USRE38146E1 - Method and apparatus for bilateral intra-aortic bypass - Google Patents
Method and apparatus for bilateral intra-aortic bypass Download PDFInfo
- Publication number
- USRE38146E1 USRE38146E1 US09/186,589 US18658998A USRE38146E US RE38146 E1 USRE38146 E1 US RE38146E1 US 18658998 A US18658998 A US 18658998A US RE38146 E USRE38146 E US RE38146E
- Authority
- US
- United States
- Prior art keywords
- tubular members
- tube
- bypass graft
- bilateral
- expandable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002146 bilateral effect Effects 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title abstract description 19
- 210000000709 aorta Anatomy 0.000 claims abstract description 84
- 208000002223 abdominal aortic aneurysm Diseases 0.000 claims abstract description 44
- 208000007474 aortic aneurysm Diseases 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims description 85
- 239000004033 plastic Substances 0.000 claims description 58
- 229920003023 plastic Polymers 0.000 claims description 58
- 206010002329 Aneurysm Diseases 0.000 claims description 28
- 210000003090 iliac artery Anatomy 0.000 claims description 23
- -1 polytetrafluoroethylene Polymers 0.000 claims description 14
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 13
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 13
- 229920002635 polyurethane Polymers 0.000 claims description 12
- 239000004814 polyurethane Substances 0.000 claims description 12
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 claims description 10
- 229920001296 polysiloxane Polymers 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 8
- 230000008439 repair process Effects 0.000 claims description 7
- 230000003187 abdominal effect Effects 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- 238000001356 surgical procedure Methods 0.000 description 16
- 208000007536 Thrombosis Diseases 0.000 description 12
- 238000010276 construction Methods 0.000 description 9
- 229920004934 Dacron® Polymers 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 208000017667 Chronic Disease Diseases 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 210000001015 abdomen Anatomy 0.000 description 4
- 210000000115 thoracic cavity Anatomy 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 3
- 210000000038 chest Anatomy 0.000 description 3
- 210000001105 femoral artery Anatomy 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 210000000702 aorta abdominal Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 208000017169 kidney disease Diseases 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 208000034657 Convalescence Diseases 0.000 description 1
- 208000002251 Dissecting Aneurysm Diseases 0.000 description 1
- 208000008952 Iliac Aneurysm Diseases 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 210000003815 abdominal wall Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 210000003689 pubic bone Anatomy 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 210000002254 renal artery Anatomy 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000002151 serous membrane Anatomy 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/954—Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/072—Encapsulated stents, e.g. wire or whole stent embedded in lining
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/075—Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0034—D-shaped
Definitions
- the invention relates to a bilateral intra-aortic bypass graft for intraluminal delivery, and a method and apparatus for repairing an abdominal aortic aneurysm.
- An abdominal aortic aneurysm is a sac caused by an abnormal dilation of the wall of the aorta, a major artery of the body, as it passes through the abdomen.
- the abdomen is that portion of the body which lies between the thorax and the pelvis. It contains a cavity, known as the abdominal cavity, separated by the diaphragm from the thoracic cavity and lined with a serous membrane, the peritoneum.
- the aorta is the :main trunk, or artery, from which the systemic arterial system proceeds. It arises from the left ventricle of the heart, passes upward, bends over and passes down through the thorax and through the abdomen to about the level of the fourth lumbar vertebra, where it divides into the two common iliac arteries.
- the aneurysm usually arises in the infrarenal portion of the arteriosclerotically diseased aorta, for example, below the kidneys. When left untreated, the aneurysm will eventually cause rupture of the sac with ensuing fatal hemorrhaging in a very short time. High mortality associated with the rupture has led to the present state of the art and the transabdominal surgical repair of abdominal aortic aneurysms. Surgery involving the abdominal wall, however, is a major undertaking with associated high risks.
- a prosthetic device typically is a synthetic tube, or graft, usually fabricated of either DACRON®, TEFLON®, or other suitable material.
- aorta To perform the surgical procedure, requires exposure of the aorta through an abdominal incision, which can extend from the rib cage to the pubis.
- the aorta must be closed both above and below the aneurysm, so that the aneurysm can then be opened and the thrombus, or blood clot, and arteriosclerotic debris removed.
- Small arterial branches from the back wall of the aorta are tied off.
- the DACRON® tube, or graft of approximately the same size of the normal aorta, is sutured in place, thereby replacing the aneurysm. Blood flow is then reestablished through the graft. It is necessary to move the intestines in order to get to the back wall of the abdomen prior to clamping off the aorta.
- the survival rate of treated patients is markedly higher than if the surgery is performed after the aneurysm ruptures, although the mortality rate is still quite high. If the surgery is performed prior to the aneurysm rupturing, the mortality rate is typically less than 5%. Conventional surgery performed after the rupture of the aneurysm is significantly higher, one study reporting a mortality rate of 66.7%. Although abdominal aortic aneurysms can be detected from routine examinations, the patient does not experience any pain from the condition. Thus, if the patient is not receiving routine examinations, it is possible that the aneurysm will progress to the rupture stage, wherein the mortality rates are significantly higher.
- a patient can expect to spend form 1 to 2 weeks in the hospital after the surgery, a major portion of which is spent in the intensive care unit, and a convalescence period at home from 2 to 3 months, particularly if the patient has other illness such as heart, lung, liver, and/or kidney disease, in which case the hospital stay is also lengthened. Since the graft must be secured, or sutured, to the remaining portion of the aorta, it is many times difficult to perform the suturing step because of thrombosis present on the remaining portion of the aorta, and that remaining portion of the aorta wall may many times be friable, or easily crumbled.
- the new graft does not have the benefit of the previously existing thrombosis therein, which could be utilized to support and reinforce the graft, were the graft to be able to be inserted within the existing thrombosis.
- many patients having abdominal aortic aneurysms have other chronic illnesses, such as heart, lung, liver and/or kidney disease, coupled with the fact that many of these patients are older, the average age being approximately 67 years old, these patients are not ideal candidates for such surgery, which is considered major surgery. Such patients have difficulties in surviving the operation.
- a bilateral intra-aortic bypass graft for intraluminal delivery, and method and apparatus for repairing an abdominal aortic aneurysm which is believed to: not have a high morbidity and mortality rate; does not require an abdominal incision and general anesthesia; not require an extended recovery period; not require suturing the graft to the remaining aortic wall; permit the existing aortic wall and thrombosis therein to be retained to reinforce and support the aortic graft; be suitable for patients having other chronic illnesses; be less susceptible to kinking and/or twisting of the graft and permit the use of a smaller diameter delivery system.
- the method for repairing an abdominal aortic aneurysm in an aorta having two iliac arteries associated therewith may include the steps of: connecting a first tube to a first expandable and deformable, tubular member; connecting a second tube to a second expandable and deformable, tubular member; disposing the first tube and first tubular member upon a first catheter, disposing the second tube and second tubular member upon a second catheter, each catheter having an expandable, inflatable portion with the tubular members disposed upon the expandable, inflatable portions; intraluminally delivering the first and second tubes, tubular members, and catheters to the aorta and disposing at least a portion of each tube within the abdominal aortic aneurysm; and expanding the expandable, inflatable portion of each catheter to expand and deform the tubular members to force the tubular members radially outwardly into contact with the
- Another feature of the present invention may include the step of simultaneously expanding the expandable, inflatable portions of each catheter.
- the first and second tubes may each have first and second ends, the first end of each tube being connected to a tubular member and being disposed within the aorta; and the second end of the first tube may be disposed within one of the iliac arteries, and the second end of the second end may be disposed within the other iliac artery.
- a further feature of the present invention is that a third expandable and deformable, tubular member may be connected to the second end of the first tube; a fourth expandable and deformable, tubular member may be connected to the second end of the second tube; and the third and fourth tubular members are expanded and deformed to force the third and fourth tubular members radially outwardly into contact with an iliac artery by the expansion of the expandable, inflatable portion of each catheter associated with each tube.
- Another feature of the present invention may include the steps of forming each tube of a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, by aligning the plurality of tubular members with their longitudinal axes being substantially parallel with other, each tubular member being detached, and spaced apart, from adjacent tubular members; and embedding the plurality of tubular members within a layer of deformable; and expandable plastic material.
- the plastic material may be silicone, or polytetrafluoroethylene, expanded polytetrafluoroethylene, or expanded polyurethane.
- An additional feature of the present invention may include the step of simultaneously expanding the expandable, inflatable portion of each catheter to simultaneously expand and deform the first and second tubular members and the plurality of tubular members of each tube which are embedded in the deformable and expandable plastic material.
- a further feature of the present invention may include the step of connecting the first and second tubular members to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the deformable and expandable plastic material of the tube to which it is to be connected.
- a further feature of the present invention may include the steps of: disposing a fifth expandable and deformable tubular member upon a third catheter having an expandable, inflatable portion, with the fifth tubular member being disposed upon the expandable, inflatable portion; intraluminally delivering the fifth tubular member and third catheter to the aorta; expanding the expandable, inflatable portion of the third catheter to expand and deform the fifth tubular member to force the third tubular member radially outwardly into a connect with the aorta to secure the fifth tubular member within the aorta; the foregoing steps being conducted prior to the intraluminal delivery of the first and second tubes, tubular members, and catheters, whereupon the simultaneous expansion of the expandable, inflatable portions of the first and second catheters, the first and second tubular members are expanded and deformed radially outwardly into connect with the fifth tubular member and each other, to secure the first and second tubular members within the aorta and within the fifth tubular member.
- An additional feature of the present invention may include the steps of forming each tube of a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, by aligning the plurality of tubular members with their longitudinal axes being substantially parallel with other, each tubular member being spaced apart from adjacent tubular members with a single, flexible connector member being disposed between adjacent tubular members; and embedding the plurality of tubular members within a layer of deformable and expandable plastic material.
- the foregoing advantages have also been achieved through the present bilateral intra-aortic bypass graft for intraluminal delivery to repair an abdominal aortic aneurysm in an aorta having two iliac arteries associated therewith.
- This aspect of the present invention includes: a first tube having first and second ends and a wall surface disposed between the two ends, at least a portion of the first tube adapted to be disposed within the abdominal aortic aneurysm; a second tube having first and second ends and a wall surface disposed between the two ends, at least a portion of the second tube adapted to be disposed within the abdominal aortic aneurysm; and means for securing the first ends of the first and second tubes to the aorta, the securing means including first and second tubular members, each tubular member having first and second ends, the first tube being connected to the first tubular member and the second tube being connected to the second tubular member, the tubular members having a first diameter which permits intraluminal delivery of the tubular members and tubes into the aorta and the tubular members having a second, expanded and deformed diameter, with at least a portion of the first and second tubular members in an abutting relationship, upon the application from the interior of the tubular members
- Another feature of the present invention is that at least a portion of the first and second tubes are in an abutting relationship with each other when the first and second tubular members have their second, expanded and deformed diameter.
- An additional feature of the present invention is that a third expandable and deformable tubular member may be connected to the second end of the first tube; a fourth expandable and deformable tubular member may be connected to the second end of the second tube; and the third and fourth tubular members may be expanded and deformed to force the third and fourth tubular members radially outwardly into contact with an iliac artery by the expansion of the expandable, inflatable portion of each catheter associated with each tube.
- each tube may be formed on a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other, each tubular member being detached, and spaced apart, from adjacent tubular members; and the plurality of tubular members may be embedded with a layer of a deformable and expandable plastic material.
- the plastic material may be silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, or expanded polyurethane.
- first and second tubular members may be connected to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the deformable and expandable plastic of the tube to which it is to be connected.
- each tube may be formed of a plurality of expandable, and deformable tubular members, each tubular member having a longitudinal axis with a plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other; each tubular member being spaced apart from adjacent tubular members with a single, flexible connector member being disposed between adjacent tubular members; and the plurality of tubular members may be embedded within a layer of a deformable and expandable material.
- the first and second tubular members may be connected to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the deformable and expandable plastic material of the tube to which it is to be connected.
- the present invention includes: first and second tubes, each tube having first and second ends and a wall surface disposed between the two ends; first and second expandable and deformable tubular members, each expandable and deformable tubular members having first and second ends and a smooth outer wall surface disposed between the first and second ends, the first end of a tube being secured to a second end of a tubular member, the expansion and deformation of the tubular members being controllable; and two catheters, each catheter having an expandable, inflatable portion associated therewith, the tubular members being releasably mounted upon the inflatable portion of each catheter, whereby upon inflation of the expandable, inflatable portion of each catheter, the tubular members are forced radially and outwardly into contact with the aorta and each other to remain secured thereto, whereby the tubes, secured to the tub
- each tube may be formed of a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other, each tubular member being detached, and spaced apart, from adjacent tubular members; and the plurality of tubular members may be embedded within a layer of a deformable and expandable plastic material.
- the expandable, inflatable portion of each catheter may extend along a portion of the length of each catheter a distance greater than the combined length of each tube and tubular member, whereby upon expansion and inflation of each expandable, inflatable portion of each catheter, each tubular member and its connected tube are simultaneously expanded.
- the bilateral intra-aortic bypass graft for intraluminal delivery, and method and apparatus for repairing an abdominal aortic aneurysm of the present invention when compared to previously proposed prior art grafts and methods and apparatus for repairing aneurysms, are believed to have the advantages of: a lower mortality rate; shortened recovery periods; not requiring suturing a graft to the aorta; utilizing the existing aortic wall and thrombosis therein to support and reinforce the aortic graft; being suitable for use with patients having other chronic illnesses; being less susceptible to kinking and/or twisting of the graft and permitting the use of a small diameter delivery system.
- FIG. 1 is a partial cross-sectional view of an abdominal aortic aneurysm in the process of being repaired in accordance with the present invention
- FIG. 2 is a partial cross-sectional view of an aorta, abdominal aortic aneurysm, and iliac aneurysm, in the process of being repaired in accordance with the present invention
- FIG. 3 is a partial cross-sectional view of a portion of the aorta of FIG. 1, illustrating a tubular member in the process of being expanded within the aorta;
- FIG. 4 is a partial cross-sectional view of the aorta of FIG. 3, illustrating a tubular member being fully expanded;
- FIG. 5 is a partial cross-sectional view of the abdominal aortic aneurysm of FIG. 2, illustrating the expansion of the bilateral intra-aortic bypass graft of the present invention
- FIG. 6 is a cross-sectional view taken along line 6 — 6 of FIG. 5;
- FIG. 7 is a cross-sectional view taken along line 7 — 7 of FIG. 5;
- FIG. 8 is a cross-sectional view taken along line 8 — 8 of FIG. 5 .
- FIG. 9 is a perspective view of a portion of a tube which forms a part of the bilateral intra-aortic bypass graft of the present invention.
- FIG. 10A is a partial, perspective view of a portion of the bilateral intra-aortic bypass graft of the present invention.
- FIG. 10B is a partial, perspective view of a portion of the bilateral intra-aortic bypass graft of the present invention.
- FIG. 11 is a partial cross-sectional view of the aorta and abdominal aortic aneurysm of FIG. 2, illustrating the bilateral intra-aortic bypass graft of the present invention in place in the aorta and abdominal aneurysm;
- FIG. 12 is a cross-sectional view taken along line 12 — 12 of FIG. 11;
- FIG. 13 is a cross-sectional view taken along line 13 — 13 of FIG. 11;
- FIG. 14 is a cross-sectional view taken along line 14 — 14 of FIG. 11;
- FIG. 15 is a partial cross-sectional view of another embodiment of a bilateral intra-aortic bypass graft of the present invention.
- FIGS. 1, 2 , 5 a bilateral intra-aortic bypass graft 150 for intraluminal delivery to repair an abdominal aortic aneurysm 151 in an aorta 152 having two iliac arteries 153 L, 153 R associated therewith is illustrated.
- Bilateral intra-aortic bypass graft 150 could also be utilized in the thoracic aorta, and can be used to repair thoracic aneurysms or thoracic dissecting aneurysms.
- Aneurysm 151 includes areas of thrombosis 154 , which are disposed against the interior wall surface 155 of aorta 152 . Blood flows through the aorta in the direction of arrows 156 .
- aorta 152 Associated with aorta 152 , above aneurysm 151 , are a plurality of renal arteries 157 , in fluid communication with aorta 152 .
- bypass graft 150 is seen to generally comprise: a first tube 160 A having first and second ends 161 A, 162 A and wall surface 163 A disposed between the two ends 161 A, 162 A, at least a portion of the tube 160 A adapted to be disposed within the aneurysm 151 ; a second tube 160 B having first and second ends 161 B, 162 B and a wall surface 163 B disposed between the two ends 161 B, 162 B, at least a portion of the tube 160 B adapted to be disposed within the aneurysm 151 ; and means for securing 165 the first ends 161 A, 161 B of the first and second tubes 160 A, 160 B to the aorta 152 , the securing means including first and second tubular members 166 A, 166 B, each tubular member 166 A, 166 B having first and second ends 167 A, 167 B, 168 A, 168 B, the first tube 160 A being
- the tubular members 166 A, 166 B, of securing means 165 have a first diameter D (FIGS. 1 and 2 ), which permits intraluminal delivery of the tubular members 166 A, 166 B into the aorta 152 .
- D first diameter
- the tubular members 166 A, 166 B have a second, expanded and deformed diameter D′ (FIGS.
- the second diameter D′ being variable and dependent upon the amount of force applied to the tubular members 166 A, 166 B, whereby the tubular members 166 A, 166 B, may be expanded and deformed to secure the first ends 167 A, 167 B of the tubular members 166 A, 166 B to the aorta 152 , and a bilateral passageway 200 (is formed within the abdominal aortic aneurysm 151 ) by passageways 191 A, 191 B extending through the tubular members 166 and tubes 160 .
- a bilateral passageway 200 is formed within the abdominal aortic aneurysm 151
- first and second tubes 160 A, 160 B At least a portion of the first and second tubes 160 A, 160 B is in an abutting relationship, the abutting portions of the first and second tubes 160 A, 160 B, being generally disposed toward the upper ends 161 A, 161 B of tubes 160 A, 160 B, whereby bilateral intra-aortic bypass graft 150 , after implantation within aorta 152 and aneurysm 151 , generally has an inverted Y-shaped configuration, as illustrated in FIGS. 5 and 11.
- tubular members 166 A, 166 B have been expanded and have their second, expanded and deformed diameter D′, at least a portion, and preferably all of, the first and second tubular members 166 A, 166 B, are in an abutting relationship, as seen in FIGS. 5 and 11.
- each tubular member 166 A, 166 B preferably has a smooth outer wall surface 169 A, 169 B disposed between its first and second ends 167 A, 167 B, 168 A, 168 B.
- Wall surfaces 169 A, 169 B preferably have a substantially uniform thickness with a plurality of slots 173 formed therein, the slots 173 being disposed substantially parallel to the longitudinal axes of the tubular members 166 A, 166 B. It has been found that one type of tubular member 166 , which is particularly useful as securing means 165 are the expandable intraluminal grafts disclosed in U.S. Pat. No. 4,733,665, issued Mar. 29, 1988; U.S. Pat. No. 4,739,762, issued Apr.
- tubular members 166 could be utilized as securing means 165 , provided they have the ability to be controllably expanded and deformed from the first diameter D, which permits intraluminal delivery of securing means 165 , to the second expanded and deformed diameter D′, in order to secure the tubular members 166 A, 166 B, and their connected tubes 160 A, 160 B within aorta 152 .
- tubes 160 A, 160 B preferably have a generally, circular cross-sectional configuration, and tubes 160 A, 160 B made be made from a variety of materials, provided they have the requisite strength characteristics to be utilized as a bypass graft 150 , as well as have the requisite compatibility with the human body in order to be used as a graft, or implant material, without being rejected by the patient's body.
- materials are DACRON® and other polyester materials, TEFLON® (polytetrafluoroethylene), TEFLON® coated DACRON®, porous polyurethane, silicone, expanded polytetrafluoroethylene, and expanded polyurethane.
- tubes 160 A, 160 B can be made by the replamineform replicated life forms process, which is a method for fabricating uniformly microporous materials from marine skeletal structures.
- the foregoing described fabric materials can be knitted or woven, and can be warp or weft knitted. If the material is warp knitted, it may be provided with a velour, or towel like surface, which speeds up clotting of blood which contacts tubes 160 A, 160 B in order to increase the attachment, or integration, of tubes 160 A, 160 B to aorta 152 , or to assist the integration of tubes 160 A, 160 B to the thrombosis 154 .
- Tubes 160 A, 160 B can also be made of a bio-erodible, or degradable material, such as albumin or collagen or a collagen coated material.
- a tube 160 which is bio-erodible would erode and dissolve, or degrade, over a period of time; however, it is believed that a layer of endothelium, or skin, will grow as the tubes 160 A, 160 B erode, the new layers of endothelium, or skin, provide a new, fluid impervious lining with aneurysm 151 .
- tubes 160 A, 160 B, as well securing means 165 , or tubular members 166 A, 166 B could have a coating of a biologically inert material, such as TEFLON® or porous polyurethane.
- the first ends 161 A, 161 B of tubes 160 A, 160 B may be connected to the second ends 168 A, 168 B of the tubular members 166 A, 166 B, as by a plurality of conventional sutures of polypropylene, DACRON®, or any other suitable material.
- the ends 161 A, 161 B of tubes 160 A, 160 B overlap and cover the second ends 168 A, 168 B of tubular members 166 A, 166 B, such overlapping being approximately 50% of the length of tubular 166 A, 166 B.
- the first ends 161 A, 161 B of tubes 160 A, 160 B which overlap the second ends 168 A, 168 B of tubular members 166 A, 166 B, are preferably constructed so that they are radially expandable, whereby the first ends 161 A, 161 B of tubes 160 A, 160 B can conform with the second, expanded and deformed diameter D′ of the second ends 168 A, 168 B of the tubular members 166 A, 166 B. If tubes 160 A, 160 B are woven, the weave of the materials at its first ends 161 A, 161 B is looser, so that the desired radial expansion can be obtained.
- the intermediate portions 171 A, 171 B (FIG.
- tubes 160 A, 160 B disposed between first and second ends 161 A, 161 B, 162 A, 162 B thereof, are preferably not substantially radially expandable when tubes 160 A, 160 B are manufactured from the foregoing described fabric, or fabric like, materials.
- Each tube 160 A, 160 B is preferably formed of a plurality of expandable and deformable, tubular members 201 .
- Each tubular member 201 has a longitudinal axis, with a plurality of tubular members 201 being aligned with their longitudinal axes being substantially parallel with each other, as illustrated by center line 202 .
- Each tubular member 201 is detached, and spaced apart, from adjacent tubular members 201 .
- Tubular members 201 are of the same construction of tubular members 166 previously described, however, the length of tubular members 201 and number of slots 173 extending along the length of each tubular member 201 may be varied depending upon the total length of tube 160 .
- the plurality of tubular members 201 After the plurality of tubular members 201 have been aligned as illustrated in FIG. 9, with tubular members 201 being disposed with their first unexpanded diameter D which permits intraluminal delivery of the tubular members 201 , the plurality of tubular members 201 are disposed in a suitable, conventional Jig, die, or mold. The plurality of tubular members 201 are then embedded within a layer 202 of a deformable and expandable plastic material, such embedding being carried out through use of any conventional molding process.
