USRE26088E - Bearing composition - Google Patents

Bearing composition Download PDF

Info

Publication number
USRE26088E
USRE26088E US26088DE USRE26088E US RE26088 E USRE26088 E US RE26088E US 26088D E US26088D E US 26088DE US RE26088 E USRE26088 E US RE26088E
Authority
US
United States
Prior art keywords
silicate
present
volume
bearing
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication date
Application granted granted Critical
Publication of USRE26088E publication Critical patent/USRE26088E/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0094Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H5/00Drafting machines or arrangements ; Threading of roving into drafting machine
    • D01H5/18Drafting machines or arrangements without fallers or like pinned bars
    • D01H5/56Supports for drafting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2340/00Apparatus for treating textiles
    • F16C2340/18Apparatus for spinning or twisting

Definitions

  • This invention relates to a composition of matter of the type more particularly useful for sliding surfaces such as a bearing where a considerable pressure is applied through the bearing, an instance of which would be a bearing for the top roll of a spinning frame, which top roll is weighted.
  • Bearings of this character were originally formed of metal. It is desired that there be no lubricant used for certain bearings, such as are used for the top roll of a spinning frame, as the textile material upon which the roll operates may become stained or damaged by such lubricant, and accordingly some materials other than metai have been attempted.
  • Teflon which is polytetrafluoroethylene, a material which is the subject of U8. Patent No. 2,230,654, dated February 4, 1941. We have found that this material has poor wear resistance and is unsuitable for use as a bearing where considerable weights are applied.
  • Teflon in which there has been mixed particles of a silicate such as mica, talc, aluminum silicate or glass, which is the subject matter of patent application of one of the joint inventors hereof, Serial No. 617,719, filed October 23, 1956, which is a continuation-in-part of Serial No. 306,845, filed August 26, 1952, now abandoned, and which gives some improved results over the use of Teflon alone.
  • a silicate such as mica, talc, aluminum silicate or glass
  • One of the object of this invention is to further improve upon the composition of matter of two materials, which is the subject of the last application above mentioned.
  • a more specific object of the invention is to provide a composition which will better withstand wear in an unlubricated bearing which is subjected to pressure loads.
  • Another object of the invention is to reduce the coeflicient of friction of an unlubricated bearing material which is subjected to loads.
  • Polytetrafluoroethylene when molded into the form desired has a very smooth and slippery or greasy feel to the hand and provides an excellent low co-eificient of friction. When used alone, however, it has very low wear resistance to abrasion and willl not stand up as a hearing under load, such for instance as the weighting of a top roll for a spinning frame. Glass particles such as fibers or powders are usually considered abrasive and are not often thought of in connection with use in a bearing.
  • the polytetrafluoroethyelne is present by volume in from 50 percent to percent with a preferred smaller range of from 65-75 percent with the remainder of the material having substantially one part of metal or metal oxides to two parts of a silicate such as glass, talc, aluminum silicate, or mica, ranging to equal parts of the metal or metal oxide and silicate.
  • a silicate such as glass, talc, aluminum silicate, or mica
  • silicates, glass, talc, aluminum silicate, and mica are not equivalents but each when used with polytetrafluoroethylene is improved when a metal or metal oxide is used with the particular silicate selected to be incorporated in the polytetrafiuoroethylene rather than the use of the two materials of Teflon and silicate.
  • the glass is usually in the form of glass fibers milled about y of an inch long, or they may be ground glass or in the form of spheres or beads.
  • the glass fibers are prepared by burning olf any lubricant or resin on the fibers, which requires heating the glass fibers to about 600 F.
  • the metal or metal oxides are prepared by grinding or pulverizin g a metal or its oxides and thoroughly cleaning the same.
  • the mica is wet ground to 500 mesh.
