USRE37215E1 - Fork level indicator for lift trucks - Google Patents

Fork level indicator for lift trucks Download PDF

Info

Publication number
USRE37215E1
USRE37215E1 US09/360,184 US36018499A USRE37215E US RE37215 E1 USRE37215 E1 US RE37215E1 US 36018499 A US36018499 A US 36018499A US RE37215 E USRE37215 E US RE37215E
Authority
US
United States
Prior art keywords
forks
camera
operator
truck
fork
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/360,184
Inventor
Ned E. Dammeyer
Todd M. Fullenkamp
Harold A. Stammen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crown Equipment Corp
Original Assignee
Crown Equipment Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crown Equipment Corp filed Critical Crown Equipment Corp
Priority to US09/360,184 priority Critical patent/USRE37215E1/en
Application granted granted Critical
Publication of USRE37215E1 publication Critical patent/USRE37215E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/0755Position control; Position detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • B66F9/122Platforms; Forks; Other load supporting or gripping members longitudinally movable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • B66F9/16Platforms; Forks; Other load supporting or gripping members inclinable relative to mast

Definitions

  • This invention relates to a remote viewing method and apparatus for use on fork lift trucks.
  • This invention has particular application to those fork lift trucks where the forks can be raised above the head of the operator causing the operator difficulty in visually aligning the forks to a load or a load on the fork to an opening in a storage rack.
  • a pair of movable, load carrying forks are mounted on a carriage for vertical movement on the mast of the truck.
  • a camera has sometimes been mounted near the heel of the forks to view the scene in front of the forks, and to display that scene on a monitor mounted in view of the operator. Such an arrangement is helpful, provided the camera is properly positioned so that its view is properly aligned with the forks; however, the view of a camera in this location will be blocked when a pallet is placed on the forks.
  • the best position for the camera is below the bottom of the load for use in operator viewing under-clearance or viewing alignment with a target below the load; however, in this position, the camera is subject to damage when the forks are lowered near the floor on which the truck is operating. If the camera is fixed positioned to be clear of the floor when the forks are fully lowered, then its view will be too high to be effective for viewing below the forks and load.
  • Some lift trucks provide a fork tilt indicator, however, these indicators measure fork tilt relative to the truck's mast, not relative to a horizontal plane. Further, monitoring fork tilt either by sensing the vertical component of the fork or at the heel of the fork will not take into consideration the deflection of the fork away from the mast due to the weight of a load.
  • the present invention includes a fork level sensor located in the forks, away from the vertical mast of a lift truck, which sensor detects the true level of the forks, with and without a load on the forks.
  • This invention also includes a camera, which is equipped with a horizontal plane reticle and mounted on a vertically movable carriage assembly and which is protected from damage and contact with the floor when the forks are in their lowermost position.
  • the camera is lowered to a first predetermined position below the forks and load when the forks are raised, which provides the camera with a view that is optimum for viewing a target for vertical height position of the forks or load.
  • the camera When used on a double reach truck with the forks extended, the camera is placed at a second predetermined location relative to the forks, which is above the first predetermined position and which provides the camera with a view above the load support beam or rail of a rack near which the truck is usually placed when operating in this mode.
  • a second camera at a different height may also be used and switching means provided to allow the operator to obtain a view above the load support beam.
  • a video monitor for use by the operator which, in addition to providing a horizontal plane reticle and a picture of the view observed by the camera, also provides a fork level indicator, and an indicator showing the truck functions selected by the operator.
  • the reticle includes a single horizontal line extending across the face of the monitor and a single vertical line at the center of view. This unique presentation aids the operator in controlling the operation of the truck, including the vertical, horizontal and level position of the forks, by reference to that monitor.
  • It is a further object of this invention to provide a fork lift truck including a pair of forks for supporting a load, means for raising and lowering the forks, means for tilting the forks relative to the body of the truck, a level sensor mounted on at least one of the forks for providing an indication of the level of the forks with respect to a horizontal plane, a display terminal mounted for viewing by an operator, and means responsive to the level sensor for displaying an indication of the level position of the forks with respect to a horizontal plane on the display terminal thereby to assist the operator in adjusting the level of the forks prior to loading, moving or unloading a load from the forks.
  • the level sensor may be mounted approximately midway the length of the fork.
  • It is a yet another object of this invention to provide a fork lift truck including a mast assembly, a carriage assembly mounted for vertical movement in the mast assembly, a pair of forks extending from the carriage assembly for supporting a load, means for raising and lowering the carriage assembly, a camera mounted below the plane of the bottom of the load, the camera having a horizontal plane reticle and lens for viewing the scene immediately in front of the forks, means for positioning the lens of the camera a first predetermined location below the forks when the forks are in a raised position and for raising the camera to a protected position when the forks are in their lowermost position, and a display terminal for presenting to an operator the image of the scene viewed by the camera.
  • FIG. 1 is a perspective view of a double reach lift truck equipped with a fork level sensor and fork viewing camera and monitor showing the forks fully lowered and extended.
  • FIG. 2 is a plan view of a double reach truck with the forks fully extended.
  • FIG. 3 is a side elevational view of the double reach truck of FIG. 2;
  • FIG. 4 is a front elevational view of the truck of FIGS. 2-3;
  • FIG. 5 is a side elevational view of the portion of a single reach truck with its forks fully extended;
  • FIG. 6 is a perspective view of a mast assembly of the truck shown in FIG. 1;
  • FIG. 7 is a perspective view of a vertically movable carriage assembly showing a camera assembly mounted at the lower portion thereof;
  • FIG. 8 is a perspective view of a portion of a fork showing the installation of a fork level sensor
  • FIGS. 9-12 are representations of the scene as viewed by a camera;
  • FIG. 9 shows the scene when the forks are retracted, prior to entry of the forks into a pallet;
  • FIG. 10 shows the forks extended into a pallet;
  • FIG. 11 shows the pallet being lifted; and
  • FIG. 12 shows the scene when the forks are retracted;
  • FIG. 13 is a simplified block diagram showing the relationship among the various components of the display system, including a camera, fork level sensor and video monitor;
  • FIG. 14 is a perspective view looking upward at raised forks and showing a camera assembly mounted on the carriage assembly;
  • FIG. 15 is a perspective view looking upward at raised forks and showing one camera mounted on the carriage assembly and another camera centrally mounted between and behind the forks;
  • FIG. 16 is a perspective view showing an alternative embodiment of the invention where the camera is supported on a parallelogram assembly at the lower part of the carriage assembly;
  • FIG. 17 is a partial side elevational view of the lowermost portion of a carriage assembly showing a camera assembly and its relationship to the carriage assembly when the carriage assembly is in its lowermost position;
  • FIG. 18 is a partial front elevational view corresponding to FIG. 17 and shows the camera in its uppermost of protected position
  • FIG. 19 is a partial side elevational view of the lowermost portion of a carriage assembly showing the camera assembly and its relationship to the carriage assembly when the carriage assembly is in a raised position;
  • FIG. 20 is a partial front elevational view corresponding to FIG. 19 and shows the camera lowered to a first predetermined location below the carriage assembly;
  • FIG. 21 is a partial side elevational view of the lowermost portion of a carriage assembly showing the camera assembly and its relationship to the carriage assembly when the carriage assembly is in a raised position and the forks of a double reach truck are extended;
  • FIG. 22 is a partial from elevational view corresponding to FIG. 21 and shows the camera lowered to a second predetermined location below the carriage assembly;
  • FIGS. 23A-23F are side elevational views illustrating the sequence of operations for picking up a pallet from a rack using a single reach fork lift truck with a single camera in a single location below the forks;
  • FIGS. 24A-24F are side elevational views illustrating the sequence of operations for picking up a pallet from a far rack of a double deep storage rack using a double reach fork lift truck with a single camera at two locations below the forks;
  • FIGS. 25A-25D are side elevational views illustrating the sequence of operations for picking up a pallet from a single rack employing two separate cameras;
  • FIGS. 26A-26F are side elevational views illustrating the sequence of operations for picking up a pallet from the far rack of a double deep storage rack employing two separate cameras;
  • FIGS. 27A-27F are side elevational views illustrating the sequence of operations for picking up a pallet from the far rack of a double deep storage rack employing two cameras mounted in a common housing.
  • FIGS. 28, 29 and 30 show a mounting arrangement for a camera whereby the camera may be aligned vertically, horizontally and rotationally.
  • FIG. 28 is a plan view.
  • FIG. 29 is a side elevational view, and
  • FIG. 30 is a front elevational view of a camera mounted on a printed circuit board and adjustably supported in a protective housing.
  • a self propelled rider-reach lift truck 10 is illustrated as one type of materials handling truck which may incorporate the present invention.
  • the lift truck shown is a model RD 3000 Series truck manufactured by Crown Equipment Corporation, the assignee of the present invention. It is to be understood, however, that other fork lift trucks could also incorporate the present invention, such as Crown models FC, RC, RR, SC and W fork lift trucks.
  • the truck 10 which operates on floor 15 , includes a body 20 that contains a battery 22 supplying power to the truck and various other components, such as electric traction motors (not shown) connected to steerable wheels 24 and hydraulic motors (not shown) which supply hydraulic pressure to fork lift cylinders, as will be explained.
  • An operator's compartment 26 is included on the body 20 , along with steering control 28 and control handle 29 , which controls the operation of various functions of the truck.
  • An overhead guard 30 is placed over the operator's compartment. Forward of the body 20 are outriggers 35 carrying front support wheels 37 .
  • a mast assembly 40 which is also shown separately in FIG. 6, extends vertically from the front edge of the body 20 .
  • the mast assembly 40 includes a pair of stationary channel member 42 and nested movable channel members 44 , 46 which may be extended by hydraulic cylinders 48 from a lower position, as shown in FIG. 1, to a fully raised position, as shown in FIG. 3 .
  • a pair of forks 50 are carried by a fork carriage 55 which in turn is mounted on a reach mechanism 60 supported on a reach support carriage or vertically movable carriage assembly 70 .
  • the forks may be tilted through a range, shown by the arrows 72 by means of a hydraulic cylinder 74 mounted between a plate 76 and the fork carriage 55 .
  • the forks 50 are movable from side-to-side relative to the plate 76 .
  • the reach mechanism 60 may be extended and retracted by hydraulic cylinders 65 .
  • FIG. 3 shows a double reach mechanism 60 while FIG. 5 shows a single reach mechanism 60 A.
  • the carriage assembly 70 rides on rollers 80 within channels 82 in the mast assembly and is moved vertically by means of chains 84 .
  • Camera means 90 provides the operator with a view in front of the forks on a television or video display monitor or terminal 100 mounted on the body 20 and adjacent the operator's compartment 26 . As shown in FIGS. 2 and 3, the monitor 100 is mounted to the left of the operator's compartment 26 and is conveniently placed for the operator's use as the forks are manipulated relative to a pallet.
  • FIG. 8 is perspective view of one of the forks 50 which contains a fork level sensor 110 .
  • a fork level sensor 110 When removing forks from or inserting forks into a pallet, or when transporting a load, it is desirable for the operator to know whether the forks are level with the horizontal plane. Even if the forks were level before a pallet was loaded, the forks may deflect when a load is placed thereon. When moving a load, and when the operator places a load on a rack, the pallet preferably should be nearly horizontal as possible. A load which is tilted will require more vertical space to clear the storage opening so the amount of tilt actually achieved should be known to and minimized by the operator.
  • the level sensor 110 will provide the essential information to the operator via the video monitor 100 . Of course, a separate fork level indicator could be provided and would be necessary if no camera system were included on any particular vehicle.
  • the level indicator may take several forms, such as an analog meter or a set of light emitting diodes
  • the level sensor 110 is preferably mounted in a protected location, such as a cavity 115 machined into one of the forks, which cavity is closed by a cover plate 120 which is made flush with the bottom of the fork. Electrical cables connecting the level sensor 110 are routed through an opening 125 which is formed by drilling the fork prior to its being bent into the L-shape shown in FIG. 8 .
  • the fork shown has an essentially constant cross-section from upper end 130 of its vertical component 131 to approximately half of its horizontal length, at 132 , where it begins to taper.
  • the level sensor is placed at about the horizontal mid-point of the fork, where the taper begins.
  • the level sensor should be placed as far from the heel as is practicable.
  • Several types of level sensors may be used in the present invention, such as an electrolytic tilt sensor or a non-inertial tilt sensor.
  • the output of the level sensor is displayed on the monitor 100 , a representation of which is shown in FIGS. 9-14, as a horizontal bar 150 which is referenced against an index 155 . If the ends of the forks are tilted up relative to a true horizontal plane, then the bar 150 will be above the center of the index 155 ; if the fork ends are tilted down, then the bar 150 will be below the center of the index 155 .
  • the display on monitor 100 also includes means for generating a reticle or cross mark 160 to assist the operator in adjusting the position of the fork carriage assembly relative to a visual target.
  • the horizontal bar 161 of the reticle represents a horizontal plane across the central view of and at the height of the camera. The wide camera view permits vertical height adjustment to a load position with the truck turned in excess of 45° from the face of the rack.
  • the camera is placed with its central field of view in a horizontal plane.
  • the camera means 90 is preferable fixed to the carriage assembly 70 with its central axis horizontal.
  • some trucks may include mast assemblies which are tilted relative to vertical or which may be tiltable, such as the Crown models FC, RC and SC counterbalanced rider trucks.
  • the camera view is simply aligned to be horizontal.
  • the actual tilt position of the mast must be positioned to a known angle before the central view of the camera can be assumed to be in a horizontal plane for purposes of vertical positioning of the carriage assembly.
  • an operator will adjust the height of carriage assembly 70 so that the reticle's horizontal bar 161 will align to an operator's estimated position, or with the bottom of a marker 162 mounted on front surface of a horizontal section 164 of a storage rack.
  • the marker 162 may be employed to insure a more precise vertical alignment of the forks.
  • the bottom of the marker 162 shown is typically three inches below the top of the horizontal section 164 .
  • the various truck function that are controlled by control handle 29 are selected by a push button 175 on the control handle and are represented by icons 170 placed both on the monitor 100 and on an operator's display panel located above the operator's compartment.
  • Icon 171 represents side-to-side control of the forks; icon 172 represents fork tilt control; icon 173 represents horizontal extension or reach of the forks by means of the reach mechanism 60 ; and icon 174 represent raising and lowering the fork carriage assembly.
  • the icons in the embodiment shown are printed and attached to the face of the monitor 100 , but they could also be represented by an electronically generated icon.
  • the various functions are sequentially selected. Since the operator will be controlling the operation of the forks primarily by reference to the monitor 100 when the forks are not in view, it is a convenience to provide information relative to the function selected along with a view of the field in front of the forks and the level position of the forks at the same place, on the video monitor 100 . This is done by a function display generator 178 which causes the area on the video monitor directly behind the icon representing the selected function to be illuminated, or by electronically generating a brightened icon.
  • FIG. 13 is a block diagram showing in simplified form the electrical connections from the camera means and level sensor movably mounted on the mast assembly to an interface circuit 180 , a bus 185 which connects the mast to the body of the truck where the signals are passed to a pattern generator 190 , which includes a fork level bar and reference generator 192 , an aiming reticle generator 194 , and a function display generator 178 .