- the plastic material may be silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, expanded polyurethane, or any other plastic material have the requisite strength characteristics to be utilized as a bypass graft, as well as have the requisite compatibility with the human body in order to be used as a graft, or implant material, without being rejected by the patient's body, as well as have the ability to expand as tubular members 201 are expanded, as will be hereinafter described, and be able to maintain the expanded configuration when tubular members 201 have a second, expanded and deformed diameter D′ as illustrated in FIG. 10 A.
- the resulting tube 160 after the plurality of tubular members 201 have been embedded within the layer 202 of plastic material, is a tube 160 having a substantially smooth inner and outer surface 203 , 204 formed by the layer 202 of plastic material in which tubular members 201 are embedded. It is believed that such tubes 160 will be substantially non-collapsible and not subject to kinking and/or twisting upon being implanted.
- Tube 160 of FIG. 10A may be connected to the second end 168 of tubular member 166 in the manner previously described, such as by a plurality of conventional sutures; however, preferably the first and second tubular members 166 A, 166 B are connected to the first and second tubes 160 A, 160 B by embedding a portion of the second ends 168 A, 168 B of the first and second tubular members 160 A, 160 B in the plastic material 202 of the tube 160 to which tubular members 166 A, 166 B are to be connected, as illustrated in FIG. 10 B. As seen in FIG. 10B, the upper end 167 , or leading edge, of tubular member 166 is exposed for direct contact with aorta 152 and its adjacent tubular member 166 , as illustrated in FIGS.
- tubular member 166 being embedded within the layer 202 of plastic material, and spaced apart, and detached from the uppermost tubular member 201 , as illustrated in FIG. 10 A.
- each tubular member 201 may be spaced apart from adjacent tubular members 201 and connected by a single, flexible connector member 205 , two such flexible connector members being illustrated, and the plurality of connected tubular members 201 are then embedded within the layer 202 of the deformable and plastic material.
- flexible connector member which may be particularly useful as connector members 205 are those illustrated in U.S. patent application Ser. No. 174,246, filed Mar. 28, 1988, and U.S. patent application Ser. No. 657,296, filed Feb. 19, 1991, both of these application being assigned to Expandable Grafts Partnership. Each of these applications is incorporated herein by reference.
- Other connector members 205 could be utilized, provided they have the ability to permit tubes 160 of FIGS.
- tube 160 to be flexible and capable of bending and flexing so as to negotiate through the curved veins, arteries, and/or body passageways toward the aorta 152 .
- Graft 51 ′ includes means for securing 192 the lower ends 162 A, 162 B of tubes 160 A, 160 B to the two iliac arteries 153 .
- Securing means 192 preferably includes a third expandable and deformable tubular member 166 A′ connected to the second end 162 of the first tube 160 A, and a fourth expandable and deformable, tubular member 166 B′ connected to the second end 162 B of the second tube 160 A.
- third and fourth members 166 A′, 166 B′ are of the same type of construction as those used for securing means 165 , or tubular members 166 A, 166 B.
- Third and fourth tubular members 166 A′, 166 B′ may be connected to the lower ends 162 A, 162 B of tubes 160 A, 160 B, as by means of sutures, previously described, when tubes 160 A, 160 B are of fabric, or similar construction, as previously described.
- tubes 160 A, 160 B have the construction as illustrated in FIGS.
- third and fourth tubular members 166 A′, 166 B′ may be also connected as by conventional sutures, as previously described, or preferably may be secured to the lower ends 162 A , 162 B of tubes 160 A, 160 B, by embedding a portion of the first ends 167 A, 167 B of tubular members 166 A′, 166 B′ in the deformable and expandable plastic material 202 disposed at the second ends 162 A, 162 B of tubes 160 A, 160 B as previously described in connection with FIG.
- securing means 192 may be expanded and deformed in the same manner as securing means 165 to force the third and fourth tubular members 166 A′, 166 B′ into contact with an iliac artery, 153 L, 153 R.
- securing means 192 may be expanded and deformed in the same manner as securing means 165 to force the third and fourth tubular members 166 A′, 166 B′ into contact with an iliac artery, 153 L, 153 R.
- the flow of pumped blood downwardly through aorta 152 and into iliac arteries 153 L, 153 R is believed to provide enough pressure to maintain bilateral passageways 191 A, 191 B, formed by tubes 160 A, 160 B, in their desired positions within iliac arteries 153 L, 153 R, as illustrated in FIGS.
- Securing means 192 also serves to ensure no movement of passageways 191 A, 191 B, caused by a person's body movements.
- Apparatus 180 for repairing an abdominal aortic aneurysm 151 generally comprises: first and second tubes 160 A, 160 B and first and second expandable and deformable tubular members 166 A, 166 B, tubular members 166 and tubes 160 being constructed as previously described; and two catheters 181 A, 181 B, each catheter have an expandable, inflatable portion 182 A, 182 B, or balloon 183 associated therewith and a nosepiece 184 .
- the tubular members 166 A, 166 B are releasably mounted to the inflatable portion 182 of each catheter 181 , in any suitable fashion, whereby upon inflation of the expandable, inflatable portion 182 of each catheter 181 A, 181 B, the tubular members 166 A, 166 B are forced radially outwardly into contact with the aorta 152 and with each other to remain secured to aorta 152 , whereby the tubes 160 A, 160 B, secured to the tubular members 166 A, 166 B, provide a bilateral passageway 200 , or bilateral passageways 191 A, 191 B (FIGS. 11 and 15) through the abdominal aortic aneurysm 151 .
- the apparatus 180 for repairing the abdominal aortic aneurysm 151 as illustrated in FIGS. 1 and 2, is in its configuration it would have for intraluminal delivery into aorta 152 and aneurysm 151 .
- the first tube 160 A, tubular member 166 A, and catheter 181 A are intraluminally delivered through a first femoral artery; and the second tube 160 B, tubular member 166 B, and catheter 181 B are intraluminally delivered through a second femoral artery and in turn each pass through an iliac artery 153 L, 153 R, as illustrated in FIG. 2 .
- tubular members 166 A, 166 B have their first unexpanded, undeformed diameter D.
- tubular members 166 A, 166 B have been expanded and deformed into their second, expanded and deformed diameter D′. Expansion and deformation of tubular members 166 A, 166 B is controlled by the expansion of balloons 183 of catheters 181 A, 181 B in a conventional manner.
- catheters 181 A, 181 B, tubular members 166 A, 166 B, and tubes 160 A, 160 B are preferably enclosed by conventional catheter sheathes 186 A, 186 B which are removed, as shown in FIG. 1, as apparatus 180 is disposed in its desired location within aorta 152 .
- balloon 183 of catheter 181 may have a length which extends from slightly beyond the first end 167 of tubular member 166 , and to a position slightly beyond the second end 168 of tubular members 166 .
- apparatus 180 includes tubes 160 constructed in a manner as described in FIGS. 9, 10 A, and 10 B, inflatable portion 182 , or balloon 183 associated with each catheter 181 extends along a portion of the length of each catheter a distance greater than the combined length tube 160 and its associated tubular member 166 , as illustrated in FIG. 5 .
- each tubular member 166 A, 166 B is simultaneously expanded along with its connected tube 160 A, 160 B, including the plurality of tubular members 201 embedded within the layer 202 of plastic material of tubes 160 A, 160 B (FIGS. 9, 10 A, 10 B).
- Deflation of balloons 183 permits the withdrawal of catheters 181 and release of balloons 183 and catheters 181 from bypass graft 150 after graft 150 has been disposed in the configuration illustrated in FIG. 5 .
- tubes 160 are utilized of the construction illustrated in FIGS. 9, 10 A, 10 B, as shown in FIG. 5, the resulting bilateral passageway 191 formed in aorta 152 and aneurysm 151 is believed to be substantially non-collapsible, because of the presence of the plurality of tubular members 201 embedded within tubes 160 A, 160 B.
- first, second, third, and fourth tubular members 166 A, 166 B, 166 A′, 166 B′ may be simultaneously expanded and deformed into the expanded configuration illustrated in FIG. 15, as by use of the catheters 182 illustrated in FIG. 5, along with tubes 160 A, 160 B.
- tubular members 166 A, 166 B are initially disposed within aorta 152 substantially even and on the same level as each other at which time sheathes 186 are removed and balloons 183 A, 183 B are simultaneously expanded as illustrated in FIGS. 5 and 6, until tubular members 166 A, 166 B, are in an abutting relationship with each other and against aorta 150 .
- balloons 183 A, 183 B Upon final inflation and expansion of the balloons 183 A, 183 B to force tubular members 166 A, 166 B into their final configuration illustrated in FIGS.
- the abutting portions 210 A, 210 B of tubular members 166 A, 166 B are flattened against each other into the configuration shown in FIG. 12, whereby the initially present gaps 211 (FIG. 6) between adjacent tubular members 166 A, 166 B, are closed off and removed.
- FIGS. 13 and 14 illustrate bypass graft 150 after it has been implanted for a period of time, whereby the aneurysm 151 has thrombosed about tubes 160 A, 160 B and into contact therewith, and bilateral passageways 191 A, 191 B are thus disposed within aneurysm 151 .
- bilateral intra-aortic bypass graft 150 includes a fifth expandable and deformable tubular member 166 C of the same construction of the first through fourth tubular members 166 A, 166 B, 166 A′, 166 B′ as previously described.
- tubular members 166 A, 166 B, and tubes 160 A, 160 B Prior to the intraluminal delivery of tubular members 166 A, 166 B, and tubes 160 A, 160 B as previously described in connection with FIGS.
- the fifth tubular member 166 C is intraluminally delivered by a third catheter 181 ′ and expanded from its first diameter D′′ to its second, expanded and deformed diameter D′′′, as illustrated in FIG. 4, to secure the fifth tubular member 166 C within the aorta 152 .
- the fifth expandable tubular member 166 C has been implanted within aorta 152 , as shown in dotted lines in FIG. 1, the remaining elements of bypass graft 150 are implanted within aorta 152 and aneurysm 151 as previously described in connection with FIGS. 1, 2 , and 5 .
- first and second tubular members 166 A, 166 B Upon expansion of first and second tubular members 166 A, 166 B, as previously described, those tubular members 166 A, 166 B, will be in abutting relationship with each other, as illustrated in FIG. 12, and will also be secured within aorta 152 , via their expansion and deformation, into contact with fifth tubular member 166 C which is secured in aorta 152 .
- fifth tubular member 166 C will provide adequate anchorage for the tubular members 166 A, 166 B of bypass graft 150 , and equalize forces exerted upon aorta 152 by the expansion of tubular members 166 A, 166 B.
- Fifth tubular member 166 C has a final expanded diameter D′′′ which is approximately twice the size of the expanded diameter D′ of tubular members 166 A, 166 B. Because fifth tubular member 166 C does not have a tube 160 attached thereto, its delivery system, or catheter 181 ′ and sheath 186 ′ can be smaller, and they can be intraluminally delivered without any of the previously described disadvantage associated with prior art aortic grafts, having a large diameter tube connected thereto.
- the expandable, inflatable portions of the catheters could be a plurality of hydraulically actuated rigid members disposed on a catheter of a plurality of balloons could be utilized to expand the securing means.
- the wall surfaces of the tubular members could be formed by a plurality of wires having a smooth exterior surface.
- the tubes could also be used individually as grafts for other body passageways. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Dermatology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Prostheses (AREA)
- Dental Preparations (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Surgical Instruments (AREA)
- Materials For Medical Uses (AREA)
- Graft Or Block Polymers (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Eye Examination Apparatus (AREA)
- Paper (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
A bilateral intra-aortic bypass graft and method and apparatus for repairing an abdominal aortic aneurysm includes two tubular grafts which are intraluminally delivered to the aorta and secured to the aorta by the expansion and deformation of two expandable and deformable tubular members.
Description
This is a division, of application Ser. No. 07/818,052, filed Jan. 8, 1992 now U.S. Pat. No. 5,316,023.
1. Field of the Invention
The invention relates to a bilateral intra-aortic bypass graft for intraluminal delivery, and a method and apparatus for repairing an abdominal aortic aneurysm.
2. Description of the Prior Art
An abdominal aortic aneurysm is a sac caused by an abnormal dilation of the wall of the aorta, a major artery of the body, as it passes through the abdomen. The abdomen is that portion of the body which lies between the thorax and the pelvis. It contains a cavity, known as the abdominal cavity, separated by the diaphragm from the thoracic cavity and lined with a serous membrane, the peritoneum. The aorta is the :main trunk, or artery, from which the systemic arterial system proceeds. It arises from the left ventricle of the heart, passes upward, bends over and passes down through the thorax and through the abdomen to about the level of the fourth lumbar vertebra, where it divides into the two common iliac arteries.
The aneurysm usually arises in the infrarenal portion of the arteriosclerotically diseased aorta, for example, below the kidneys. When left untreated, the aneurysm will eventually cause rupture of the sac with ensuing fatal hemorrhaging in a very short time. High mortality associated with the rupture has led to the present state of the art and the transabdominal surgical repair of abdominal aortic aneurysms. Surgery involving the abdominal wall, however, is a major undertaking with associated high risks. There, is considerable mortality and morbidity associated with this magnitude of surgical intervention, which in essence involves replacing the diseased and aneurysmal segment of blood vessel with a prosthetic device which typically is a synthetic tube, or graft, usually fabricated of either DACRON®, TEFLON®, or other suitable material.
To perform the surgical procedure, requires exposure of the aorta through an abdominal incision, which can extend from the rib cage to the pubis. The aorta must be closed both above and below the aneurysm, so that the aneurysm can then be opened and the thrombus, or blood clot, and arteriosclerotic debris removed. Small arterial branches from the back wall of the aorta are tied off. The DACRON® tube, or graft, of approximately the same size of the normal aorta, is sutured in place, thereby replacing the aneurysm. Blood flow is then reestablished through the graft. It is necessary to move the intestines in order to get to the back wall of the abdomen prior to clamping off the aorta.
If the surgery is performed prior to rupturing of the abdominal aorta aneurysm, the survival rate of treated patients is markedly higher than if the surgery is performed after the aneurysm ruptures, although the mortality rate is still quite high. If the surgery is performed prior to the aneurysm rupturing, the mortality rate is typically less than 5%. Conventional surgery performed after the rupture of the aneurysm is significantly higher, one study reporting a mortality rate of 66.7%. Although abdominal aortic aneurysms can be detected from routine examinations, the patient does not experience any pain from the condition. Thus, if the patient is not receiving routine examinations, it is possible that the aneurysm will progress to the rupture stage, wherein the mortality rates are significantly higher.
Disadvantages associated with the conventional, prior art surgery, in addition to the high mortality rate, are: the extended recovery period associated with such surgery; difficulties in suturing the graft or tube, to the aorta; the loss of the existing thrombosis to support and reinforce the graft; the unsuitability of the surgery for many patients having abdominal aortic aneurysms; and the problems associated with the performing the surgery on an emergency basis after the aneurysm has ruptured. As to the extent of recovery, a patient can expect to spend form 1 to 2 weeks in the hospital after the surgery, a major portion of which is spent in the intensive care unit, and a convalescence period at home from 2 to 3 months, particularly if the patient has other illness such as heart, lung, liver, and/or kidney disease, in which case the hospital stay is also lengthened. Since the graft must be secured, or sutured, to the remaining portion of the aorta, it is many times difficult to perform the suturing step because of thrombosis present on the remaining portion of the aorta, and that remaining portion of the aorta wall may many times be friable, or easily crumbled.
Since the thrombosis is totally removed in the prior art surgery, the new graft does not have the benefit of the previously existing thrombosis therein, which could be utilized to support and reinforce the graft, were the graft to be able to be inserted within the existing thrombosis. Since many patients having abdominal aortic aneurysms have other chronic illnesses, such as heart, lung, liver and/or kidney disease, coupled with the fact that many of these patients are older, the average age being approximately 67 years old, these patients are not ideal candidates for such surgery, which is considered major surgery. Such patients have difficulties in surviving the operation. Lastly, once the aneurysm has ruptured, it is difficult to perform a conventional surgery on an expedited basis because of the extent of the surgery.
It has been previously proposed to repair abdominal aortic aneurysms by intraluminal delivery of an aortic graft disposed upon a catheter, and securing the graft within the aorta by expansion and deformation of an expandable deformable member associated with the graft by expanding and inflating a portion of the catheter which contacts the tubular member. Because of the relatively large diameter of the catheter and associated graft necessary for implantation within the aorta, some difficulties have been sometimes encountered, such as spasms associated with the access body vessel such as the femoral artery. Additional problems sometimes encountered with this method or repairing an abdominal aortic aneurysm have been kinking and/or twisting of the flexible, collapsible graft during and/or after implantation of the graft.
Accordingly, prior to the development of the present invention, there has been no bilateral intra-aortic bypass graft for intraluminal delivery, or method and apparatus for repairing an abdominal aortic aneurysm, which: does not have a relatively high morbidity and mortality rate; does not have an extended recovery period; does not require suturing the graft to the remaining aorta wall; permits the existing thrombosis therein to support and reinforce the graft; is suitable for older patients with chronic illnesses; is less susceptible to kinking and/or twisting of the graft; and is able to use a smaller diameter delivery system. Therefore, the art has sought a bilateral intra-aortic bypass graft for intraluminal delivery, and method and apparatus for repairing an abdominal aortic aneurysm which is believed to: not have a high morbidity and mortality rate; does not require an abdominal incision and general anesthesia; not require an extended recovery period; not require suturing the graft to the remaining aortic wall; permit the existing aortic wall and thrombosis therein to be retained to reinforce and support the aortic graft; be suitable for patients having other chronic illnesses; be less susceptible to kinking and/or twisting of the graft and permit the use of a smaller diameter delivery system.
In accordance with the invention, the foregoing advantages have been achieved through the method and apparatus for bilateral intra-aortic graft of the present invention. The method for repairing an abdominal aortic aneurysm in an aorta having two iliac arteries associated therewith may include the steps of: connecting a first tube to a first expandable and deformable, tubular member; connecting a second tube to a second expandable and deformable, tubular member; disposing the first tube and first tubular member upon a first catheter, disposing the second tube and second tubular member upon a second catheter, each catheter having an expandable, inflatable portion with the tubular members disposed upon the expandable, inflatable portions; intraluminally delivering the first and second tubes, tubular members, and catheters to the aorta and disposing at least a portion of each tube within the abdominal aortic aneurysm; and expanding the expandable, inflatable portion of each catheter to expand and deform the tubular members to force the tubular members radially outwardly into contact with the aorta and each other, to secure the tubular members and a least a portion of each tube within the aorta, whereby the tubes provide a bilateral fluid passageway through the abdominal aortic aneurysm.
Another feature of the present invention may include the step of simultaneously expanding the expandable, inflatable portions of each catheter. An additional feature of the present invention is that the first and second tubes may each have first and second ends, the first end of each tube being connected to a tubular member and being disposed within the aorta; and the second end of the first tube may be disposed within one of the iliac arteries, and the second end of the second end may be disposed within the other iliac artery.
A further feature of the present invention is that a third expandable and deformable, tubular member may be connected to the second end of the first tube; a fourth expandable and deformable, tubular member may be connected to the second end of the second tube; and the third and fourth tubular members are expanded and deformed to force the third and fourth tubular members radially outwardly into contact with an iliac artery by the expansion of the expandable, inflatable portion of each catheter associated with each tube. Another feature of the present invention may include the steps of forming each tube of a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, by aligning the plurality of tubular members with their longitudinal axes being substantially parallel with other, each tubular member being detached, and spaced apart, from adjacent tubular members; and embedding the plurality of tubular members within a layer of deformable; and expandable plastic material. The plastic material may be silicone, or polytetrafluoroethylene, expanded polytetrafluoroethylene, or expanded polyurethane.
An additional feature of the present invention may include the step of simultaneously expanding the expandable, inflatable portion of each catheter to simultaneously expand and deform the first and second tubular members and the plurality of tubular members of each tube which are embedded in the deformable and expandable plastic material. A further feature of the present invention may include the step of connecting the first and second tubular members to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the deformable and expandable plastic material of the tube to which it is to be connected.
A further feature of the present invention may include the steps of: disposing a fifth expandable and deformable tubular member upon a third catheter having an expandable, inflatable portion, with the fifth tubular member being disposed upon the expandable, inflatable portion; intraluminally delivering the fifth tubular member and third catheter to the aorta; expanding the expandable, inflatable portion of the third catheter to expand and deform the fifth tubular member to force the third tubular member radially outwardly into a connect with the aorta to secure the fifth tubular member within the aorta; the foregoing steps being conducted prior to the intraluminal delivery of the first and second tubes, tubular members, and catheters, whereupon the simultaneous expansion of the expandable, inflatable portions of the first and second catheters, the first and second tubular members are expanded and deformed radially outwardly into connect with the fifth tubular member and each other, to secure the first and second tubular members within the aorta and within the fifth tubular member.
An additional feature of the present invention may include the steps of forming each tube of a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, by aligning the plurality of tubular members with their longitudinal axes being substantially parallel with other, each tubular member being spaced apart from adjacent tubular members with a single, flexible connector member being disposed between adjacent tubular members; and embedding the plurality of tubular members within a layer of deformable and expandable plastic material.
In accordance with the invention, the foregoing advantages have also been achieved through the present bilateral intra-aortic bypass graft for intraluminal delivery to repair an abdominal aortic aneurysm in an aorta having two iliac arteries associated therewith. This aspect of the present invention includes: a first tube having first and second ends and a wall surface disposed between the two ends, at least a portion of the first tube adapted to be disposed within the abdominal aortic aneurysm; a second tube having first and second ends and a wall surface disposed between the two ends, at least a portion of the second tube adapted to be disposed within the abdominal aortic aneurysm; and means for securing the first ends of the first and second tubes to the aorta, the securing means including first and second tubular members, each tubular member having first and second ends, the first tube being connected to the first tubular member and the second tube being connected to the second tubular member, the tubular members having a first diameter which permits intraluminal delivery of the tubular members and tubes into the aorta and the tubular members having a second, expanded and deformed diameter, with at least a portion of the first and second tubular members in an abutting relationship, upon the application from the interior of the tubular members of a radially, outwardly extending force, the second diameter being variable and dependent upon the amount of force applied to the tubular member, whereby the tubular members may be expanded and deformed to secure the first ends of the tubular members to the aorta and a bilateral fluid passageway is formed within the abdominal aorta aneurysm.
Another feature of the present invention is that at least a portion of the first and second tubes are in an abutting relationship with each other when the first and second tubular members have their second, expanded and deformed diameter. An additional feature of the present invention is that a third expandable and deformable tubular member may be connected to the second end of the first tube; a fourth expandable and deformable tubular member may be connected to the second end of the second tube; and the third and fourth tubular members may be expanded and deformed to force the third and fourth tubular members radially outwardly into contact with an iliac artery by the expansion of the expandable, inflatable portion of each catheter associated with each tube.