  • the mic is in the grade which may be purchased on the market as "Lo Micron” and the aluminum silicate is used in a grade which may be purchased on the market as Fiberfrax-Grade S, from Carborundum Company.
  • Teflon with parts of pulverized silicate material and pulverized metal or metal oxide are mixed together at room temperature and tumbled to get a fairly uniform mixture.
  • This mixture then goes into a pulverizing machine to grind and further mix the Teflon, silicate, and metal or metal oxide.
  • An alternate method is to add the silicate and metal or metal oxide to an aqueous suspension of the Teflon and disperse them by agitation.
  • the solids may then be precipitated by the addition of a non-aqueous solvent such as acetone, while stirring.
  • the uniform mixture obtained is filtered, washed and dried at about 200 F., providing a puttylike homogeneous material suitable for molding.
  • the material formed by either of the above methods is placed in the top of an extrusion die.
  • An air-operated ram forces a charge of the powder down into the die or mold. This ram operation is repeated. The charge reaches an externally heated portion of the mold and is there sintered at about 700? F; After passing the heated portion of the mold, the material is cooled enough by a draft of air to shrink it to the desired size and shape. It has been found that Teflon charged with the silicate and metal or metal oxide does not shrink nearly as much as Teflon alone. After shrinkage is complete, the rod-like material is forced out of the die or mold and cut into the proper lengths.
  • the following tests were run on pellets A; x x Va than if the same percentage of Teflon is used with a silicute and a metal or metal oxide. From the examples also it will be noted that the silicate and metal oxide may be in equal percentages by volume or the silicate may be in substantially twice the volume as the metal inch on 1 inch water cooled shaft at 425 r.p.m. with a. 5 or metal oxide, and in each one of these situations, the loud of 2.9 pounds. Pellets were made by mixing Teflon 'leflon with the two ingredients, that is, a silicate and and fillers [11 a MieroPulverizer, pressing in a mold and metal or metal oxide, superior in resistance to wear than sintcring.
  • a bearing for a relatively moving surface consisting essentially of a homogeneous mixture of the three components polytetrafluorocthylene present by volume of 50% to a silicate selected from the group consisting of glass, tale, mica and aluminum silicate and a third material selected from the group consisting of aluminum, molybdenum, silver, copper. lead, lead oxide and copper oxide, the silicate being present by volume in from equal parts to twice the third material, whereby the presence of the third material imparts increased wear resistance as compared with a two part mixture of polytetrafiuoroethylcne wherein the silicate or third material would be present in amount equal to the sum of the silicate and the third material in the three part mixture.
  • a bearing for a relatively moving surface consisting essentially of a homogeneous mixture of the three compo nents polytetrat'iuorocthylcne present by volume of 50% to 80%.
  • a bearing for a relatively moving surface consisting essentially of a homogeneous mixture of the three components polytetrafiuoroethylene present by volume of 50% to 80%, talc and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the tale being present by volume in from equal parts to twice the third material, whereby the presence of the third material imparts increased wear resistance as compared with a two part mixture of polytetrafluoroethylene wherein the tale or the third material would be present in amount equal to the sum of the tale and the third material in the three part mixture.
  • a hearing for a relatively moving surface consisting essentially of a homogeneous mixture of the three components polytetrafiuoroethylene present by volume of 50% to 80%, mica and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the mica being present by volume in from equal parts to twice the third material, whereby the presence of the third material imparts increased wear resistance as compared with a two part mixture of polytetrafluoroethylene wherein the mica or the third material would be present in amount equal to the sum of the mica and the third material in the three part mixture.
