF generator having a source impedance;
a load receiving the RF signal, the RF signal providing a driving energy to the load, the load having a variable load impedance;
a matching network interposed between the RF generator and the load, the matching network having a variable network impedance, the matching network detecting at least one network parameter and generating at least one sensed signal, the matching network varying the network impedance in order to match the variable load impedance and the source impedance, wherein the at least one sensed signal comprises at least one of an impedance phase error signal and an impedance magnitude error signal;
a fuzzy inference module receiving the at least one sensed signal and defining a membership value that varies in accordance with membership in at least one fuzzy set; and
a controller receiving the at least one sensed signal, the controller applying fuzzy logic rules to the at least one sensed signal according to the fuzzy sets for which said phase and magnitude error signals enjoy membership in order to generate at least one control signal to vary the network impedance, thereby matching the source impedance and the load impedance.
16. The network of claim 15 wherein the controller further comprises a rules module having a set of rules applied in accordance with the membership value, the rules module generating at least one fuzzy output.
17. The network of claim 15 wherein the controller further comprises a defuzzification module, the defuzzification module converting at least one fuzzy output to the at least one control signal.
18. The network of claim 15 wherein the matching network includes at least one of a variable capacitance and a variable inductance.
19. The network of claim 15 wherein the matching network further comprises a circuit for varying the network inductance.
20. The network of claim 15 wherein the matching network further comprise a circuit for varying the network impedance.
21. The network of claim 15, wherein the load is a RF plasma chamber.
22. A method of tuning a radio frequency (RF) impedance matching network having an input which receives RF power and an output which applies the power to a RF load, the matching network having a variable impedance, comprising the steps of:
determining an impedance phase error and an impedance magnitude error and generating a corresponding phase error signal and a corresponding magnitude error signal;
applying the impedance phase and impedance magnitude errors to a fuzzy logic inference function, the phase and magnitude error signals each having at least one respective membership value in at least one fuzzy set; and
applying fuzzy logic rules to the impedance phase and impedance magnitude error signals according to the fuzzy sets for which said error signals enjoy membership to generate fuzzy output signals based upon the phase and the magnitude error signals and generating a control signal to adjust the variable impedance of the matching network.
23. The method of claim 22 wherein the step of applying fuzzy logic further comprises applying logic rules to the at least one respective membership value to generate at least one respective fuzzy output value.
24. The method of claim 22, wherein the step of applying logic rules further comprises the step of weighting at least one respective fuzzy output value according to the at least one respective membership value.
25. The method of claim 24 wherein the step of applying logic rules further comprises the step of combining said weighted at least one respective fuzzy output values to produce the control signal.
26. The method of claim 22, wherein the logic rules comprise a matrix of N×M fuzzy output values, where N is the number of fuzzy sets of a first sensed signal and M is the number of fuzzy sets of a second sensed signal, and each fuzzy output value corresponds to a predetermined set of the first sensed signal and a predetermined set of the second sensed signal.
27. The method of claim 22 wherein the at least one fuzzy set comprises a plurality of fuzzy sets centered respectively about zero, a medium positive value, a medium negative value, a high positive value, and a high negative value.
28. A method of tuning a radio frequency (RF) impedance matching network having an input which receives RF power and an output which applies the power to a RF load, the matching network having a variable impedance, comprising the steps of:
determining a network parameter and generating a corresponding sensed signal that varies in accordance with the network parameter;
applying the corresponding sensed signal to a fuzzy logic inference function, the corresponding sensed signal having at least one respective membership value in at least one fuzzy set; and
applying fuzzy logic rules to the corresponding sensed signal according to fuzzy sets for which said sensed signal enjoys membership;
generating fuzzy output signals based upon the corresponding sensed signal; and
generating a control signal to adjust the variable impedance of the matching network based upon the fuzzy output signals.
29. The method of claim 28 wherein the step of applying fuzzy logic rules further comprises applying logic rules to the at least one respective membership value to generate at least one respective fuzzy output value.
30. The method of claim 28, wherein the step of applying fuzzy logic rules further comprises the step of weighting at least one respective fuzzy output value according to the at least one respective membership value.
31. The method of claim 30 wherein the step of applying fuzzy logic rules further comprises the step of combining said weighted at least one respective fuzzy output value to produce the control signal.
32. The method of claim 28, wherein the fuzzy logic rules comprise a matrix of N×M fuzzy output values, where N is the number of fuzzy sets of the corresponding sensed signal and M is the number of fuzzy sets of a second sensed signal, and each fuzzy output value corresponds to a predetermined set of the sensed signal and a predetermined set of the second sensed signal.
33. The method of claim 28 wherein the at least one fuzzy set comprises a plurality of fuzzy sets centered respectively about zero, a medium positive value, a medium negative value, a high positive value, and a high negative value.
US09/712,596 1997-09-15 2000-11-14 Fuzzy logic tuning of RF matching network Expired - Lifetime USRE39051E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/712,596 USRE39051E1 (en) 1997-09-15 2000-11-14 Fuzzy logic tuning of RF matching network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/929,870 US5842154A (en) 1997-09-15 1997-09-15 Fuzzy logic tuning of RF matching network
US09/712,596 USRE39051E1 (en) 1997-09-15 2000-11-14 Fuzzy logic tuning of RF matching network