  • a pattern generator 190 which includes a fork level bar and reference generator 192 , an aiming reticle generator 194 , and a function display generator 178 .
  • the camera means 90 of the present invention may take several forms.
  • a single or first camera 92 is mounted in a housing 94 which may be moved vertically either by sliding in the carriage assembly 70 or, as shown in FIG. 16, in a housing 305 supported on the carriage assembly 70 by means of a parallelogram device 300 .
  • the camera means 90 may also include a second camera.
  • the second camera may be a camera 96 (FIG. 14) mounted above the first camera in the housing 94 .
  • the second camera 96 will be placed above the first camera, closer to the plane of the forks 50 .
  • the second camera will be camera 98 (FIG. 15) mounted centrally between the forks 50 on the fork carriage 55 , but behind the vertical component 131 to protect it against damage by contact with a pallet or its load.
  • the camera 98 will also be located above the bottom plane of the forks 50 to protect the camera from damage whenever the forks are lowered to the floor.
  • the view of camera 98 will typically be located near the top plane of the forks 50 .
  • the first camera 92 may itself be moved vertically from a first predetermined location, below the bottom of the forks, to a higher elevation, a second predetermined location relative to the forks.
  • optical paths utilizing mirrors, prisms, or fiber optics could be used with a single camera to provide the desired views.
  • one or more lamps may be included with the camera to aid in illuminating the view in front of the cameras.
  • FIGS. 7 and 17 - 22 One form of the camera means 90 is shown in FIGS. 7 and 17 - 22 where a single camera 92 is mounted in a housing 94 and supported in carriage assembly 70 .
  • the carriage assembly 70 is formed from a pair of vertical channels members 200 , a top plate 202 and a bottom plate 204 .
  • arms 206 are pivotally attached to the upper part of the carriage assembly, as shown in FIG. 7, while arms 208 are provided with rollers 210 and are slidably mounted in grooves 212 in the channel members 200 .
  • a hydraulic cylinder 65 (FIG. 3) controls the arms 206 to either extend or retract the reach mechanism and thus to move the forks 50 generally horizontally.
  • the carriage assembly bottom plate 204 has a U-shape, when viewed from above, with the camera 92 placed in a recess 214 .
  • a pair of bumper strips 216 are placed on the bottom surface of plate 204 .
  • the camera 92 is placed in a housing 94 formed from a pair of vertical plates 232 , a top plate 234 , a bottom plate 236 and a back vertical plate 237 .
  • the camera 92 is mounted on a printed circuit board 238 which is adjustably mounted within the housing 94 .
  • Lens 93 of the camera 92 faces forward, toward the ends of the forks.
  • the printed circuit board contains the necessary video circuits to connect the camera with the interface circuit 180 . While camera 92 is described herein, it is to be understood that the following also applies to cameras 96 and 98 .
  • the camera means is provided with means for adjusting its field of view, specifically, means for adjusting the field of view vertically, horizontally and rotationally to permit calibration of the camera view, thereby to insure that the horizontal reticle truly defines a horizontal plane.
  • a plate 270 is attached to the means for adjusting the field of view of the camera, which means includes two adjustment bolts 271 and 272 , and bolt 273 which is surrounded by a spacer.
  • the printed circuit board 238 is mounted to the plate 270 by two bolts; bolt 274 extends though a slot 275 in the plate 270 while bolt 276 acts as a pivot around which the board 238 may be adjusted rotationally.
  • Springs 277 surround each of the bolts 271 and 272 to urge the plate 270 outwardly, away from the plate 232 of the housing 94 . Nuts on each of these bolts may be tightened or loosened to position the plane of the plate 270 vertically and horizontally. Thus, the field of view of the camera mounted on the board 238 may be adjusted vertically, horizontally and rotationally.
  • a pair of rods 240 extend from the top plate 234 to the bottom plate 236 through linear bearings 242 placed in the carriage assembly bottom plate 204 .
  • the camera 92 may move vertically relative to the plate 204 , from a fully down position shown in FIGS. 19 and 20, to a fully up position. FIGS. 17 and 18, and an intermediate position, FIGS. 21 and 22.
  • Extending upwardly from the carriage assembly bottom plate 204 are a pair of rods 250 , each provided with a roll pin 252 at the top thereof.
  • a spring 254 surrounds each rod 250 , and a movable flange 256 is placed over the spring.
  • the movable flange 256 includes a large circular plate which extends under the ends of the camera top plate 234 and also under the arm 208 of the reach mechanism.
  • the springs 254 are of sufficient strength to move the camera means 90 upwardly when not restrained by the flange 256 .
  • the reach arms 208 hold the flange 256 down against the plate 204 while in FIG. 21, the arms 208 are shown to have moved upwardly, and the movable flange 256 is in its uppermost position, having been stopped in its spring powered upward movement by the roll pin 252 .
  • a bracket 260 is attached to the back vertical plate 237 of the camera housing and a spring loaded rod 262 extends downwardly therefrom.
  • the lower end of the rod is placed to engage a stop plate 265 attached to the mast assembly 40 , as shown in FIGS. 6 and 17.
  • the rod 262 will engage the stop plate 265 and this will cause the camera housing 94 to move up until the bottom plate 236 contacts the bottom plate 204 .
  • the camera 92 is protected against coming into contact with the floor and damage from any debris that may be on the floor 15 .
  • FIG. 16 shows an alternative embodiment for mounting camera means 90 on carriage assembly 70 .
  • a parallelogram device 300 supports camera housing 305 is mounted on a horizontal bar 310 that is provided with a pair of rollers 315 at the ends thereof.
  • a pair of arms 320 , 322 are mounted on both sides of the camera housing 305 and extend to a bracket 325 attached to the carriage assembly 70 .
  • the hinge points of arms 320 , 322 on both the bracket 325 and the housing 305 are vertically arranged, and thus a parallelogram is formed which maintains the camera means 90 level at all times.
  • a pair of ramps 330 mounted on the lower portion of the mast assembly engage the rollers 315 when the carriage assembly is lowered, causing the camera housing 305 to be raised, and thus remain clear of the floor 15 when the carriage assembly is in its lowermost position.
  • FIGS. 23A-23F are side elevational views showing a carriage assembly 70 in the raised position, similar to FIG. 3, the method of pallet pickup using a single reach fork lift truck and a single camera will be described.
  • the camera housing 94 When the carriage assembly 70 is raised above the floor 15 (FIG. 3 ), the camera housing 94 will be lowered to the position shown in FIGS. 23A-23F and FIGS. 19-20. In this position, the camera 92 has a view centered on a horizontal plane or view line 280 , which is approximately 6.25 inches below the top surface of level forks 50 , or approximately 4.5 inches below the bottom of the forks. Plane 280 corresponds to the horizontal line of reticle 160 .
  • the operator will first position the truck to face the rack 290 upon which a pallet 295 is placed. In some applications, the operator must make vertical height alignment of the forks while the truck is partially turned toward the face of the rack.
  • FIG. 23A only the forward and rear horizontal bars 164 , 166 of the rack are shown, but it is to be understood that shelving may be suspended between the bars and that, as shown in FIGS. 9-12, vertical columns 168 support the bars 164 , 166 .
  • the operator selecting the Side-shift mode represented by icon 171 , centers the forks relative to the carriage assembly 70 .
  • the truck is then aligned relative to the rack, as shown in FIG. 23A, and the carriage assembly is elevated so that the horizontal bar 161 of the reticle 160 , is placed or aligned with the bottom of the marker tape 162 .
  • the operator selects the Tilt mode represented by icon 172 and causes the ends of forks 50 to be tilted slightly downward, by reference to the horizontal bar 150 and reference mark 155 .
  • the operator views the fork and the pallet 295 by reference to the monitor 100 , which provides a view of the load present on the pallet, and the side-shift alignment of the forks.
  • the operator will typically drive the truck forward until the front support wheels 37 are even with the face of the rack, a short distance while verifying the target height alignment on the monitor 100 so that the forks extend into the pallet without interference from either the top or the bottom of the pallet, as illustrated in FIG. 23B, and then the operator selects the Reach mode represented by icon 173 and extends the fork carriage 55 so that the forks fully extend into the pallet, as illustrated in FIG. 10 and FIG. 23 C.
  • the operator selects the Raise/Lower mode represented by icon 174 and will adjust the elevation of the pallet, stopping the carriage assembly so that the horizontal bar 161 of reticle 160 is at or slightly above the top edge of the rack, as shown in FIGS. 11 and 23D.
  • the forks are then tilted slightly up by selecting the Tilt mode represented by icon 172 and by reference to the fork level indicator 150 and reference mark 155 .
  • the operator has a clear view of the underside of the pallet and can see whether it is clear of the rack horizontal bars 164 and 166 .
  • FIG. 23E the operator selects the Reach mode represented by icon 173 and retracts the fork carriage and the load while viewing the movement of the pallet relative to the rack, as illustrated on the monitor in FIG. 12 .
  • the operator then drives the truck rearwardly.
  • FIG. 23F while verifying aisle clearance and then lowers the load for transport to another location.
  • camera means 90 includes a single camera 92 which is placed a first predetermined location below the forks. This camera, of course, will be protected for contact with the floor 15 whenever the carriage assembly 70 is lowered to the floor 15 , as shown in FIGS. 17 and 18.
  • FIGS. 24A-24F a typical operation of a double reach fork lift truck will be described.
  • a single camera is employed, however the camera may be placed at one of two predetermined location relative to the forks.
  • the rack 290 comprises a first or from section including horizontal bars 164 and 166 , and a second or rear section including horizontal bars 164 a and 166 a. Again, while not shown, shelving may be placed top of the bars 164 , 166 , 164 a and 166 a.
  • the operator will select the Raise/Lower mode, icon 174 , and will place the horizontal bar 161 of reticle 160 at the bottom edge of the marker 162 , which is shown three inches down from the top of bar 164 . This places level forks 50 approximately one inch below the top inner surface of the pallet. The ends of the forks are then lowered slightly by tilting and by reference to the fork level indicator 150 and reference mark 155 on the monitor 100 .
  • the operator then drives the truck forward until the mast assembly 40 is near to contacting the bar 164 . While moving forward, the operator continues to monitor the height alignment to the target. The operator may also view the forks while approaching the pallet on the rear rack, but as the camera nears the bar 164 , the view will become obstructed because the perspective view above line 280 will be blocked by the bar.
  • the operator selects the Reach mode represented by icon 173 and extends the forks to the position shown.
  • the camera will be elevated by approximately 3.5 inches, or to a second predetermined location relative to the forks, and the view line 280 will clear the top surface of bar 164 , allowing the operator to see clearly the position of the forks relative to the pallet for approximately the last half of the fork extension movement.
  • the movement of the camera housing and camera view line from the first to the second predetermined position below the forks upon extension of the forks is accomplished by means of the mechanism illustrated in FIGS. 21 and 22.
  • the operator will elevate the load, by selecting the Raise/Lower mode represented by icon 174 , and will tilt the ends of the forks slightly up, by selecting the Tilt mode represented by icon 172 .
  • FIG. 24E the operator has selected the Reach mode represented by icon 173 and has retracted the load, then, as shown in FIG. 24F, the truck is driven rearwardly until the pallet is clear of the front bar 164 .
  • the camera 92 will be lowered and returned to its first predetermined position. Again, the placing of a pallet on the rear rack will follow essentially the same procedure in reverse.
  • Camera 92 is selected to align the elevation of the carriage assembly with the rack, using view line 280 and by selecting the Raise/Lower mode, icon 174 .
  • the view from camera 96 , 98 will appear on the monitor 100 , thus giving the operator a view of the ends of the forks with respect to the pallet 295 unobstructed by the bar 164 .
  • the selection between the view from camera 92 or 96 , 98 may be accomplished automatically according to the position of the function selector 170 and electronically controlled camera switch 350 (FIG. 13 ), or by operation of a pallet detection switch 370 ; however, the operator may also manually select the camera view by means of manual selector switch 360 . After tilting the forks slightly downward, and checking fork height alignment and side-shift alignment, the operator will drive the truck forward, FIG. 25 B.
  • the operator will select the Raise/Lower mode, icon 174 , and the monitor will provide a view from camera 92 , thus allowing the operator to raise and align the carriage assembly with the top of the marker 162 or top of horizontal bar 164 .
  • the underside of the pallet is visible from camera 92 , at which time the operator will select the Tilt mode, icon 172 , raise the tips of the forks slightly with reference to fork level indicator 150 and reference mark 155 , and then drive readward, FIG. 25D, after which the load may be lowered.
  • the dual camera arrangement of FIG. 15 also has application to use on a double reach truck, as illustrated in FIGS. 26A-26F.
  • the operator selects the Raise/Lower mode, icon 174 , and elevates the carriage assembly with reference to camera 92 and places the horizontal bar of reticle 160 at the bottom of the marker tape.
  • the Tilt mode, icon 172 is then selected and the fork ends are tilted slightly downwardly.
  • the view on monitor from camera 98 will be selected automatically.
  • Camera 98 has a view line 284 , which is also a horizontal plane.
  • camera 92 will be selected whenever the Raise/Lower mode is selected or a pallet is fully engaged on the forks, and camera 98 will be selected whenever the operator selects the Reach, Tilt or Side-shift functions and a pallet is not fully engaged on the forks.
  • a pallet detection switch 370 located on the fork carriage 55 and at the heel 134 of the forks 50 provides the necessary control signal.
  • the driver moves the truck forward until it is in close proximity to the rack 290 (FIG. 26 B), while monitoring fork clearance and side-shift alignment.
  • the operator selects the Reach mode, icon 173 , and watches as the forks extend into the pallet 295 (FIG. 26 C).
  • the pallet engages a switch located at the rear of the forks, on the fork carriage 55 , and this causes the monitor to switch to the view shown by camera 92 .
  • the Raise/Lower mode is then selected by the operator to elevate the pallet, stopping the carriage assembly 70 so that the horizontal bar 161 of reticle 160 is at or slightly above the top edge of the rack, as shown in FIGS. 11 and 26D.
  • the Tilt mode is selected and the tips of the forks raised slightly, while the operator observes the level indicator 150 on the monitor 100 (FIG. 26D) as well as the view along view line 280 from camera 92 .
  • FIG. 26D With the carriage assembly and load elevated, FIG. 26D, the view from camera 92 is above the top of bar 164 , and therefore the operator can view the retracting operation to the position in FIG. 26 E.
  • FIG. 26F the truck itself is driven rearward, and while verifying aisle clearance, the truck may be turned and the load lowered.
  • FIG. 15 has been described in connection with FIGS. 26A through 26F, it should be understood that the camera 96 shown in FIG. 14 could also be employed.
  • the dual camera arrangement of FIG. 14 also has application to use on a double reach truck, as illustrated in FIGS. 27A-27F.
  • the operator selects the Raise/Lower mode, icon 174 , and elevates the carriage assembly with reference to camera 92 and places the horizontal bar of reticle 160 at the bottom of the marker tape.
  • the Tilt mode, icon 172 is then selected and the fork ends are tilted slightly downwardly. At this time, the view on monitor from camera 96 will be selected automatically.
  • camera 92 will be selected whenever the Raise/Lower mode is selected and the reach mechanism is fully retracted, while camera 96 will be selected whenever the operator selects the Reach, Tilt or Side-shift functions or the reach mechanism is in an extended position.
  • a reach position activated switch 375 located on the carriage assembly 70 and activated at the retracted position by fork carriage 55 , provides the necessary control signal.
  • the driver moves the truck forward until it is in close proximity to the rack 290 (FIG. 27 B), while monitoring fork clearance and side-shift alignment.
  • the operator selects the Reach mode, icon 173 , and watches as the forks extend into the pallet 295 (FIG. 27 C).
  • the Raise/Lower mode is then selected and the pallet raised clear of the rack, then the Tilt mode is selected and the tips of the forks raised slightly, while the operator observes the fork level indicator 150 on the monitor 160 (FIG. 27D) as well as the lower perspective view along view line 282 from camera 96 .
  • View line 282 is also a horizontal plane.
  • FIG. 27E With the forks retracted, FIG. 27E, the view from camera 96 is switched to camera 92 , and therefore the operator can view the retracting operation, first with camera 96 and final movements with camera 92 .
  • FIG. 27F the truck itself is driven rearward, and while verifying aisle clearance, the truck may be turned and the load lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