  • a bearing for a relatively moving surface consisting essentially of a homogeneous mixture of the three components polytetrafiuoroethylene present by volume of 50% to 80%, aluminum silicate and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the aluminum silicate being present by volume in from equal parts to twice the third material, whereby the presence of the third material imparts increased wear resistance as compared with a two part mixture of polytetrafluoroethylene wherein the aluminum silicate or the third material would be present in amount equal to the sum of the aluminum silicate and the third material in the three part mixture.
  • a bearing as in claim 12 wherein the silicate is aluminum silicate.
  • a composition of matter consisting essentially of a homogeneous mixture of the three components polyteirufluorocrhylene present by volume of 50% to a silicate selected from the group consisting of glass, talc, mica and aluminum silicate and a third material .Sclcclcd from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the .rilicate being present by volume in from equal parts to twice the third material, whereby the presence of the third maierial imparts increased wear resistance as compared with a two part mixture of polyrctrafluoroclhylene wherein the silicate or third material would be present in amount equal to the sum of the silicate and the third material in the three part mixture.
  • a composition of marter consisting essentially of a homogeneous mixture of the three com poncnls polytczrafluoroerhylene present by volume of 50% 1o 80%, glass and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the glass being present by volnmc in from equal parts to twice the third material, whereby the presence of the third material imparts increased wcnr rcsistance as compared with a two part mirlure of poly- Ietrafluoroeihylcnc wherein the glass or third nuncrinl would be present in amount equal to the sum of the glass and the third material in the three part mixture.
  • a composition of mailer consisting essentially of a homogeneous mixture of the thrcc ((JflljJUlltlllS Polvicirm fluoroethylene present by volume of 50% to 80%, talc and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the talc being present by volume in from equal parts to twice the third material, whcrcl y the presence of the third material imparts increased wcrrr resistance as compared with a two part mixture of poly- Ierrafluoroethylene wherein the talc or the third nmtcrinl would be present in amount equal to the sum of the talc and the third material in the three part-mixture.
  • a composition of mailer consisting mscnriully of a homogeneous mixture of the three components polyicrrafluorocrhylcne present by volume of 50% to 80%, mica and a third material sclcclcd from the group consisting of aluminum, molybdenum, silver, copper, lcad, lend oxidc and copper oxide, the mica being prcscnl by volume in from equal parts to twice the third muicriril, whcrcby the presence of the third material imparts incrcnscd wcur rcsisrance as compared with a two port mixiurc of polylcrrufluoroethylcne wherein the mica or the third murcriul would be present in amount equal to the sum of the mica and the third malarial in the three part mixture.
  • a composition of mailer consisting csscnliully of a homogeneous mixture of the
  • nowce componcnts polyteirafluoroelhylene present by volume of 50% to 80%, aluminum silicate and a third material selected from tho group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the aluminum .llllcare being present by volume in from equal parts lo twice the third material, whereby the presence of the third ma- Ierial imparts increased wear resistance as compared with a two part mixture of polyictrafluorocthcylcne whcrcin the aluminum silicate or the third malcriol would be prvsent in amount equal to the sum of the aluminum silicate and the third material in the three part mixture.
  • composition of matter as in claim 25 olvtctrofinoroethylene is present by volume in 31.
  • a composition of matter as in claim 26 ,rn lstetrollnoroethylene is present by volume in of 65-75%.
  • composition of matter as in claim 27 polytetrafltioroethylene is present by volume in of 654.5%.
  • composition of matter as in claim 35 wherein the silicate is mica.
  • composition of matter as in claim 35 wherein the silicate is aluminum silicate.
  • a composition of matter as in claim 35 wherein the third material is lead oxide.
  • composition of matter as in claim 35 wherein the third material is molybdenum.
  • composition of matter as in claim 35 wherein the third material is silver.
  • composition of matter as in claim 35 wherein the third material is copper.
  • composition of matter as in claim 35 wherein the third material is copper oxide.