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/929,870 Reissue US5842154A (en) 1997-09-15 1997-09-15 Fuzzy logic tuning of RF matching network

Publications (1)

Publication Number Publication Date
USRE39051E1 true USRE39051E1 (en) 2006-03-28

Family

ID=25458602

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/929,870 Ceased US5842154A (en) 1997-09-15 1997-09-15 Fuzzy logic tuning of RF matching network
US09/712,596 Expired - Lifetime USRE39051E1 (en) 1997-09-15 2000-11-14 Fuzzy logic tuning of RF matching network

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/929,870 Ceased US5842154A (en) 1997-09-15 1997-09-15 Fuzzy logic tuning of RF matching network

Country Status (6)

Country Link
US (2) US5842154A (en)
EP (1) EP0902457A1 (en)
KR (1) KR19990029245A (en)
CN (1) CN1204685C (en)
IL (1) IL125157A0 (en)
TW (1) TW418594B (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040267678A1 (en) * 2003-06-30 2004-12-30 Gao Xiao M Fuzzy logic impedance mismatch network for DSL qualification
US7376535B1 (en) * 2006-10-12 2008-05-20 The United States Of America As Represented By The Secretary Of The Navy Wideband matching circuit and method of effectuating same
US20110005304A1 (en) * 2008-02-06 2011-01-13 Proxeon Biosystems A/S Flow control in high performance liquid chromatography
US20110214811A1 (en) * 2010-03-04 2011-09-08 Tokyo Electron Limited Automatic matching method, computer-readable storage medium, automatic matching unit, and plasma processing apparatus
US20150200079A1 (en) * 2014-01-10 2015-07-16 Reno Technologies, Inc. Rf impedance matching network
US9306533B1 (en) 2015-02-20 2016-04-05 Reno Technologies, Inc. RF impedance matching network
US9496122B1 (en) 2014-01-10 2016-11-15 Reno Technologies, Inc. Electronically variable capacitor and RF matching network incorporating same
US9525412B2 (en) 2015-02-18 2016-12-20 Reno Technologies, Inc. Switching circuit
US9697991B2 (en) 2014-01-10 2017-07-04 Reno Technologies, Inc. RF impedance matching network
US9729122B2 (en) 2015-02-18 2017-08-08 Reno Technologies, Inc. Switching circuit
US9755641B1 (en) 2014-01-10 2017-09-05 Reno Technologies, Inc. High speed high voltage switching circuit
US9844127B2 (en) 2014-01-10 2017-12-12 Reno Technologies, Inc. High voltage switching circuit
US9865432B1 (en) 2014-01-10 2018-01-09 Reno Technologies, Inc. RF impedance matching network
US10431428B2 (en) 2014-01-10 2019-10-01 Reno Technologies, Inc. System for providing variable capacitance
US10455729B2 (en) 2014-01-10 2019-10-22 Reno Technologies, Inc. Enclosure cooling system
US10483090B2 (en) 2017-07-10 2019-11-19 Reno Technologies, Inc. Restricted capacitor switching
US10714314B1 (en) 2017-07-10 2020-07-14 Reno Technologies, Inc. Impedance matching network and method
US10727029B2 (en) 2017-07-10 2020-07-28 Reno Technologies, Inc Impedance matching using independent capacitance and frequency control
US10984986B2 (en) 2015-06-29 2021-04-20 Reno Technologies, Inc. Impedance matching network and method
US11081316B2 (en) 2015-06-29 2021-08-03 Reno Technologies, Inc. Impedance matching network and method
US11101110B2 (en) 2017-07-10 2021-08-24 Reno Technologies, Inc. Impedance matching network and method
US11114280B2 (en) 2017-07-10 2021-09-07 Reno Technologies, Inc. Impedance matching with multi-level power setpoint
US11150283B2 (en) 2015-06-29 2021-10-19 Reno Technologies, Inc. Amplitude and phase detection circuit
US11289307B2 (en) 2017-07-10 2022-03-29 Reno Technologies, Inc. Impedance matching network and method
US11315758B2 (en) 2017-07-10 2022-04-26 Reno Technologies, Inc. Impedance matching using electronically variable capacitance and frequency considerations
US11335540B2 (en) 2015-06-29 2022-05-17 Reno Technologies, Inc. Impedance matching network and method
US11342160B2 (en) 2015-06-29 2022-05-24 Reno Technologies, Inc. Filter for impedance matching
US11342161B2 (en) 2015-06-29 2022-05-24 Reno Technologies, Inc. Switching circuit with voltage bias
US11393659B2 (en) 2017-07-10 2022-07-19 Reno Technologies, Inc. Impedance matching network and method
US11398370B2 (en) 2017-07-10 2022-07-26 Reno Technologies, Inc. Semiconductor manufacturing using artificial intelligence
US11476091B2 (en) 2017-07-10 2022-10-18 Reno Technologies, Inc. Impedance matching network for diagnosing plasma chamber
US11521831B2 (en) 2019-05-21 2022-12-06 Reno Technologies, Inc. Impedance matching network and method with reduced memory requirements
US11521833B2 (en) 2017-07-10 2022-12-06 Reno Technologies, Inc. Combined RF generator and RF solid-state matching network
US11631570B2 (en) 2015-02-18 2023-04-18 Reno Technologies, Inc. Switching circuit
US12119206B2 (en) 2015-02-18 2024-10-15 Asm America, Inc. Switching circuit