A fork lift truck includes a fork level sensor located in the forks, away from the vertical mast of a lift truck for detecting the true level of the forks, and a vision system including a camera which may take several forms. In one form, a single camera is mounted in a housing which may be moved to a protected location vertically either by sliding in the carriage assembly, or by use of a parallelogram device. In another form, multiple cameras are employed where a second camera may be either mounted above the first camera in the same housing or mounted between the forks. Alternatively, the first camera may perform multiple roles by being moved vertically from a first predetermined location below the bottom of the forks to a higher elevation a second predetermined location relative to the forks. A video display terminal, which shows the view observed by the camera, may also include a fork level indicator, a reticle for assisting in adjusting the vertical position of the forks, and an indicator showing the specific truck function selected by the operator.

Description

RELATED APPLICATION
This application is a division of application Ser. No. 08/439,985, filed May 12, 1995, now U.S. Pat. No. 5,586,620, issued Dec. 24, 1996.
BACKGROUND OF THE INVENTION
This invention relates to a remote viewing method and apparatus for use on fork lift trucks. This invention has particular application to those fork lift trucks where the forks can be raised above the head of the operator causing the operator difficulty in visually aligning the forks to a load or a load on the fork to an opening in a storage rack.
In many materials handling vehicles, such as a rider-reach truck or a three- or four-wheel counterbalanced truck, a pair of movable, load carrying forks are mounted on a carriage for vertical movement on the mast of the truck. A camera has sometimes been mounted near the heel of the forks to view the scene in front of the forks, and to display that scene on a monitor mounted in view of the operator. Such an arrangement is helpful, provided the camera is properly positioned so that its view is properly aligned with the forks; however, the view of a camera in this location will be blocked when a pallet is placed on the forks. With a load on the forks, the best position for the camera is below the bottom of the load for use in operator viewing under-clearance or viewing alignment with a target below the load; however, in this position, the camera is subject to damage when the forks are lowered near the floor on which the truck is operating. If the camera is fixed positioned to be clear of the floor when the forks are fully lowered, then its view will be too high to be effective for viewing below the forks and load.
The operator view problem is exacerbated on double reach trucks, that is, trucks with scissors mechanisms that permit the forks to be doubly extended, and thus pick up and deposit loads twice the storage depth distance of a single pallet. The operator's view of the double deep load position in the rack is not visible from this position.
Some lift trucks provide a fork tilt indicator, however, these indicators measure fork tilt relative to the truck's mast, not relative to a horizontal plane. Further, monitoring fork tilt either by sensing the vertical component of the fork or at the heel of the fork will not take into consideration the deflection of the fork away from the mast due to the weight of a load.
SUMMARY OF THE INVENTION
The present invention includes a fork level sensor located in the forks, away from the vertical mast of a lift truck, which sensor detects the true level of the forks, with and without a load on the forks.
This invention also includes a camera, which is equipped with a horizontal plane reticle and mounted on a vertically movable carriage assembly and which is protected from damage and contact with the floor when the forks are in their lowermost position. The camera is lowered to a first predetermined position below the forks and load when the forks are raised, which provides the camera with a view that is optimum for viewing a target for vertical height position of the forks or load. When used on a double reach truck with the forks extended, the camera is placed at a second predetermined location relative to the forks, which is above the first predetermined position and which provides the camera with a view above the load support beam or rail of a rack near which the truck is usually placed when operating in this mode. A second camera at a different height may also be used and switching means provided to allow the operator to obtain a view above the load support beam.
A video monitor is provided for use by the operator which, in addition to providing a horizontal plane reticle and a picture of the view observed by the camera, also provides a fork level indicator, and an indicator showing the truck functions selected by the operator. As used herein, the reticle includes a single horizontal line extending across the face of the monitor and a single vertical line at the center of view. This unique presentation aids the operator in controlling the operation of the truck, including the vertical, horizontal and level position of the forks, by reference to that monitor.
It is therefore an object of this invention to provide a level sensor for the forks of a fork lift truck which provides an operator with a true indication of the plane of the forks, with and without load, relative to a horizontal plane.
It is another object of this invention to provide a fork lift truck with a camera which is aligned to define a horizontal plane a predetermined distance below the forks and a visual monitor which includes a representation of the horizontal plane to aid an operator in positioning the forks vertically relative to a pallet or storage rack, particularly when the forks are raised above the operators head.
It is also an object of this invention to provide a vision system for a fork lift truck whereby an operator, by reference to a video monitor, can ascertain and adjust the level position of the forks and the horizontal elevation of the forks relative to a storage rack.
It is a further object of this invention to provide a fork lift truck including a pair of forks for supporting a load, means for raising and lowering the forks, means for tilting the forks relative to the body of the truck, a level sensor mounted on at least one of the forks for providing an indication of the level of the forks with respect to a horizontal plane, a display terminal mounted for viewing by an operator, and means responsive to the level sensor for displaying an indication of the level position of the forks with respect to a horizontal plane on the display terminal thereby to assist the operator in adjusting the level of the forks prior to loading, moving or unloading a load from the forks. Further, the level sensor may be mounted approximately midway the length of the fork.
It is another object of this invention to provide a fork lift truck with a vision system that provides useful images to an operator regarding the elevation of the forks or load for position to a storage rack. It is also an object of this invention to provide the operator with a view of the forks or load while at the same time providing information regarding which function of the truck controls has been selected.
It is a still further object of this invention to provide a lift truck with multiple views, either from a single, movable camera, or from multiple cameras.
It is a yet another object of this invention to provide a fork lift truck including a mast assembly, a carriage assembly mounted for vertical movement in the mast assembly, a pair of forks extending from the carriage assembly for supporting a load, means for raising and lowering the carriage assembly, a camera mounted below the plane of the bottom of the load, the camera having a horizontal plane reticle and lens for viewing the scene immediately in front of the forks, means for positioning the lens of the camera a first predetermined location below the forks when the forks are in a raised position and for raising the camera to a protected position when the forks are in their lowermost position, and a display terminal for presenting to an operator the image of the scene viewed by the camera.
Other objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a double reach lift truck equipped with a fork level sensor and fork viewing camera and monitor showing the forks fully lowered and extended.
FIG. 2 is a plan view of a double reach truck with the forks fully extended.
FIG. 3 is a side elevational view of the double reach truck of FIG. 2;
FIG. 4 is a front elevational view of the truck of FIGS. 2-3;
FIG. 5 is a side elevational view of the portion of a single reach truck with its forks fully extended;
FIG. 6 is a perspective view of a mast assembly of the truck shown in FIG. 1;
FIG. 7 is a perspective view of a vertically movable carriage assembly showing a camera assembly mounted at the lower portion thereof;
FIG. 8 is a perspective view of a portion of a fork showing the installation of a fork level sensor;
FIGS. 9-12 are representations of the scene as viewed by a camera; FIG. 9 shows the scene when the forks are retracted, prior to entry of the forks into a pallet; FIG. 10 shows the forks extended into a pallet; FIG. 11 shows the pallet being lifted; and FIG. 12 shows the scene when the forks are retracted;
FIG. 13 is a simplified block diagram showing the relationship among the various components of the display system, including a camera, fork level sensor and video monitor;
FIG. 14 is a perspective view looking upward at raised forks and showing a camera assembly mounted on the carriage assembly;
FIG. 15 is a perspective view looking upward at raised forks and showing one camera mounted on the carriage assembly and another camera centrally mounted between and behind the forks;
FIG. 16 is a perspective view showing an alternative embodiment of the invention where the camera is supported on a parallelogram assembly at the lower part of the carriage assembly;
FIG. 17 is a partial side elevational view of the lowermost portion of a carriage assembly showing a camera assembly and its relationship to the carriage assembly when the carriage assembly is in its lowermost position;
FIG. 18 is a partial front elevational view corresponding to FIG. 17 and shows the camera in its uppermost of protected position;
FIG. 19 is a partial side elevational view of the lowermost portion of a carriage assembly showing the camera assembly and its relationship to the carriage assembly when the carriage assembly is in a raised position;
FIG. 20 is a partial front elevational view corresponding to FIG. 19 and shows the camera lowered to a first predetermined location below the carriage assembly;
FIG. 21 is a partial side elevational view of the lowermost portion of a carriage assembly showing the camera assembly and its relationship to the carriage assembly when the carriage assembly is in a raised position and the forks of a double reach truck are extended;
FIG. 22 is a partial from elevational view corresponding to FIG. 21 and shows the camera lowered to a second predetermined location below the carriage assembly;
FIGS. 23A-23F are side elevational views illustrating the sequence of operations for picking up a pallet from a rack using a single reach fork lift truck with a single camera in a single location below the forks;
FIGS. 24A-24F are side elevational views illustrating the sequence of operations for picking up a pallet from a far rack of a double deep storage rack using a double reach fork lift truck with a single camera at two locations below the forks;
FIGS. 25A-25D are side elevational views illustrating the sequence of operations for picking up a pallet from a single rack employing two separate cameras;
FIGS. 26A-26F are side elevational views illustrating the sequence of operations for picking up a pallet from the far rack of a double deep storage rack employing two separate cameras;
FIGS. 27A-27F are side elevational views illustrating the sequence of operations for picking up a pallet from the far rack of a double deep storage rack employing two cameras mounted in a common housing.
FIGS. 28, 29 and 30 show a mounting arrangement for a camera whereby the camera may be aligned vertically, horizontally and rotationally. FIG. 28 is a plan view. FIG. 29 is a side elevational view, and FIG. 30 is a front elevational view of a camera mounted on a printed circuit board and adjustably supported in a protective housing.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the drawings, and particularly to FIGS. 1-5, a self propelled rider-reach lift truck 10 is illustrated as one type of materials handling truck which may incorporate the present invention. The lift truck shown is a model RD 3000 Series truck manufactured by Crown Equipment Corporation, the assignee of the present invention. It is to be understood, however, that other fork lift trucks could also incorporate the present invention, such as Crown models FC, RC, RR, SC and W fork lift trucks.
The truck 10, which operates on floor 15, includes a body 20 that contains a battery 22 supplying power to the truck and various other components, such as electric traction motors (not shown) connected to steerable wheels 24 and hydraulic motors (not shown) which supply hydraulic pressure to fork lift cylinders, as will be explained. An operator's compartment 26 is included on the body 20, along with steering control 28 and control handle 29, which controls the operation of various functions of the truck. An overhead guard 30 is placed over the operator's compartment. Forward of the body 20 are outriggers 35 carrying front support wheels 37.