Description

Re. 26,088 Reissued Sept. 20, 1966 26 B88 BEARING c'oMPosmoN Robert RlllOD-Millel' and Saul Ricklln, Bristol, R.l., as-
signors to Dixon Corporation, a corporation of Rhode Island No Drawing. Original No. 3,122,505 dated Feb. 25, 1964, Ser. No. 102,104, Apr. 11, 1661. Application for reissue Feb. 24, 1965, Ser. No. 452,039
46 Claims. (Cl. 252-12 Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This application is a continuation-impart of our applications, Serial No. 775,713, filed November 24, 1958, which was a continuation of our application Serial No. 573,633, filed March 26, 1956, which was a continuation of our application Serial No. 478,500, filed December 29, 1954, all applications being now abandoned.
This invention relates to a composition of matter of the type more particularly useful for sliding surfaces such as a bearing where a considerable pressure is applied through the bearing, an instance of which would be a bearing for the top roll of a spinning frame, which top roll is weighted.
Bearings of this character were originally formed of metal. It is desired that there be no lubricant used for certain bearings, such as are used for the top roll of a spinning frame, as the textile material upon which the roll operates may become stained or damaged by such lubricant, and accordingly some materials other than metai have been attempted. We are familiar with the use of Teflon, which is polytetrafluoroethylene, a material which is the subject of U8. Patent No. 2,230,654, dated February 4, 1941. We have found that this material has poor wear resistance and is unsuitable for use as a bearing where considerable weights are applied. We are also familiar with the use of Teflon in which there has been mixed particles of a silicate such as mica, talc, aluminum silicate or glass, which is the subject matter of patent application of one of the joint inventors hereof, Serial No. 617,719, filed October 23, 1956, which is a continuation-in-part of Serial No. 306,845, filed August 26, 1952, now abandoned, and which gives some improved results over the use of Teflon alone.
One of the object of this invention is to further improve upon the composition of matter of two materials, which is the subject of the last application above mentioned.
A more specific object of the invention is to provide a composition which will better withstand wear in an unlubricated bearing which is subjected to pressure loads.'
Another object of the invention is to reduce the coeflicient of friction of an unlubricated bearing material which is subjected to loads.
Polytetrafluoroethylene when molded into the form desired has a very smooth and slippery or greasy feel to the hand and provides an excellent low co-eificient of friction. When used alone, however, it has very low wear resistance to abrasion and willl not stand up as a hearing under load, such for instance as the weighting of a top roll for a spinning frame. Glass particles such as fibers or powders are usually considered abrasive and are not often thought of in connection with use in a bearing. However, we have discovered that by placing small particles of glass of other silicate such as mica, aluminum silicate or tale in polytetrafluoroethylenc the resistance to abrasion is increased and further found that it, together with any one of the selected silicates, small particles of some metal or metal oxides are used with polytetrafluoroethylene (Teflon) and dispersed through the Teflon, the resistance to abrasion is further materially increased, the co-elficient of friction is reduced, and the bearing will stand up under pressures developed in its use as the top rail bearing for a spinning frame or for other uses where pressure on the bearing is used. The metal or metal oxide is used in place of a part of the silicate rather than being substituted for Teflon. Generally speaking, the polytetrafluoroethyelne is present by volume in from 50 percent to percent with a preferred smaller range of from 65-75 percent with the remainder of the material having substantially one part of metal or metal oxides to two parts of a silicate such as glass, talc, aluminum silicate, or mica, ranging to equal parts of the metal or metal oxide and silicate.
The silicates, glass, talc, aluminum silicate, and mica, are not equivalents but each when used with polytetrafluoroethylene is improved when a metal or metal oxide is used with the particular silicate selected to be incorporated in the polytetrafiuoroethylene rather than the use of the two materials of Teflon and silicate.
The glass is usually in the form of glass fibers milled about y of an inch long, or they may be ground glass or in the form of spheres or beads. The glass fibers are prepared by burning olf any lubricant or resin on the fibers, which requires heating the glass fibers to about 600 F. The metal or metal oxides are prepared by grinding or pulverizin g a metal or its oxides and thoroughly cleaning the same.
The mica is wet ground to 500 mesh. The mic is in the grade which may be purchased on the market as "Lo Micron" and the aluminum silicate is used in a grade which may be purchased on the market as Fiberfrax-Grade S, from Carborundum Company.