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842154A (en) 1997-09-15 1998-11-24 Eni Technologies, Inc. Fuzzy logic tuning of RF matching network
US5929717A (en) * 1998-01-09 1999-07-27 Lam Research Corporation Method of and apparatus for minimizing plasma instability in an RF processor
US6424232B1 (en) * 1999-11-30 2002-07-23 Advanced Energy's Voorhees Operations Method and apparatus for matching a variable load impedance with an RF power generator impedance
US6472822B1 (en) * 2000-04-28 2002-10-29 Applied Materials, Inc. Pulsed RF power delivery for plasma processing
US6868310B2 (en) * 2001-04-06 2005-03-15 Eni Technology, Inc. Predictive failure scheme for industrial thin films processing power delivery system
US7212078B2 (en) * 2003-02-25 2007-05-01 Tokyo Electron Limited Method and assembly for providing impedance matching network and network assembly
US6995545B2 (en) * 2003-08-18 2006-02-07 Mks Instruments, Inc. Control system for a sputtering system
JP3768999B2 (en) * 2003-10-29 2006-04-19 澄英 池之内 Plasma processing apparatus and control method thereof
US7157857B2 (en) * 2003-12-19 2007-01-02 Advanced Energy Industries, Inc. Stabilizing plasma and generator interactions
US7554334B2 (en) * 2006-09-28 2009-06-30 Applied Marterials, Inc. Matching network characterization using variable impedance analysis
US7777567B2 (en) 2007-01-25 2010-08-17 Mks Instruments, Inc. RF power amplifier stability network
CN101494947B (en) * 2008-01-23 2011-07-06 北京北方微电子基地设备工艺研究中心有限责任公司 Method for automatically matching radio frequency impedance
CN101626656B (en) * 2008-07-11 2012-10-31 北京北方微电子基地设备工艺研究中心有限责任公司 Radio frequency matching method and plasma processor
CN101640969B (en) * 2008-07-29 2012-09-05 北京北方微电子基地设备工艺研究中心有限责任公司 Matching method and plasma device applying same
US8674606B2 (en) * 2009-04-27 2014-03-18 Advanced Energy Industries, Inc. Detecting and preventing instabilities in plasma processes
JP5582823B2 (en) * 2010-02-26 2014-09-03 東京エレクトロン株式会社 Automatic alignment apparatus and plasma processing apparatus
US8294632B2 (en) * 2010-05-18 2012-10-23 Sony Ericsson Mobile Communications Ab Antenna interface circuits including tunable impedance matching networks, electronic devices incorporating the same, and methods of tuning antenna interface circuits
CN102573261B (en) * 2010-12-10 2014-07-16 北京北方微电子基地设备工艺研究中心有限责任公司 Radio frequency matching method and device, as well as plasma device
US8576013B2 (en) * 2011-12-29 2013-11-05 Mks Instruments, Inc. Power distortion-based servo control systems for frequency tuning RF power sources
CN103246216B (en) * 2013-04-02 2015-11-25 华为技术有限公司 The load mode switch method thereof of a kind of radio-frequency module and radio-frequency module
JP6312405B2 (en) * 2013-11-05 2018-04-18 東京エレクトロン株式会社 Plasma processing equipment
CN106291108B (en) 2015-05-29 2019-02-12 台达电子工业股份有限公司 The output impedance angle detecting device and detection method of inverter
US10879044B2 (en) * 2017-04-07 2020-12-29 Lam Research Corporation Auxiliary circuit in RF matching network for frequency tuning assisted dual-level pulsing
US11169231B2 (en) 2017-11-23 2021-11-09 Qonetec Ag NMR probe head with piezoelectric actuators
CN111699542B (en) 2017-11-29 2023-05-16 康姆艾德技术美国分公司 Retuning for impedance matching network control
US11527385B2 (en) 2021-04-29 2022-12-13 COMET Technologies USA, Inc. Systems and methods for calibrating capacitors of matching networks
US11114279B2 (en) 2019-06-28 2021-09-07 COMET Technologies USA, Inc. Arc suppression device for plasma processing equipment
US11107661B2 (en) 2019-07-09 2021-08-31 COMET Technologies USA, Inc. Hybrid matching network topology
US11596309B2 (en) 2019-07-09 2023-03-07 COMET Technologies USA, Inc. Hybrid matching network topology
KR20220053547A (en) 2019-08-28 2022-04-29 코멧 테크놀로지스 유에스에이, 인크. high power low frequency coils
US11670488B2 (en) 2020-01-10 2023-06-06 COMET Technologies USA, Inc. Fast arc detecting match network
US12027351B2 (en) 2020-01-10 2024-07-02 COMET Technologies USA, Inc. Plasma non-uniformity detection
US11830708B2 (en) 2020-01-10 2023-11-28 COMET Technologies USA, Inc. Inductive broad-band sensors for electromagnetic waves
US11521832B2 (en) 2020-01-10 2022-12-06 COMET Technologies USA, Inc. Uniformity control for radio frequency plasma processing systems
US11887820B2 (en) 2020-01-10 2024-01-30 COMET Technologies USA, Inc. Sector shunts for plasma-based wafer processing systems
US11961711B2 (en) 2020-01-20 2024-04-16 COMET Technologies USA, Inc. Radio frequency match network and generator
US11605527B2 (en) 2020-01-20 2023-03-14 COMET Technologies USA, Inc. Pulsing control match network
US11373844B2 (en) 2020-09-28 2022-06-28 COMET Technologies USA, Inc. Systems and methods for repetitive tuning of matching networks
TW202226899A (en) * 2020-12-22 2022-07-01 荷蘭商Asm Ip私人控股有限公司 Plasma treatment device having matching box
US12057296B2 (en) 2021-02-22 2024-08-06 COMET Technologies USA, Inc. Electromagnetic field sensing device
US11923175B2 (en) 2021-07-28 2024-03-05 COMET Technologies USA, Inc. Systems and methods for variable gain tuning of matching networks
WO2023167854A1 (en) * 2022-03-03 2023-09-07 COMET Technologies USA, Inc. Retuning for impedance matching network control
US12040139B2 (en) 2022-05-09 2024-07-16 COMET Technologies USA, Inc. Variable capacitor with linear impedance and high voltage breakdown
US11657980B1 (en) 2022-05-09 2023-05-23 COMET Technologies USA, Inc. Dielectric fluid variable capacitor
US20240012370A1 (en) * 2022-06-30 2024-01-11 Advanced Energy Industries, Inc. Adaptive fuzzy controller
US12051549B2 (en) 2022-08-02 2024-07-30 COMET Technologies USA, Inc. Coaxial variable capacitor
US12132435B2 (en) 2022-10-27 2024-10-29 COMET Technologies USA, Inc. Method for repeatable stepper motor homing