A mast assembly 40, which is also shown separately in FIG. 6, extends vertically from the front edge of the body 20. The mast assembly 40 includes a pair of stationary channel member 42 and nested movable channel members 44, 46 which may be extended by hydraulic cylinders 48 from a lower position, as shown in FIG. 1, to a fully raised position, as shown in FIG. 3.
A pair of forks 50 are carried by a fork carriage 55 which in turn is mounted on a reach mechanism 60 supported on a reach support carriage or vertically movable carriage assembly 70. The forks may be tilted through a range, shown by the arrows 72 by means of a hydraulic cylinder 74 mounted between a plate 76 and the fork carriage 55. The forks 50 are movable from side-to-side relative to the plate 76. The reach mechanism 60 may be extended and retracted by hydraulic cylinders 65. FIG. 3 shows a double reach mechanism 60 while FIG. 5 shows a single reach mechanism 60A.
The carriage assembly 70, which is shown separately in FIG. 7, rides on rollers 80 within channels 82 in the mast assembly and is moved vertically by means of chains 84.
Camera means 90 provides the operator with a view in front of the forks on a television or video display monitor or terminal 100 mounted on the body 20 and adjacent the operator's compartment 26. As shown in FIGS. 2 and 3, the monitor 100 is mounted to the left of the operator's compartment 26 and is conveniently placed for the operator's use as the forks are manipulated relative to a pallet.
FIG. 8 is perspective view of one of the forks 50 which contains a fork level sensor 110. When removing forks from or inserting forks into a pallet, or when transporting a load, it is desirable for the operator to know whether the forks are level with the horizontal plane. Even if the forks were level before a pallet was loaded, the forks may deflect when a load is placed thereon. When moving a load, and when the operator places a load on a rack, the pallet preferably should be nearly horizontal as possible. A load which is tilted will require more vertical space to clear the storage opening so the amount of tilt actually achieved should be known to and minimized by the operator. The level sensor 110 will provide the essential information to the operator via the video monitor 100. Of course, a separate fork level indicator could be provided and would be necessary if no camera system were included on any particular vehicle. The level indicator may take several forms, such as an analog meter or a set of light emitting diodes, etc.
The level sensor 110 is preferably mounted in a protected location, such as a cavity 115 machined into one of the forks, which cavity is closed by a cover plate 120 which is made flush with the bottom of the fork. Electrical cables connecting the level sensor 110 are routed through an opening 125 which is formed by drilling the fork prior to its being bent into the L-shape shown in FIG. 8. The fork shown has an essentially constant cross-section from upper end 130 of its vertical component 131 to approximately half of its horizontal length, at 132, where it begins to taper. The level sensor is placed at about the horizontal mid-point of the fork, where the taper begins. In those fork which are tapered from the heel 134 to the end 136, the level sensor should be placed as far from the heel as is practicable. Several types of level sensors may be used in the present invention, such as an electrolytic tilt sensor or a non-inertial tilt sensor.
The output of the level sensor is displayed on the monitor 100, a representation of which is shown in FIGS. 9-14, as a horizontal bar 150 which is referenced against an index 155. If the ends of the forks are tilted up relative to a true horizontal plane, then the bar 150 will be above the center of the index 155; if the fork ends are tilted down, then the bar 150 will be below the center of the index 155.
The display on monitor 100 also includes means for generating a reticle or cross mark 160 to assist the operator in adjusting the position of the fork carriage assembly relative to a visual target. The horizontal bar 161 of the reticle represents a horizontal plane across the central view of and at the height of the camera. The wide camera view permits vertical height adjustment to a load position with the truck turned in excess of 45° from the face of the rack.
The camera is placed with its central field of view in a horizontal plane. When the mast assembly 40 is fixed and vertical, the camera means 90 is preferable fixed to the carriage assembly 70 with its central axis horizontal. While the mast assembly of many fork lift trucks are vertically orientated, some trucks may include mast assemblies which are tilted relative to vertical or which may be tiltable, such as the Crown models FC, RC and SC counterbalanced rider trucks. When a camera is used on a truck with a permanently tilted mast assembly, the camera view is simply aligned to be horizontal. When a camera is mounted on a truck with a tiltable mast, the actual tilt position of the mast must be positioned to a known angle before the central view of the camera can be assumed to be in a horizontal plane for purposes of vertical positioning of the carriage assembly.
In normal operation of placing the forks into a pallet, an operator will adjust the height of carriage assembly 70 so that the reticle's horizontal bar 161 will align to an operator's estimated position, or with the bottom of a marker 162 mounted on front surface of a horizontal section 164 of a storage rack. The marker 162 may be employed to insure a more precise vertical alignment of the forks. The bottom of the marker 162 shown is typically three inches below the top of the horizontal section 164.
The various truck function that are controlled by control handle 29 are selected by a push button 175 on the control handle and are represented by icons 170 placed both on the monitor 100 and on an operator's display panel located above the operator's compartment. Icon 171 represents side-to-side control of the forks; icon 172 represents fork tilt control; icon 173 represents horizontal extension or reach of the forks by means of the reach mechanism 60; and icon 174 represent raising and lowering the fork carriage assembly. The icons in the embodiment shown are printed and attached to the face of the monitor 100, but they could also be represented by an electronically generated icon.
When the push button switch 175 on the control handle 29 is pressed, the various functions are sequentially selected. Since the operator will be controlling the operation of the forks primarily by reference to the monitor 100 when the forks are not in view, it is a convenience to provide information relative to the function selected along with a view of the field in front of the forks and the level position of the forks at the same place, on the video monitor 100. This is done by a function display generator 178 which causes the area on the video monitor directly behind the icon representing the selected function to be illuminated, or by electronically generating a brightened icon.
FIG. 13 is a block diagram showing in simplified form the electrical connections from the camera means and level sensor movably mounted on the mast assembly to an interface circuit 180, a bus 185 which connects the mast to the body of the truck where the signals are passed to a pattern generator 190, which includes a fork level bar and reference generator 192, an aiming reticle generator 194, and a function display generator 178.
The camera means 90 of the present invention may take several forms. In one form, shown in FIG. 14, a single or first camera 92 is mounted in a housing 94 which may be moved vertically either by sliding in the carriage assembly 70 or, as shown in FIG. 16, in a housing 305 supported on the carriage assembly 70 by means of a parallelogram device 300.
The camera means 90 may also include a second camera. In one embodiment, the second camera may be a camera 96 (FIG. 14) mounted above the first camera in the housing 94. In this embodiment, the second camera 96 will be placed above the first camera, closer to the plane of the forks 50. In another embodiment, the second camera will be camera 98 (FIG. 15) mounted centrally between the forks 50 on the fork carriage 55, but behind the vertical component 131 to protect it against damage by contact with a pallet or its load. The camera 98 will also be located above the bottom plane of the forks 50 to protect the camera from damage whenever the forks are lowered to the floor. The view of camera 98 will typically be located near the top plane of the forks 50.
Alternatively, in place of a second camera, the first camera 92 may itself be moved vertically from a first predetermined location, below the bottom of the forks, to a higher elevation, a second predetermined location relative to the forks. Although not shown, optical paths utilizing mirrors, prisms, or fiber optics could be used with a single camera to provide the desired views. If necessary, one or more lamps (visible or infrared) may be included with the camera to aid in illuminating the view in front of the cameras.
One form of the camera means 90 is shown in FIGS. 7 and 17-22 where a single camera 92 is mounted in a housing 94 and supported in carriage assembly 70. The carriage assembly 70 is formed from a pair of vertical channels members 200, a top plate 202 and a bottom plate 204. At one end of the reach mechanism 60, arms 206 are pivotally attached to the upper part of the carriage assembly, as shown in FIG. 7, while arms 208 are provided with rollers 210 and are slidably mounted in grooves 212 in the channel members 200. A hydraulic cylinder 65 (FIG. 3) controls the arms 206 to either extend or retract the reach mechanism and thus to move the forks 50 generally horizontally. The carriage assembly bottom plate 204 has a U-shape, when viewed from above, with the camera 92 placed in a recess 214. A pair of bumper strips 216 are placed on the bottom surface of plate 204.
The camera 92 is placed in a housing 94 formed from a pair of vertical plates 232, a top plate 234, a bottom plate 236 and a back vertical plate 237. The camera 92 is mounted on a printed circuit board 238 which is adjustably mounted within the housing 94. Lens 93 of the camera 92 faces forward, toward the ends of the forks. The printed circuit board contains the necessary video circuits to connect the camera with the interface circuit 180. While camera 92 is described herein, it is to be understood that the following also applies to cameras 96 and 98.
The camera means is provided with means for adjusting its field of view, specifically, means for adjusting the field of view vertically, horizontally and rotationally to permit calibration of the camera view, thereby to insure that the horizontal reticle truly defines a horizontal plane. Referring to FIGS. 28-30, a plate 270 is attached to the means for adjusting the field of view of the camera, which means includes two adjustment bolts 271 and 272, and bolt 273 which is surrounded by a spacer. The printed circuit board 238 is mounted to the plate 270 by two bolts; bolt 274 extends though a slot 275 in the plate 270 while bolt 276 acts as a pivot around which the board 238 may be adjusted rotationally. Springs 277 surround each of the bolts 271 and 272 to urge the plate 270 outwardly, away from the plate 232 of the housing 94. Nuts on each of these bolts may be tightened or loosened to position the plane of the plate 270 vertically and horizontally. Thus, the field of view of the camera mounted on the board 238 may be adjusted vertically, horizontally and rotationally.
A pair of rods 240 extend from the top plate 234 to the bottom plate 236 through linear bearings 242 placed in the carriage assembly bottom plate 204. Thus, the camera 92 may move vertically relative to the plate 204, from a fully down position shown in FIGS. 19 and 20, to a fully up position. FIGS. 17 and 18, and an intermediate position, FIGS. 21 and 22.
Extending upwardly from the carriage assembly bottom plate 204 are a pair of rods 250, each provided with a roll pin 252 at the top thereof. A spring 254 surrounds each rod 250, and a movable flange 256 is placed over the spring. The movable flange 256 includes a large circular plate which extends under the ends of the camera top plate 234 and also under the arm 208 of the reach mechanism. The springs 254 are of sufficient strength to move the camera means 90 upwardly when not restrained by the flange 256. In FIGS. 17 and 19, the reach arms 208 hold the flange 256 down against the plate 204 while in FIG. 21, the arms 208 are shown to have moved upwardly, and the movable flange 256 is in its uppermost position, having been stopped in its spring powered upward movement by the roll pin 252.
As shown in FIGS. 17, 19, and 21, a bracket 260 is attached to the back vertical plate 237 of the camera housing and a spring loaded rod 262 extends downwardly therefrom. The lower end of the rod is placed to engage a stop plate 265 attached to the mast assembly 40, as shown in FIGS. 6 and 17. When the carriage assembly is lowered, the rod 262 will engage the stop plate 265 and this will cause the camera housing 94 to move up until the bottom plate 236 contacts the bottom plate 204. Thus, in this position, the camera 92 is protected against coming into contact with the floor and damage from any debris that may be on the floor 15.
FIG. 16 shows an alternative embodiment for mounting camera means 90 on carriage assembly 70. A parallelogram device 300 supports camera housing 305 is mounted on a horizontal bar 310 that is provided with a pair of rollers 315 at the ends thereof. A pair of arms 320, 322 are mounted on both sides of the camera housing 305 and extend to a bracket 325 attached to the carriage assembly 70. The hinge points of arms 320, 322 on both the bracket 325 and the housing 305 are vertically arranged, and thus a parallelogram is formed which maintains the camera means 90 level at all times. A pair of ramps 330 mounted on the lower portion of the mast assembly engage the rollers 315 when the carriage assembly is lowered, causing the camera housing 305 to be raised, and thus remain clear of the floor 15 when the carriage assembly is in its lowermost position.