The selected quantity of Teflon with parts of pulverized silicate material and pulverized metal or metal oxide are mixed together at room temperature and tumbled to get a fairly uniform mixture. This mixture then goes into a pulverizing machine to grind and further mix the Teflon, silicate, and metal or metal oxide. An alternate method is to add the silicate and metal or metal oxide to an aqueous suspension of the Teflon and disperse them by agitation. The solids may then be precipitated by the addition of a non-aqueous solvent such as acetone, while stirring. The uniform mixture obtained is filtered, washed and dried at about 200 F., providing a puttylike homogeneous material suitable for molding.
The material formed by either of the above methods is placed in the top of an extrusion die. An air-operated ram forces a charge of the powder down into the die or mold. This ram operation is repeated. The charge reaches an externally heated portion of the mold and is there sintered at about 700? F; After passing the heated portion of the mold, the material is cooled enough by a draft of air to shrink it to the desired size and shape. It has been found that Teflon charged with the silicate and metal or metal oxide does not shrink nearly as much as Teflon alone. After shrinkage is complete, the rod-like material is forced out of the die or mold and cut into the proper lengths. The above is where a number of bearings are continuously formed in rod-like fashion and then cut-off, but powder may be placed in a mold shaped for a single bearing. The mold must be of a size larger than the finished size in order that shrinkage may be allowed for. A pressure of 2,000 pounds per square inch or more is put on the powder to make it cling together in the form of a bearing. The powder thus formed may then be placed on a pan and be put into an oven where the material is heated up to about 700 F. To heat the material for a bearing of the size about /2" x /2.", the heat will be continued for about an hour until the sub stance becomes translucent. It is possible to take the hot bearings from the oven and force them into different mltl\ of the correct size and then chill them all quickly. This will produce the proper size uniformly solid bearing, and thc coefficient of friction will be lowered.
the following tests were run on pellets A; x x Va than if the same percentage of Teflon is used with a silicute and a metal or metal oxide. From the examples also it will be noted that the silicate and metal oxide may be in equal percentages by volume or the silicate may be in substantially twice the volume as the metal inch on 1 inch water cooled shaft at 425 r.p.m. with a. 5 or metal oxide, and in each one of these situations, the loud of 2.9 pounds. Pellets were made by mixing Teflon 'leflon with the two ingredients, that is, a silicate and and fillers [11 a MieroPulverizer, pressing in a mold and metal or metal oxide, superior in resistance to wear than sintcring. Data below represent the average weight loss either the Teflon used with jLlSll the silicate or ust the for duplicate pellets after 72 hours. Filler percentages metal or metal mode. are reported by volume percent. 10 Thus, it will be noted in Table I that item 1 would be Table No. 1
Item Percent Percent. Metal tvrt-rnt No. Teflon Percent Silicate l'crwnt Metal (hide lin -tit ANN l 70 3t] filasmunu. c c 1.t a l. 2 70 all lt'tL. 1.4 A a 7n 3 lTitlC.. an
7 7a Lead 20.7 tiroiit) "ll" 8 7t] r 30 Ht! lio'itL 7 H. i
10 70 r 3 1 Almuinul H. 1K 5 12 7D 1] Column... i5
H 70 11 Lead .3
i5 70 )1 Red Lea 'L l 16 TU 11 Copper Oxide w 18 7t) 11 Altuninum h 1.7
19 T 11 Coptic-n.7 r. 1.5
20 7t) 11 Molybdenum, .3
21 70 11 Lead. is
22 T0 ll Red Lead. Ma
23 70 11 Copper ()virltg 2 .2
24 7o t-t w "I l 5 ttroup L3 29 70 c. It ttett LWL 3.5
32 70 More... 2.1%
33 70 19 Fibe fax ll toppcr. 7.1!
34 To ,do t1 Molybdenum .57
36 70 ,do 11 Red Lead L4 37 7t] do 11 Copper Oxide" 4. 4
as m .tlo 2:4
39 Ill H1101 ll Silvana" U 2 1 Vim-rims is the trade name for aluminum silicate. I These wort so badly that they hurl to he removed before 72 hours. 11cm 8 run .It hours; lteui i) ran 51mins.
Table No. 2
l'trtlllt Percent. Percent Metal lcrccnt TtllULl Silicate Percent Metal Uxidc Whi -lit Loss . s 7 c .7 1. R
c c c c 2a ltcd Lcutl. 0. it? .UlylltlCltllitL s 0. i l .25 Red Load. 0.57 25 hlUlylltlCItUltL (t. tit 25 Silvcr 0.3 do 1.5 1.5 4, 4 7. 2 4. ll
. Lt 20 Red Lead .3
. .ll ll) Red Lt*tt(l .4
H .7 1.7 10] lLtu L. 3.4
It] to||p r v 2. (1 1t) Lcu l .7 1.5 l0 Rltl Lear], 4J3
l, 7 10 Silver" Ll tlo 1.5 c., lt r 0.8
From the above tables, it will be apparent that the use of a selected percentage of Teflon within the range of St) to 80% above set forth and one other material either a silicate, metal, or metal oxide has a much greater wear [tern 6 ran 24 hours; Item 7 ran 7 hours.
comparable with items 12 to 18, while item 2 would be comparable with items I) to 25, item 3 would be comparable with items 26 to 32 and item 4 would be comparable with items 33 to 39.
We claim:
1. A bearing for a relatively moving surface consisting essentially of a homogeneous mixture of the three components polytetrafluorocthylene present by volume of 50% to a silicate selected from the group consisting of glass, tale, mica and aluminum silicate and a third material selected from the group consisting of aluminum, molybdenum, silver, copper. lead, lead oxide and copper oxide, the silicate being present by volume in from equal parts to twice the third material, whereby the presence of the third material imparts increased wear resistance as compared with a two part mixture of polytetrafiuoroethylcne wherein the silicate or third material would be present in amount equal to the sum of the silicate and the third material in the three part mixture.
2. A bearing for a relatively moving surface consisting essentially of a homogeneous mixture of the three compo nents polytetrat'iuorocthylcne present by volume of 50% to 80%. glass and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the glass being present by volume in from equal parts to twice the third material, whereby the presence of the third material imparts increased wcar resistance as compared with a two part mixtrue of polytetrafluoroethylene wherein the glass or third material would be present in amount equal to the sum of the glass and the third material in the three part mixture.
3. A bearing for a relatively moving surface consisting essentially of a homogeneous mixture of the three components polytetrafiuoroethylene present by volume of 50% to 80%, talc and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the tale being present by volume in from equal parts to twice the third material, whereby the presence of the third material imparts increased wear resistance as compared with a two part mixture of polytetrafluoroethylene wherein the tale or the third material would be present in amount equal to the sum of the tale and the third material in the three part mixture.
4. A hearing for a relatively moving surface consisting essentially of a homogeneous mixture of the three components polytetrafiuoroethylene present by volume of 50% to 80%, mica and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the mica being present by volume in from equal parts to twice the third material, whereby the presence of the third material imparts increased wear resistance as compared with a two part mixture of polytetrafluoroethylene wherein the mica or the third material would be present in amount equal to the sum of the mica and the third material in the three part mixture.
5. A bearing for a relatively moving surface consisting essentially of a homogeneous mixture of the three components polytetrafiuoroethylene present by volume of 50% to 80%, aluminum silicate and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the aluminum silicate being present by volume in from equal parts to twice the third material, whereby the presence of the third material imparts increased wear resistance as compared with a two part mixture of polytetrafluoroethylene wherein the aluminum silicate or the third material would be present in amount equal to the sum of the aluminum silicate and the third material in the three part mixture.
6. A hearing as in claim 1 wherein polytetraiiuoroethylene is present by volume in a range of 65-75%.
7. A bearing as in claim 2 wherein polytetrafluoroethylene is present by volume in a range of 66-75%.
8. A bearing as in claim 3 wherein polytetrafluoroethylene is present by volume in a range of 6575%.
9. A hearing as in claim 4 wherein polytetrafluoroethylene is present by volume in a range of 6575%.
10. A bearing as in claim 5 wherein polytetrafluoroethylene is present by volume in a range of 6S-75%.
11. A hearing as in claim 1 wherein polytetrafluoroethylene is present in 70% by volume.
12. A hearing as in claim 1 wherein polytetrafiuoroethylene is present in 70% by volume and the silicate is present by volume in 19% and the third material is present by volume in 11% whereby the presence of the third material imparts increased wear resistance as compared with a two part mixture of polytetrafluoroethylene wherein the silica or the third material would be present in amount equal to the sum of the silicate and third material in the three part mixture.
13. A hearing as in claim 12 wherein the silicate is glass.
14. A bearing as in claim 12 wherein the silicate is talc.
15. A bearing as in claim 12 wherein the silicate is mica.
16. A bearing as in claim 12 wherein the silicate is aluminum silicate.
17. A hearing as in claim 12 wherein the third material is lead.
18. A bearing as in claim 12 wherein the third material is lead oxide.
19. A bearing as in claim 12 wherein the third material is aluminum.
20. A bearing as in claim 12 wherein the third material is molybdenum.
21. A hearing as in claim 12 wherein the third material is silver.
22. A bearing as in claim 12 wherein the third material is copper.
23. A bearing as in claim 12 wherein the third material is copper oxide.
24. A composition of matter consisting essentially of a homogeneous mixture of the three components polyteirufluorocrhylene present by volume of 50% to a silicate selected from the group consisting of glass, talc, mica and aluminum silicate and a third material .Sclcclcd from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the .rilicate being present by volume in from equal parts to twice the third material, whereby the presence of the third maierial imparts increased wear resistance as compared with a two part mixture of polyrctrafluoroclhylene wherein the silicate or third material would be present in amount equal to the sum of the silicate and the third material in the three part mixture.