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375051A (en) * 1981-02-19 1983-02-22 The Perkin-Elmer Corporation Automatic impedance matching between source and load
US4485360A (en) * 1982-07-16 1984-11-27 Cincinnati Electronics Corporation Apparatus for and method of impedance matching
US4621242A (en) * 1984-03-19 1986-11-04 The Perkin-Elmer Corporation R.F. impedance match control system
US4864490A (en) * 1986-04-11 1989-09-05 Mitsubishi Denki Kabushiki Kaisha Auto-tuning controller using fuzzy reasoning to obtain optimum control parameters
US4951009A (en) * 1989-08-11 1990-08-21 Applied Materials, Inc. Tuning method and control system for automatic matching network
US5053725A (en) * 1989-07-18 1991-10-01 Leybold Ag Circuit configuration for the automatic tuning of a matching network
US5187454A (en) * 1992-01-23 1993-02-16 Applied Materials, Inc. Electronically tuned matching network using predictor-corrector control system
US5195045A (en) * 1991-02-27 1993-03-16 Astec America, Inc. Automatic impedance matching apparatus and method
US5424691A (en) * 1994-02-03 1995-06-13 Sadinsky; Samuel Apparatus and method for electronically controlled admittance matching network
US5497063A (en) * 1993-09-16 1996-03-05 Allen-Bradley Company, Inc. Fuzzy logic servo controller
DE19521387A1 (en) * 1995-06-13 1996-12-19 Leybold Ag Matching or adaptor network tuning method e.g. for HF plasma generation
US5654679A (en) * 1996-06-13 1997-08-05 Rf Power Products, Inc. Apparatus for matching a variable load impedance with an RF power generator impedance
US5805649A (en) * 1994-07-01 1998-09-08 Sgs-Thomsom Microelectronics S.R.L. Phase-lock loop circuit with fuzzy control
US5842154A (en) 1997-09-15 1998-11-24 Eni Technologies, Inc. Fuzzy logic tuning of RF matching network
US5889252A (en) * 1996-12-19 1999-03-30 Lam Research Corporation Method of and apparatus for independently controlling electric parameters of an impedance matching network
US5982099A (en) * 1996-03-29 1999-11-09 Lam Research Corporation Method of and apparatus for igniting a plasma in an r.f. plasma processor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221020A (en) * 1983-05-30 1984-12-12 Ulvac Corp Impedance matching circuit in device utilizing plasma
US4557819A (en) * 1984-07-20 1985-12-10 Varian Associates, Inc. System for igniting and controlling a wafer processing plasma
JPS61206322A (en) * 1985-03-11 1986-09-12 Fujitsu Ltd Antenna impedance matching circuit
JPH0710041B2 (en) * 1986-11-10 1995-02-01 株式会社ダイヘン Automatic impedance matching device
JPS63279609A (en) * 1987-05-11 1988-11-16 Shindengen Electric Mfg Co Ltd Automatic matching device for rf generator
US5468602A (en) * 1993-11-10 1995-11-21 Konica Corporation Method for producing silver halide photographic light-sensitive material