SINGLE CAMERA IN RETRACTABLE MOUNT, SINGLE REACH FORKS
Referring now to FIGS. 23A-23F, which are side elevational views showing a carriage assembly 70 in the raised position, similar to FIG. 3, the method of pallet pickup using a single reach fork lift truck and a single camera will be described. When the carriage assembly 70 is raised above the floor 15 (FIG. 3), the camera housing 94 will be lowered to the position shown in FIGS. 23A-23F and FIGS. 19-20. In this position, the camera 92 has a view centered on a horizontal plane or view line 280, which is approximately 6.25 inches below the top surface of level forks 50, or approximately 4.5 inches below the bottom of the forks. Plane 280 corresponds to the horizontal line of reticle 160.
The operator will first position the truck to face the rack 290 upon which a pallet 295 is placed. In some applications, the operator must make vertical height alignment of the forks while the truck is partially turned toward the face of the rack. In FIG. 23A, only the forward and rear horizontal bars 164, 166 of the rack are shown, but it is to be understood that shelving may be suspended between the bars and that, as shown in FIGS. 9-12, vertical columns 168 support the bars 164, 166.
The operator, selecting the Side-shift mode represented by icon 171, centers the forks relative to the carriage assembly 70. The truck is then aligned relative to the rack, as shown in FIG. 23A, and the carriage assembly is elevated so that the horizontal bar 161 of the reticle 160, is placed or aligned with the bottom of the marker tape 162. The operator then selects the Tilt mode represented by icon 172 and causes the ends of forks 50 to be tilted slightly downward, by reference to the horizontal bar 150 and reference mark 155. The operator views the fork and the pallet 295 by reference to the monitor 100, which provides a view of the load present on the pallet, and the side-shift alignment of the forks.
In a single reach truck, the operator will typically drive the truck forward until the front support wheels 37 are even with the face of the rack, a short distance while verifying the target height alignment on the monitor 100 so that the forks extend into the pallet without interference from either the top or the bottom of the pallet, as illustrated in FIG. 23B, and then the operator selects the Reach mode represented by icon 173 and extends the fork carriage 55 so that the forks fully extend into the pallet, as illustrated in FIG. 10 and FIG. 23C.
The operator then selects the Raise/Lower mode represented by icon 174 and will adjust the elevation of the pallet, stopping the carriage assembly so that the horizontal bar 161 of reticle 160 is at or slightly above the top edge of the rack, as shown in FIGS. 11 and 23D. The forks are then tilted slightly up by selecting the Tilt mode represented by icon 172 and by reference to the fork level indicator 150 and reference mark 155. At this point, the operator has a clear view of the underside of the pallet and can see whether it is clear of the rack horizontal bars 164 and 166.
In FIG. 23E, the operator selects the Reach mode represented by icon 173 and retracts the fork carriage and the load while viewing the movement of the pallet relative to the rack, as illustrated on the monitor in FIG. 12. The operator then drives the truck rearwardly. FIG. 23F, while verifying aisle clearance and then lowers the load for transport to another location. When depositing a pallet on a rack, the operation describe above is essentially reversed.
In the above described mode, camera means 90 includes a single camera 92 which is placed a first predetermined location below the forks. This camera, of course, will be protected for contact with the floor 15 whenever the carriage assembly 70 is lowered to the floor 15, as shown in FIGS. 17 and 18.
SINGLE CAMERA IN RETRACTABLE MOUNT, DOUBLE REACH FORKS
Referring now to FIGS. 24A-24F, a typical operation of a double reach fork lift truck will be described. In this embodiment, a single camera is employed, however the camera may be placed at one of two predetermined location relative to the forks.
In normal operation to remove a load from a rack, the operator will first position the truck to face a rack 290 upon which a pallet 295 is placed. As shown in FIGS. 24A-24F, a double depth rack is illustrated, and the pallet 295 is located on the far or rear rack. The rack 290 comprises a first or from section including horizontal bars 164 and 166, and a second or rear section including horizontal bars 164a and 166a. Again, while not shown, shelving may be placed top of the bars 164, 166, 164a and 166a.
After assuring that the forks are centered relative to the fork carriage, the operator will select the Raise/Lower mode, icon 174, and will place the horizontal bar 161 of reticle 160 at the bottom edge of the marker 162, which is shown three inches down from the top of bar 164. This places level forks 50 approximately one inch below the top inner surface of the pallet. The ends of the forks are then lowered slightly by tilting and by reference to the fork level indicator 150 and reference mark 155 on the monitor 100.
In FIG. 24B, the operator then drives the truck forward until the mast assembly 40 is near to contacting the bar 164. While moving forward, the operator continues to monitor the height alignment to the target. The operator may also view the forks while approaching the pallet on the rear rack, but as the camera nears the bar 164, the view will become obstructed because the perspective view above line 280 will be blocked by the bar.
In FIG. 24C, the operator selects the Reach mode represented by icon 173 and extends the forks to the position shown. During this operation, the camera will be elevated by approximately 3.5 inches, or to a second predetermined location relative to the forks, and the view line 280 will clear the top surface of bar 164, allowing the operator to see clearly the position of the forks relative to the pallet for approximately the last half of the fork extension movement. The movement of the camera housing and camera view line from the first to the second predetermined position below the forks upon extension of the forks is accomplished by means of the mechanism illustrated in FIGS. 21 and 22.
In FIG. 24D, the operator will elevate the load, by selecting the Raise/Lower mode represented by icon 174, and will tilt the ends of the forks slightly up, by selecting the Tilt mode represented by icon 172.
In FIG. 24E, the operator has selected the Reach mode represented by icon 173 and has retracted the load, then, as shown in FIG. 24F, the truck is driven rearwardly until the pallet is clear of the front bar 164. As the forks were being retracted between FIGS. 24D and 24E, the camera 92 will be lowered and returned to its first predetermined position. Again, the placing of a pallet on the rear rack will follow essentially the same procedure in reverse.
DUAL CAMERAS, NON-REACH MODE
The use of dual cameras can avoid the momentary blocking of the view, such as occurs in FIG. 24B when the truck is driven close to a rack. Referring now to the camera configuration of FIGS. 14 and 15 and the sequence of operations as represented in FIGS. 25A-25D, the truck is aligned facing a rack 290, as previously described.
Camera 92 is selected to align the elevation of the carriage assembly with the rack, using view line 280 and by selecting the Raise/Lower mode, icon 174. When the operator selects the Tilt function, icon 172, the view from camera 96, 98 will appear on the monitor 100, thus giving the operator a view of the ends of the forks with respect to the pallet 295 unobstructed by the bar 164. The selection between the view from camera 92 or 96, 98 may be accomplished automatically according to the position of the function selector 170 and electronically controlled camera switch 350 (FIG. 13), or by operation of a pallet detection switch 370; however, the operator may also manually select the camera view by means of manual selector switch 360. After tilting the forks slightly downward, and checking fork height alignment and side-shift alignment, the operator will drive the truck forward, FIG. 25B.
In FIG. 25C, the operator will select the Raise/Lower mode, icon 174, and the monitor will provide a view from camera 92, thus allowing the operator to raise and align the carriage assembly with the top of the marker 162 or top of horizontal bar 164. With the carriage assembly raised, the underside of the pallet is visible from camera 92, at which time the operator will select the Tilt mode, icon 172, raise the tips of the forks slightly with reference to fork level indicator 150 and reference mark 155, and then drive readward, FIG. 25D, after which the load may be lowered.
DUAL CAMERAS, SEPARATELY MOUNTED, DOUBLE REACH MODE
The dual camera arrangement of FIG. 15 also has application to use on a double reach truck, as illustrated in FIGS. 26A-26F. After aligning the truck with the rack, the operator selects the Raise/Lower mode, icon 174, and elevates the carriage assembly with reference to camera 92 and places the horizontal bar of reticle 160 at the bottom of the marker tape. The Tilt mode, icon 172, is then selected and the fork ends are tilted slightly downwardly. At this time, the view on monitor from camera 98 will be selected automatically. Camera 98 has a view line 284, which is also a horizontal plane. In this mode of operation, camera 92 will be selected whenever the Raise/Lower mode is selected or a pallet is fully engaged on the forks, and camera 98 will be selected whenever the operator selects the Reach, Tilt or Side-shift functions and a pallet is not fully engaged on the forks. A pallet detection switch 370 located on the fork carriage 55 and at the heel 134 of the forks 50 provides the necessary control signal.
With camera 98 selected, the driver moves the truck forward until it is in close proximity to the rack 290 (FIG. 26B), while monitoring fork clearance and side-shift alignment. The operator then selects the Reach mode, icon 173, and watches as the forks extend into the pallet 295 (FIG. 26C). At this time, the pallet engages a switch located at the rear of the forks, on the fork carriage 55, and this causes the monitor to switch to the view shown by camera 92. The Raise/Lower mode is then selected by the operator to elevate the pallet, stopping the carriage assembly 70 so that the horizontal bar 161 of reticle 160 is at or slightly above the top edge of the rack, as shown in FIGS. 11 and 26D. Then the Tilt mode is selected and the tips of the forks raised slightly, while the operator observes the level indicator 150 on the monitor 100 (FIG. 26D) as well as the view along view line 280 from camera 92.
With the carriage assembly and load elevated, FIG. 26D, the view from camera 92 is above the top of bar 164, and therefore the operator can view the retracting operation to the position in FIG. 26E. Finally, in FIG. 26F, the truck itself is driven rearward, and while verifying aisle clearance, the truck may be turned and the load lowered.
While the second camera 98, FIG. 15, has been described in connection with FIGS. 26A through 26F, it should be understood that the camera 96 shown in FIG. 14 could also be employed.
DUAL CAMERAS IN RETRACTABLE MOUNT, DOUBLE REACH MODE
The dual camera arrangement of FIG. 14 also has application to use on a double reach truck, as illustrated in FIGS. 27A-27F. After aligning the truck with the rack, the operator selects the Raise/Lower mode, icon 174, and elevates the carriage assembly with reference to camera 92 and places the horizontal bar of reticle 160 at the bottom of the marker tape. The Tilt mode, icon 172, is then selected and the fork ends are tilted slightly downwardly. At this time, the view on monitor from camera 96 will be selected automatically. In this mode of operations, camera 92 will be selected whenever the Raise/Lower mode is selected and the reach mechanism is fully retracted, while camera 96 will be selected whenever the operator selects the Reach, Tilt or Side-shift functions or the reach mechanism is in an extended position. A reach position activated switch 375, located on the carriage assembly 70 and activated at the retracted position by fork carriage 55, provides the necessary control signal.
With camera 96 selected, the driver moves the truck forward until it is in close proximity to the rack 290 (FIG. 27B), while monitoring fork clearance and side-shift alignment. The operator then selects the Reach mode, icon 173, and watches as the forks extend into the pallet 295 (FIG. 27C). The Raise/Lower mode is then selected and the pallet raised clear of the rack, then the Tilt mode is selected and the tips of the forks raised slightly, while the operator observes the fork level indicator 150 on the monitor 160 (FIG. 27D) as well as the lower perspective view along view line 282 from camera 96. View line 282 is also a horizontal plane.
With the forks retracted, FIG. 27E, the view from camera 96 is switched to camera 92, and therefore the operator can view the retracting operation, first with camera 96 and final movements with camera 92. Finally, in FIG. 27F, the truck itself is driven rearward, and while verifying aisle clearance, the truck may be turned and the load lowered.
While the form of apparatus herein described constitutes a preferred embodiment of this invention, it is to be understood that the invention is not limited to this precise form of apparatus and that changes may be made therein without departing from the scope of the invention, which is defined in the appended claims.