25. A composition of marter consisting essentially of a homogeneous mixture of the three com poncnls polytczrafluoroerhylene present by volume of 50% 1o 80%, glass and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the glass being present by volnmc in from equal parts to twice the third material, whereby the presence of the third material imparts increased wcnr rcsistance as compared with a two part mirlure of poly- Ietrafluoroeihylcnc wherein the glass or third nuncrinl would be present in amount equal to the sum of the glass and the third material in the three part mixture.
26. A composition of mailer consisting essentially of a homogeneous mixture of the thrcc ((JflljJUlltlllS Polvicirm fluoroethylene present by volume of 50% to 80%, talc and a third material selected from the group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the talc being present by volume in from equal parts to twice the third material, whcrcl y the presence of the third material imparts increased wcrrr resistance as compared with a two part mixture of poly- Ierrafluoroethylene wherein the talc or the third nmtcrinl would be present in amount equal to the sum of the talc and the third material in the three part-mixture.
27. A composition of mailer consisting mscnriully of a homogeneous mixture of the three components polyicrrafluorocrhylcne present by volume of 50% to 80%, mica and a third material sclcclcd from the group consisting of aluminum, molybdenum, silver, copper, lcad, lend oxidc and copper oxide, the mica being prcscnl by volume in from equal parts to twice the third muicriril, whcrcby the presence of the third material imparts incrcnscd wcur rcsisrance as compared with a two port mixiurc of polylcrrufluoroethylcne wherein the mica or the third murcriul would be present in amount equal to the sum of the mica and the third malarial in the three part mixture.
28. A composition of mailer consisting csscnliully of a homogeneous mixture of the Ihrce componcnts polyteirafluoroelhylene present by volume of 50% to 80%, aluminum silicate and a third material selected from tho group consisting of aluminum, molybdenum, silver, copper, lead, lead oxide and copper oxide, the aluminum .llllcare being present by volume in from equal parts lo twice the third material, whereby the presence of the third ma- Ierial imparts increased wear resistance as compared with a two part mixture of polyictrafluorocthcylcne whcrcin the aluminum silicate or the third malcriol would be prvsent in amount equal to the sum of the aluminum silicate and the third material in the three part mixture.
29. A composition of mailer as in claim 24 n-hcrcin 7 olytctinflnorocthylene is present by volume in H, m rscz.
it]. A composition of matter as in claim 25 olvtctrofinoroethylene is present by volume in 31. A composition of matter as in claim 26 ,rn lstetrollnoroethylene is present by volume in of 65-75%.
32. A composition of matter as in claim 27 polytetrafltioroethylene is present by volume in of 654.5%. t
33. A composition of matter as in claim 2 wherein polytetrafluoroethylene is present by volume in a range of 65-75%.
34. A composition of matter as in claim 24 wherein polytetrafinoroethylene is present in 70% by volume.
35. A composition of matter as in claim 24 wherein pol \'tetraflnoroetltylene is present in 70% by volume and the silicate is present by volume in 19% and the third matcriol is present by volume in 11% whereby the presence of the third material imparts increased wear resistance as compared with a two part mixture of polytetrafluoroethylene wherein the silicate or the third material would be present in amount equal to the sum of the silicate and third material in the three part mixture.
36. A composition of matter as in claim 35 wherein the slllteile' is glass.
37. A composition of matter as in claim 35 wherein the silicate is talc.
38. A composition of matter as in claim 35 wherein the silicate is mica.
39. A composition of matter as in claim 35 wherein the silicate is aluminum silicate.
a range wherein a range wherein a range wherein a range 40. A composition of matter as in claim wherein the third material is lead.
4]. A composition of matter as in claim 35 wherein the third material is lead oxide.
42. A composition of matter as in claim 35 wherein the third material is aluminum.
43. A composition of matter as in claim 35 wherein the third material is molybdenum.
44. A composition of matter as in claim 35 wherein the third material is silver.
45. A composition of matter as in claim 35 wherein the third material is copper.
46. A composition of matter as in claim 35 wherein the third material is copper oxide.
References Cited by the Examiner The following references. cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 2,400,091 5/1946 Alfthan 264- 2,400,099 5/1946 Brubaker et al. 264127 2,685,707 8/1954 Llewellyn et a1. 26474 2,691,814 10/1954 Tait 29-1825 2,715,617 8/1955 White 26041 2,824,060 2/1958 White 25212.2
FOREIGN PATENTS 961,671 6/1964 Great Britain. 961,672 6/1964 Great Britain.
DANIEL E. WYMAN, Primary Examiner.
I. VAUGHN, Assistant Examiner.
US26088D 1961-04-11 Bearing composition Expired USRE26088E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US102104A US3122505A (en) 1961-04-11 1961-04-11 Bearing composition

Publications (1)

Publication Number Publication Date
USRE26088E true USRE26088E (en) 1966-09-20

Family

ID=22288139

Family Applications (2)

Application Number Title Priority Date Filing Date
US26088D Expired USRE26088E (en) 1961-04-11 Bearing composition
US102104A Expired - Lifetime US3122505A (en) 1961-04-11 1961-04-11 Bearing composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US102104A Expired - Lifetime US3122505A (en) 1961-04-11 1961-04-11 Bearing composition

Country Status (4)

Country Link
US (2) US3122505A (en)
BE (1) BE639502A (en)
DE (1) DE1544750C3 (en)
NL (2) NL300039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516933A (en) * 1967-04-05 1970-06-23 British Petroleum Co Surface-modified metals in composites and bearings
US3518186A (en) * 1967-04-05 1970-06-30 British Petroleum Co Oleophilic graphite and heavy metal sulphides in composites and bearings
US5732322A (en) * 1994-05-23 1998-03-24 Oiles Corporation Resin composition for sliding member and sliding member

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218255A (en) * 1960-01-08 1965-11-16 Glacier Co Ltd Bearing composition containing polytetrafluoroethylene and ammonium manganese orthophosphate
US3234128A (en) * 1960-01-08 1966-02-08 Glacier Co Ltd Plain bearings
FR1336665A (en) * 1961-08-11 1963-09-06 Saint Gobain Friction parts
US3255621A (en) * 1963-08-16 1966-06-14 Haveg Industries Inc Lubrication
GB1108354A (en) * 1963-11-06 1968-04-03 Morganite Res & Dev Ltd Bearings
US3427244A (en) * 1966-03-16 1969-02-11 Westinghouse Electric Corp Solid lubricant composites
US3405063A (en) * 1966-03-16 1968-10-08 Westinghouse Electric Corp Solid lubricant composition and process for its preparation
US3453208A (en) * 1966-10-04 1969-07-01 Thiokol Chemical Corp Low friction bearings with improved wear properties
NL6800942A (en) * 1967-01-27 1968-07-29
US3553394A (en) * 1968-05-13 1971-01-05 Globe Union Inc Improved electric switch ceramic contact supporting member
US3896036A (en) * 1969-03-17 1975-07-22 Garlock Inc Bearing compositions
US3629103A (en) * 1969-06-23 1971-12-21 Vasily Vladimirovich Korshak Plastic antifriction material
JPS5327419B1 (en) * 1970-10-27 1978-08-08
US3879301A (en) * 1973-07-12 1975-04-22 Garlock Inc Low friction bearing material and method
US4316836A (en) * 1980-04-23 1982-02-23 E. I. Du Pont De Nemours And Company Stabilized fluoroelastomer compositions
US4615854A (en) * 1984-04-30 1986-10-07 Federal-Mogul Corporation Method of making a PTFE based tape suitable for impregnation into a porous metal matrix
US4732818A (en) * 1984-04-30 1988-03-22 Federal-Mogul Corporation Composite bearing material with polymer filled metal matrix interlayer of distinct metal particle sizes and method of making same
US5041158A (en) * 1986-10-29 1991-08-20 Eaton Corporation Powdered metal part
EP0412238A1 (en) * 1989-08-07 1991-02-13 Státni vyzkumny ustav materiálu Composite material for sliding purposes and process for its preparation
US6338491B1 (en) 1998-10-21 2002-01-15 Case Corporation Rotary shaft seal
DE10123809A1 (en) * 2001-05-16 2002-11-21 Voith Paper Patent Gmbh Through-flow cylinder for tissue drying plant, comprises fiber-reinforced plastic
US20100132220A1 (en) * 2008-12-01 2010-06-03 Northwestern Systems Corporation Method and apparatus for drying articles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2400099A (en) * 1943-10-25 1946-05-14 Du Pont Process for obtaining shaped articles
US2400091A (en) * 1944-09-20 1946-05-14 Du Pont Molding process
BE504311A (en) * 1950-06-30 1900-01-01
US2691814A (en) * 1952-11-24 1954-10-19 Glacier Co Ltd Polytetrafluorethylene impregnated bearings
US2715617A (en) * 1954-07-29 1955-08-16 Hobart S White Bearing compositions containing polytetrafluoroethylene
US2824060A (en) * 1954-10-15 1958-02-18 Hobart S White Bearing compositions containing polytetrafluoroethylene and polytrifluorochloroethylene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516933A (en) * 1967-04-05 1970-06-23 British Petroleum Co Surface-modified metals in composites and bearings
US3518186A (en) * 1967-04-05 1970-06-30 British Petroleum Co Oleophilic graphite and heavy metal sulphides in composites and bearings
US5732322A (en) * 1994-05-23 1998-03-24 Oiles Corporation Resin composition for sliding member and sliding member

Also Published As

Publication number Publication date
DE1544750B2 (en) 1974-10-24
US3122505A (en) 1964-02-25
NL136331C (en)
BE639502A (en)
DE1544750A1 (en) 1969-07-17
NL300039A (en)
DE1544750C3 (en) 1975-07-10

Similar Documents

Publication Publication Date Title
USRE26088E (en) Bearing composition
US2581301A (en) Antifriction composition
US3453208A (en) Low friction bearings with improved wear properties
JPS58208374A (en) Sintered friction material based on iron
US2415036A (en) Resistance material
US2159935A (en) Brake lining
US2863211A (en) Friction assembly
US3247116A (en) Lubricants containing degraded polytetrafluoroethylene
US3432511A (en) Processing of plastic materials
US3755164A (en) Bearing composition
US2229330A (en) Porous metal product and method of making same
US3191278A (en) Friction composition
US1556658A (en) Bearing material
US2783529A (en) Powdered metal friction elements
US3836466A (en) Solid lubricant
US3833344A (en) Friction material of the sintered bronze type
US3161948A (en) Compositions containing iron, molybdenu, silicon and selected low-melting metals
US2110571A (en) Frictional composition
US2337523A (en) Plastic material and filler therefor
US2406428A (en) Metal containing plastic composition
US3346490A (en) Heat resistant bearing product
JPS61148238A (en) Material for sliding part
JPS59131577A (en) Silicon carbide material and manufacture
JPS6197335A (en) Sliding part member
JPH11293076A (en) Resin composition for sliding member and sliding member