A further feature of the present invention is that each tube may be formed on a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other, each tubular member being detached, and spaced apart, from adjacent tubular members; and the plurality of tubular members may be embedded with a layer of a deformable and expandable plastic material. The plastic material may be silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, or expanded polyurethane.
Another feature of the present invention is that the first and second tubular members may be connected to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the deformable and expandable plastic of the tube to which it is to be connected.
An additional feature of the present invention is that each tube may be formed of a plurality of expandable, and deformable tubular members, each tubular member having a longitudinal axis with a plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other; each tubular member being spaced apart from adjacent tubular members with a single, flexible connector member being disposed between adjacent tubular members; and the plurality of tubular members may be embedded within a layer of a deformable and expandable material. A further feature of the present invention is that the first and second tubular members may be connected to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the deformable and expandable plastic material of the tube to which it is to be connected.
In accordance with the present invention, the foregoing advantages have also been achieved through the present apparatus for repairing an abdominal aortic aneurysm in an aorta having two iliac arteries associated therewith. The present invention includes: first and second tubes, each tube having first and second ends and a wall surface disposed between the two ends; first and second expandable and deformable tubular members, each expandable and deformable tubular members having first and second ends and a smooth outer wall surface disposed between the first and second ends, the first end of a tube being secured to a second end of a tubular member, the expansion and deformation of the tubular members being controllable; and two catheters, each catheter having an expandable, inflatable portion associated therewith, the tubular members being releasably mounted upon the inflatable portion of each catheter, whereby upon inflation of the expandable, inflatable portion of each catheter, the tubular members are forced radially and outwardly into contact with the aorta and each other to remain secured thereto, whereby the tubes, secured to the tubular members, provide a bilateral passageway through the abdominal aortic aneurysm.
A further feature of the present invention is that each tube may be formed of a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other, each tubular member being detached, and spaced apart, from adjacent tubular members; and the plurality of tubular members may be embedded within a layer of a deformable and expandable plastic material. An additional feature of the present invention is that the expandable, inflatable portion of each catheter may extend along a portion of the length of each catheter a distance greater than the combined length of each tube and tubular member, whereby upon expansion and inflation of each expandable, inflatable portion of each catheter, each tubular member and its connected tube are simultaneously expanded.
The bilateral intra-aortic bypass graft for intraluminal delivery, and method and apparatus for repairing an abdominal aortic aneurysm of the present invention, when compared to previously proposed prior art grafts and methods and apparatus for repairing aneurysms, are believed to have the advantages of: a lower mortality rate; shortened recovery periods; not requiring suturing a graft to the aorta; utilizing the existing aortic wall and thrombosis therein to support and reinforce the aortic graft; being suitable for use with patients having other chronic illnesses; being less susceptible to kinking and/or twisting of the graft and permitting the use of a small diameter delivery system.
In the drawings:
FIG. 1 is a partial cross-sectional view of an abdominal aortic aneurysm in the process of being repaired in accordance with the present invention;
FIG. 2 is a partial cross-sectional view of an aorta, abdominal aortic aneurysm, and iliac aneurysm, in the process of being repaired in accordance with the present invention;
FIG. 3 is a partial cross-sectional view of a portion of the aorta of FIG. 1, illustrating a tubular member in the process of being expanded within the aorta;
FIG. 4 is a partial cross-sectional view of the aorta of FIG. 3, illustrating a tubular member being fully expanded;
FIG. 5 is a partial cross-sectional view of the abdominal aortic aneurysm of FIG. 2, illustrating the expansion of the bilateral intra-aortic bypass graft of the present invention;
FIG. 6 is a cross-sectional view taken along line 6—6 of FIG. 5;
FIG. 7 is a cross-sectional view taken along line 7—7 of FIG. 5; and
FIG. 8 is a cross-sectional view taken along line 8—8 of FIG. 5.
FIG. 9 is a perspective view of a portion of a tube which forms a part of the bilateral intra-aortic bypass graft of the present invention;
FIG. 10A is a partial, perspective view of a portion of the bilateral intra-aortic bypass graft of the present invention;
FIG. 10B is a partial, perspective view of a portion of the bilateral intra-aortic bypass graft of the present invention;
FIG. 11 is a partial cross-sectional view of the aorta and abdominal aortic aneurysm of FIG. 2, illustrating the bilateral intra-aortic bypass graft of the present invention in place in the aorta and abdominal aneurysm;
FIG. 12 is a cross-sectional view taken along line 12—12 of FIG. 11;
FIG. 13 is a cross-sectional view taken along line 13—13 of FIG. 11;
FIG. 14 is a cross-sectional view taken along line 14—14 of FIG. 11;
FIG. 15 is a partial cross-sectional view of another embodiment of a bilateral intra-aortic bypass graft of the present invention;
While the invention will be described in connection with the preferred embodiment, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternative, modification, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
In FIGS. 1, 2, 5 a bilateral intra-aortic bypass graft 150 for intraluminal delivery to repair an abdominal aortic aneurysm 151 in an aorta 152 having two iliac arteries 153L, 153R associated therewith is illustrated. Bilateral intra-aortic bypass graft 150, as well as other grafts to be hereinafter described, could also be utilized in the thoracic aorta, and can be used to repair thoracic aneurysms or thoracic dissecting aneurysms. Accordingly, use of the term “aortic aneurysm” in this specification and claims is intended to relate to and mean both abdominal aortic aneurysms and thoracic aneurysms. Aneurysm 151 includes areas of thrombosis 154, which are disposed against the interior wall surface 155 of aorta 152. Blood flows through the aorta in the direction of arrows 156. Associated with aorta 152, above aneurysm 151, are a plurality of renal arteries 157, in fluid communication with aorta 152.
With reference to FIGS. 1, 5, and 11, bypass graft 150 is seen to generally comprise: a first tube 160A having first and second ends 161A, 162A and wall surface 163A disposed between the two ends 161A, 162A, at least a portion of the tube 160A adapted to be disposed within the aneurysm 151; a second tube 160B having first and second ends 161B, 162B and a wall surface 163B disposed between the two ends 161B, 162B, at least a portion of the tube 160B adapted to be disposed within the aneurysm 151; and means for securing 165 the first ends 161A, 161B of the first and second tubes 160A, 160B to the aorta 152, the securing means including first and second tubular members 166A, 166B, each tubular member 166A, 166B having first and second ends 167A, 167B, 168A, 168B, the first tube 160A being connected to the first tubular member 166A, and the second tube 160B being connected to the second tubular member 166B. It should be noted that like reference numerals are utilized throughout this Detailed Description of the Invention, with different letter subscripts to identify components of the present invention which are identical in construction to each other, in that many components of the present invention are a mirror image of adjacent components.
Still with reference to FIGS. 1, 5, and 11, preferably, the tubular members 166A, 166B, of securing means 165 have a first diameter D (FIGS. 1 and 2), which permits intraluminal delivery of the tubular members 166A, 166B into the aorta 152. Upon the application from the interior of the tubular members 166A, 166B of a radially, outwardly extending force, as will be hereinafter described in greater detail, the tubular members 166A, 166B, have a second, expanded and deformed diameter D′ (FIGS. 5 and 11), the second diameter D′ being variable and dependent upon the amount of force applied to the tubular members 166A, 166B, whereby the tubular members 166A, 166B, may be expanded and deformed to secure the first ends 167A, 167B of the tubular members 166A, 166B to the aorta 152, and a bilateral passageway 200 (is formed within the abdominal aortic aneurysm 151) by passageways 191A, 191B extending through the tubular members 166 and tubes 160. Preferably, as seen in FIGS. 5 and 11, at least a portion of the first and second tubes 160A, 160B is in an abutting relationship, the abutting portions of the first and second tubes 160A, 160B, being generally disposed toward the upper ends 161A, 161B of tubes 160A, 160B, whereby bilateral intra-aortic bypass graft 150, after implantation within aorta 152 and aneurysm 151, generally has an inverted Y-shaped configuration, as illustrated in FIGS. 5 and 11. Additionally, after tubular members 166A, 166B have been expanded and have their second, expanded and deformed diameter D′, at least a portion, and preferably all of, the first and second tubular members 166A, 166B, are in an abutting relationship, as seen in FIGS. 5 and 11.
With reference to FIG. 1, each tubular member 166A, 166B preferably has a smooth outer wall surface 169A, 169B disposed between its first and second ends 167A, 167B, 168A, 168B. Wall surfaces 169A, 169B, preferably have a substantially uniform thickness with a plurality of slots 173 formed therein, the slots 173 being disposed substantially parallel to the longitudinal axes of the tubular members 166A, 166B. It has been found that one type of tubular member 166, which is particularly useful as securing means 165 are the expandable intraluminal grafts disclosed in U.S. Pat. No. 4,733,665, issued Mar. 29, 1988; U.S. Pat. No. 4,739,762, issued Apr. 26, 1988; and U.S. Pat. No. 4,776,337, issued Oct. 11, 1988, all of the foregoing patents being in the name of Julio C. Palmaz, and assigned to Expandable Grafts Partnership. Each of these patents is incorporated herein by reference. Other tubular members 166 could be utilized as securing means 165, provided they have the ability to be controllably expanded and deformed from the first diameter D, which permits intraluminal delivery of securing means 165, to the second expanded and deformed diameter D′, in order to secure the tubular members 166A, 166B, and their connected tubes 160A, 160B within aorta 152.
With reference to FIGS. 1 and 11, tubes 160A, 160B preferably have a generally, circular cross-sectional configuration, and tubes 160A, 160B made be made from a variety of materials, provided they have the requisite strength characteristics to be utilized as a bypass graft 150, as well as have the requisite compatibility with the human body in order to be used as a graft, or implant material, without being rejected by the patient's body. Examples for such materials are DACRON® and other polyester materials, TEFLON® (polytetrafluoroethylene), TEFLON® coated DACRON®, porous polyurethane, silicone, expanded polytetrafluoroethylene, and expanded polyurethane. It is preferred that all of the foregoing materials be porous to allow for an intimal layer to form on the tubes 160. Additionally, tubes 160A, 160B can be made by the replamineform replicated life forms process, which is a method for fabricating uniformly microporous materials from marine skeletal structures. The foregoing described fabric materials can be knitted or woven, and can be warp or weft knitted. If the material is warp knitted, it may be provided with a velour, or towel like surface, which speeds up clotting of blood which contacts tubes 160A, 160B in order to increase the attachment, or integration, of tubes 160A, 160B to aorta 152, or to assist the integration of tubes 160A, 160B to the thrombosis 154. Tubes 160A, 160B can also be made of a bio-erodible, or degradable material, such as albumin or collagen or a collagen coated material. A tube 160 which is bio-erodible, would erode and dissolve, or degrade, over a period of time; however, it is believed that a layer of endothelium, or skin, will grow as the tubes 160A, 160B erode, the new layers of endothelium, or skin, provide a new, fluid impervious lining with aneurysm 151. In some procedures, it might be desirable to make tubes 160A, 160B of a fluid impervious material. Additionally, tubes 160A, 160B, as well securing means 165, or tubular members 166A, 166B, could have a coating of a biologically inert material, such as TEFLON® or porous polyurethane.
If any of the foregoing described materials are used for the manufacture of tubes 160A, 160B, the first ends 161A, 161B of tubes 160A, 160B may be connected to the second ends 168A, 168B of the tubular members 166A, 166B, as by a plurality of conventional sutures of polypropylene, DACRON®, or any other suitable material. Preferably, the ends 161A, 161B of tubes 160A, 160B overlap and cover the second ends 168A, 168B of tubular members 166A, 166B, such overlapping being approximately 50% of the length of tubular 166A, 166B. The first ends 161A, 161B of tubes 160A, 160B, which overlap the second ends 168A, 168B of tubular members 166A, 166B, are preferably constructed so that they are radially expandable, whereby the first ends 161A, 161B of tubes 160A, 160B can conform with the second, expanded and deformed diameter D′ of the second ends 168A, 168B of the tubular members 166A, 166B. If tubes 160A, 160B are woven, the weave of the materials at its first ends 161A, 161B is looser, so that the desired radial expansion can be obtained. The intermediate portions 171A, 171B (FIG. 11) of tubes 160A, 160B disposed between first and second ends 161A, 161B, 162A, 162B thereof, are preferably not substantially radially expandable when tubes 160A, 160B are manufactured from the foregoing described fabric, or fabric like, materials.
With reference to FIGS. 9, 10A and 10B, another embodiment of tubes 160 of bypass graft 150 are illustrated. Each tube 160A, 160B is preferably formed of a plurality of expandable and deformable, tubular members 201. Each tubular member 201 has a longitudinal axis, with a plurality of tubular members 201 being aligned with their longitudinal axes being substantially parallel with each other, as illustrated by center line 202. Each tubular member 201 is detached, and spaced apart, from adjacent tubular members 201. Tubular members 201 are of the same construction of tubular members 166 previously described, however, the length of tubular members 201 and number of slots 173 extending along the length of each tubular member 201 may be varied depending upon the total length of tube 160. After the plurality of tubular members 201 have been aligned as illustrated in FIG. 9, with tubular members 201 being disposed with their first unexpanded diameter D which permits intraluminal delivery of the tubular members 201, the plurality of tubular members 201 are disposed in a suitable, conventional Jig, die, or mold. The plurality of tubular members 201 are then embedded within a layer 202 of a deformable and expandable plastic material, such embedding being carried out through use of any conventional molding process. The plastic material may be silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, expanded polyurethane, or any other plastic material have the requisite strength characteristics to be utilized as a bypass graft, as well as have the requisite compatibility with the human body in order to be used as a graft, or implant material, without being rejected by the patient's body, as well as have the ability to expand as tubular members 201 are expanded, as will be hereinafter described, and be able to maintain the expanded configuration when tubular members 201 have a second, expanded and deformed diameter D′ as illustrated in FIG. 10A.
The resulting tube 160, after the plurality of tubular members 201 have been embedded within the layer 202 of plastic material, is a tube 160 having a substantially smooth inner and outer surface 203, 204 formed by the layer 202 of plastic material in which tubular members 201 are embedded. It is believed that such tubes 160 will be substantially non-collapsible and not subject to kinking and/or twisting upon being implanted.
Still with reference to FIG. 9, alternatively each tubular member 201 may be spaced apart from adjacent tubular members 201 and connected by a single, flexible connector member 205, two such flexible connector members being illustrated, and the plurality of connected tubular members 201 are then embedded within the layer 202 of the deformable and plastic material. It is believed that one type of flexible connector member which may be particularly useful as connector members 205 are those illustrated in U.S. patent application Ser. No. 174,246, filed Mar. 28, 1988, and U.S. patent application Ser. No. 657,296, filed Feb. 19, 1991, both of these application being assigned to Expandable Grafts Partnership. Each of these applications is incorporated herein by reference. Other connector members 205 could be utilized, provided they have the ability to permit tubes 160 of FIGS. 10A and 10B, to be implanted as will be hereinafter described in greater detail, and to be intraluminally delivered to the aorta 152 which would require tube 160 to be flexible and capable of bending and flexing so as to negotiate through the curved veins, arteries, and/or body passageways toward the aorta 152.
With reference to FIG. 15, another embodiment of bilateral intra-aortic bypass graft 150 is illustrated. Graft 51′ includes means for securing 192 the lower ends 162A, 162B of tubes 160A, 160B to the two iliac arteries 153. Securing means 192 preferably includes a third expandable and deformable tubular member 166A′ connected to the second end 162 of the first tube 160A, and a fourth expandable and deformable, tubular member 166B′ connected to the second end 162B of the second tube 160A. Preferably, third and fourth members 166A′, 166B′ are of the same type of construction as those used for securing means 165, or tubular members 166A, 166B. Third and fourth tubular members 166A′, 166B′ may be connected to the lower ends 162A, 162B of tubes 160A, 160B, as by means of sutures, previously described, when tubes 160A, 160B are of fabric, or similar construction, as previously described. Alternatively, in tubes 160A, 160B, have the construction as illustrated in FIGS. 9, 10A, and 10B, third and fourth tubular members 166A′, 166B′ may be also connected as by conventional sutures, as previously described, or preferably may be secured to the lower ends 162A , 162B of tubes 160A, 160B, by embedding a portion of the first ends 167A, 167B of tubular members 166A′, 166B′ in the deformable and expandable plastic material 202 disposed at the second ends 162A, 162B of tubes 160A, 160B as previously described in connection with FIG. 10B, as will be hereinafter described in further detail, securing means 192, or third or fourth tubular members 166A′, 166B′, may be expanded and deformed in the same manner as securing means 165 to force the third and fourth tubular members 166A′, 166B′ into contact with an iliac artery, 153L, 153R. Although the flow of pumped blood downwardly through aorta 152 and into iliac arteries 153L, 153R is believed to provide enough pressure to maintain bilateral passageways 191A, 191B, formed by tubes 160A, 160B, in their desired positions within iliac arteries 153L, 153R, as illustrated in FIGS. 11 and 15, there is a slight negative vacuum pressure component associated with the pumping pressure, whereby the securing means 192 might be required. Securing means 192 also serves to ensure no movement of passageways 191A, 191B, caused by a person's body movements.
With reference to FIGS. 1, 2, and 5, the method and apparatus for repairing an abdominal aortic aneurysm of the present invention will be described. Apparatus 180 for repairing an abdominal aortic aneurysm 151 generally comprises: first and second tubes 160A, 160B and first and second expandable and deformable tubular members 166A, 166B, tubular members 166 and tubes 160 being constructed as previously described; and two catheters 181A, 181B, each catheter have an expandable, inflatable portion 182A, 182B, or balloon 183 associated therewith and a nosepiece 184. The tubular members 166A, 166B are releasably mounted to the inflatable portion 182 of each catheter 181, in any suitable fashion, whereby upon inflation of the expandable, inflatable portion 182 of each catheter 181A, 181B, the tubular members 166A, 166B are forced radially outwardly into contact with the aorta 152 and with each other to remain secured to aorta 152, whereby the tubes 160A, 160B, secured to the tubular members 166A, 166B, provide a bilateral passageway 200, or bilateral passageways 191A, 191B (FIGS. 11 and 15) through the abdominal aortic aneurysm 151.
The apparatus 180 for repairing the abdominal aortic aneurysm 151 as illustrated in FIGS. 1 and 2, is in its configuration it would have for intraluminal delivery into aorta 152 and aneurysm 151. Preferably, the first tube 160A, tubular member 166A, and catheter 181A are intraluminally delivered through a first femoral artery; and the second tube 160B, tubular member 166B, and catheter 181B are intraluminally delivered through a second femoral artery and in turn each pass through an iliac artery 153L, 153R, as illustrated in FIG. 2. In the configuration shown in FIGS. 1 and 2, the tubular members 166A, 166B have their first unexpanded, undeformed diameter D. In FIG. 5, tubular members 166A, 166B, have been expanded and deformed into their second, expanded and deformed diameter D′. Expansion and deformation of tubular members 166A, 166B is controlled by the expansion of balloons 183 of catheters 181A, 181B in a conventional manner. When apparatus 180 is being intraluminally delivered, catheters 181A, 181B, tubular members 166A, 166B, and tubes 160A, 160B are preferably enclosed by conventional catheter sheathes 186A, 186B which are removed, as shown in FIG. 1, as apparatus 180 is disposed in its desired location within aorta 152.
If tubular members 166A, 166B, are utilized in connection with a fabric type tube 160, as previously described, balloon 183 of catheter 181 may have a length which extends from slightly beyond the first end 167 of tubular member 166, and to a position slightly beyond the second end 168 of tubular members 166. As illustrated in FIG. 5, if apparatus 180 includes tubes 160 constructed in a manner as described in FIGS. 9, 10A, and 10B, inflatable portion 182, or balloon 183 associated with each catheter 181 extends along a portion of the length of each catheter a distance greater than the combined length tube 160 and its associated tubular member 166, as illustrated in FIG. 5. Thus, upon expansion and inflation of each expandable and inflatable portion 182, or balloon 183, associated with each catheter 181, each tubular member 166A, 166B, is simultaneously expanded along with its connected tube 160A, 160B, including the plurality of tubular members 201 embedded within the layer 202 of plastic material of tubes 160A, 160B (FIGS. 9, 10A, 10B). Deflation of balloons 183 permits the withdrawal of catheters 181 and release of balloons 183 and catheters 181 from bypass graft 150 after graft 150 has been disposed in the configuration illustrated in FIG. 5. When tubes 160 are utilized of the construction illustrated in FIGS. 9, 10A, 10B, as shown in FIG. 5, the resulting bilateral passageway 191 formed in aorta 152 and aneurysm 151 is believed to be substantially non-collapsible, because of the presence of the plurality of tubular members 201 embedded within tubes 160A, 160B.
When implanting a bypass graft 150 of the construction illustrated in FIG. 15, first, second, third, and fourth tubular members 166A, 166B, 166A′, 166B′ may be simultaneously expanded and deformed into the expanded configuration illustrated in FIG. 15, as by use of the catheters 182 illustrated in FIG. 5, along with tubes 160A, 160B.
As illustrated in FIGS. 1, 2, 5, and 6, tubular members 166A, 166B, are initially disposed within aorta 152 substantially even and on the same level as each other at which time sheathes 186 are removed and balloons 183A, 183B are simultaneously expanded as illustrated in FIGS. 5 and 6, until tubular members 166A, 166B, are in an abutting relationship with each other and against aorta 150. Upon final inflation and expansion of the balloons 183A, 183B to force tubular members 166A, 166B into their final configuration illustrated in FIGS. 11 and 12, the abutting portions 210A, 210B of tubular members 166A, 166B, are flattened against each other into the configuration shown in FIG. 12, whereby the initially present gaps 211 (FIG. 6) between adjacent tubular members 166A, 166B, are closed off and removed.
FIGS. 13 and 14 illustrate bypass graft 150 after it has been implanted for a period of time, whereby the aneurysm 151 has thrombosed about tubes 160A, 160B and into contact therewith, and bilateral passageways 191A, 191B are thus disposed within aneurysm 151.
With reference to FIGS. 3 and 4, an alternative method for repairing an abdominal aortic aneurysm in an aorta 152 is illustrated. In this embodiment, bilateral intra-aortic bypass graft 150 includes a fifth expandable and deformable tubular member 166C of the same construction of the first through fourth tubular members 166A, 166B, 166A′, 166B′ as previously described. Prior to the intraluminal delivery of tubular members 166A, 166B, and tubes 160A, 160B as previously described in connection with FIGS. 1, 2, and 5, the fifth tubular member 166C is intraluminally delivered by a third catheter 181′ and expanded from its first diameter D″ to its second, expanded and deformed diameter D′″, as illustrated in FIG. 4, to secure the fifth tubular member 166C within the aorta 152. After the fifth expandable tubular member 166C has been implanted within aorta 152, as shown in dotted lines in FIG. 1, the remaining elements of bypass graft 150 are implanted within aorta 152 and aneurysm 151 as previously described in connection with FIGS. 1, 2, and 5. Upon expansion of first and second tubular members 166A, 166B, as previously described, those tubular members 166A, 166B, will be in abutting relationship with each other, as illustrated in FIG. 12, and will also be secured within aorta 152, via their expansion and deformation, into contact with fifth tubular member 166C which is secured in aorta 152.