Claims (6)

What is claimed is:
1. A fork lift truck including
a pair of forks for supporting a load,
means for raising and lowering said forks,
means for tilting said forks relative to a body of said truck,
a level sensor mounted on at least one of said forks for providing an indication of the level position of said forks with respect to a horizontal plane,
a display terminal including a screen mounted for viewing by an operator during normal operation of said truck, and
means responsive to said level sensor for displaying an indication of the level position of said forks with respect to the horizontal plane on said screen of said display terminal, including a reference bar on said screen representing the horizontal plane, and an indicator on said screen for showing the actual position of said forks with respect to the horizontal plane, thereby to assist the operator in adjusting the level of said forks prior to loading, moving or unloading a load from said forks.
2. The fork lift truck of claim 1 wherein said level sensor is mounted approximately midway the length of at least one of said forks.
3. The fork lift truck of claim 1 wherein said level sensor is an electrolytic tilt sensor.
4. In a fork lift truck including
a pair of forks for supporting a load,
means for raising and lowering said forks and for tilting said forks relative to a body of the truck,
a camera mounted near a plane of said forks, said camera having a lens for viewing the scene immediately in front of the forks,
a display terminal including a screen for presenting to an operator an image of the scene viewed by the lens,
the improvement including
said display terminal being mounted to said truck during normal operation thereof,
a level sensor mounted on at least one of said forks for providing an indication of the level position of said forks with respect to a horizontal plane, and
means for displaying an indication of the level position of said forks on said display terminal, including a reference bar on said screen representing the horizontal plane, and an indicator on said screen for showing the actual position of said forks with respect to the horizontal plane, whereby the operator is provided with both an image of the scene in front of the forks and an indication of the level of the forks thereby to assist the operator in adjusting the vertical position and level of said forks prior to loading, moving or unloading a load from said forks.
5. The fork lift truck of claim 4 wherein said display terminal includes a television screen.
6. The fork lift truck of claim 4 wherein said camera is aligned to define the horizontal plane through its center of view, and
means for generating a reticle, including a visual representation of said horizontal plane, on said display terminal to assist an operator in vertically positioning said carriage assembly.
US09/360,184 1995-05-12 1999-07-23 Fork level indicator for lift trucks Expired - Lifetime USRE37215E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/360,184 USRE37215E1 (en) 1995-05-12 1999-07-23 Fork level indicator for lift trucks

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/439,985 US5586620A (en) 1995-05-12 1995-05-12 Remote viewing apparatus for fork lift trucks
US08/692,409 US5738187A (en) 1995-05-12 1996-08-05 Fork level indicator for lift trucks
US09/360,184 USRE37215E1 (en) 1995-05-12 1999-07-23 Fork level indicator for lift trucks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/692,409 Reissue US5738187A (en) 1995-05-12 1996-08-05 Fork level indicator for lift trucks

Publications (1)

Publication Number Publication Date
USRE37215E1 true USRE37215E1 (en) 2001-06-12

Family

ID=23746949

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/439,985 Expired - Lifetime US5586620A (en) 1995-05-12 1995-05-12 Remote viewing apparatus for fork lift trucks
US08/692,409 Ceased US5738187A (en) 1995-05-12 1996-08-05 Fork level indicator for lift trucks
US09/360,184 Expired - Lifetime USRE37215E1 (en) 1995-05-12 1999-07-23 Fork level indicator for lift trucks

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/439,985 Expired - Lifetime US5586620A (en) 1995-05-12 1995-05-12 Remote viewing apparatus for fork lift trucks
US08/692,409 Ceased US5738187A (en) 1995-05-12 1996-08-05 Fork level indicator for lift trucks

Country Status (5)

Country Link
US (3) US5586620A (en)
EP (2) EP0824496A1 (en)
AU (1) AU707036B2 (en)
CA (1) CA2218355A1 (en)
WO (1) WO1996035631A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044047A1 (en) * 2001-08-27 2003-03-06 Kelly Alonzo J. System and method for object localization
US20040098146A1 (en) * 2001-02-16 2004-05-20 Kenichi Katae Camera lifting device and load handling support device of industrial vehicle, and industrial vehicle
US20050281656A1 (en) * 2004-04-07 2005-12-22 Linde Aktiengesellschaft Industrial truck having increased static or quasi-static tipping stability
US20060005415A1 (en) * 2004-07-08 2006-01-12 Robert Hammerl Measurement standard for sensing lifting heights
US7232285B1 (en) * 2003-11-26 2007-06-19 Ruch Byron M Vehicle loader mechanism
US20070142961A1 (en) * 2005-12-21 2007-06-21 Caterpillar Inc. System and method for providing visual aids
US20080257651A1 (en) * 2007-04-23 2008-10-23 Williamson Joel L Lift truck with productivity enhancing package including variable tilt and vertical masting
US20090114485A1 (en) * 2007-11-01 2009-05-07 Eggert Richard T Lift truck fork aligning system with operator indicators
US20090232505A1 (en) * 2008-03-13 2009-09-17 Emcore Corporation Multi-Channel Optical Communication
US20120239259A1 (en) * 2011-03-18 2012-09-20 Mccabe Paul P Dynamic Stability Control Systems and Methods for Industrial Lift Trucks
US20130127126A1 (en) * 2011-05-13 2013-05-23 Dan Lantz Pallet truck with lift indicator assembly and associated methods
US8718372B2 (en) 2011-10-19 2014-05-06 Crown Equipment Corporation Identifying and evaluating possible horizontal and vertical lines intersecting potential pallet features
US20140192186A1 (en) * 2011-10-09 2014-07-10 Xiangtan Electric Manufacturing Co., Ltd. Solar heat power generation system and detection device for condenser reflecting surface thereof
US20160138248A1 (en) * 2014-11-14 2016-05-19 Caterpillar Inc. System for Assisting a User of a Machine of a Kind Comprising a Body and an Implement Movable Relative to the Body
WO2016179532A1 (en) 2015-05-06 2016-11-10 Crown Equipment Corporation Tag layout for industrial vehicle operation
WO2016179526A1 (en) 2015-05-06 2016-11-10 Crown Equipment Corporation Diagnostic tag for an industrial vehicle tag reader
WO2018039559A2 (en) 2016-08-26 2018-03-01 Crown Equipment Corporation Materials handling vehicle obstacle scanning tools
WO2018039592A1 (en) 2016-08-26 2018-03-01 Crown Equipment Corporation Materials handling vehicle path validation and dynamic path modification
US9990535B2 (en) 2016-04-27 2018-06-05 Crown Equipment Corporation Pallet detection using units of physical length
WO2018132654A1 (en) 2017-01-13 2018-07-19 Crown Equipment Corporation Industrial vehicle armrest
US10106321B2 (en) 2016-05-23 2018-10-23 Crown Equipment Corporation Systems and methods for home position and cart acquisition with a materials handling vehicle
US10570001B2 (en) 2016-12-23 2020-02-25 The Raymond Corporation Systems and methods for determining a rack interface for a material handling vehicle
US10589970B1 (en) 2017-03-31 2020-03-17 Rightline Equipment, Inc. High visibility push-pull forklift attachment
US11820634B2 (en) 2020-02-21 2023-11-21 Crown Equipment Corporation Modify vehicle parameter based on vehicle position information