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375051A (en) * 1981-02-19 1983-02-22 The Perkin-Elmer Corporation Automatic impedance matching between source and load
US4485360A (en) * 1982-07-16 1984-11-27 Cincinnati Electronics Corporation Apparatus for and method of impedance matching
US4621242A (en) * 1984-03-19 1986-11-04 The Perkin-Elmer Corporation R.F. impedance match control system
US4864490A (en) * 1986-04-11 1989-09-05 Mitsubishi Denki Kabushiki Kaisha Auto-tuning controller using fuzzy reasoning to obtain optimum control parameters
US5053725A (en) * 1989-07-18 1991-10-01 Leybold Ag Circuit configuration for the automatic tuning of a matching network
US4951009A (en) * 1989-08-11 1990-08-21 Applied Materials, Inc. Tuning method and control system for automatic matching network
US5195045A (en) * 1991-02-27 1993-03-16 Astec America, Inc. Automatic impedance matching apparatus and method
US5187454A (en) * 1992-01-23 1993-02-16 Applied Materials, Inc. Electronically tuned matching network using predictor-corrector control system
US5497063A (en) * 1993-09-16 1996-03-05 Allen-Bradley Company, Inc. Fuzzy logic servo controller
US5424691A (en) * 1994-02-03 1995-06-13 Sadinsky; Samuel Apparatus and method for electronically controlled admittance matching network
US5805649A (en) * 1994-07-01 1998-09-08 Sgs-Thomsom Microelectronics S.R.L. Phase-lock loop circuit with fuzzy control
DE19521387A1 (en) * 1995-06-13 1996-12-19 Leybold Ag Matching or adaptor network tuning method e.g. for HF plasma generation
US5982099A (en) * 1996-03-29 1999-11-09 Lam Research Corporation Method of and apparatus for igniting a plasma in an r.f. plasma processor
US5654679A (en) * 1996-06-13 1997-08-05 Rf Power Products, Inc. Apparatus for matching a variable load impedance with an RF power generator impedance
US5889252A (en) * 1996-12-19 1999-03-30 Lam Research Corporation Method of and apparatus for independently controlling electric parameters of an impedance matching network
US5842154A (en) 1997-09-15 1998-11-24 Eni Technologies, Inc. Fuzzy logic tuning of RF matching network

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Bannatyne, Ross, "Fuzzy Logic-A new approach to Embedded Control Solutions", Semiconductor Design Concept, 1992, pp. 1-4, (no month).
Bannatyne, Ross, Fuzzy Logic-A New Approach to Embedded Control Solutions, Motorola Ltd., East Kilbride, Scotland, 1992. *
Fuzzy Logic and the Neuron Chip, Motorola Semiconductor Technical Data, pp. AL-55-AL-73, (no date).
Gesche et al., Translation of German Patent Document DE 195 21 387 A1, Dec. 19, 1996. *

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040267678A1 (en) * 2003-06-30 2004-12-30 Gao Xiao M Fuzzy logic impedance mismatch network for DSL qualification
US7376535B1 (en) * 2006-10-12 2008-05-20 The United States Of America As Represented By The Secretary Of The Navy Wideband matching circuit and method of effectuating same
US9370729B2 (en) * 2008-02-06 2016-06-21 Proxeon Biosystems A/S Flow control in high performance liquid chromatography
US20110005304A1 (en) * 2008-02-06 2011-01-13 Proxeon Biosystems A/S Flow control in high performance liquid chromatography
US10175210B2 (en) 2008-02-06 2019-01-08 Proxeon Biosystems A/S Flow control in high performance liquid chromatography
US20110214811A1 (en) * 2010-03-04 2011-09-08 Tokyo Electron Limited Automatic matching method, computer-readable storage medium, automatic matching unit, and plasma processing apparatus
US9011636B2 (en) * 2010-03-04 2015-04-21 Tokyo Electron Limited Automatic matching method, computer-readable storage medium, automatic matching unit, and plasma processing apparatus
US10455729B2 (en) 2014-01-10 2019-10-22 Reno Technologies, Inc. Enclosure cooling system
US9755641B1 (en) 2014-01-10 2017-09-05 Reno Technologies, Inc. High speed high voltage switching circuit
US9496122B1 (en) 2014-01-10 2016-11-15 Reno Technologies, Inc. Electronically variable capacitor and RF matching network incorporating same
US11195698B2 (en) 2014-01-10 2021-12-07 Reno Technologies, Inc. RF impedance matching circuit and systems and methods incorporating same
US20150200079A1 (en) * 2014-01-10 2015-07-16 Reno Technologies, Inc. Rf impedance matching network
US9697991B2 (en) 2014-01-10 2017-07-04 Reno Technologies, Inc. RF impedance matching network
US10707057B2 (en) 2014-01-10 2020-07-07 Reno Technologies, Inc. RF impedance matching circuit and systems and methods incorporating same
US11189466B2 (en) 2014-01-10 2021-11-30 Reno Technologies, Inc. High voltage switching circuit
US9844127B2 (en) 2014-01-10 2017-12-12 Reno Technologies, Inc. High voltage switching circuit
US9865432B1 (en) 2014-01-10 2018-01-09 Reno Technologies, Inc. RF impedance matching network
US10026594B2 (en) 2014-01-10 2018-07-17 Reno Technologies, Inc. RF impedance matching network
US9196459B2 (en) * 2014-01-10 2015-11-24 Reno Technologies, Inc. RF impedance matching network
US10460912B2 (en) 2014-01-10 2019-10-29 Reno Technologies, Inc. RF impedance matching circuit and systems and methods incorporating same
US10431428B2 (en) 2014-01-10 2019-10-01 Reno Technologies, Inc. System for providing variable capacitance
US9729122B2 (en) 2015-02-18 2017-08-08 Reno Technologies, Inc. Switching circuit
US10217608B2 (en) 2015-02-18 2019-02-26 Reno Technologies, Inc. Switching circuit for RF currents
US12119206B2 (en) 2015-02-18 2024-10-15 Asm America, Inc. Switching circuit
US11631570B2 (en) 2015-02-18 2023-04-18 Reno Technologies, Inc. Switching circuit
US9525412B2 (en) 2015-02-18 2016-12-20 Reno Technologies, Inc. Switching circuit
US9306533B1 (en) 2015-02-20 2016-04-05 Reno Technologies, Inc. RF impedance matching network
US9584090B2 (en) 2015-02-20 2017-02-28 Reno Technologies, Inc. RF impedance matching network
US11342160B2 (en) 2015-06-29 2022-05-24 Reno Technologies, Inc. Filter for impedance matching
US10984986B2 (en) 2015-06-29 2021-04-20 Reno Technologies, Inc. Impedance matching network and method
US11081316B2 (en) 2015-06-29 2021-08-03 Reno Technologies, Inc. Impedance matching network and method
US11342161B2 (en) 2015-06-29 2022-05-24 Reno Technologies, Inc. Switching circuit with voltage bias
US11335540B2 (en) 2015-06-29 2022-05-17 Reno Technologies, Inc. Impedance matching network and method
US11150283B2 (en) 2015-06-29 2021-10-19 Reno Technologies, Inc. Amplitude and phase detection circuit
US10741364B1 (en) 2017-07-10 2020-08-11 Reno Technologies, Inc. Impedance matching network and method
US11398370B2 (en) 2017-07-10 2022-07-26 Reno Technologies, Inc. Semiconductor manufacturing using artificial intelligence
US11264210B2 (en) 2017-07-10 2022-03-01 Reno Technologies, Inc. Impedance matching network and method
US11289307B2 (en) 2017-07-10 2022-03-29 Reno Technologies, Inc. Impedance matching network and method
US11315758B2 (en) 2017-07-10 2022-04-26 Reno Technologies, Inc. Impedance matching using electronically variable capacitance and frequency considerations
US11114280B2 (en) 2017-07-10 2021-09-07 Reno Technologies, Inc. Impedance matching with multi-level power setpoint
US10720309B1 (en) 2017-07-10 2020-07-21 Reno Technologies, Inc. Impedance matching network and method
US11101110B2 (en) 2017-07-10 2021-08-24 Reno Technologies, Inc. Impedance matching network and method
US11393659B2 (en) 2017-07-10 2022-07-19 Reno Technologies, Inc. Impedance matching network and method
US10727029B2 (en) 2017-07-10 2020-07-28 Reno Technologies, Inc Impedance matching using independent capacitance and frequency control
US11476091B2 (en) 2017-07-10 2022-10-18 Reno Technologies, Inc. Impedance matching network for diagnosing plasma chamber
US10483090B2 (en) 2017-07-10 2019-11-19 Reno Technologies, Inc. Restricted capacitor switching
US11521833B2 (en) 2017-07-10 2022-12-06 Reno Technologies, Inc. Combined RF generator and RF solid-state matching network
US11948775B2 (en) 2017-07-10 2024-04-02 Asm America, Inc. Combined RF generator and RF solid-state matching network
US11557461B2 (en) 2017-07-10 2023-01-17 Reno Technologies, Inc. Impedance matching network
US10714314B1 (en) 2017-07-10 2020-07-14 Reno Technologies, Inc. Impedance matching network and method
US11538662B2 (en) 2019-05-21 2022-12-27 Reno Technologies, Inc. Impedance matching network and method with reduced memory requirements
US11521831B2 (en) 2019-05-21 2022-12-06 Reno Technologies, Inc. Impedance matching network and method with reduced memory requirements

Also Published As

Publication number Publication date
CN1204685C (en) 2005-06-01
TW418594B (en) 2001-01-11
EP0902457A1 (en) 1999-03-17
CN1215284A (en) 1999-04-28
KR19990029245A (en) 1999-04-26
US5842154A (en) 1998-11-24
IL125157A0 (en) 1999-01-26

Similar Documents

Publication Publication Date Title
USRE39051E1 (en) Fuzzy logic tuning of RF matching network
El-Metwally et al. Fuzzy logic power system stabiliser
US4201960A (en) Method for automatically matching a radio frequency transmitter to an antenna
KR100362598B1 (en) Electrically tuned matching network using predictor-corrector control systems
JP4531133B2 (en) High frequency field supply method and apparatus using reactive impedance control of matching network
KR100429930B1 (en) Method and apparatus for matching a variable load impedance with an rf power generator impedance
EP0509733A2 (en) Radio-frequency power amplifier device
TWI444110B (en) Plasma reactor with rf generator and automatic impedance match with minimum reflected power-seeking control
KR20090064390A (en) Apparatus and method for switching between matching impedances
JPS60211517A (en) High frequency impedance matching controller
Shahriar et al. Design of multi-objective UPFC employing backtracking search algorithm for enhancement of power system stability
Lee et al. A brushless DC motor speed control system using fuzzy rules
US5990712A (en) Harmonic generator
De Azevedo et al. A fuzzy logic controller for DC motor position control
Porto et al. Multivariable automatic compensation method for inductive power transfer system
JPWO2020247138A5 (en)
US6338052B1 (en) Method for optimizing matching network of semiconductor process apparatus
CN110995045A (en) Inverter system with low-pass filter and improved control method thereof
JPH0457406A (en) Phase shift circuit for rf generator
JPH04196903A (en) Power unit for microwave oscillator
JP2005286853A (en) Impedance automatic matching method, impedance matching apparatus adopting the same, and high frequency generator or receiver with built-in impedance matching circuit
McDonald Power gain of a SQUID amplifier
Sujitha et al. ANFIS based Vibration Monitoring System for Agriculture Pumping System with Fuzzy Logic Inference
Leoni et al. Active filters tuning interface
US2901614A (en) Coarse frequency discriminator

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: MKS INSTRUMENTS, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:ENI TECHNOLOGY, INC.;REEL/FRAME:018917/0392

Effective date: 20051214

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:MKS INSTRUMENTS, INC.;NEWPORT CORPORATION;REEL/FRAME:038663/0265

Effective date: 20160429

Owner name: BARCLAYS BANK PLC, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:MKS INSTRUMENTS, INC.;NEWPORT CORPORATION;REEL/FRAME:038663/0139

Effective date: 20160429

AS Assignment

Owner name: BARCLAYS BANK PLC, AS COLLATERAL AGENT, NEW YORK

Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNORS:ELECTRO SCIENTIFIC INDUSTRIES, INC.;MKS INSTRUMENTS, INC.;NEWPORT CORPORATION;REEL/FRAME:048211/0312

Effective date: 20190201

Owner name: NEWPORT CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:048226/0095

Effective date: 20190201

Owner name: MKS INSTRUMENTS, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:048226/0095

Effective date: 20190201

AS Assignment

Owner name: BARCLAYS BANK PLC, AS COLLATERAL AGENT, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE U.S. PATENT NO.7,919,646 PREVIOUSLY RECORDED ON REEL 048211 FRAME 0312. ASSIGNOR(S) HEREBY CONFIRMS THE PATENT SECURITY AGREEMENT (ABL);ASSIGNORS:ELECTRO SCIENTIFIC INDUSTRIES, INC.;MKS INSTRUMENTS, INC.;NEWPORT CORPORATION;REEL/FRAME:055668/0687

Effective date: 20190201

AS Assignment

Owner name: ELECTRO SCIENTIFIC INDUSTRIES, INC., OREGON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:063009/0001

Effective date: 20220817

Owner name: NEWPORT CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:063009/0001

Effective date: 20220817

Owner name: MKS INSTRUMENTS, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:063009/0001

Effective date: 20220817

Owner name: ELECTRO SCIENTIFIC INDUSTRIES, INC., OREGON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:062739/0001

Effective date: 20220817

Owner name: NEWPORT CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:062739/0001

Effective date: 20220817

Owner name: MKS INSTRUMENTS, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:062739/0001

Effective date: 20220817