It is believed that the use of fifth tubular member 166C will provide adequate anchorage for the tubular members 166A, 166B of bypass graft 150, and equalize forces exerted upon aorta 152 by the expansion of tubular members 166A, 166B. Fifth tubular member 166C has a final expanded diameter D′″ which is approximately twice the size of the expanded diameter D′ of tubular members 166A, 166B. Because fifth tubular member 166C does not have a tube 160 attached thereto, its delivery system, or catheter 181′ and sheath 186′ can be smaller, and they can be intraluminally delivered without any of the previously described disadvantage associated with prior art aortic grafts, having a large diameter tube connected thereto.
It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials or embodiments shown and described, as obvious modifications and equivalents will be apparent to one skilled in the art. For example, the expandable, inflatable portions of the catheters could be a plurality of hydraulically actuated rigid members disposed on a catheter of a plurality of balloons could be utilized to expand the securing means. Additionally, the wall surfaces of the tubular members could be formed by a plurality of wires having a smooth exterior surface. The tubes could also be used individually as grafts for other body passageways. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.
Claims (74)
1. A bilateral intra-aortic bypass graft for intraluminal delivery to repair an abdominal aortic aneurysm in an aorta having a diameter and two iliac arteries associated therewith, by forming a bilateral passageway through the abdominal aortic aneurysm, comprising:
a first tube having a diameter, first and second ends and a wall surface disposed between the two ends, at least a portion of the first tube adapted to be disposed within the abdominal aortic aneurysm;
a second tube having a diameter, first and second ends and a wall surface disposed between the two ends, at least a portion of the second tube adapted to be disposed within the abdominal aortic aneurysm; and
means for securing the first ends of the first and second tubes in an abutting relationship in the aorta, the securing means including first and second tubular members, each tubular member having first and second ends, the first tube being connected to the first tubular member and the second tube being connected to the second tubular member, the tubular members having a first diameter which permits intraluminal delivery of the tubular members and tubes into the aorta and the tubular members each having a second, expanded and deformed diameter, with at least a portion of the first and second tubular members in an abutting relationship, upon the application from the interior of the tubular members of a radially, outwardly extending force, to expand and deform the tubular members to secure the first ends of the tubular members to the aorta in an abutting relationship and to form a bilateral passageway within the abdominal aortic aneurysm.
2. The bilateral intra-aortic bypass graft of claim 1 , wherein at least a portion of the first and second tubes are in an abutting relationship with each other when the first and second tubular members have their second, expanded and deformed diameter.
3. The bilateral intra-aortic bypass graft of claim 1 , wherein each tubular member has a wall having a smooth outer wall surface disposed between its first and second ends, the wall walls surfaces having a substantially uniform thickness and a plurality of slots formed therein, the slots being disposed substantially parallel to the longitudinal axes of the tubular members, a first end of a tube being secured to a second end of a tubular member.
4. The bilateral intra-aortic bypass graft of claim 1 , wherein a biologically inert coating is disposed on the tubes.
5. The bilateral intra-aortic bypass graft of claim 1 , wherein the tubes are made of a material which is impervious to the flow of fluid.
6. The bilateral intra-aortic bypass graft of claim 1 , wherein the tubes are made of a material which is bio-erodible.
7. The bilateral intra-aortic bypass graft of claim 1 , wherein a third expandable and deformable, tubular member is connected to the second end of the first tube; a fourth expandable and deformable, tubular member is connected to the second end of the second tube; and the third and fourth tubular members are expanded and deformed to force the third and fourth tubular members radially outwardly into contact with an iliac artery.
8. The bilateral intra-aortic bypass graft of claim 1 , wherein each tube is formed of a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other, each tubular member being detached, and spaced apart, from adjacent tubular members; and the plurality of tubular members are embedded within a layer of a deformable and expandable plastic material.
9. The bilateral intra-aortic bypass graft of claim 8 , wherein the plastic material is silicone.
10. The bilateral intra-aortic bypass graft of claim 8 , wherein the plastic material is a polytetrafluoroethylene.
11. The bilateral intra-aortic bypass graft of claim 10 , wherein the plastic material is expanded polytetrafluoroethylene.
12. The bilateral intra-aortic bypass graft of claim 8 , wherein the plastic material is expanded polyurethane.
13. The bilateral intra-aortic bypass graft of claim 8 , wherein the first and second tubular members are connected to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the deformable and expandable plastic material of the tube to which it is to be connected.
14. The bilateral intra-aortic bypass graft of claim 1 , including a fifth expandable and deformable tubular member, wherein the first and second tubular members are disposed within the fifth expandable tubular member in an abutting relationship with each other and with the fifth expandable tubular member, whereby the first and second tubular members may be secured within the aorta and within the fifth tubular member.
15. The bilateral intra-aortic bypass graft of claim 1 , wherein each tube is formed of a plurality of expandable and deformable tubular members, each tubular member having a longitudinal axis with the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other; each tubular member being spaced apart from adjacent tubular members with a single, flexible connector member being disposed between adjacent tubular members; and the plurality of tubular members are embedded within a layer of a deformable and expandable plastic material.
16. The bilateral intra-aortic bypass graft of claim 15 , wherein the plastic material is silicone.
17. The bilateral intra-aortic bypass graft of claim 15 , wherein the plastic material is polytetrafluoroethylene.
18. The bilateral intra-aortic bypass graft of claim 17 , wherein the plastic material is expanded polytetrafluoroethylene.
19. The bilateral intra-aortic bypass graft of claim 15 , wherein the plastic material is expanded polyurethane.
20. The bilateral intra-aortic bypass graft of claim 15 , wherein the first and second tubular members are connected to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the deformable and expandable plastic material of the tube to which it is to be connected.
21. The bilateral intra-aortic bypass graft of claim 1 , wherein the tubes are made of a synthetic polyester material.
22. The bilateral intra-aortic bypass graft of claim 1 , wherein the tubes are made of polytetrafluoroethylene.
23. An apparatus for repairing an abdominal aortic aneurysm in an aorta having a diameter and two iliac arteries associated therewith, by forming a bilateral passageway through the abdominal aortic aneurysm, comprising:
(a) first and second tubes, each tube having a diameter, first and second ends and a wall surface disposed between the two ends;
(b) first and second expandable and deformable tubular members, each expandable and deformable tubular member, having first and second ends and a smooth outer wall surface disposed between the first and second ends, the first end of a tube being secured to a second and end of a tubular member, the expansion and deformation of the tubular members being controllable; and
(c) two catheters, each catheter having an expandable, inflatable portion associated therewith, the tubular members being releasably mounted upon the inflatable portions of each catheter, whereby upon inflation of the expandable, inflatable portion of each catheter, the tubular members are forced radially outwardly into contact in an abutting relationship with the aorta and each other to remain secured thereto, whereby the tubes, secured to the tubular members, provide a bilateral passageway through the abdominal aortic aneurysm.
24. The apparatus of claim 23 , wherein each tube is formed of includes a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other, each tubular member being detached, and spaced apart, from adjacent tubular members; and the plurality of tubular members are embedded within a layer of a deformable and expandable plastic material.
25. The apparatus of claim 24 , wherein the expandable, inflatable portion of each catheter extends along a portion of the length of each catheter for a distance greater than the combined length of each tube and tubular member, whereby upon expansion and inflation of each expandable, inflatable portion of each catheter, each tubular member and its connected tube are simultaneously expanded.
26. The apparatus of claim 23 , wherein each tube is formed of includes a plurality of expandable and deformable tubular members, each tubular member having a longitudinal axis with the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other; each tubular member being spaced apart from adjacent tubular members with a single, flexible connector member being disposed between adjacent tubular members; and the plurality of tubular members are embedded within a layer of a deformable and expandable plastic material.
27. The apparatus of claim 26 , wherein the expandable, inflatable portion of each catheter extends along a portion of the length of each catheter for a distance greater than the combined length of each tube and tubular member, whereby upon expansion and inflation of each expandable, inflatable portion of each catheter, each tubular member and its connected tube are simultaneously expanded.
28. A bilateral bypass graft for a body passageway, having a diameter, for intraluminal delivery to repair the body passageway by forming a bilateral passageway through the body passageway, comprising:
a first tube having a diameter, first and second ends and a wall surface disposed between the two ends, at least a portion of the first tube adapted to be disposed within the body passageway;
a second tube having a diameter, first and second ends and a wall surface disposed between the two ends, at least a portion of the second tube adapted to be disposed within the body passageway; and
means for securing the first ends of the first and second tubes in an abutting relationship in the body passageway, the securing means including first and second tubular members, each tubular member having first and second ends, the first tube being connected to the first tubular member and the second tube being connected to the second tubular member, the tubular members having a first diameter which permits intraluminal delivery of the tubular members and tubes into the body passageway and the tubular members each having a second, expanded and deformed diameter, with at least a portion of the first and second tubular members in an abutting relationship, upon the application from the interior of the tubular members of a radially, outwardly extending force, to expand and deform the tubular members to secure the first ends of the tubular members to the body passageway in an abutting relationship and to form a bilateral passageway within the body passageway.
29. The bilateral bypass graft of claim 28 , wherein at least a portion of the first and second tubes are in an abutting relationship with each other when the first and second tubular members have their second, expanded and deformed diameter.
30. The bilateral bypass graft of claim 28 , wherein each tubular member has a wall surface having a smooth outer wall surface disposed between its first and second ends, the wall surfaces walls having a substantially uniform thickness and a plurality of slots formed therein, the slots being disposed substantially parallel to the longitudinal axes of the tubular members, a first end of a tube being secured to a second end of a tubular member.
31. The bilateral bypass graft of claim 28 , wherein a biologically inert coating is disposed on the tubes.
32. The bilateral bypass graft of claim 28 , wherein the tubes are made of a material which is impervious to the flow of fluid.
33. The bilateral bypass graft of claim 28 , wherein the tubes are made of a material which is bio-erodible.
34. The bilateral bypass graft of claim 28 , wherein the tubes are made of a synthetic polyester material.
35. The bilateral bypass graft of claim 28 , wherein the tubes are made of polytetrafluoroethylene.
36. The bilateral bypass graft of claim 28 , wherein a third expandable and deformable, tubular member is connected to the second end of the first tube; a fourth expandable and deformable, tubular member is connected to the second end of the second tube; and the third and fourth tubular members are expanded and deformed to force the third and fourth tubular members radially outwardly into contact with the body passageway.
37. The bilateral bypass graft of claim 28 , wherein each tube is formed of includes a plurality of expandable and deformable, tubular members, each tubular member having a longitudinal axis, the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other, each tubular member being detached, and spaced apart, from adjacent tubular members; and the plurality of tubular members are embedded within a layer of a deformable and expandable plastic material.
38. The bilateral intra-aortic bypass graft of claim 37 , wherein the plastic material is silicone.
39. The bilateral bypass graft of claim 32 , wherein the plastic material is polytetrafluoroethylene.
40. The bilateral intra-aortic bypass graft of claim 39 , wherein the plastic material is expanded polytetrafluoroethylene
41. The bilateral intra-aortic bypass graft of claim 32 , wherein the plastic material is expanded polyurethane.
42. The bilateral intra-aortic bypass graft of claim 32 , wherein the first and second tubular members are connected to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the deformable and expandable plastic material of the tube to which it is to be connected.
43. The bilateral intra-aortic bypass graft of claim 28 , including a fifth expandable and deformable tubular member, wherein the first and second tubular members are disposed within the fifth expandable tubular member in an abutting relationship with each other and with the fifth expandable tubular member, whereby the first and second tubular members may be secured within the body passageway and within the fifth tubular member.
44. The bilateral bypass graft of claim 43 , wherein each tube is formed of includes a plurality of expandable and deformable tubular members, each tubular member having a longitudinal axis with the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other; each tubular member being spaced apart from adjacent tubular members with a single, flexible connector member being disposed between adjacent tubular members; and the plurality of tubular members are embedded within a layer of a deformable and expandable plastic material.
45. The bilateral bypass graft of claim 44 , wherein the plastic material is silicone.
46. The bilateral intra-aortic bypass graft of claim 44 , wherein the plastic material is polytetrafluoroethylene.
47. The bilateral intra-aortic bypass graft of claim 46 , wherein the plastic material is expanded polytetrafluoroethylene.
48. The bilateral intra-aortic bypass graft of claim 44 , wherein the plastic material is expanded polyurethane.
49. The bilateral intra-aortic bypass graft of claim 44 , wherein the first and second tubular members are connected to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the deformable and expandable plastic material of the tube to which it is to be connected.
50. A bilateral intra-aortic bypass graft for repairing an abdominal aortic aneurysm in an aorta having a diameter and two iliac arteries associated therewith, by forming a bilateral passageway through the abdominal aortic aneurysm, comprising:
a first tube having first and second ends and a wall surface disposed between the two ends, said first tube being adapted to be intraluminally delivered through one iliac artery so that the first end of the first tube is adapted to be located in the aorta above the abdominal aortic aneurism, at least a portion of the first tube being adapted to extend through the abdominal aortic aneurysm, with the second end of said first tube being adapted to be located within said one iliac artery, said first end of the first tube having a first delivery diameter and a second expanded diameter;
a second tube having first and second ends and a wall surface disposed between the two ends, said second tube being adapted to be intraluminally delivered through the other iliac artery so that the first end of the second tube is adapted to be located in the aorta above the abdominal aortic aneurism adjacent to the first end of the first tube, at least a portion of the second tube being adapted to extend through the abdominal aortic aneurysm, with the second end of said second tube being adapted to be located within said other iliac artery, said first end of the second tube having a first delivery diameter and a second expanded diameter;
the first ends of said first and second tubes being disposed in a fixed sealed relationship with one another within the aorta once they have been expanded into their second expanded diameters and being adapted to be disposed in a sealed relationship with the inner surface of the aorta above the aneurysm once they have been expanded into their second expanded diameters.
51. The bilateral intra-aortic graft of claim 50 , wherein the first ends of the first and second tubes are disposed in a sealed relationship by first and second tubular members that secure the first ends of the first and second tubes adjacent to one another in the aorta, the first tube being connected to the first tubular member and the second tube being connected to the second tubular member.
52. The bilateral intra-aortic graft of claim 51 wherein at least a portion of the first and second tubular members are in contact with one another in the aorta.
53. The bilateral intra-aortic bypass graft of claim 51 wherein at least portions of the first ends of the first and second tubes are in contact with one another in the aorta.
54. The bilateral intra-aortic graft of claim 51 wherein the first and second tubular members deform as they expand from the first diameter to the second diameter upon the application from the interior of a radially outwardly extending force.
55. The bilateral intra-aortic bypass graft of claim 51 , wherein each tubular member has first and second ends and a wall having a smooth outer wall surface disposed between its first and second ends, the walls having a substantially uniform thickness and a plurality of slots formed therein, the slots being disposed substantially parallel to the longitudinal axes of the tubular members, a first end of a tube being secured to a second end of a tubular member.
56. The bilateral intra-aortic bypass graft of claim 51 , wherein a third expandable tubular member is connected to the second end of the first tube; a fourth expandable tubular member is connected to the second end of the second tube; and the third and fourth tubular members are expanded to force the third and fourth tubular members radially outwardly into contact with an iliac artery.
57. The bilateral intra-aortic bypass graft of claim 51 , wherein each tube is formed of a plurality of expandable tubular members, each tubular member having a longitudinal axis, the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other, each tubular member being detached, and spaced apart, from adjacent tubular members; and the plurality of tubular members are embedded within a layer of an expandable plastic material.
58. The bilateral intra-aortic bypass graft of claim 57 , wherein the plastic material is silicone.
59. The bilateral intra-aortic bypass graft of claim 57 , wherein the plastic material is polytetrafluoroethylene.
60. The bilateral intra-aortic bypass graft of claim 59 , wherein the plastic material is expanded polytetrafluoroethylene.
61. The bilateral intra-aortic bypass graft of claim 57 , wherein the plastic material is expanded polyurethane.
62. The bilateral intra-aortic bypass graft of claim 57 , wherein the first and second tubular members are connected to the first and second tubes by embedding a portion of the second ends of the first and second tubular members in the expandable plastic material of the tube to which it is to be connected.
63. The bilateral intra-aortic bypass graft of claim 51 , including a fifth expandable tubular member wherein the first and second tubular members are disposed within the fifth expandable tubular member in an adjacent relationship with each other and with the fifth expandable tubular member, whereby the first and second tubular members may be secured within the aorta and within the fifth tubular member.
64. The bilateral intra-aortic bypass graft of claim 51 , wherein each tube is formed of a plurality of expandable tubular members, each tubular member having a longitudinal axis with the plurality of tubular members being aligned with their longitudinal axes being substantially parallel with each other; each tubular member being spaced apart from adjacent tubular members with a single, flexible connector member being disposed between adjacent tubular members; and the plurality of tubular members are embedded within a layer of expandable plastic material.
65. The bilateral intra-aortic bypass graft of claim 64 , wherein the plastic material is silicone.
66. The bilateral intra-aortic bypass graft of claim 64 , wherein the plastic material is polytetrafluoroethylene.
67. The bilateral intra-aortic bypass graft of claim 66 , wherein the plastic material is expanded polytetrafluoroethylene.
68. The bilateral intra-aortic bypass graft of claim 64 , wherein the plastic material is expanded polyurethane.
69. The bilateral intra-aortic bypass graft of claim 64 , wherein the first and second tubular members are connected to the first and second tubes by embedding a portion of the first and second tubular members in the expandable plastic material of the tube to which it is to be connected.
70. The bilateral intra-aortic bypass graft of claim 50 , wherein the tubes are made of a material which is impervious to the flow of fluid.
71. The bilateral intra-aortic bypass graft of claim 50 , wherein a biologically compatible coating is disposed on the tubes.
72. The bilateral intra-aortic bypass graft of claim 50 , wherein the tubes are made of a material which is bio-erodible.
73. The bilateral intra-aortic bypass graft of claim 50 , wherein the tubes are made of a synthetic polyester material.
74. The bilateral intra-aortic bypass graft of claim 50 , wherein the tubes are made of polytetrafluoroethylene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/186,589 USRE38146E1 (en) | 1992-01-08 | 1998-11-05 | Method and apparatus for bilateral intra-aortic bypass |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/818,052 US5316023A (en) | 1992-01-08 | 1992-01-08 | Method for bilateral intra-aortic bypass |
US08/199,119 US5571170A (en) | 1992-01-08 | 1994-02-22 | Method and apparatus for bilateral intra-aortic bypass |
US09/186,589 USRE38146E1 (en) | 1992-01-08 | 1998-11-05 | Method and apparatus for bilateral intra-aortic bypass |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/199,119 Reissue US5571170A (en) | 1992-01-08 | 1994-02-22 | Method and apparatus for bilateral intra-aortic bypass |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE38146E1 true USRE38146E1 (en) | 2003-06-17 |
Family
ID=25224532
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/818,052 Expired - Lifetime US5316023A (en) | 1992-01-08 | 1992-01-08 | Method for bilateral intra-aortic bypass |
US08/199,119 Ceased US5571170A (en) | 1992-01-08 | 1994-02-22 | Method and apparatus for bilateral intra-aortic bypass |
US08/588,454 Expired - Lifetime US5683453A (en) | 1992-01-08 | 1996-01-18 | Apparatus for bilateral intra-aortic bypass |
US09/186,589 Expired - Lifetime USRE38146E1 (en) | 1992-01-08 | 1998-11-05 | Method and apparatus for bilateral intra-aortic bypass |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/818,052 Expired - Lifetime US5316023A (en) | 1992-01-08 | 1992-01-08 | Method for bilateral intra-aortic bypass |
US08/199,119 Ceased US5571170A (en) | 1992-01-08 | 1994-02-22 | Method and apparatus for bilateral intra-aortic bypass |
US08/588,454 Expired - Lifetime US5683453A (en) | 1992-01-08 | 1996-01-18 | Apparatus for bilateral intra-aortic bypass |
Country Status (11)
Country | Link |
---|---|
US (4) | US5316023A (en) |
EP (3) | EP0551179B1 (en) |
JP (1) | JP3874204B2 (en) |
KR (1) | KR100249274B1 (en) |
AT (2) | ATE200408T1 (en) |
AU (1) | AU658253B2 (en) |
BR (1) | BR9300062A (en) |
CA (1) | CA2085918C (en) |
DE (2) | DE69333797T2 (en) |
ES (1) | ES2158010T3 (en) |
ZA (1) | ZA9210122B (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050033416A1 (en) * | 2003-05-02 | 2005-02-10 | Jacques Seguin | Vascular graft and deployment system |
US20050131516A1 (en) * | 2003-09-29 | 2005-06-16 | Secant Medical, Llc | Integral support stent graft assembly |
US20050177222A1 (en) * | 2003-12-17 | 2005-08-11 | Mead Jason A. | Interconnected leg extensions for an endoluminal prosthesis |
US20050234542A1 (en) * | 2004-03-31 | 2005-10-20 | Melsheimer Jeffry S | Endoluminal graft |
US20060074481A1 (en) * | 2004-10-04 | 2006-04-06 | Gil Vardi | Graft including expandable cuff |
US20060161244A1 (en) * | 2003-05-02 | 2006-07-20 | Jacques Seguin | Vascular graft and deployment system |
US20060264945A1 (en) * | 2005-05-18 | 2006-11-23 | Edidin Avram A | Selectively-expandable bone scaffold |
US20070179600A1 (en) * | 2004-10-04 | 2007-08-02 | Gil Vardi | Stent graft including expandable cuff |
US20080033397A1 (en) * | 2002-11-27 | 2008-02-07 | Bolton Medical, Inc. | Method for treating abdominal aortic aneurysms using a combined laparoscopic/open and endovascular technique |
US20080275536A1 (en) * | 2007-04-30 | 2008-11-06 | Zarins Christopher K | Prevention of displacement of prosthetic devices within aneurysms |
US20090105806A1 (en) * | 2007-10-23 | 2009-04-23 | Endologix, Inc | Stent |
US20110054587A1 (en) * | 2009-04-28 | 2011-03-03 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
USRE42380E1 (en) * | 1993-06-25 | 2011-05-17 | Bypass Devices LLC | Surgical bypass method |
US20110130820A1 (en) * | 2009-12-01 | 2011-06-02 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
US8034100B2 (en) | 1999-03-11 | 2011-10-11 | Endologix, Inc. | Graft deployment system |
US8118856B2 (en) | 2009-07-27 | 2012-02-21 | Endologix, Inc. | Stent graft |
US8147535B2 (en) | 1998-12-11 | 2012-04-03 | Endologix, Inc. | Bifurcation graft deployment catheter |
US8167925B2 (en) | 1999-03-11 | 2012-05-01 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US8221494B2 (en) | 2008-02-22 | 2012-07-17 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US8236040B2 (en) | 2008-04-11 | 2012-08-07 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8491646B2 (en) | 2009-07-15 | 2013-07-23 | Endologix, Inc. | Stent graft |
US8523931B2 (en) | 2007-01-12 | 2013-09-03 | Endologix, Inc. | Dual concentric guidewire and methods of bifurcated graft deployment |
US8808350B2 (en) | 2011-03-01 | 2014-08-19 | Endologix, Inc. | Catheter system and methods of using same |
US8858613B2 (en) | 2010-09-20 | 2014-10-14 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
WO2016044021A1 (en) | 2014-09-15 | 2016-03-24 | The Board Of Trustees Of The Leland Stanford Junior University | Targeting aneurysm disease by modulating phagocytosis pathways |
US9393100B2 (en) | 2010-11-17 | 2016-07-19 | Endologix, Inc. | Devices and methods to treat vascular dissections |
US9579103B2 (en) | 2009-05-01 | 2017-02-28 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US9700701B2 (en) | 2008-07-01 | 2017-07-11 | Endologix, Inc. | Catheter system and methods of using same |
US9737426B2 (en) | 2013-03-15 | 2017-08-22 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
US10285833B2 (en) | 2012-08-10 | 2019-05-14 | Lombard Medical Limited | Stent delivery systems and associated methods |
US10470871B2 (en) | 2001-12-20 | 2019-11-12 | Trivascular, Inc. | Advanced endovascular graft |
US10772717B2 (en) | 2009-05-01 | 2020-09-15 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US11129737B2 (en) | 2015-06-30 | 2021-09-28 | Endologix Llc | Locking assembly for coupling guidewire to delivery system |
US11406518B2 (en) | 2010-11-02 | 2022-08-09 | Endologix Llc | Apparatus and method of placement of a graft or graft system |
Families Citing this family (452)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5693083A (en) | 1983-12-09 | 1997-12-02 | Endovascular Technologies, Inc. | Thoracic graft and delivery catheter |
US5360443A (en) * | 1990-06-11 | 1994-11-01 | Barone Hector D | Aortic graft for repairing an abdominal aortic aneurysm |
US5578071A (en) * | 1990-06-11 | 1996-11-26 | Parodi; Juan C. | Aortic graft |
US6682557B1 (en) | 1991-04-11 | 2004-01-27 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5628783A (en) | 1991-04-11 | 1997-05-13 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5316023A (en) | 1992-01-08 | 1994-05-31 | Expandable Grafts Partnership | Method for bilateral intra-aortic bypass |
AU678350B2 (en) * | 1992-05-08 | 1997-05-29 | Schneider (Usa) Inc. | Esophageal stent and delivery tool |
US5817102A (en) * | 1992-05-08 | 1998-10-06 | Schneider (Usa) Inc. | Apparatus for delivering and deploying a stent |
DE4222380A1 (en) | 1992-07-08 | 1994-01-13 | Ernst Peter Prof Dr M Strecker | Endoprosthesis implantable percutaneously in a patient's body |
US5366473A (en) * | 1992-08-18 | 1994-11-22 | Ultrasonic Sensing And Monitoring Systems, Inc. | Method and apparatus for applying vascular grafts |
BE1006440A3 (en) * | 1992-12-21 | 1994-08-30 | Dereume Jean Pierre Georges Em | Luminal endoprosthesis AND METHOD OF PREPARATION. |
DE69317548T2 (en) * | 1993-04-23 | 1998-08-13 | Schneider (Europe) Gmbh, Buelach | Stent with a coating of elastic material and method for applying the coating on the stent |
FR2706764B1 (en) * | 1993-06-24 | 1995-08-04 | Synthelabo | |
US5480434A (en) * | 1993-07-13 | 1996-01-02 | The University Of Miami | Method and device for connecting biological duct to a prosthesis |
US5735892A (en) | 1993-08-18 | 1998-04-07 | W. L. Gore & Associates, Inc. | Intraluminal stent graft |
US6689158B1 (en) * | 1993-09-30 | 2004-02-10 | Endogad Research Pty Limited | Intraluminal graft |
WO1995008966A1 (en) * | 1993-09-30 | 1995-04-06 | White Geoffrey H | Intraluminal graft |
AU707812B2 (en) * | 1993-10-01 | 1999-07-22 | Juan C. Parodi | Aortic graft for repairing an abdominal aortic aneurysm |
US5855598A (en) * | 1993-10-21 | 1999-01-05 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5632772A (en) * | 1993-10-21 | 1997-05-27 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5723004A (en) * | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
US5639278A (en) * | 1993-10-21 | 1997-06-17 | Corvita Corporation | Expandable supportive bifurcated endoluminal grafts |
US6775021B1 (en) | 1993-11-26 | 2004-08-10 | Canon Kabushiki Kaisha | Data communication apparatus for receiving and recording data and having means for adding a predetermined mark and a time of reception to the recorded data |
DE9319267U1 (en) * | 1993-12-15 | 1994-02-24 | Günther, Rudolf W., Prof. Dr., 52074 Aachen | Aortic endoprosthesis |
US6051020A (en) | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5609627A (en) | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US6039749A (en) | 1994-02-10 | 2000-03-21 | Endovascular Systems, Inc. | Method and apparatus for deploying non-circular stents and graftstent complexes |
US5507769A (en) | 1994-10-18 | 1996-04-16 | Stentco, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
US5653746A (en) * | 1994-03-08 | 1997-08-05 | Meadox Medicals, Inc. | Radially expandable tubular prosthesis |
US6475232B1 (en) * | 1996-12-10 | 2002-11-05 | Purdue Research Foundation | Stent with reduced thrombogenicity |
ATE310839T1 (en) * | 1994-04-29 | 2005-12-15 | Scimed Life Systems Inc | STENT WITH COLLAGEN |
CA2189662C (en) | 1994-05-06 | 2004-12-14 | William M. Colone | Radially expandable polytetrafluoroethylene |
US5824044A (en) | 1994-05-12 | 1998-10-20 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system |
US5456694A (en) * | 1994-05-13 | 1995-10-10 | Stentco, Inc. | Device for delivering and deploying intraluminal devices |
US5824041A (en) | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
DE29522101U1 (en) * | 1994-06-08 | 1999-12-09 | Cardiovascular Concepts Inc | Endoluminal prosthesis |
US5683451A (en) | 1994-06-08 | 1997-11-04 | Cardiovascular Concepts, Inc. | Apparatus and methods for deployment release of intraluminal prostheses |
JP3662255B2 (en) * | 1994-06-13 | 2005-06-22 | エンドームド・インコーポレーテッド | Expandable endovascular graft and method of placing the same |
US5732872A (en) * | 1994-06-17 | 1998-03-31 | Heartport, Inc. | Surgical stapling instrument |
JPH10506021A (en) * | 1994-06-27 | 1998-06-16 | エンドーム・インコーポレーテッド | Radially expandable polytetrafluoroethylene and expandable intravascular stent molded therefrom |
US5575817A (en) * | 1994-08-19 | 1996-11-19 | Martin; Eric C. | Aorto femoral bifurcation graft and method of implantation |
US5609605A (en) * | 1994-08-25 | 1997-03-11 | Ethicon, Inc. | Combination arterial stent |
US6331188B1 (en) | 1994-08-31 | 2001-12-18 | Gore Enterprise Holdings, Inc. | Exterior supported self-expanding stent-graft |
US6015429A (en) | 1994-09-08 | 2000-01-18 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
US5723003A (en) * | 1994-09-13 | 1998-03-03 | Ultrasonic Sensing And Monitoring Systems | Expandable graft assembly and method of use |
CA2134997C (en) * | 1994-11-03 | 2009-06-02 | Ian M. Penn | Stent |
EP0790810B1 (en) * | 1994-11-09 | 2004-04-28 | Endotex Interventional Systems, Inc. | Kit of delivery catheter and graft for aneurysm repair |
US5800521A (en) * | 1994-11-09 | 1998-09-01 | Endotex Interventional Systems, Inc. | Prosthetic graft and method for aneurysm repair |
AU3783195A (en) | 1994-11-15 | 1996-05-23 | Advanced Cardiovascular Systems Inc. | Intraluminal stent for attaching a graft |
NL9500094A (en) * | 1995-01-19 | 1996-09-02 | Industrial Res Bv | Y-shaped stent and method of deployment. |
US5904697A (en) | 1995-02-24 | 1999-05-18 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
US5976159A (en) * | 1995-02-24 | 1999-11-02 | Heartport, Inc. | Surgical clips and methods for tissue approximation |
US5683449A (en) * | 1995-02-24 | 1997-11-04 | Marcade; Jean Paul | Modular bifurcated intraluminal grafts and methods for delivering and assembling same |
CA2566929C (en) * | 1995-03-10 | 2009-04-21 | Bard Peripheral Vascular, Inc. | Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery |
US6579314B1 (en) * | 1995-03-10 | 2003-06-17 | C.R. Bard, Inc. | Covered stent with encapsulated ends |
US6451047B2 (en) * | 1995-03-10 | 2002-09-17 | Impra, Inc. | Encapsulated intraluminal stent-graft and methods of making same |
US6264684B1 (en) * | 1995-03-10 | 2001-07-24 | Impra, Inc., A Subsidiary Of C.R. Bard, Inc. | Helically supported graft |
US6039755A (en) * | 1997-02-05 | 2000-03-21 | Impra, Inc., A Division Of C.R. Bard, Inc. | Radially expandable tubular polytetrafluoroethylene grafts and method of making same |
US6124523A (en) * | 1995-03-10 | 2000-09-26 | Impra, Inc. | Encapsulated stent |
US5641373A (en) * | 1995-04-17 | 1997-06-24 | Baxter International Inc. | Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft |
US5807398A (en) * | 1995-04-28 | 1998-09-15 | Shaknovich; Alexander | Shuttle stent delivery catheter |
FR2733682B1 (en) | 1995-05-04 | 1997-10-31 | Dibie Alain | ENDOPROSTHESIS FOR THE TREATMENT OF STENOSIS ON BIFURCATIONS OF BLOOD VESSELS AND LAYING EQUIPMENT THEREFOR |
US5662614A (en) * | 1995-05-09 | 1997-09-02 | Edoga; John K. | Balloon expandable universal access sheath |
US5591228A (en) * | 1995-05-09 | 1997-01-07 | Edoga; John K. | Methods for treating abdominal aortic aneurysms |
US5746766A (en) * | 1995-05-09 | 1998-05-05 | Edoga; John K. | Surgical stent |
FR2733689B1 (en) * | 1995-08-07 | 1997-08-01 | Dibie Alain | SYSTEM FOR THE EXPANSION OF BLOOD VESSELS |
EP0850030B1 (en) | 1995-08-24 | 2004-07-21 | Bard Peripheral Vascular, Inc. | Method of assembly of a covered endoluminal stent |
US6193745B1 (en) * | 1995-10-03 | 2001-02-27 | Medtronic, Inc. | Modular intraluminal prosteheses construction and methods |
US5824037A (en) * | 1995-10-03 | 1998-10-20 | Medtronic, Inc. | Modular intraluminal prostheses construction and methods |
US6099558A (en) * | 1995-10-10 | 2000-08-08 | Edwards Lifesciences Corp. | Intraluminal grafting of a bifuricated artery |
US5669924A (en) * | 1995-10-26 | 1997-09-23 | Shaknovich; Alexander | Y-shuttle stent assembly for bifurcating vessels and method of using the same |
AU736766B2 (en) * | 1995-11-13 | 2001-08-02 | Corvita Corporation | Endoluminal component with indent |
AU736081B2 (en) * | 1995-11-13 | 2001-07-26 | Corvita Corporation | Expandable supportive bifurcated endoluminal grafts |
US5788626A (en) * | 1995-11-21 | 1998-08-04 | Schneider (Usa) Inc | Method of making a stent-graft covered with expanded polytetrafluoroethylene |
US5665117A (en) * | 1995-11-27 | 1997-09-09 | Rhodes; Valentine J. | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
US6576009B2 (en) * | 1995-12-01 | 2003-06-10 | Medtronic Ave, Inc. | Bifurcated intraluminal prostheses construction and methods |
US5824040A (en) | 1995-12-01 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
JP2000503559A (en) | 1995-12-14 | 2000-03-28 | ゴア エンタープライズ ホールディングス,インコーポレイティド | Apparatus and method for deploying a stent-graft |
US6042605A (en) | 1995-12-14 | 2000-03-28 | Gore Enterprose Holdings, Inc. | Kink resistant stent-graft |
CA2241547A1 (en) | 1996-01-04 | 1997-07-17 | Endovascular Technologies, Inc. | Flat wire stent |
US5725547A (en) * | 1996-01-04 | 1998-03-10 | Chuter; Timothy A. M. | Corrugated stent |
US6719782B1 (en) | 1996-01-04 | 2004-04-13 | Endovascular Technologies, Inc. | Flat wire stent |
FR2743293B1 (en) * | 1996-01-08 | 1998-03-27 | Denis Jean Marc | AORTO-ILIAC STENT |
AUPN775296A0 (en) | 1996-01-25 | 1996-02-22 | Endogad Research Pty Limited | Directional catheter |
WO1997032544A1 (en) | 1996-03-05 | 1997-09-12 | Divysio Solutions Ulc. | Expandable stent and method for delivery of same |
CA2192520A1 (en) | 1996-03-05 | 1997-09-05 | Ian M. Penn | Expandable stent and method for delivery of same |
US6796997B1 (en) | 1996-03-05 | 2004-09-28 | Evysio Medical Devices Ulc | Expandable stent |
US5843160A (en) * | 1996-04-01 | 1998-12-01 | Rhodes; Valentine J. | Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen |
US5833699A (en) * | 1996-04-10 | 1998-11-10 | Chuter; Timothy A. M. | Extending ribbon stent |
BE1010183A3 (en) | 1996-04-25 | 1998-02-03 | Dereume Jean Pierre Georges Em | Luminal endoprosthesis FOR BRANCHING CHANNELS OF A HUMAN OR ANIMAL BODY AND MANUFACTURING METHOD THEREOF. |
FR2748199B1 (en) * | 1996-05-02 | 1998-10-09 | Braun Celsa Sa | TRANSCUTANEOUS SURGICAL ANASTOMOSABLE VASCULAR PROSTHESIS |
FR2748198B1 (en) * | 1996-05-02 | 1998-08-21 | Braun Celsa Sa | PROSTHESIS IN PARTICULAR FOR THE TREATMENT OF ANNEVRISMS OVERFLOWING ON ILIAC VESSELS |
UA58485C2 (en) | 1996-05-03 | 2003-08-15 | Медінол Лтд. | Method for manufacture of bifurcated stent (variants) and bifurcated stent (variants) |
US6440165B1 (en) * | 1996-05-03 | 2002-08-27 | Medinol, Ltd. | Bifurcated stent with improved side branch aperture and method of making same |
US6770092B2 (en) | 1996-05-03 | 2004-08-03 | Medinol Ltd. | Method of delivering a bifurcated stent |
US6251133B1 (en) | 1996-05-03 | 2001-06-26 | Medinol Ltd. | Bifurcated stent with improved side branch aperture and method of making same |
US7641685B2 (en) * | 1996-05-03 | 2010-01-05 | Medinol Ltd. | System and method for delivering a bifurcated stent |
US5709701A (en) * | 1996-05-30 | 1998-01-20 | Parodi; Juan C. | Apparatus for implanting a prothesis within a body passageway |
US5755773A (en) * | 1996-06-04 | 1998-05-26 | Medtronic, Inc. | Endoluminal prosthetic bifurcation shunt |
US7238197B2 (en) | 2000-05-30 | 2007-07-03 | Devax, Inc. | Endoprosthesis deployment system for treating vascular bifurcations |
US7686846B2 (en) | 1996-06-06 | 2010-03-30 | Devax, Inc. | Bifurcation stent and method of positioning in a body lumen |
US6666883B1 (en) | 1996-06-06 | 2003-12-23 | Jacques Seguin | Endoprosthesis for vascular bifurcation |
US8728143B2 (en) | 1996-06-06 | 2014-05-20 | Biosensors International Group, Ltd. | Endoprosthesis deployment system for treating vascular bifurcations |
US5797920A (en) * | 1996-06-14 | 1998-08-25 | Beth Israel Deaconess Medical Center | Catheter apparatus and method using a shape-memory alloy cuff for creating a bypass graft in-vivo |
JP4014226B2 (en) * | 1996-06-20 | 2007-11-28 | ヴァスキュテック リミテッド | Repair of the body's path by prosthesis |
US5843161A (en) * | 1996-06-26 | 1998-12-01 | Cordis Corporation | Endoprosthesis assembly for percutaneous deployment and method of deploying same |
US6325819B1 (en) | 1996-08-19 | 2001-12-04 | Cook Incorporated | Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm |
US5968068A (en) * | 1996-09-12 | 1999-10-19 | Baxter International Inc. | Endovascular delivery system |
US6565581B1 (en) | 1996-09-16 | 2003-05-20 | Origin Medsystems, Inc. | Apparatus and method for performing an anastomosis |
US5868763A (en) | 1996-09-16 | 1999-02-09 | Guidant Corporation | Means and methods for performing an anastomosis |
US6488692B1 (en) | 1996-09-16 | 2002-12-03 | Origin Medsystems, Inc. | Access and cannulation device and method for rapidly placing same and for rapidly closing same in minimally invasive surgery |
US6811555B1 (en) | 1996-09-16 | 2004-11-02 | Origin Medsystems, Inc. | Method and apparatus for performing anastomosis with eversion of tissue edges and joining of exposed intima of the everted tissue |
NL1004162C2 (en) * | 1996-10-01 | 1998-04-02 | Cordis Europ | Balloon catheter for stent delivery. |
US5843119A (en) * | 1996-10-23 | 1998-12-01 | United States Surgical Corporation | Apparatus and method for dilatation of a body lumen and delivery of a prothesis therein |
US8211167B2 (en) | 1999-12-06 | 2012-07-03 | Boston Scientific Scimed, Inc. | Method of using a catheter with attached flexible side sheath |
US6036702A (en) * | 1997-04-23 | 2000-03-14 | Vascular Science Inc. | Medical grafting connectors and fasteners |
US6120432A (en) | 1997-04-23 | 2000-09-19 | Vascular Science Inc. | Medical grafting methods and apparatus |
US5941908A (en) * | 1997-04-23 | 1999-08-24 | Vascular Science, Inc. | Artificial medical graft with a releasable retainer |
US5976178A (en) | 1996-11-07 | 1999-11-02 | Vascular Science Inc. | Medical grafting methods |
US5972017A (en) | 1997-04-23 | 1999-10-26 | Vascular Science Inc. | Method of installing tubular medical graft connectors |
US6352561B1 (en) | 1996-12-23 | 2002-03-05 | W. L. Gore & Associates | Implant deployment apparatus |
US6015431A (en) * | 1996-12-23 | 2000-01-18 | Prograft Medical, Inc. | Endolumenal stent-graft with leak-resistant seal |
US6551350B1 (en) | 1996-12-23 | 2003-04-22 | Gore Enterprise Holdings, Inc. | Kink resistant bifurcated prosthesis |
FR2758254A1 (en) * | 1997-01-16 | 1998-07-17 | Ethnor | VASCULAR BRIDGE DEVICE |
US5858556A (en) * | 1997-01-21 | 1999-01-12 | Uti Corporation | Multilayer composite tubular structure and method of making |
US6152956A (en) | 1997-01-28 | 2000-11-28 | Pierce; George E. | Prosthesis for endovascular repair of abdominal aortic aneurysms |
AU737887B2 (en) | 1997-01-29 | 2001-09-06 | Timothy A.M. Chuter | Bell-bottom modular stent-graft |
US6951572B1 (en) | 1997-02-20 | 2005-10-04 | Endologix, Inc. | Bifurcated vascular graft and method and apparatus for deploying same |
US6090128A (en) * | 1997-02-20 | 2000-07-18 | Endologix, Inc. | Bifurcated vascular graft deployment device |
US6096073A (en) * | 1997-02-25 | 2000-08-01 | Scimed Life Systems, Inc. | Method of deploying a stent at a lesion site located at a bifurcation in a parent vessel |
CA2214627A1 (en) | 1997-03-05 | 1998-09-05 | Divysio Solutions Ulc | Expandable stent |
US5911732A (en) * | 1997-03-10 | 1999-06-15 | Johnson & Johnson Interventional Systems, Co. | Articulated expandable intraluminal stent |
US20020087046A1 (en) * | 1997-04-23 | 2002-07-04 | St. Jude Medical Cardiovascular Group, Inc. | Medical grafting methods and apparatus |
US6102938A (en) * | 1997-06-17 | 2000-08-15 | Medtronic Inc. | Endoluminal prosthetic bifurcation shunt |
ES2214600T3 (en) | 1997-06-30 | 2004-09-16 | Medex Holding Gmbh | INTRALUMINAL IMPLANT. |
EP1407725A3 (en) | 1997-07-08 | 2011-12-07 | Evysio Medical Devices Ulc | Expandable stent |
AU8201898A (en) | 1997-07-08 | 1999-02-08 | Novo Rps Ulc | Expandable stent |
US5795289A (en) * | 1997-07-28 | 1998-08-18 | Wyttenbach; William H. | Speculum |
US6070589A (en) | 1997-08-01 | 2000-06-06 | Teramed, Inc. | Methods for deploying bypass graft stents |
US7753950B2 (en) | 1997-08-13 | 2010-07-13 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6361544B1 (en) | 1997-08-13 | 2002-03-26 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6221090B1 (en) | 1997-08-13 | 2001-04-24 | Advanced Cardiovascular Systems, Inc. | Stent delivery assembly |
US6165195A (en) | 1997-08-13 | 2000-12-26 | Advanced Cardiovascylar Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US5984959A (en) * | 1997-09-19 | 1999-11-16 | United States Surgical | Heart valve replacement tools and procedures |
US6371982B2 (en) | 1997-10-09 | 2002-04-16 | St. Jude Medical Cardiovascular Group, Inc. | Graft structures with compliance gradients |
US6074416A (en) * | 1997-10-09 | 2000-06-13 | St. Jude Medical Cardiovascular Group, Inc. | Wire connector structures for tubular grafts |
US6001124A (en) * | 1997-10-09 | 1999-12-14 | Vascular Science, Inc. | Oblique-angle graft connectors |
US6068654A (en) * | 1997-12-23 | 2000-05-30 | Vascular Science, Inc. | T-shaped medical graft connector |
US6048362A (en) * | 1998-01-12 | 2000-04-11 | St. Jude Medical Cardiovascular Group, Inc. | Fluoroscopically-visible flexible graft structures |
US6193734B1 (en) | 1998-01-23 | 2001-02-27 | Heartport, Inc. | System for performing vascular anastomoses |
US6096074A (en) * | 1998-01-27 | 2000-08-01 | United States Surgical | Stapling apparatus and method for heart valve replacement |
AU1923999A (en) | 1998-01-30 | 1999-08-16 | Vascular Science Inc. | Medical graft connector or plug structures, and methods of making and installingsame |
US6994713B2 (en) * | 1998-01-30 | 2006-02-07 | St. Jude Medical Atg, Inc. | Medical graft connector or plug structures, and methods of making and installing same |
US6395018B1 (en) * | 1998-02-09 | 2002-05-28 | Wilfrido R. Castaneda | Endovascular graft and process for bridging a defect in a main vessel near one of more branch vessels |
US6395019B2 (en) | 1998-02-09 | 2002-05-28 | Trivascular, Inc. | Endovascular graft |
US6102918A (en) | 1998-02-18 | 2000-08-15 | Montefiore Hospital And Medical Center | Collapsible low-profile vascular graft implantation instrument and method for use thereof |
US6488701B1 (en) | 1998-03-31 | 2002-12-03 | Medtronic Ave, Inc. | Stent-graft assembly with thin-walled graft component and method of manufacture |
US6235054B1 (en) | 1998-02-27 | 2001-05-22 | St. Jude Medical Cardiovascular Group, Inc. | Grafts with suture connectors |
US6077296A (en) * | 1998-03-04 | 2000-06-20 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6099497A (en) * | 1998-03-05 | 2000-08-08 | Scimed Life Systems, Inc. | Dilatation and stent delivery system for bifurcation lesions |
US6176864B1 (en) * | 1998-03-09 | 2001-01-23 | Corvascular, Inc. | Anastomosis device and method |
US6110188A (en) * | 1998-03-09 | 2000-08-29 | Corvascular, Inc. | Anastomosis method |
US6019778A (en) * | 1998-03-13 | 2000-02-01 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6425898B1 (en) | 1998-03-13 | 2002-07-30 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6129756A (en) * | 1998-03-16 | 2000-10-10 | Teramed, Inc. | Biluminal endovascular graft system |
US6224609B1 (en) * | 1998-03-16 | 2001-05-01 | Teramed Inc. | Bifurcated prosthetic graft |
US6290731B1 (en) | 1998-03-30 | 2001-09-18 | Cordis Corporation | Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm |
US6656215B1 (en) | 2000-11-16 | 2003-12-02 | Cordis Corporation | Stent graft having an improved means for attaching a stent to a graft |
AU3342499A (en) | 1998-04-02 | 1999-10-25 | Salviac Limited | An implant comprising a support structure and a transition material made of porous plastics material |
US6482217B1 (en) | 1998-04-10 | 2002-11-19 | Endicor Medical, Inc. | Neuro thrombectomy catheter |
US6001112A (en) * | 1998-04-10 | 1999-12-14 | Endicor Medical, Inc. | Rotational atherectomy device |
US6666874B2 (en) | 1998-04-10 | 2003-12-23 | Endicor Medical, Inc. | Rotational atherectomy system with serrated cutting tip |
US20020099438A1 (en) * | 1998-04-15 | 2002-07-25 | Furst Joseph G. | Irradiated stent coating |
US20030040790A1 (en) * | 1998-04-15 | 2003-02-27 | Furst Joseph G. | Stent coating |
US6436133B1 (en) | 1998-04-15 | 2002-08-20 | Joseph G. Furst | Expandable graft |
FR2777450B1 (en) * | 1998-04-16 | 2000-10-13 | Braun Celsa Sa | MEDICAL DEVICE FOR TREATING AN ANREVISM |
US6099559A (en) * | 1998-05-28 | 2000-08-08 | Medtronic Ave, Inc. | Endoluminal support assembly with capped ends |
ATE342014T1 (en) * | 1998-06-19 | 2006-11-15 | Endologix Inc | SELF-EXPANDING BRANCHING ENDOVASCULAR PROSTHESIS |
US7967855B2 (en) * | 1998-07-27 | 2011-06-28 | Icon Interventional Systems, Inc. | Coated medical device |
US8070796B2 (en) | 1998-07-27 | 2011-12-06 | Icon Interventional Systems, Inc. | Thrombosis inhibiting graft |
EP1100409B1 (en) | 1998-07-31 | 2005-03-16 | Evysio Medical Devices Ulc | Small vessel expandable stent |
US6143002A (en) * | 1998-08-04 | 2000-11-07 | Scimed Life Systems, Inc. | System for delivering stents to bifurcation lesions |
US6093199A (en) * | 1998-08-05 | 2000-07-25 | Endovascular Technologies, Inc. | Intra-luminal device for treatment of body cavities and lumens and method of use |
US6013092A (en) | 1998-08-18 | 2000-01-11 | Baxter International Inc. | Folding of catheter-mounted balloons to facilitate non-rotational radial expansion of intraluminal devices |
US6143022A (en) * | 1998-08-24 | 2000-11-07 | Medtronic Ave, Inc. | Stent-graft assembly with dual configuration graft component and method of manufacture |
US6117117A (en) * | 1998-08-24 | 2000-09-12 | Advanced Cardiovascular Systems, Inc. | Bifurcated catheter assembly |
US6406488B1 (en) * | 1998-08-27 | 2002-06-18 | Heartstent Corporation | Healing transmyocardial implant |
US6746489B2 (en) * | 1998-08-31 | 2004-06-08 | Wilson-Cook Medical Incorporated | Prosthesis having a sleeve valve |
US7118600B2 (en) | 1998-08-31 | 2006-10-10 | Wilson-Cook Medical, Inc. | Prosthesis having a sleeve valve |
US20070016306A1 (en) * | 1998-08-31 | 2007-01-18 | Wilson-Cook Medical Inc. | Prosthesis having a sleeve valve |
US20080086214A1 (en) * | 1998-08-31 | 2008-04-10 | Wilson-Cook Medical Inc. | Medical device having a sleeve valve with bioactive agent |
US6514281B1 (en) | 1998-09-04 | 2003-02-04 | Scimed Life Systems, Inc. | System for delivering bifurcation stents |
US20050147690A1 (en) * | 1998-09-25 | 2005-07-07 | Masters David B. | Biocompatible protein particles, particle devices and methods thereof |
US7662409B2 (en) * | 1998-09-25 | 2010-02-16 | Gel-Del Technologies, Inc. | Protein matrix materials, devices and methods of making and using thereof |
US6368345B1 (en) | 1998-09-30 | 2002-04-09 | Edwards Lifesciences Corporation | Methods and apparatus for intraluminal placement of a bifurcated intraluminal garafat |
US6071307A (en) * | 1998-09-30 | 2000-06-06 | Baxter International Inc. | Endoluminal grafts having continuously curvilinear wireforms |
US6849088B2 (en) * | 1998-09-30 | 2005-02-01 | Edwards Lifesciences Corporation | Aorto uni-iliac graft |
US6273909B1 (en) | 1998-10-05 | 2001-08-14 | Teramed Inc. | Endovascular graft system |
US6475234B1 (en) * | 1998-10-26 | 2002-11-05 | Medinol, Ltd. | Balloon expandable covered stents |
US6475222B1 (en) * | 1998-11-06 | 2002-11-05 | St. Jude Medical Atg, Inc. | Minimally invasive revascularization apparatus and methods |
US6113612A (en) | 1998-11-06 | 2000-09-05 | St. Jude Medical Cardiovascular Group, Inc. | Medical anastomosis apparatus |
US6152937A (en) | 1998-11-06 | 2000-11-28 | St. Jude Medical Cardiovascular Group, Inc. | Medical graft connector and methods of making and installing same |
US6508252B1 (en) * | 1998-11-06 | 2003-01-21 | St. Jude Medical Atg, Inc. | Medical grafting methods and apparatus |
US6214036B1 (en) | 1998-11-09 | 2001-04-10 | Cordis Corporation | Stent which is easily recaptured and repositioned within the body |
US6197049B1 (en) | 1999-02-17 | 2001-03-06 | Endologix, Inc. | Articulating bifurcation graft |
JP4189127B2 (en) | 1998-12-11 | 2008-12-03 | エンドロジックス、インク | Intraluminal artificial blood vessels |
US6187036B1 (en) | 1998-12-11 | 2001-02-13 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6733523B2 (en) * | 1998-12-11 | 2004-05-11 | Endologix, Inc. | Implantable vascular graft |
US7655030B2 (en) | 2003-07-18 | 2010-02-02 | Boston Scientific Scimed, Inc. | Catheter balloon systems and methods |
WO2000042947A2 (en) * | 1999-01-22 | 2000-07-27 | Gore Enterprise Holdings, Inc. | Covered endoprosthesis and delivery system |
US6673102B1 (en) | 1999-01-22 | 2004-01-06 | Gore Enterprises Holdings, Inc. | Covered endoprosthesis and delivery system |
CA2329213C (en) * | 1999-01-22 | 2005-08-09 | Gore Enterprise Holdings, Inc. | Low profile stent and graft combination |
US6398803B1 (en) * | 1999-02-02 | 2002-06-04 | Impra, Inc., A Subsidiary Of C.R. Bard, Inc. | Partial encapsulation of stents |
US6210318B1 (en) | 1999-03-09 | 2001-04-03 | Abiomed, Inc. | Stented balloon pump system and method for using same |
WO2000053104A1 (en) * | 1999-03-09 | 2000-09-14 | St. Jude Medical Cardiovascular Group, Inc. | Medical grafting methods and apparatus |
US6325825B1 (en) | 1999-04-08 | 2001-12-04 | Cordis Corporation | Stent with variable wall thickness |
US6287335B1 (en) | 1999-04-26 | 2001-09-11 | William J. Drasler | Intravascular folded tubular endoprosthesis |
US6790215B2 (en) | 1999-04-30 | 2004-09-14 | Edwards Lifesciences Corporation | Method of use for percutaneous material removal device and tip |
US6238405B1 (en) | 1999-04-30 | 2001-05-29 | Edwards Lifesciences Corp. | Percutaneous material removal device and method |
US6245101B1 (en) * | 1999-05-03 | 2001-06-12 | William J. Drasler | Intravascular hinge stent |
US6712836B1 (en) | 1999-05-13 | 2004-03-30 | St. Jude Medical Atg, Inc. | Apparatus and methods for closing septal defects and occluding blood flow |
US6699256B1 (en) * | 1999-06-04 | 2004-03-02 | St. Jude Medical Atg, Inc. | Medical grafting apparatus and methods |
US6440161B1 (en) | 1999-07-07 | 2002-08-27 | Endologix, Inc. | Dual wire placement catheter |
US6402779B1 (en) | 1999-07-26 | 2002-06-11 | Endomed, Inc. | Balloon-assisted intraluminal stent graft |
US6302892B1 (en) | 1999-08-04 | 2001-10-16 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
US7713279B2 (en) | 2000-12-20 | 2010-05-11 | Fox Hollow Technologies, Inc. | Method and devices for cutting tissue |
US8328829B2 (en) | 1999-08-19 | 2012-12-11 | Covidien Lp | High capacity debulking catheter with razor edge cutting window |
US7708749B2 (en) | 2000-12-20 | 2010-05-04 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US6299622B1 (en) | 1999-08-19 | 2001-10-09 | Fox Hollow Technologies, Inc. | Atherectomy catheter with aligned imager |
US6183481B1 (en) | 1999-09-22 | 2001-02-06 | Endomed Inc. | Delivery system for self-expanding stents and grafts |
US6270525B1 (en) | 1999-09-23 | 2001-08-07 | Cordis Corporation | Precursor stent gasket for receiving bilateral grafts having controlled contralateral guidewire access |
US6344056B1 (en) | 1999-12-29 | 2002-02-05 | Edwards Lifesciences Corp. | Vascular grafts for bridging a vessel side branch |
US6533806B1 (en) | 1999-10-01 | 2003-03-18 | Scimed Life Systems, Inc. | Balloon yielded delivery system and endovascular graft design for easy deployment |
US6383213B2 (en) | 1999-10-05 | 2002-05-07 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6849087B1 (en) * | 1999-10-06 | 2005-02-01 | Timothy A. M. Chuter | Device and method for staged implantation of a graft for vascular repair |
US6334868B1 (en) * | 1999-10-08 | 2002-01-01 | Advanced Cardiovascular Systems, Inc. | Stent cover |
US6733513B2 (en) | 1999-11-04 | 2004-05-11 | Advanced Bioprosthetic Surfaces, Ltd. | Balloon catheter having metal balloon and method of making same |
US7300457B2 (en) | 1999-11-19 | 2007-11-27 | Advanced Bio Prosthetic Surfaces, Ltd. | Self-supporting metallic implantable grafts, compliant implantable medical devices and methods of making same |
US6379383B1 (en) | 1999-11-19 | 2002-04-30 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal device exhibiting improved endothelialization and method of manufacture thereof |
US7235092B2 (en) | 1999-11-19 | 2007-06-26 | Advanced Bio Prosthetic Surfaces, Ltd. | Guidewires and thin film catheter-sheaths and method of making same |
US10172730B2 (en) | 1999-11-19 | 2019-01-08 | Vactronix Scientific, Llc | Stents with metallic covers and methods of making same |
US7736687B2 (en) | 2006-01-31 | 2010-06-15 | Advance Bio Prosthetic Surfaces, Ltd. | Methods of making medical devices |
US6936066B2 (en) | 1999-11-19 | 2005-08-30 | Advanced Bio Prosthetic Surfaces, Ltd. | Complaint implantable medical devices and methods of making same |
US8458879B2 (en) | 2001-07-03 | 2013-06-11 | Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. | Method of fabricating an implantable medical device |
US6537310B1 (en) | 1999-11-19 | 2003-03-25 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal implantable devices and method of making same |
US6849085B2 (en) | 1999-11-19 | 2005-02-01 | Advanced Bio Prosthetic Surfaces, Ltd. | Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same |
US7195641B2 (en) | 1999-11-19 | 2007-03-27 | Advanced Bio Prosthetic Surfaces, Ltd. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
US20060052865A1 (en) * | 2004-09-09 | 2006-03-09 | Banas Christopher E | Stents with metallic covers and methods of making same |
US6602263B1 (en) * | 1999-11-30 | 2003-08-05 | St. Jude Medical Atg, Inc. | Medical grafting methods and apparatus |
US6280466B1 (en) * | 1999-12-03 | 2001-08-28 | Teramed Inc. | Endovascular graft system |
US6673107B1 (en) | 1999-12-06 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Bifurcated stent and method of making |
US6387120B2 (en) | 1999-12-09 | 2002-05-14 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6254593B1 (en) | 1999-12-10 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Bifurcated stent delivery system having retractable sheath |
US6361555B1 (en) | 1999-12-15 | 2002-03-26 | Advanced Cardiovascular Systems, Inc. | Stent and stent delivery assembly and method of use |
US6663667B2 (en) | 1999-12-29 | 2003-12-16 | Edwards Lifesciences Corporation | Towel graft means for enhancing tissue ingrowth in vascular grafts |
NL1014095C2 (en) * | 2000-01-17 | 2001-07-18 | Cornelis Hendrikus Anna Witten | Implant valve for implantation into a blood vessel. |
EP1132060A2 (en) | 2000-03-09 | 2001-09-12 | LPL Systems Inc. | Expandable stent |
US6379382B1 (en) | 2000-03-13 | 2002-04-30 | Jun Yang | Stent having cover with drug delivery capability |
US6613082B2 (en) | 2000-03-13 | 2003-09-02 | Jun Yang | Stent having cover with drug delivery capability |
US6695865B2 (en) | 2000-03-20 | 2004-02-24 | Advanced Bio Prosthetic Surfaces, Ltd. | Embolic protection device |
US6942691B1 (en) | 2000-04-27 | 2005-09-13 | Timothy A. M. Chuter | Modular bifurcated graft for endovascular aneurysm repair |
US8845713B2 (en) | 2000-05-12 | 2014-09-30 | Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. | Self-supporting laminated films, structural materials and medical devices manufactured therefrom and methods of making same |
US6808533B1 (en) | 2000-07-28 | 2004-10-26 | Atrium Medical Corporation | Covered stent and method of covering a stent |
AU2002233936A1 (en) | 2000-11-07 | 2002-05-21 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal stent, self-fupporting endoluminal graft and methods of making same |
US6582394B1 (en) | 2000-11-14 | 2003-06-24 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcated vessels |
US6843802B1 (en) | 2000-11-16 | 2005-01-18 | Cordis Corporation | Delivery apparatus for a self expanding retractable stent |
AU778172C (en) | 2000-11-16 | 2005-06-30 | Cordis Corporation | A stent graft having a pleated graft member |
US6648911B1 (en) | 2000-11-20 | 2003-11-18 | Avantec Vascular Corporation | Method and device for the treatment of vulnerable tissue site |
US20020124851A1 (en) * | 2000-11-28 | 2002-09-12 | Richard Knauer | Hearing protective device and method of making same |
US6544219B2 (en) | 2000-12-15 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Catheter for placement of therapeutic devices at the ostium of a bifurcation of a body lumen |
JP4080874B2 (en) | 2000-12-20 | 2008-04-23 | フォックス ハロウ テクノロジーズ,インコーポレイティド | Bulking catheter |
US6641607B1 (en) | 2000-12-29 | 2003-11-04 | Advanced Cardiovascular Systems, Inc. | Double tube stent |
US6890338B1 (en) | 2001-02-27 | 2005-05-10 | Origin Medsystems, Inc. | Method and apparatus for performing anastomosis using ring having tines with weak sections |
US20040215322A1 (en) * | 2001-07-06 | 2004-10-28 | Andrew Kerr | Stent/graft assembly |
US20040073288A1 (en) * | 2001-07-06 | 2004-04-15 | Andrew Kerr | Stent/graft assembly |
US9937066B2 (en) | 2001-04-11 | 2018-04-10 | Andre Kerr | Stent/graft assembly |
US7105017B2 (en) | 2001-04-11 | 2006-09-12 | Andrew Kerr | Axially-connected stent/graft assembly |
US7175651B2 (en) * | 2001-07-06 | 2007-02-13 | Andrew Kerr | Stent/graft assembly |
US10105209B2 (en) | 2001-04-11 | 2018-10-23 | Andrew Kerr | Stent/graft assembly |
JP2004528120A (en) * | 2001-05-14 | 2004-09-16 | セント ジュード メディカル エーティージー, インコーポレイテッド | Medical implantation method and device |
US6749628B1 (en) | 2001-05-17 | 2004-06-15 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
ITTO20010465A1 (en) * | 2001-05-18 | 2002-11-18 | Sorin Biomedica Cardio Spa | MODIFYING STRUCTURE ELEMENT FOR INSTALLATION DEVICES, RELATED INSTALLATION DEVICE AND CONSTRUCTION PROCEDURE. |
US6607539B1 (en) | 2001-05-18 | 2003-08-19 | Endovascular Technologies, Inc. | Electric endovascular implant depolyment system |
US20020183769A1 (en) * | 2001-05-30 | 2002-12-05 | St. Jude Medical Atg, Inc. | Medical grafting methods and apparatus |
US7338514B2 (en) * | 2001-06-01 | 2008-03-04 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
US6818013B2 (en) * | 2001-06-14 | 2004-11-16 | Cordis Corporation | Intravascular stent device |
US6673106B2 (en) * | 2001-06-14 | 2004-01-06 | Cordis Neurovascular, Inc. | Intravascular stent device |
EP1418863B1 (en) * | 2001-08-23 | 2008-11-12 | Darrell C. Gumm | Rotating stent delivery system for side branch access and protection |
US6827737B2 (en) * | 2001-09-25 | 2004-12-07 | Scimed Life Systems, Inc. | EPTFE covering for endovascular prostheses and method of manufacture |
US6893460B2 (en) | 2001-10-11 | 2005-05-17 | Percutaneous Valve Technologies Inc. | Implantable prosthetic valve |
US8740973B2 (en) * | 2001-10-26 | 2014-06-03 | Icon Medical Corp. | Polymer biodegradable medical device |
US7597775B2 (en) | 2001-10-30 | 2009-10-06 | Boston Scientific Scimed, Inc. | Green fluoropolymer tube and endovascular prosthesis formed using same |
US6814561B2 (en) | 2001-10-30 | 2004-11-09 | Scimed Life Systems, Inc. | Apparatus and method for extrusion of thin-walled tubes |
DE10159708A1 (en) * | 2001-12-05 | 2003-06-18 | Bayer Ag | Alkaline chloride electrolysis cell with gas diffusion electrodes |
US7147660B2 (en) | 2001-12-20 | 2006-12-12 | Boston Scientific Santa Rosa Corp. | Advanced endovascular graft |
US8308797B2 (en) | 2002-01-04 | 2012-11-13 | Colibri Heart Valve, LLC | Percutaneously implantable replacement heart valve device and method of making same |
US20030130725A1 (en) * | 2002-01-08 | 2003-07-10 | Depalma Donald F. | Sealing prosthesis |
CA2483778A1 (en) * | 2002-04-29 | 2003-11-13 | Gel-Del Technologies, Inc. | Biomatrix structural containment and fixation systems and methods of use thereof |
US7976564B2 (en) | 2002-05-06 | 2011-07-12 | St. Jude Medical, Cardiology Division, Inc. | PFO closure devices and related methods of use |
US7195648B2 (en) | 2002-05-16 | 2007-03-27 | Cordis Neurovascular, Inc. | Intravascular stent device |
US11890181B2 (en) | 2002-07-22 | 2024-02-06 | Tmt Systems, Inc. | Percutaneous endovascular apparatus for repair of aneurysms and arterial blockages |
US7025777B2 (en) * | 2002-07-31 | 2006-04-11 | Unison Therapeutics, Inc. | Flexible and conformable stent and method of forming same |
US8016881B2 (en) | 2002-07-31 | 2011-09-13 | Icon Interventional Systems, Inc. | Sutures and surgical staples for anastamoses, wound closures, and surgical closures |
WO2004026183A2 (en) | 2002-09-20 | 2004-04-01 | Nellix, Inc. | Stent-graft with positioning anchor |
CA2499961C (en) | 2002-09-26 | 2014-12-30 | Advanced Bio Prosthetic Surfaces, Ltd. | High strength vacuum deposited nitinol alloy films, medical thin film graft materials and method of making same |
US7300459B2 (en) | 2002-10-17 | 2007-11-27 | Heuser Richard R | Stent with covering and differential dilation |
CA2502781A1 (en) * | 2002-10-23 | 2004-09-16 | The Biomerix Corporation | Aneurysm treatment devices and methods |
WO2004041126A1 (en) | 2002-11-08 | 2004-05-21 | Jacques Seguin | Endoprosthesis for vascular bifurcation |
US20040106199A1 (en) * | 2002-12-02 | 2004-06-03 | Eliseev Alexey V. | Charged cyclodextrin derivatives and their use in plant cell and tissue culture growth media |
US7766973B2 (en) * | 2005-01-19 | 2010-08-03 | Gi Dynamics, Inc. | Eversion resistant sleeves |
EP1567093B1 (en) * | 2002-12-04 | 2009-01-21 | Cook Incorporated | Method and device for treating aortic dissection |
ES2345814T3 (en) * | 2002-12-19 | 2010-10-04 | Invatec S.P.A. | ENDOLUMINAL PROTESIS. |
US8535370B1 (en) | 2003-01-23 | 2013-09-17 | Endovascular Technologies, Inc. | Radiopaque markers for endovascular graft alignment |
US7166088B2 (en) | 2003-01-27 | 2007-01-23 | Heuser Richard R | Catheter introducer system |
EP2095835B1 (en) * | 2003-01-28 | 2013-04-03 | Gambro Lundia AB | Apparatus for monitoring a vascular access |
US7025779B2 (en) | 2003-02-26 | 2006-04-11 | Scimed Life Systems, Inc. | Endoluminal device having enhanced affixation characteristics |
US7367989B2 (en) * | 2003-02-27 | 2008-05-06 | Scimed Life Systems, Inc. | Rotating balloon expandable sheath bifurcation delivery |
US7314480B2 (en) * | 2003-02-27 | 2008-01-01 | Boston Scientific Scimed, Inc. | Rotating balloon expandable sheath bifurcation delivery |
US7220274B1 (en) | 2003-03-21 | 2007-05-22 | Quinn Stephen F | Intravascular stent grafts and methods for deploying the same |
US8016869B2 (en) | 2003-03-26 | 2011-09-13 | Biosensors International Group, Ltd. | Guidewire-less stent delivery methods |
JP2006521161A (en) | 2003-03-26 | 2006-09-21 | カーディオマインド インコーポレイティッド | Implant delivery technology |
US7771463B2 (en) | 2003-03-26 | 2010-08-10 | Ton Dai T | Twist-down implant delivery technologies |
EP1613242B1 (en) | 2003-03-26 | 2013-02-20 | The Foundry, LLC | Devices for treatment of abdominal aortic aneurysms |
US8372112B2 (en) | 2003-04-11 | 2013-02-12 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods, and related methods of use |
US20040267306A1 (en) | 2003-04-11 | 2004-12-30 | Velocimed, L.L.C. | Closure devices, related delivery methods, and related methods of use |
US8246640B2 (en) | 2003-04-22 | 2012-08-21 | Tyco Healthcare Group Lp | Methods and devices for cutting tissue at a vascular location |
ES2338560T3 (en) | 2003-05-07 | 2010-05-10 | Advanced Bio Prosthetic Surfaces, Ltd. | IMPLANTABLE METALLIC IMPLANTS AND PROCEDURES TO MANUFACTURE THEM. |
US20040230289A1 (en) * | 2003-05-15 | 2004-11-18 | Scimed Life Systems, Inc. | Sealable attachment of endovascular stent to graft |
US8114102B2 (en) * | 2003-06-16 | 2012-02-14 | St. Jude Medical Atg, Inc. | Temporary hemostatic plug apparatus and method of use |
US8465537B2 (en) * | 2003-06-17 | 2013-06-18 | Gel-Del Technologies, Inc. | Encapsulated or coated stent systems |
US7959665B2 (en) | 2003-07-31 | 2011-06-14 | Abbott Cardiovascular Systems Inc. | Intravascular stent with inverted end rings |
DE602004014283D1 (en) * | 2003-07-31 | 2008-07-17 | Wilson Cook Medical Inc | System for the introduction of several medical devices |
US8784472B2 (en) * | 2003-08-15 | 2014-07-22 | Boston Scientific Scimed, Inc. | Clutch driven stent delivery system |
EP1660013A4 (en) * | 2003-08-26 | 2011-07-20 | Gel Del Technologies Inc | Protein biomaterials and biocoacervates and methods of making and using thereof |
US7402141B2 (en) | 2003-08-27 | 2008-07-22 | Heuser Richard R | Catheter guidewire system using concentric wires |
US7235083B1 (en) | 2003-09-10 | 2007-06-26 | Endovascular Technologies, Inc. | Methods and devices for aiding in situ assembly of repair devices |
US7090694B1 (en) | 2003-11-19 | 2006-08-15 | Advanced Cardiovascular Systems, Inc. | Portal design for stent for treating bifurcated vessels |
EP1691746B1 (en) * | 2003-12-08 | 2015-05-27 | Gel-Del Technologies, Inc. | Mucoadhesive drug delivery devices and methods of making and using thereof |
US7686841B2 (en) * | 2003-12-29 | 2010-03-30 | Boston Scientific Scimed, Inc. | Rotating balloon expandable sheath bifurcation delivery system |
US7922753B2 (en) * | 2004-01-13 | 2011-04-12 | Boston Scientific Scimed, Inc. | Bifurcated stent delivery system |
US7803178B2 (en) | 2004-01-30 | 2010-09-28 | Trivascular, Inc. | Inflatable porous implants and methods for drug delivery |
US8012192B2 (en) * | 2004-02-18 | 2011-09-06 | Boston Scientific Scimed, Inc. | Multi-stent delivery system |
US7225518B2 (en) * | 2004-02-23 | 2007-06-05 | Boston Scientific Scimed, Inc. | Apparatus for crimping a stent assembly |
US7744619B2 (en) * | 2004-02-24 | 2010-06-29 | Boston Scientific Scimed, Inc. | Rotatable catheter assembly |
US7922740B2 (en) | 2004-02-24 | 2011-04-12 | Boston Scientific Scimed, Inc. | Rotatable catheter assembly |
US7651521B2 (en) | 2004-03-02 | 2010-01-26 | Cardiomind, Inc. | Corewire actuated delivery system with fixed distal stent-carrying extension |
JP4714736B2 (en) | 2004-03-31 | 2011-06-29 | ウィルソン−クック・メディカル・インコーポレーテッド | Stent introducer system |
US20050273149A1 (en) * | 2004-06-08 | 2005-12-08 | Tran Thomas T | Bifurcated stent delivery system |
US20050276914A1 (en) * | 2004-06-15 | 2005-12-15 | Liu Ming-Dah | Method for manufacturing light guide plate mold cores |
US8048145B2 (en) | 2004-07-22 | 2011-11-01 | Endologix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
WO2006012567A2 (en) * | 2004-07-22 | 2006-02-02 | Nellix, Inc. | Methods and systems for endovascular aneurysm treatment |
US8545418B2 (en) | 2004-08-25 | 2013-10-01 | Richard R. Heuser | Systems and methods for ablation of occlusions within blood vessels |
US7702137B2 (en) | 2004-11-10 | 2010-04-20 | M2S, Inc. | Anatomical visualization and measurement system |
WO2006093546A1 (en) * | 2004-12-07 | 2006-09-08 | Medical Metrx Solutions, Inc. | Anatomical visualization and measurement system |
US8562566B2 (en) * | 2005-02-28 | 2013-10-22 | Boston Scientific Scimed, Inc. | Stent delivery and guidewire guidance system |
WO2006110197A2 (en) * | 2005-03-03 | 2006-10-19 | Icon Medical Corp. | Polymer biodegradable medical device |
US20060201601A1 (en) * | 2005-03-03 | 2006-09-14 | Icon Interventional Systems, Inc. | Flexible markers |
US20060264914A1 (en) * | 2005-03-03 | 2006-11-23 | Icon Medical Corp. | Metal alloys for medical devices |
US9107899B2 (en) | 2005-03-03 | 2015-08-18 | Icon Medical Corporation | Metal alloys for medical devices |
US7540995B2 (en) | 2005-03-03 | 2009-06-02 | Icon Medical Corp. | Process for forming an improved metal alloy stent |
AU2006221046B2 (en) * | 2005-03-03 | 2012-02-02 | Icon Medical Corp. | Improved metal alloys for medical device |
US8323333B2 (en) * | 2005-03-03 | 2012-12-04 | Icon Medical Corp. | Fragile structure protective coating |
WO2007008600A2 (en) * | 2005-07-07 | 2007-01-18 | Nellix, Inc. | Systems and methods for endovascular aneurysm treatment |
US8202311B2 (en) * | 2005-07-27 | 2012-06-19 | Cook Medical Technologies Llc | Stent/graft device and method for open surgical placement |
US8702789B2 (en) * | 2005-07-29 | 2014-04-22 | Cvdevices, Llc | Endoprosthesis assemblies and methods for using the same |
US9050091B2 (en) | 2005-07-29 | 2015-06-09 | Cvdevices, Llc | Endograft devices and methods for using the same |
US20070100414A1 (en) | 2005-11-02 | 2007-05-03 | Cardiomind, Inc. | Indirect-release electrolytic implant delivery systems |
US20070150041A1 (en) | 2005-12-22 | 2007-06-28 | Nellix, Inc. | Methods and systems for aneurysm treatment using filling structures |
US8062321B2 (en) | 2006-01-25 | 2011-11-22 | Pq Bypass, Inc. | Catheter system for connecting adjacent blood vessels |
US7374567B2 (en) | 2006-01-25 | 2008-05-20 | Heuser Richard R | Catheter system for connecting adjacent blood vessels |
US8821561B2 (en) | 2006-02-22 | 2014-09-02 | Boston Scientific Scimed, Inc. | Marker arrangement for bifurcation catheter |
US8357194B2 (en) | 2006-03-15 | 2013-01-22 | Cordis Corporation | Stent graft device |
US8690938B2 (en) * | 2006-05-26 | 2014-04-08 | DePuy Synthes Products, LLC | Occlusion device combination of stent and mesh with diamond-shaped porosity |
US20070276419A1 (en) | 2006-05-26 | 2007-11-29 | Fox Hollow Technologies, Inc. | Methods and devices for rotating an active element and an energy emitter on a catheter |
US8029558B2 (en) * | 2006-07-07 | 2011-10-04 | Abbott Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
WO2008008291A2 (en) * | 2006-07-13 | 2008-01-17 | Icon Medical Corp. | Stent |
US20100087907A1 (en) * | 2007-02-16 | 2010-04-08 | Emory University | Apparatus And Methods For Treating The Aorta |
US8221505B2 (en) * | 2007-02-22 | 2012-07-17 | Cook Medical Technologies Llc | Prosthesis having a sleeve valve |
US20080234813A1 (en) * | 2007-03-20 | 2008-09-25 | Heuser Richard R | Percutaneous Interventional Cardiology System for Treating Valvular Disease |
EP1982658A1 (en) * | 2007-04-16 | 2008-10-22 | Corlife GbR | Vessel connector and kit with applicator for surgery |
US8087923B1 (en) | 2007-05-18 | 2012-01-03 | C. R. Bard, Inc. | Extremely thin-walled ePTFE |
US20090012601A1 (en) * | 2007-07-05 | 2009-01-08 | Abbott Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US8486134B2 (en) | 2007-08-01 | 2013-07-16 | Boston Scientific Scimed, Inc. | Bifurcation treatment system and methods |
US7979108B2 (en) * | 2007-08-27 | 2011-07-12 | William Harrison Zurn | Automated vessel repair system, devices and methods |
US8663309B2 (en) | 2007-09-26 | 2014-03-04 | Trivascular, Inc. | Asymmetric stent apparatus and method |
US8226701B2 (en) | 2007-09-26 | 2012-07-24 | Trivascular, Inc. | Stent and delivery system for deployment thereof |
US8066755B2 (en) | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
AU2008308474B2 (en) | 2007-10-04 | 2014-07-24 | Trivascular, Inc. | Modular vascular graft for low profile percutaneous delivery |
US20090112237A1 (en) * | 2007-10-26 | 2009-04-30 | Cook Critical Care Incorporated | Vascular conduit and delivery system for open surgical placement |
US8083789B2 (en) | 2007-11-16 | 2011-12-27 | Trivascular, Inc. | Securement assembly and method for expandable endovascular device |
US8328861B2 (en) | 2007-11-16 | 2012-12-11 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
EP2237770A4 (en) * | 2007-12-26 | 2011-11-09 | Gel Del Technologies Inc | Biocompatible protein particles, particle devices and methods thereof |
US8021413B2 (en) | 2007-12-27 | 2011-09-20 | Cook Medical Technologies Llc | Low profile medical device |
US8747456B2 (en) | 2007-12-31 | 2014-06-10 | Boston Scientific Scimed, Inc. | Bifurcation stent delivery system and methods |
US8784440B2 (en) | 2008-02-25 | 2014-07-22 | Covidien Lp | Methods and devices for cutting tissue |
US8196279B2 (en) | 2008-02-27 | 2012-06-12 | C. R. Bard, Inc. | Stent-graft covering process |
CN101902988A (en) | 2008-04-25 | 2010-12-01 | 耐利克斯股份有限公司 | The induction system of stent graft |
US20090287145A1 (en) * | 2008-05-15 | 2009-11-19 | Altura Interventional, Inc. | Devices and methods for treatment of abdominal aortic aneurysms |
US20100305686A1 (en) * | 2008-05-15 | 2010-12-02 | Cragg Andrew H | Low-profile modular abdominal aortic aneurysm graft |
US8333003B2 (en) * | 2008-05-19 | 2012-12-18 | Boston Scientific Scimed, Inc. | Bifurcation stent crimping systems and methods |
US8377108B2 (en) | 2008-06-02 | 2013-02-19 | Boston Scientific Scimed, Inc. | Staggered two balloon bifurcation catheter assembly and methods |
WO2009149294A1 (en) | 2008-06-04 | 2009-12-10 | Nellix, Inc. | Sealing apparatus and methods of use |
EP2299945B1 (en) | 2008-06-05 | 2016-03-23 | Boston Scientific Scimed, Inc. | Balloon bifurcated lumen treatment |
US8827954B2 (en) | 2008-06-05 | 2014-09-09 | Boston Scientific Scimed, Inc. | Deflatable bifurcated device |
US8133199B2 (en) | 2008-08-27 | 2012-03-13 | Boston Scientific Scimed, Inc. | Electroactive polymer activation system for a medical device |
RU2503422C2 (en) | 2008-10-13 | 2014-01-10 | ТАЙКО ХЕЛСКЕА ГРУП эЛПи | Devices and methods of manipulating catheter rod |
US10016534B2 (en) | 2008-11-17 | 2018-07-10 | Gel-Del Technologies, Inc. | Protein biomaterial and biocoacervate vessel graft systems and methods of making and using thereof |
US8641753B2 (en) | 2009-01-31 | 2014-02-04 | Cook Medical Technologies Llc | Preform for and an endoluminal prosthesis |
EP2424450B1 (en) | 2009-04-29 | 2014-12-17 | Covidien LP | Devices for cutting and abrading tissue |
JP5281195B2 (en) | 2009-05-14 | 2013-09-04 | コヴィディエン リミテッド パートナーシップ | Atherotomy catheter that can be easily cleaned and method of use |
US20100305590A1 (en) * | 2009-05-29 | 2010-12-02 | Gi Dynamics, Inc. | Transpyloric Anchoring |
US8657870B2 (en) | 2009-06-26 | 2014-02-25 | Biosensors International Group, Ltd. | Implant delivery apparatus and methods with electrolytic release |
CN104490454A (en) | 2009-12-02 | 2015-04-08 | 泰科保健集团有限合伙公司 | Methods And Devices For Cutting Tissue |
JP5511107B2 (en) | 2009-12-11 | 2014-06-04 | コヴィディエン リミテッド パートナーシップ | Substance removal device and method with improved substance capture efficiency |
US9925031B2 (en) | 2009-12-28 | 2018-03-27 | Cook Medical Technologies Llc | Endoluminal device with kink-resistant regions |
EP3028672A1 (en) | 2010-03-01 | 2016-06-08 | Colibri Heart Valve LLC | Percutaneously deliverable heart valve and method associated therewith |
US8398916B2 (en) | 2010-03-04 | 2013-03-19 | Icon Medical Corp. | Method for forming a tubular medical device |
US9119662B2 (en) | 2010-06-14 | 2015-09-01 | Covidien Lp | Material removal device and method of use |
EP2585157B1 (en) | 2010-06-28 | 2019-10-16 | Colibri Heart Valve LLC | Method and apparatus for the endoluminal delivery of intravascular devices |
AU2011319797B2 (en) | 2010-10-28 | 2015-04-09 | Covidien Lp | Material removal device and method of use |
AU2011326420B2 (en) | 2010-11-11 | 2014-11-27 | Covidien Lp | Flexible debulking catheters with imaging and methods of use and manufacture |
CA3027755C (en) | 2010-12-14 | 2021-05-11 | Colibri Heart Valve Llc | Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets |
US8801768B2 (en) | 2011-01-21 | 2014-08-12 | Endologix, Inc. | Graft systems having semi-permeable filling structures and methods for their use |
JP5976777B2 (en) | 2011-04-06 | 2016-08-24 | エンドーロジックス インコーポレイテッド | Methods and systems for the treatment of intravascular aneurysms |
US9060852B2 (en) | 2011-04-08 | 2015-06-23 | Cook Medical Technologies Llc | Method for making a flexible stent-graft |
AU2012203620B9 (en) | 2011-06-24 | 2014-10-02 | Cook Medical Technologies Llc | Helical Stent |
ES2749960T3 (en) | 2011-08-12 | 2020-03-24 | Gore & Ass | Devices to approximate the cross-sectional profile of the vasculature with ramifications |
WO2013033426A2 (en) | 2011-09-01 | 2013-03-07 | Covidien Lp | Catheter with helical drive shaft and methods of manufacture |
US8663209B2 (en) | 2012-01-24 | 2014-03-04 | William Harrison Zurn | Vessel clearing apparatus, devices and methods |
US8992595B2 (en) | 2012-04-04 | 2015-03-31 | Trivascular, Inc. | Durable stent graft with tapered struts and stable delivery methods and devices |
US9498363B2 (en) | 2012-04-06 | 2016-11-22 | Trivascular, Inc. | Delivery catheter for endovascular device |
US9833207B2 (en) | 2012-08-08 | 2017-12-05 | William Harrison Zurn | Analysis and clearing module, system and method |
US8834556B2 (en) * | 2012-08-13 | 2014-09-16 | Abbott Cardiovascular Systems Inc. | Segmented scaffold designs |
US9532844B2 (en) | 2012-09-13 | 2017-01-03 | Covidien Lp | Cleaning device for medical instrument and method of use |
US9943329B2 (en) | 2012-11-08 | 2018-04-17 | Covidien Lp | Tissue-removing catheter with rotatable cutter |
CN104869923B (en) | 2012-11-08 | 2017-06-27 | 柯惠有限合伙公司 | Tissue including operational control mechanism removes conduit |
US9962533B2 (en) | 2013-02-14 | 2018-05-08 | William Harrison Zurn | Module for treatment of medical conditions; system for making module and methods of making module |
WO2014159093A1 (en) | 2013-03-14 | 2014-10-02 | Endologix, Inc. | Method for forming materials in situ within a medical device |
PL222867B1 (en) | 2013-03-19 | 2016-09-30 | Balton Spółka Z Ograniczoną Odpowiedzialnością | Intravascular system for placing and securing autogenous vascular prosthesis and a method for affixing autogenous vascular prosthesis |
US11123205B2 (en) | 2013-09-24 | 2021-09-21 | Trivascular, Inc. | Tandem modular endograft |
US9526519B2 (en) | 2014-02-03 | 2016-12-27 | Covidien Lp | Tissue-removing catheter with improved angular tissue-removing positioning within body lumen |
US9456843B2 (en) | 2014-02-03 | 2016-10-04 | Covidien Lp | Tissue-removing catheter including angular displacement sensor |
US11266767B2 (en) | 2014-06-24 | 2022-03-08 | Mirus Llc | Metal alloys for medical devices |
CN106572914B (en) * | 2014-06-27 | 2020-09-11 | 波士顿科学国际有限公司 | Compositions, devices, kits and methods for attaching a medical device comprising a stent to tissue |
WO2015200702A1 (en) | 2014-06-27 | 2015-12-30 | Covidien Lp | Cleaning device for catheter and catheter including the same |
US10314667B2 (en) | 2015-03-25 | 2019-06-11 | Covidien Lp | Cleaning device for cleaning medical instrument |
US10292721B2 (en) | 2015-07-20 | 2019-05-21 | Covidien Lp | Tissue-removing catheter including movable distal tip |
US10314664B2 (en) | 2015-10-07 | 2019-06-11 | Covidien Lp | Tissue-removing catheter and tissue-removing element with depth stop |
US10130465B2 (en) | 2016-02-23 | 2018-11-20 | Abbott Cardiovascular Systems Inc. | Bifurcated tubular graft for treating tricuspid regurgitation |
US11766506B2 (en) | 2016-03-04 | 2023-09-26 | Mirus Llc | Stent device for spinal fusion |
WO2019051476A1 (en) | 2017-09-11 | 2019-03-14 | Incubar, LLC | Conduit vascular implant sealing device for reducing endoleak |
AU2020242051A1 (en) | 2019-03-20 | 2021-11-04 | inQB8 Medical Technologies, LLC | Aortic dissection implant |
Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3657744A (en) * | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US4140126A (en) * | 1977-02-18 | 1979-02-20 | Choudhury M Hasan | Method for performing aneurysm repair |
GB2135585A (en) | 1982-04-30 | 1984-09-05 | Hans Ivar Wallsten | A prosthesis comprising an expansible or contractile tubular body |
US4512338A (en) | 1983-01-25 | 1985-04-23 | Balko Alexander B | Process for restoring patency to body vessels |
US4562596A (en) | 1984-04-25 | 1986-01-07 | Elliot Kornberg | Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair |
US4577631A (en) * | 1984-11-16 | 1986-03-25 | Kreamer Jeffry W | Aneurysm repair apparatus and method |
US4617932A (en) | 1984-04-25 | 1986-10-21 | Elliot Kornberg | Device and method for performing an intraluminal abdominal aortic aneurysm repair |
US4681110A (en) | 1985-12-02 | 1987-07-21 | Wiktor Dominik M | Catheter arrangement having a blood vessel liner, and method of using it |
US4733665A (en) | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4787899A (en) | 1983-12-09 | 1988-11-29 | Lazarus Harrison M | Intraluminal graft device, system and method |
SU1457921A1 (en) | 1987-03-10 | 1989-02-15 | Харьковский научно-исследовательский институт общей и неотложной хирургии | Self-fixing prosthesis of blood vessel |
US4816028A (en) | 1987-07-01 | 1989-03-28 | Indu Kapadia | Woven vascular graft |
US4842575A (en) | 1984-01-30 | 1989-06-27 | Meadox Medicals, Inc. | Method for forming impregnated synthetic vascular grafts |
US4856516A (en) | 1989-01-09 | 1989-08-15 | Cordis Corporation | Endovascular stent apparatus and method |
US4922905A (en) | 1985-11-30 | 1990-05-08 | Strecker Ernst P | Dilatation catheter |
WO1990015582A1 (en) | 1989-06-19 | 1990-12-27 | Trout Hugh H Iii | Aortic graft and method for repairing aneurysm |
US5015253A (en) | 1989-06-15 | 1991-05-14 | Cordis Corporation | Non-woven endoprosthesis |
US5061275A (en) | 1986-04-21 | 1991-10-29 | Medinvent S.A. | Self-expanding prosthesis |
EP0461791A1 (en) * | 1990-06-11 | 1991-12-18 | Hector D. Barone | Aortic graft and apparatus for repairing an abdominal aortic aneurysm |
US5078726A (en) * | 1989-02-01 | 1992-01-07 | Kreamer Jeffry W | Graft stent and method of repairing blood vessels |
US5104399A (en) | 1986-12-10 | 1992-04-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
US5122154A (en) * | 1990-08-15 | 1992-06-16 | Rhodes Valentine J | Endovascular bypass graft |
US5123917A (en) * | 1990-04-27 | 1992-06-23 | Lee Peter Y | Expandable intraluminal vascular graft |
US5135536A (en) * | 1991-02-05 | 1992-08-04 | Cordis Corporation | Endovascular stent and method |
US5151105A (en) | 1991-10-07 | 1992-09-29 | Kwan Gett Clifford | Collapsible vessel sleeve implant |
US5163952A (en) | 1990-09-14 | 1992-11-17 | Michael Froix | Expandable polymeric stent with memory and delivery apparatus and method |
US5195984A (en) * | 1988-10-04 | 1993-03-23 | Expandable Grafts Partnership | Expandable intraluminal graft |
US5197978A (en) | 1991-04-26 | 1993-03-30 | Advanced Coronary Technology, Inc. | Removable heat-recoverable tissue supporting device |
US5197976A (en) * | 1991-09-16 | 1993-03-30 | Atrium Medical Corporation | Manually separable multi-lumen vascular graft |
US5211658A (en) * | 1991-11-05 | 1993-05-18 | New England Deaconess Hospital Corporation | Method and device for performing endovascular repair of aneurysms |
US5219355A (en) * | 1990-10-03 | 1993-06-15 | Parodi Juan C | Balloon device for implanting an aortic intraluminal prosthesis for repairing aneurysms |
US5304220A (en) | 1991-07-03 | 1994-04-19 | Maginot Thomas J | Method and apparatus for implanting a graft prosthesis in the body of a patient |
US5316023A (en) | 1992-01-08 | 1994-05-31 | Expandable Grafts Partnership | Method for bilateral intra-aortic bypass |
US5342387A (en) | 1992-06-18 | 1994-08-30 | American Biomed, Inc. | Artificial support for a blood vessel |
US5360443A (en) * | 1990-06-11 | 1994-11-01 | Barone Hector D | Aortic graft for repairing an abdominal aortic aneurysm |
US5383892A (en) | 1991-11-08 | 1995-01-24 | Meadox France | Stent for transluminal implantation |
US5443477A (en) | 1994-02-10 | 1995-08-22 | Stentco, Inc. | Apparatus and method for deployment of radially expandable stents by a mechanical linkage |
US5489295A (en) | 1991-04-11 | 1996-02-06 | Endovascular Technologies, Inc. | Endovascular graft having bifurcation and apparatus and method for deploying the same |
US5507769A (en) | 1994-10-18 | 1996-04-16 | Stentco, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
US5571173A (en) | 1990-06-11 | 1996-11-05 | Parodi; Juan C. | Graft to repair a body passageway |
US5709701A (en) | 1996-05-30 | 1998-01-20 | Parodi; Juan C. | Apparatus for implanting a prothesis within a body passageway |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6028434Y2 (en) * | 1980-06-16 | 1985-08-28 | 建部 容保 | Artificial blood vessel |
US5102417A (en) | 1985-11-07 | 1992-04-07 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US5219366A (en) * | 1992-04-02 | 1993-06-15 | Scribner Albert W | Artificial hand |
-
1992
- 1992-01-08 US US07/818,052 patent/US5316023A/en not_active Expired - Lifetime
- 1992-12-21 CA CA002085918A patent/CA2085918C/en not_active Expired - Lifetime
- 1992-12-30 ZA ZA9210122A patent/ZA9210122B/en unknown
-
1993
- 1993-01-06 DE DE69333797T patent/DE69333797T2/en not_active Expired - Lifetime
- 1993-01-06 DE DE69330136T patent/DE69330136T2/en not_active Expired - Lifetime
- 1993-01-06 EP EP93300047A patent/EP0551179B1/en not_active Expired - Lifetime
- 1993-01-06 AT AT95105739T patent/ATE200408T1/en not_active IP Right Cessation
- 1993-01-06 EP EP95105739A patent/EP0667132B1/en not_active Expired - Lifetime
- 1993-01-06 ES ES95105739T patent/ES2158010T3/en not_active Expired - Lifetime
- 1993-01-06 JP JP01584293A patent/JP3874204B2/en not_active Expired - Lifetime
- 1993-01-06 AT AT93300047T patent/ATE293934T1/en not_active IP Right Cessation
- 1993-01-06 EP EP01107500A patent/EP1114622A3/en not_active Withdrawn
- 1993-01-06 KR KR1019930000049A patent/KR100249274B1/en not_active IP Right Cessation
- 1993-01-07 AU AU31087/93A patent/AU658253B2/en not_active Expired
- 1993-01-08 BR BR9300062A patent/BR9300062A/en not_active IP Right Cessation
-
1994
- 1994-02-22 US US08/199,119 patent/US5571170A/en not_active Ceased
-
1996
- 1996-01-18 US US08/588,454 patent/US5683453A/en not_active Expired - Lifetime
-
1998
- 1998-11-05 US US09/186,589 patent/USRE38146E1/en not_active Expired - Lifetime
Patent Citations (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3657744A (en) * | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US4140126A (en) * | 1977-02-18 | 1979-02-20 | Choudhury M Hasan | Method for performing aneurysm repair |
GB2135585A (en) | 1982-04-30 | 1984-09-05 | Hans Ivar Wallsten | A prosthesis comprising an expansible or contractile tubular body |
US4655771A (en) | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4655771B1 (en) | 1982-04-30 | 1996-09-10 | Medinvent Ams Sa | Prosthesis comprising an expansible or contractile tubular body |
US4512338A (en) | 1983-01-25 | 1985-04-23 | Balko Alexander B | Process for restoring patency to body vessels |
US4787899A (en) | 1983-12-09 | 1988-11-29 | Lazarus Harrison M | Intraluminal graft device, system and method |
US5397345A (en) | 1983-12-09 | 1995-03-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
US4842575A (en) | 1984-01-30 | 1989-06-27 | Meadox Medicals, Inc. | Method for forming impregnated synthetic vascular grafts |
US4562596A (en) | 1984-04-25 | 1986-01-07 | Elliot Kornberg | Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair |
US4617932A (en) | 1984-04-25 | 1986-10-21 | Elliot Kornberg | Device and method for performing an intraluminal abdominal aortic aneurysm repair |
US4577631A (en) * | 1984-11-16 | 1986-03-25 | Kreamer Jeffry W | Aneurysm repair apparatus and method |
US4739762B1 (en) | 1985-11-07 | 1998-10-27 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4733665A (en) | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4739762A (en) | 1985-11-07 | 1988-04-26 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4776337A (en) * | 1985-11-07 | 1988-10-11 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4776337B1 (en) * | 1985-11-07 | 2000-12-05 | Cordis Corp | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4733665B1 (en) | 1985-11-07 | 1994-01-11 | Expandable Grafts Partnership | Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft |
US4922905A (en) | 1985-11-30 | 1990-05-08 | Strecker Ernst P | Dilatation catheter |
US4681110A (en) | 1985-12-02 | 1987-07-21 | Wiktor Dominik M | Catheter arrangement having a blood vessel liner, and method of using it |
US5061275A (en) | 1986-04-21 | 1991-10-29 | Medinvent S.A. | Self-expanding prosthesis |
US5104399A (en) | 1986-12-10 | 1992-04-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
SU1457921A1 (en) | 1987-03-10 | 1989-02-15 | Харьковский научно-исследовательский институт общей и неотложной хирургии | Self-fixing prosthesis of blood vessel |
US4816028A (en) | 1987-07-01 | 1989-03-28 | Indu Kapadia | Woven vascular graft |
US5195984A (en) * | 1988-10-04 | 1993-03-23 | Expandable Grafts Partnership | Expandable intraluminal graft |
US4856516A (en) | 1989-01-09 | 1989-08-15 | Cordis Corporation | Endovascular stent apparatus and method |
US5078726A (en) * | 1989-02-01 | 1992-01-07 | Kreamer Jeffry W | Graft stent and method of repairing blood vessels |
US5015253A (en) | 1989-06-15 | 1991-05-14 | Cordis Corporation | Non-woven endoprosthesis |
WO1990015582A1 (en) | 1989-06-19 | 1990-12-27 | Trout Hugh H Iii | Aortic graft and method for repairing aneurysm |
US5123917A (en) * | 1990-04-27 | 1992-06-23 | Lee Peter Y | Expandable intraluminal vascular graft |
US5591229A (en) | 1990-06-11 | 1997-01-07 | Parodi; Juan C. | Aortic graft for repairing an abdominal aortic aneurysm |
US5578072A (en) | 1990-06-11 | 1996-11-26 | Barone; Hector D. | Aortic graft and apparatus for repairing an abdominal aortic aneurysm |
US5578071A (en) | 1990-06-11 | 1996-11-26 | Parodi; Juan C. | Aortic graft |
US5571173A (en) | 1990-06-11 | 1996-11-05 | Parodi; Juan C. | Graft to repair a body passageway |
US5571171A (en) | 1990-06-11 | 1996-11-05 | Barone; Hector D. | Method for repairing an artery in a body |
EP0461791A1 (en) * | 1990-06-11 | 1991-12-18 | Hector D. Barone | Aortic graft and apparatus for repairing an abdominal aortic aneurysm |
US5360443A (en) * | 1990-06-11 | 1994-11-01 | Barone Hector D | Aortic graft for repairing an abdominal aortic aneurysm |
US5522880A (en) | 1990-06-11 | 1996-06-04 | Barone; Hector D. | Method for repairing an abdominal aortic aneurysm |
US5122154A (en) * | 1990-08-15 | 1992-06-16 | Rhodes Valentine J | Endovascular bypass graft |
US5163952A (en) | 1990-09-14 | 1992-11-17 | Michael Froix | Expandable polymeric stent with memory and delivery apparatus and method |
US5219355A (en) * | 1990-10-03 | 1993-06-15 | Parodi Juan C | Balloon device for implanting an aortic intraluminal prosthesis for repairing aneurysms |
US5135536A (en) * | 1991-02-05 | 1992-08-04 | Cordis Corporation | Endovascular stent and method |
US5489295A (en) | 1991-04-11 | 1996-02-06 | Endovascular Technologies, Inc. | Endovascular graft having bifurcation and apparatus and method for deploying the same |
US5197978B1 (en) | 1991-04-26 | 1996-05-28 | Advanced Coronary Tech | Removable heat-recoverable tissue supporting device |
US5197978A (en) | 1991-04-26 | 1993-03-30 | Advanced Coronary Technology, Inc. | Removable heat-recoverable tissue supporting device |
US5304220A (en) | 1991-07-03 | 1994-04-19 | Maginot Thomas J | Method and apparatus for implanting a graft prosthesis in the body of a patient |
US5197976A (en) * | 1991-09-16 | 1993-03-30 | Atrium Medical Corporation | Manually separable multi-lumen vascular graft |
US5151105A (en) | 1991-10-07 | 1992-09-29 | Kwan Gett Clifford | Collapsible vessel sleeve implant |
US5211658A (en) * | 1991-11-05 | 1993-05-18 | New England Deaconess Hospital Corporation | Method and device for performing endovascular repair of aneurysms |
US5383892A (en) | 1991-11-08 | 1995-01-24 | Meadox France | Stent for transluminal implantation |
US5316023A (en) | 1992-01-08 | 1994-05-31 | Expandable Grafts Partnership | Method for bilateral intra-aortic bypass |
US5683453A (en) | 1992-01-08 | 1997-11-04 | Expandable Grafts Partnership | Apparatus for bilateral intra-aortic bypass |
US5342387A (en) | 1992-06-18 | 1994-08-30 | American Biomed, Inc. | Artificial support for a blood vessel |
US5695517A (en) | 1994-02-10 | 1997-12-09 | Endovascular Systems, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
US5443477A (en) | 1994-02-10 | 1995-08-22 | Stentco, Inc. | Apparatus and method for deployment of radially expandable stents by a mechanical linkage |
US5507769A (en) | 1994-10-18 | 1996-04-16 | Stentco, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
US5709701A (en) | 1996-05-30 | 1998-01-20 | Parodi; Juan C. | Apparatus for implanting a prothesis within a body passageway |
Non-Patent Citations (11)
Title |
---|
Balko et al., Transfemoral Placement of Intraluminal Polyurethan Prothesis for Abdominal Aortic Aneurysm, Jour. of Surg. Research 40, 305-309 (1986). |
Calvin B. Ernst, M.D., Abdominal Aortic Aneurysm, New Eng Jour Med, vol. 328, No. 16, pp. 1167-1172 (Apr. 22, 1993). |
Chuter et al., Transfemoral Endovascular Aortic Graft Placement, J Vasc Surg 1993; 18:185-97. |
Gardner et al., The Surgical Experience and a one to Sixteen Year Follow-Up of 277 Abdominal Aortic Aneurysms, Amer. Jour. Surgery, vol. 135, pp. 226-230, (Feb. 1978). |
Juan C. Parodi, M.D., Vascular Repair of Abdominal Aortic Aneurysms, Advances in Vascular Surgery, vol. 1, pp. 85-106, 1993, Mosby-Year Book, Inc. |
Laborde et al., Intraluminal Bypass of Abdominal Aortic Aneurysm: Feasibility Study, Radiology 1992; 184:185-190. |
Palmaz et al., Aortic Bifurcation Stenosis: Treatment with Intravascular Stents, JVIR 1991; 2:319-323. |
Palmaz et al., Vascular Repair of Abdominal Aortic Aneurysms, Advances in Vascular Surgery, vol. 1, pp. 107-135, 1993, Mosby-Year Book, Inc. |
Parodi et al., Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms, Ann Vasc Surg 1991; 5:491-499. |
Trent et al., A Balloon-Expandable Intravascular Stent For Obliterating Experimental Aortic Dissection, J Vasc Surg 1990; 707-17. |
Yoshioka et al., "Self-Expanding Endovascular Graft: An Experimental Study in Dogs", AJR 151:673-676 (Oct. 1988). |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE42380E1 (en) * | 1993-06-25 | 2011-05-17 | Bypass Devices LLC | Surgical bypass method |
US8147535B2 (en) | 1998-12-11 | 2012-04-03 | Endologix, Inc. | Bifurcation graft deployment catheter |
US8034100B2 (en) | 1999-03-11 | 2011-10-11 | Endologix, Inc. | Graft deployment system |
US8167925B2 (en) | 1999-03-11 | 2012-05-01 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US11439497B2 (en) | 2001-12-20 | 2022-09-13 | Trivascular, Inc. | Advanced endovascular graft |
US10470871B2 (en) | 2001-12-20 | 2019-11-12 | Trivascular, Inc. | Advanced endovascular graft |
US20080033397A1 (en) * | 2002-11-27 | 2008-02-07 | Bolton Medical, Inc. | Method for treating abdominal aortic aneurysms using a combined laparoscopic/open and endovascular technique |
US20100016939A1 (en) * | 2002-11-27 | 2010-01-21 | Francesco Serino | Vascular Prosthesis for the Treatment of Abdominal Aortic Aneurysms Using A Combined Laparoscopic/Open and Endovascular Technique, and Delivery System For Releasing A Prosthesis Fitted With Anchoring Stents |
US7578839B2 (en) * | 2002-11-27 | 2009-08-25 | Celonova Biosciences, Inc. | Method for treating abdominal aortic aneurysms using a combined laparoscopic/open and endovascular technique |
US20050033416A1 (en) * | 2003-05-02 | 2005-02-10 | Jacques Seguin | Vascular graft and deployment system |
US20060161244A1 (en) * | 2003-05-02 | 2006-07-20 | Jacques Seguin | Vascular graft and deployment system |
US7122052B2 (en) | 2003-09-29 | 2006-10-17 | Stout Medical Group Lp | Integral support stent graft assembly |
US20050131516A1 (en) * | 2003-09-29 | 2005-06-16 | Secant Medical, Llc | Integral support stent graft assembly |
US8257430B2 (en) | 2003-12-17 | 2012-09-04 | Cook Medical Technologies Llc | Interconnected leg extensions for an endoluminal prosthesis |
US20050177222A1 (en) * | 2003-12-17 | 2005-08-11 | Mead Jason A. | Interconnected leg extensions for an endoluminal prosthesis |
US7674284B2 (en) | 2004-03-31 | 2010-03-09 | Cook Incorporated | Endoluminal graft |
US20050234542A1 (en) * | 2004-03-31 | 2005-10-20 | Melsheimer Jeffry S | Endoluminal graft |
US20060074481A1 (en) * | 2004-10-04 | 2006-04-06 | Gil Vardi | Graft including expandable cuff |
US20070179600A1 (en) * | 2004-10-04 | 2007-08-02 | Gil Vardi | Stent graft including expandable cuff |
US8187327B2 (en) | 2005-05-18 | 2012-05-29 | Kyphon Sarl | Selectively-expandable bone scaffold |
US20060264945A1 (en) * | 2005-05-18 | 2006-11-23 | Edidin Avram A | Selectively-expandable bone scaffold |
US8523931B2 (en) | 2007-01-12 | 2013-09-03 | Endologix, Inc. | Dual concentric guidewire and methods of bifurcated graft deployment |
US20110093058A1 (en) * | 2007-03-12 | 2011-04-21 | Gil Vardi | Graft including expandable materials |
US20080275536A1 (en) * | 2007-04-30 | 2008-11-06 | Zarins Christopher K | Prevention of displacement of prosthetic devices within aneurysms |
US20090105806A1 (en) * | 2007-10-23 | 2009-04-23 | Endologix, Inc | Stent |
US8221494B2 (en) | 2008-02-22 | 2012-07-17 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US9149381B2 (en) | 2008-02-22 | 2015-10-06 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US10245166B2 (en) | 2008-02-22 | 2019-04-02 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US8672989B2 (en) | 2008-02-22 | 2014-03-18 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US8357192B2 (en) | 2008-04-11 | 2013-01-22 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8764812B2 (en) | 2008-04-11 | 2014-07-01 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8236040B2 (en) | 2008-04-11 | 2012-08-07 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US10512758B2 (en) | 2008-07-01 | 2019-12-24 | Endologix, Inc. | Catheter system and methods of using same |
US9700701B2 (en) | 2008-07-01 | 2017-07-11 | Endologix, Inc. | Catheter system and methods of using same |
US10603196B2 (en) | 2009-04-28 | 2020-03-31 | Endologix, Inc. | Fenestrated prosthesis |
US8945202B2 (en) | 2009-04-28 | 2015-02-03 | Endologix, Inc. | Fenestrated prosthesis |
US20110054587A1 (en) * | 2009-04-28 | 2011-03-03 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US10772717B2 (en) | 2009-05-01 | 2020-09-15 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US9579103B2 (en) | 2009-05-01 | 2017-02-28 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US9757262B2 (en) | 2009-07-15 | 2017-09-12 | Endologix, Inc. | Stent graft |
US8491646B2 (en) | 2009-07-15 | 2013-07-23 | Endologix, Inc. | Stent graft |
US8821564B2 (en) | 2009-07-27 | 2014-09-02 | Endologix, Inc. | Stent graft |
US9907642B2 (en) | 2009-07-27 | 2018-03-06 | Endologix, Inc. | Stent graft |
US8118856B2 (en) | 2009-07-27 | 2012-02-21 | Endologix, Inc. | Stent graft |
US10874502B2 (en) | 2009-07-27 | 2020-12-29 | Endologix Llc | Stent graft |
US9572652B2 (en) | 2009-12-01 | 2017-02-21 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
US20110130820A1 (en) * | 2009-12-01 | 2011-06-02 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
US8858613B2 (en) | 2010-09-20 | 2014-10-14 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
US11406518B2 (en) | 2010-11-02 | 2022-08-09 | Endologix Llc | Apparatus and method of placement of a graft or graft system |
US9393100B2 (en) | 2010-11-17 | 2016-07-19 | Endologix, Inc. | Devices and methods to treat vascular dissections |
US9687374B2 (en) | 2011-03-01 | 2017-06-27 | Endologix, Inc. | Catheter system and methods of using same |
US10660775B2 (en) | 2011-03-01 | 2020-05-26 | Endologix, Inc. | Catheter system and methods of using same |
US9549835B2 (en) | 2011-03-01 | 2017-01-24 | Endologix, Inc. | Catheter system and methods of using same |
US8808350B2 (en) | 2011-03-01 | 2014-08-19 | Endologix, Inc. | Catheter system and methods of using same |
US10285833B2 (en) | 2012-08-10 | 2019-05-14 | Lombard Medical Limited | Stent delivery systems and associated methods |
US9737426B2 (en) | 2013-03-15 | 2017-08-22 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
WO2016044021A1 (en) | 2014-09-15 | 2016-03-24 | The Board Of Trustees Of The Leland Stanford Junior University | Targeting aneurysm disease by modulating phagocytosis pathways |
US11129737B2 (en) | 2015-06-30 | 2021-09-28 | Endologix Llc | Locking assembly for coupling guidewire to delivery system |
Also Published As
Publication number | Publication date |
---|---|
US5316023A (en) | 1994-05-31 |
EP0667132A2 (en) | 1995-08-16 |
ES2158010T3 (en) | 2001-09-01 |
AU658253B2 (en) | 1995-04-06 |
EP0667132A3 (en) | 1995-12-13 |
EP0551179A1 (en) | 1993-07-14 |
CA2085918C (en) | 2000-06-27 |
DE69333797T2 (en) | 2006-03-09 |
ZA9210122B (en) | 1993-08-03 |
ATE293934T1 (en) | 2005-05-15 |
JP3874204B2 (en) | 2007-01-31 |
KR930016076A (en) | 1993-08-26 |
EP0551179B1 (en) | 2005-04-27 |
CA2085918A1 (en) | 1993-07-09 |
US5571170A (en) | 1996-11-05 |
ATE200408T1 (en) | 2001-04-15 |
DE69333797D1 (en) | 2005-06-02 |
DE69330136D1 (en) | 2001-05-17 |
BR9300062A (en) | 1993-07-13 |
US5683453A (en) | 1997-11-04 |
KR100249274B1 (en) | 2000-06-01 |
DE69330136T2 (en) | 2001-11-15 |
JPH05344989A (en) | 1993-12-27 |
AU3108793A (en) | 1993-07-29 |
EP0667132B1 (en) | 2001-04-11 |
EP1114622A3 (en) | 2001-09-26 |
EP1114622A2 (en) | 2001-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE38146E1 (en) | Method and apparatus for bilateral intra-aortic bypass | |
US5571171A (en) | Method for repairing an artery in a body | |
US5643208A (en) | Balloon device for use in repairing an abdominal aortic aneurysm | |
EP0461791B1 (en) | Aortic graft and apparatus for repairing an abdominal aortic aneurysm | |
US6290731B1 (en) | Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm | |
EP1433441B1 (en) | An improved stent which is easily recaptured and repositioned within the body | |
AU707812B2 (en) | Aortic graft for repairing an abdominal aortic aneurysm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CORDIS CORPORATION, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EXPANDABLE GRAFTS PARTNERSHIP;REEL/FRAME:009833/0585 Effective date: 19990217 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: CARDINAL HEALTH SWITZERLAND 515 GMBH, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CORDIS CORPORATION;REEL/FRAME:042126/0259 Effective date: 20170329 |