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29708980U1 (en) * 1997-05-22 1997-07-17 Gräf, Ferdinand, 65589 Hadamar Monitoring device for industrial trucks
US6137398A (en) * 1997-07-16 2000-10-24 Crown Equipment Corporation Device for a materials handling vehicle
CA2304139C (en) 1997-09-30 2008-11-18 Crown Equipment Corporation Intelligent braking system for materials handling vehicles
WO1999016698A1 (en) * 1997-09-30 1999-04-08 Crown Equipment Corporation Productivity package
US6199665B1 (en) * 1997-11-11 2001-03-13 Crown Equipment Corporation Straddle arm for fork lift truck
US6368050B1 (en) * 1997-12-08 2002-04-09 Stephen Henry Currie Fork lifts
NL1008225C2 (en) * 1998-02-06 1999-08-09 Rudolf Koster Device for moving a load.
US6182797B1 (en) 1998-03-17 2001-02-06 Crown Equipment Corporation Enhanced visibility rider reach fork lift truck
DE19822496A1 (en) * 1998-05-19 1999-11-25 Still Wagner Gmbh & Co Kg Video device for an industrial truck
CA2282198C (en) 1998-10-07 2003-06-10 Cascade Corporation Adaptive load-clamping system
US6843636B2 (en) 1998-10-07 2005-01-18 Cascade Corporation Adaptive load-clamping system
US6431816B1 (en) 1998-10-07 2002-08-13 Cascade Corporation Adaptive load-clamping system
IL127407A (en) * 1998-12-06 2004-07-25 Electronics Line E L Ltd Infrared intrusion detector and method
CA2264368C (en) * 1999-03-03 2003-09-30 Hugh Sexsmith A multi-terrain vertical lift transporter
USD434425S (en) * 1999-04-12 2000-11-28 Clark Equipment Company Display panel for power machine
US6690413B1 (en) * 1999-04-21 2004-02-10 Michael S. Moore Tractor-trailer viewing system
US6202014B1 (en) 1999-04-23 2001-03-13 Clark Equipment Company Features of main control computer for a power machine
US6343237B1 (en) 1999-06-04 2002-01-29 Clark Equipment Company User interface functionality for power machine control system
US20050135912A1 (en) * 1999-07-23 2005-06-23 Hagen Schempf Robotic systems for handling objects
US20020182046A1 (en) * 1999-07-23 2002-12-05 Hagen Schempf Robotic systems for handling objects
JP2001206696A (en) * 2000-01-21 2001-07-31 Nippon Yusoki Co Ltd Forklift
DE60140440D1 (en) 2000-05-05 2009-12-24 Robert A Hasara LASER-CONTROLLED CONSTRUCTION MACHINE
FR2815450A1 (en) * 2000-10-12 2002-04-19 Sertel Vision Fork lift truck adaptable mechanism having adaptable platform fork lift truck attached with camera and camera movement command varying camera objective/viewing image
US20030070850A1 (en) 2001-02-16 2003-04-17 Cellex Power Products, Inc. Hybrid power supply apparatus for battery replacement applications
US7219769B2 (en) * 2001-07-17 2007-05-22 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle equipped with load handling operation control apparatus
JP3900941B2 (en) * 2002-01-23 2007-04-04 株式会社豊田自動織機 Work view support device for forklift truck, forklift truck, work view support device for industrial vehicle, and industrial vehicle
US6571913B2 (en) 2001-08-07 2003-06-03 Jlg Industries, Inc. Multipurpose machine
DE20119110U1 (en) * 2001-11-23 2003-01-09 Janssen, Wolfgang, 21218 Seevetal Industrial truck has safety unit with position measuring device to record position of load installed on load carrier, and identification unit to compare recorded position of load with reference positions
JP3900912B2 (en) * 2001-12-05 2007-04-04 株式会社豊田自動織機 Industrial vehicle
EP1502896A4 (en) * 2002-01-23 2009-11-18 Toyota Jidoshokki Kk Position control device and position control method of stevedoring apparatus in industrial vehicle
JP3941521B2 (en) * 2002-01-23 2007-07-04 株式会社豊田自動織機 Industrial vehicle sign selection device and industrial vehicle
US6945742B2 (en) * 2002-06-20 2005-09-20 Dave Roberts Portable manhole cover remover
GB2395186B (en) * 2002-11-13 2006-06-28 Bamford Excavators Ltd Method of handling a load
US20060058913A1 (en) * 2002-11-26 2006-03-16 Andersen Scott P Inventory tracking
DE10323641A1 (en) * 2003-05-26 2005-01-05 Daimlerchrysler Ag Movable sensor device on the load means of a forklift
US7096999B2 (en) * 2003-08-05 2006-08-29 The Raymond Corporation Mast construction for a lift truck
US20050254923A1 (en) * 2004-05-13 2005-11-17 Spx Corporation High lift wheel dolly method and apparatus
DE102004027446B4 (en) * 2004-06-04 2007-08-23 Jungheinrich Aktiengesellschaft Device for supporting stacking and unstacking in a forklift
US20060034535A1 (en) * 2004-08-10 2006-02-16 Koch Roger D Method and apparatus for enhancing visibility to a machine operator
DE102005043781A1 (en) * 2005-09-14 2007-03-15 Still Gmbh Industrial truck e.g. counterbalance fork-lift truck, for putting down, lifting, lowering and transporting loads, has stopper arranged at lifting frame such that sensor is moved upward relative to carrier during complete lowering of carrier
JP4666154B2 (en) * 2005-09-20 2011-04-06 株式会社豊田自動織機 Cargo handling support device for forklift
US20070213869A1 (en) * 2006-02-08 2007-09-13 Intermec Ip Corp. Cargo transporter with automatic data collection devices
US7699141B2 (en) * 2006-03-20 2010-04-20 Fossier David A Pallet distance ranging device for forklift
US7306280B1 (en) * 2006-06-29 2007-12-11 Crown Equipment Corporation Overhead guard for materials handling vehicle
AT503427B1 (en) * 2006-08-03 2007-10-15 Katt Logistik Gmbh Method for loading and unloading goods e.g., for storage logistics, involves lowering loading platform when receiving goods
DE102007010697A1 (en) * 2007-03-06 2008-09-11 Jungheinrich Aktiengesellschaft Truck
US8621855B2 (en) * 2007-06-08 2014-01-07 Deere & Company Electro-hydraulic auxiliary mode control
US8454037B2 (en) 2007-06-15 2013-06-04 Crown Equipment Corporation Outrigger assembly with quick change load wheel assembly
US7845657B2 (en) * 2007-06-15 2010-12-07 Crown Equipment Corporation Quick change load wheel assembly
US20090102923A1 (en) * 2007-09-24 2009-04-23 Mason Edward L Truck security system
EP2296949B1 (en) * 2008-05-05 2016-06-15 Crown Equipment Corporation Slip control for a materials handling vehicle
BE1018160A3 (en) * 2008-05-26 2010-06-01 Egemin Nv Automatic guided vehicle, has load handling device connected to onboard computer, where vehicle is provided with detection unit, which comprises single sensor for determining relative position of load handling device
CA2736383C (en) * 2008-09-12 2017-03-07 Crown Equipment Corporation Monomast for a materials handling vehicle
DE102009004742A1 (en) * 2009-01-15 2010-07-22 Jungheinrich Ag Fork for a forklift of a truck
US9440591B2 (en) * 2009-05-13 2016-09-13 Deere & Company Enhanced visibility system
US9045321B2 (en) * 2010-01-15 2015-06-02 Recon Engineering, Inc. Load transport system and method
KR102041093B1 (en) 2011-04-11 2019-11-06 크라운 이큅먼트 코포레이션 Method and apparatus for efficient scheduling for multiple automated non-holonomic vehicles using a coordinated path planner
US8548671B2 (en) 2011-06-06 2013-10-01 Crown Equipment Limited Method and apparatus for automatically calibrating vehicle parameters
US20140058634A1 (en) 2012-08-24 2014-02-27 Crown Equipment Limited Method and apparatus for using unique landmarks to locate industrial vehicles at start-up
US9056754B2 (en) 2011-09-07 2015-06-16 Crown Equipment Limited Method and apparatus for using pre-positioned objects to localize an industrial vehicle
EP2941743A4 (en) 2013-01-03 2016-04-20 Crown Equip Corp Tracking industrial vehicle operator quality
US20140219760A1 (en) * 2013-02-04 2014-08-07 Crown Equipment Corporation Reach assembly with offset pivot points for a materials handling vehicle
US20150023769A1 (en) * 2013-04-02 2015-01-22 Craig Oberg Bulk Material Handling Device
ITPI20130036A1 (en) * 2013-05-06 2014-11-07 Newtecnik S R L A WEIGHING DEVICE MAGNETICALLY APPLICABLE TO THE FORK OF A LIFT WITH WIRELESS DATA CONNECTION
US9371217B1 (en) * 2013-05-09 2016-06-21 Mark C. DePumpo Large wheeled, hand operated forklift
US10040674B2 (en) * 2013-12-17 2018-08-07 Big Lift, Llc Cart with height adjustable platform and methods of using the same
EP3194324A1 (en) * 2014-09-15 2017-07-26 Crown Equipment Corporation Lift truck with optical load sensing structure
EP3000773B1 (en) 2014-09-25 2017-04-12 Toyota Material Handling Manufacturing Sweden AB Method in forklift truck for determining a load position in a load rack
KR102299046B1 (en) * 2014-12-22 2021-09-06 주식회사 두산 Fork Camera Mounting Structure of Forklift
USD789017S1 (en) 2015-01-13 2017-06-06 Arrow Acquisition, Llc Fork lift fork
USD789647S1 (en) * 2015-01-13 2017-06-13 Arrow Acquisition, Llc Fork lift fork
USD794898S1 (en) * 2015-01-13 2017-08-15 Arrow Acquisition, Llc Fork lift fork
USD789018S1 (en) * 2015-01-13 2017-06-06 Arrow Acquisition, Llc Fork lift fork
USD789646S1 (en) * 2015-01-13 2017-06-13 Arrow Aquisition, Llc Fork lift fork
EP4145263B1 (en) 2015-07-17 2024-06-26 Crown Equipment Corporation Processing device having a graphical user interface for industrial vehicle
AU2016316037B2 (en) 2015-09-04 2020-07-02 Crown Equipment Corporation Industrial vehicle with feature-based localization and navigation
AU2018282332B2 (en) * 2016-05-23 2020-05-28 Crown Equipment Corporation Systems and methods for use of a materials handling vehicle in a warehouse environment
US10621445B2 (en) * 2016-06-29 2020-04-14 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle video systems including rear mounted video cameras
KR102517483B1 (en) 2016-11-22 2023-04-04 크라운 이큅먼트 코포레이션 User Interface Devices for Industrial Vehicles
DE102016124506A1 (en) * 2016-12-15 2018-06-21 Jungheinrich Aktiengesellschaft Truck with a control unit for controlling the movement of a load and a corresponding method
US11142442B2 (en) 2017-02-10 2021-10-12 Arrow Acquisition, Llc System and method for dynamically controlling the stability of an industrial vehicle
CN106629495A (en) * 2017-03-07 2017-05-10 安徽江淮银联重型工程机械有限公司 Forklift portal frame and safety protection system
DE102017214171B4 (en) 2017-08-15 2019-07-04 Vetter Industrie GmbH Truck with lifting and lowering lifting gear with a load measuring device
USD914322S1 (en) * 2017-12-14 2021-03-23 Arrow Acquistion, LLC Fork lift fork
USD881500S1 (en) 2017-12-14 2020-04-14 Arrow Acquisition, Llc Fork lift fork
US10807849B2 (en) * 2018-05-03 2020-10-20 Hyster-Yale Group, Inc. Pantograph assembly for lift truck
US11274022B2 (en) 2018-05-03 2022-03-15 Hyster-Yale Group, Inc. Pantograph assembly for lift truck
USD891022S1 (en) 2018-07-25 2020-07-21 Zhejiang E-P Equipment Co., Ltd. Powered Stacker Vehicle
US11590997B1 (en) 2018-08-07 2023-02-28 Staples, Inc. Autonomous shopping cart
US11630447B1 (en) * 2018-08-10 2023-04-18 Staples, Inc. Automated guided vehicle for transporting objects
JP2022017613A (en) * 2018-11-05 2022-01-26 株式会社豊田自動織機 Remote control system of forklift
US11104558B2 (en) 2018-12-27 2021-08-31 Crown Equipment Corporation Load wheel assembly for preventing axial and rotational movement of an axle
CN109704171B (en) * 2019-01-01 2020-08-28 绍兴盈顺机电科技有限公司 Electric lift based on machine vision
FR3091525B1 (en) 2019-01-04 2021-01-29 Balyo Self-guided handling equipment incorporating detection means
US10807846B1 (en) * 2019-04-17 2020-10-20 Richard Everett Vos, Jr. Remotely adjustable automotive lift arm
JP7099399B2 (en) * 2019-04-24 2022-07-12 株式会社豊田自動織機 Cargo handling support system
US11650596B2 (en) * 2019-05-31 2023-05-16 Cascade Corporation Load alignment aid
CN110217727B (en) * 2019-06-10 2023-05-26 国网江苏省电力有限公司南京供电分公司 AR auxiliary fork feeding calibration method in remote control environment and matched forklift
DE102019006140A1 (en) * 2019-08-30 2021-03-04 Kaup GmbH & Co. KG Gesellschaft für Maschinenbau Device for transporting a cargo and method
CN114060653A (en) * 2020-08-10 2022-02-18 中强光电股份有限公司 Lifting mechanism and operation method thereof
US20240317555A1 (en) * 2023-03-23 2024-09-26 Rapyuta Robotics Co., Ltd. Forklift

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3319816A (en) * 1965-03-15 1967-05-16 Clark Equipment Co Tilt and hoist control mechanism for a lift truck
US3865265A (en) 1973-08-20 1975-02-11 Brudi Equipment Lift truck safety accessory
US3883021A (en) * 1974-02-19 1975-05-13 Towmotor Corp Fork level indicator for a lift truck
US4004460A (en) * 1974-10-24 1977-01-25 Shell Oil Company Ship movement measurement
US4221530A (en) 1978-06-08 1980-09-09 Williams Iv James M Force-moment compensating apparatus
US4279328A (en) 1978-04-28 1981-07-21 Ab Volvo Device for orienting a lifting means, for example, in relation to a load
US4411582A (en) * 1979-08-20 1983-10-25 Komatsu Forklift Kabushiki Kaisha Electronically controlled industrial trucks
US4491918A (en) 1981-03-31 1985-01-01 Kabushiki Kaisha Toyoda Jidoh Shokki Seisakusho Method and system for horizontally controlling a fork for a fork lift truck
US4541049A (en) * 1980-10-02 1985-09-10 Ab Volvo Method for updating in a wheeled vehicle steered by dead reckoning
US4566032A (en) 1982-12-20 1986-01-21 Nippon Yusoki Co., Ltd. Visually guided vehicle
US4678329A (en) 1985-10-18 1987-07-07 Calspan Corporation Automatically guided vehicle control system
JPH02147600A (en) 1988-11-30 1990-06-06 Toyota Motor Corp Freight tilt correcting device for automatic forklift
US4957408A (en) 1988-04-06 1990-09-18 Toyota Jidosha Kabushiki Kaisha Device for controlling a fork of a forklift
US5011358A (en) 1988-10-25 1991-04-30 Andersen Eric T Height indicator for a fork lift truck
GB2242670A (en) 1990-04-04 1991-10-09 John Paul Servadei Level indicating means
US5131801A (en) * 1990-12-10 1992-07-21 Tandy Corporation Forklift fork tilt angle indicator
US5208753A (en) 1991-03-28 1993-05-04 Acuff Dallas W Forklift alignment system
US5749696A (en) * 1992-07-23 1998-05-12 Scott Westlake Height and tilt indicator for forklift truck

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298463A (en) * 1964-05-18 1967-01-17 Clark Equipment Co Triple stage upright for lift truck
US3542161A (en) * 1968-08-23 1970-11-24 Eaton Yale & Towne Load height indicator for industrial trucks
JPS5918320B2 (en) * 1975-09-13 1984-04-26 株式会社豊田自動織機製作所 Reach fork longitudinal movement mechanism of forklift truck
DE2732611C2 (en) * 1977-07-19 1984-08-02 Steinbock Gmbh, 8052 Moosburg Forklift truck with a device to limit the stroke
US4224657A (en) * 1979-02-08 1980-09-23 Cascade Corporation Light assembly for positioning lift truck load-handling device
US4331417A (en) * 1980-03-07 1982-05-25 Rapitsan Division, Lear Siegler, Inc. Vehicle alignment and method
US4727962A (en) * 1986-09-29 1988-03-01 Caterpillar Inc. Movable sensing apparatus
US5215423A (en) * 1990-09-21 1993-06-01 Edelhoff Polytechnik Gmbh & Co. System for determining the spatial position of an object by means of a video optical sensor
JPH0524798A (en) * 1991-07-18 1993-02-02 Komatsu Forklift Co Ltd Cargo handiling monitor device in industrial vehicle
ES2066665B1 (en) * 1992-06-29 1997-01-01 Ros Roca Ind Madero Metalurg "TRUCK FOR THE COLLECTION OF GARBAGE AND WASTE"
DE4405770A1 (en) * 1994-02-23 1995-08-31 Joerg Heintz Load lifting and depositing device for forklift truck type vehicle

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3319816A (en) * 1965-03-15 1967-05-16 Clark Equipment Co Tilt and hoist control mechanism for a lift truck
US3865265A (en) 1973-08-20 1975-02-11 Brudi Equipment Lift truck safety accessory
US3883021A (en) * 1974-02-19 1975-05-13 Towmotor Corp Fork level indicator for a lift truck
US4004460A (en) * 1974-10-24 1977-01-25 Shell Oil Company Ship movement measurement
US4279328A (en) 1978-04-28 1981-07-21 Ab Volvo Device for orienting a lifting means, for example, in relation to a load
US4221530A (en) 1978-06-08 1980-09-09 Williams Iv James M Force-moment compensating apparatus
US4411582A (en) * 1979-08-20 1983-10-25 Komatsu Forklift Kabushiki Kaisha Electronically controlled industrial trucks
US4541049A (en) * 1980-10-02 1985-09-10 Ab Volvo Method for updating in a wheeled vehicle steered by dead reckoning
US4491918A (en) 1981-03-31 1985-01-01 Kabushiki Kaisha Toyoda Jidoh Shokki Seisakusho Method and system for horizontally controlling a fork for a fork lift truck
US4566032A (en) 1982-12-20 1986-01-21 Nippon Yusoki Co., Ltd. Visually guided vehicle
US4678329A (en) 1985-10-18 1987-07-07 Calspan Corporation Automatically guided vehicle control system
US4957408A (en) 1988-04-06 1990-09-18 Toyota Jidosha Kabushiki Kaisha Device for controlling a fork of a forklift
US5011358A (en) 1988-10-25 1991-04-30 Andersen Eric T Height indicator for a fork lift truck
JPH02147600A (en) 1988-11-30 1990-06-06 Toyota Motor Corp Freight tilt correcting device for automatic forklift
GB2242670A (en) 1990-04-04 1991-10-09 John Paul Servadei Level indicating means
US5131801A (en) * 1990-12-10 1992-07-21 Tandy Corporation Forklift fork tilt angle indicator
US5208753A (en) 1991-03-28 1993-05-04 Acuff Dallas W Forklift alignment system
US5749696A (en) * 1992-07-23 1998-05-12 Scott Westlake Height and tilt indicator for forklift truck

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320385B2 (en) * 2001-02-16 2008-01-22 Kabushiki Kaisha Toyota Jidoshokki Camera lifting apparatus and cargo handling operation aiding apparatus in industrial vehicle and industrial vehicle
US20040098146A1 (en) * 2001-02-16 2004-05-20 Kenichi Katae Camera lifting device and load handling support device of industrial vehicle, and industrial vehicle
US20030044047A1 (en) * 2001-08-27 2003-03-06 Kelly Alonzo J. System and method for object localization
US6952488B2 (en) * 2001-08-27 2005-10-04 Carnegie Mellon University System and method for object localization
US7232285B1 (en) * 2003-11-26 2007-06-19 Ruch Byron M Vehicle loader mechanism
US20070224022A1 (en) * 2003-11-26 2007-09-27 Ruch Byron M Vehicle loader mechanism
US7351027B2 (en) * 2003-11-26 2008-04-01 Ruch Byron M Vehicle loader mechanism
US7706947B2 (en) * 2004-04-07 2010-04-27 Linde Material Handling Gmbh Industrial truck having increased static or quasi-static tipping stability
US20050281656A1 (en) * 2004-04-07 2005-12-22 Linde Aktiengesellschaft Industrial truck having increased static or quasi-static tipping stability
US20060005415A1 (en) * 2004-07-08 2006-01-12 Robert Hammerl Measurement standard for sensing lifting heights
US7266904B2 (en) * 2004-07-08 2007-09-11 Jungheinrich Aktiengesellschaft Measurement standard for sensing lifting heights
US20070142961A1 (en) * 2005-12-21 2007-06-21 Caterpillar Inc. System and method for providing visual aids
US20080257651A1 (en) * 2007-04-23 2008-10-23 Williamson Joel L Lift truck with productivity enhancing package including variable tilt and vertical masting
US20090114485A1 (en) * 2007-11-01 2009-05-07 Eggert Richard T Lift truck fork aligning system with operator indicators
US20090232505A1 (en) * 2008-03-13 2009-09-17 Emcore Corporation Multi-Channel Optical Communication
US20120239259A1 (en) * 2011-03-18 2012-09-20 Mccabe Paul P Dynamic Stability Control Systems and Methods for Industrial Lift Trucks
US8731785B2 (en) * 2011-03-18 2014-05-20 The Raymond Corporation Dynamic stability control systems and methods for industrial lift trucks
US20130127126A1 (en) * 2011-05-13 2013-05-23 Dan Lantz Pallet truck with lift indicator assembly and associated methods
US9030311B2 (en) * 2011-05-13 2015-05-12 Chep Technology Pty Limited Pallet truck with lift indicator assembly and associated methods
US20140132406A1 (en) * 2011-05-13 2014-05-15 Chep Technology Pty Limited Pallet truck with lift indicator assembly and associated methods
US8632082B2 (en) * 2011-05-13 2014-01-21 Chep Technology Pty Limited Pallet truck with lift indicator assembly and associated methods
US20140192186A1 (en) * 2011-10-09 2014-07-10 Xiangtan Electric Manufacturing Co., Ltd. Solar heat power generation system and detection device for condenser reflecting surface thereof
US9589371B2 (en) * 2011-10-09 2017-03-07 Xiangtan Liyuan Electric Tooling Co., Ltd. Solar heat power generation system and detection device for condenser reflecting surface thereof
US8849007B2 (en) 2011-10-19 2014-09-30 Crown Equipment Corporation Identifying, evaluating and selecting possible pallet board lines in an image scene
US8934672B2 (en) 2011-10-19 2015-01-13 Crown Equipment Corporation Evaluating features in an image possibly corresponding to an intersection of a pallet stringer and a pallet board
US8938126B2 (en) 2011-10-19 2015-01-20 Crown Equipment Corporation Selecting objects within a vertical range of one another corresponding to pallets in an image scene
US8977032B2 (en) 2011-10-19 2015-03-10 Crown Equipment Corporation Identifying and evaluating multiple rectangles that may correspond to a pallet in an image scene
US8995743B2 (en) 2011-10-19 2015-03-31 Crown Equipment Corporation Identifying and locating possible lines corresponding to pallet structure in an image
US9025827B2 (en) 2011-10-19 2015-05-05 Crown Equipment Corporation Controlling truck forks based on identifying and tracking multiple objects in an image scene
US9025886B2 (en) 2011-10-19 2015-05-05 Crown Equipment Corporation Identifying and selecting objects that may correspond to pallets in an image scene
US8885948B2 (en) 2011-10-19 2014-11-11 Crown Equipment Corporation Identifying and evaluating potential center stringers of a pallet in an image scene
US9082195B2 (en) 2011-10-19 2015-07-14 Crown Equipment Corporation Generating a composite score for a possible pallet in an image scene
US9087384B2 (en) 2011-10-19 2015-07-21 Crown Equipment Corporation Identifying, matching and tracking multiple objects in a sequence of images
US8718372B2 (en) 2011-10-19 2014-05-06 Crown Equipment Corporation Identifying and evaluating possible horizontal and vertical lines intersecting potential pallet features
US20160138248A1 (en) * 2014-11-14 2016-05-19 Caterpillar Inc. System for Assisting a User of a Machine of a Kind Comprising a Body and an Implement Movable Relative to the Body
WO2016179532A1 (en) 2015-05-06 2016-11-10 Crown Equipment Corporation Tag layout for industrial vehicle operation
EP3866069A1 (en) 2015-05-06 2021-08-18 Crown Equipment Corporation Industrial vehicle for identifying malfunctioning sequenced tag and tag layout for use therewith
WO2016179526A1 (en) 2015-05-06 2016-11-10 Crown Equipment Corporation Diagnostic tag for an industrial vehicle tag reader
WO2016179478A1 (en) 2015-05-06 2016-11-10 Crown Equipment Corporation Industrial vehicle for identifying malfunctioning sequenced tag
US9658622B2 (en) 2015-05-06 2017-05-23 Crown Equipment Corporation Industrial vehicle for identifying malfunctioning sequenced tag and tag layout for use therewith
US9811088B2 (en) 2015-05-06 2017-11-07 Crown Equipment Corporation Industrial vehicle comprising tag reader and reader module
US9818003B2 (en) 2015-05-06 2017-11-14 Crown Equipment Corporation Diagnostic tag for an industrial vehicle tag reader
US12093056B2 (en) 2015-05-06 2024-09-17 Crown Equipment Corporation Tag layout for industrial vehicle operation
US11797785B2 (en) 2015-05-06 2023-10-24 Crown Equipment Corporation Tag reader with diagnostic tag
WO2016179482A1 (en) 2015-05-06 2016-11-10 Crown Equipment Corporation Industrial vehicle comprising tag reader and reader module
US11726496B2 (en) 2015-05-06 2023-08-15 Crown Equipment Corporation Tag layout for industrial vehicle operation
EP3985353A1 (en) 2015-05-06 2022-04-20 Crown Equipment Corporation Industrial vehicle with tag reader
US10146229B2 (en) 2015-05-06 2018-12-04 Crown Equipment Corporation Industrial vehicle for identifying malfunctioning sequenced tag and tag layout for use therewith
US11288463B2 (en) 2015-05-06 2022-03-29 Crown Equipment Corporation Tag reader with diagnostic tag
EP3567344A1 (en) 2015-05-06 2019-11-13 Crown Equipment Corporation Tag layout for industrial vehicle operation
US9990535B2 (en) 2016-04-27 2018-06-05 Crown Equipment Corporation Pallet detection using units of physical length
US11097896B2 (en) 2016-05-23 2021-08-24 Crown Equipment Corporation Dual-axis vertical displacement and anti-rock support with a materials handling vehicle
US10543983B2 (en) 2016-05-23 2020-01-28 Crown Equipment Corporation Dual-axis vertical displacement and anti-rock support with a materials handling vehicle
US10106321B2 (en) 2016-05-23 2018-10-23 Crown Equipment Corporation Systems and methods for home position and cart acquisition with a materials handling vehicle
US10421609B2 (en) 2016-05-23 2019-09-24 Crown Equipment Corporation Materials handling vehicle comprising hand-held drive unit
US10800607B2 (en) 2016-05-23 2020-10-13 Crown Equipment Corporation Materials handling vehicle comprising hand-held drive unit
WO2018039559A2 (en) 2016-08-26 2018-03-01 Crown Equipment Corporation Materials handling vehicle obstacle scanning tools
WO2018039592A1 (en) 2016-08-26 2018-03-01 Crown Equipment Corporation Materials handling vehicle path validation and dynamic path modification
EP3702868A1 (en) 2016-08-26 2020-09-02 Crown Equipment Corporation Materials handling vehicle path validation and dynamic path modification
EP4379488A2 (en) 2016-08-26 2024-06-05 Crown Equipment Corporation Materials handling vehicle path validation and dynamic path modification
EP4050451A1 (en) 2016-08-26 2022-08-31 Crown Equipment Corporation Materials handling vehicle path validation and dynamic path modification
EP4099119A2 (en) 2016-08-26 2022-12-07 Crown Equipment Corporation Materials handling vehicle obstacle scanning tools
US10570001B2 (en) 2016-12-23 2020-02-25 The Raymond Corporation Systems and methods for determining a rack interface for a material handling vehicle
EP3858664A1 (en) 2017-01-13 2021-08-04 Crown Equipment Corporation Industrial vehicle armrest
WO2018132654A1 (en) 2017-01-13 2018-07-19 Crown Equipment Corporation Industrial vehicle armrest
US10961097B1 (en) 2017-03-31 2021-03-30 Rightline Equipment, Inc. High visibility push-pull forklift attachment
US10589970B1 (en) 2017-03-31 2020-03-17 Rightline Equipment, Inc. High visibility push-pull forklift attachment
US10793407B1 (en) 2017-03-31 2020-10-06 Rightline Equipment, Inc. High visibility push-pull forklift attachment
US11820634B2 (en) 2020-02-21 2023-11-21 Crown Equipment Corporation Modify vehicle parameter based on vehicle position information
US12116255B2 (en) 2020-02-21 2024-10-15 Crown Equipment Corporation Modify vehicle parameter based on vehicle position information

Also Published As

Publication number Publication date
AU5740896A (en) 1996-11-29
EP1179504A1 (en) 2002-02-13
CA2218355A1 (en) 1996-11-14
AU707036B2 (en) 1999-07-01
US5738187A (en) 1998-04-14
US5586620A (en) 1996-12-24
WO1996035631A1 (en) 1996-11-14
EP0824496A1 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
USRE37215E1 (en) Fork level indicator for lift trucks
CA2144886A1 (en) Video camera guidance system for forklifts
JP3900941B2 (en) Work view support device for forklift truck, forklift truck, work view support device for industrial vehicle, and industrial vehicle
US20090114485A1 (en) Lift truck fork aligning system with operator indicators
KR102012705B1 (en) A Front Monitoring Apparatus for Safety Work of Forklift Truck
US4224657A (en) Light assembly for positioning lift truck load-handling device
JP2011037536A (en) Fork-lift truck
KR20010014438A (en) Apparatus and method for adjusting wheel alignment camera height
AU711964B2 (en) Fork level indicator for fork lift trucks
JP4298453B2 (en) Loading support device and monitoring device
CA2455066C (en) Method of and apparatus for the inspection of vehicle wheel alignment
JP6766741B2 (en) forklift
EP1422189B1 (en) Method for handling and positioning a load
JP2773854B2 (en) Work display device for work vehicles
JP2001002395A (en) Cargo handling auxiliary device of forklift
JP2004345825A (en) Self-propelled working machine
JPH06239582A (en) Wheel type crane
JP7099399B2 (en) Cargo handling support system
WO2020095602A1 (en) Remote operating system for forklift
JP2003312995A (en) Fork-lift
EP0543791A1 (en) A lifting vehicle for stacking loads
JP3835594B2 (en) forklift
JP3794094B2 (en) Forklift stability test jig
GB2242670A (en) Level indicating means
FR2677006A1 (en) Assistance (boost) device for the displacement of standardised loads using a lift truck

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES DENIED/DISMISSED (ORIGINAL EVENT CODE: PMFD); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY