USPP21595P3 - Dianthus plant named ‘Floriagate’ - Google Patents

Dianthus plant named ‘Floriagate’ Download PDF

Info

Publication number
USPP21595P3
USPP21595P3 US12/383,179 US38317909V USPP21595P3 US PP21595 P3 USPP21595 P3 US PP21595P3 US 38317909 V US38317909 V US 38317909V US PP21595 P3 USPP21595 P3 US PP21595P3
Authority
US
United States
Prior art keywords
floriagate
dianthus
color
plant
carnation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US12/383,179
Other languages
English (en)
Other versions
US20100162451P1 (en
Inventor
Filippa Brugliera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Flower Developments Pty Ltd
Original Assignee
International Flower Developments Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Flower Developments Pty Ltd filed Critical International Flower Developments Pty Ltd
Priority to US12/383,179 priority Critical patent/USPP21595P3/en
Assigned to INTERNATIONAL FLOWER DEVELOPMENTS PTY LTD. reassignment INTERNATIONAL FLOWER DEVELOPMENTS PTY LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRUGLIERA, FILIPPA
Publication of US20100162451P1 publication Critical patent/US20100162451P1/en
Application granted granted Critical
Publication of USPP21595P3 publication Critical patent/USPP21595P3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/30Caryophyllaceae
    • A01H6/305Dianthus carnations

Definitions

  • a new cultivar of Dianthus plant named ‘FLORIAGATE’ that is characterized inter alia by altered inflorescence in respect of tissue and/or organelles including flowers or flower parts. This trait sets ‘FLORIAGATE’ apart from all other existing varieties, lines, strains or sports of Dianthus . In particular, Dianthus ‘FLORIAGATE’ has bright purple/violet flowers.
  • the flower or ornamental plant industry strives to develop new and different varieties of flowers and/or plants.
  • An effective way to create such novel varieties is through the manipulation of flower color.
  • Classical breeding techniques have been used with some success to produce a wide range of colors for almost all of the commercial varieties of flowers and/or plants available today. This approach has been limited, however, by the constraints of a particular species' gene pool and for this reason it is rare for a single species to have the full spectrum of colored varieties.
  • novel colored varieties of plants or plant parts such as flowers, foliage and stems would offer a significant opportunity in both the cut flower and ornamental markets.
  • desired (including novel) colored varieties of carnation is of particular interest. This includes not only different colored flowers but also anthers and styles.
  • flavonoids are the most common and contribute a range of colors from yellow to red to blue.
  • the flavonoid molecules that make the major contribution to flower color are the anthocyanins, which are glycosylated derivatives of cyanidin and its methylated derivative peonidin, delphinidin and its methylated derivatives petunidin and malvidin and pelargonidin.
  • Anthocyanins are localized in the vacuole of the epidermal cells of petals or the vacuole of the sub epidermal cells of leaves.
  • the flavonoid pigments are secondary metabolites of the phenylpropanoid pathway.
  • the biosynthetic pathway for the flavonoid pigments is well established, (Holton and Cornish, Plant Cell 7:1071-1083, 1995; Mol et al, Trends Plant Sci. 3:212-217, 1998; Winkel-Shirley, Plant Physiol. 126:485-493, 2001a; and Winkel-Shirley, Plant Physiol.
  • the enzymes are phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H) and 4-coumarate: CoA ligase (4CL).
  • PAL phenylalanine ammonia-lyase
  • C4H cinnamate 4-hydroxylase
  • 4CL 4-coumarate: CoA ligase
  • the first committed step in the pathway involves the condensation of three molecules of malonyl-CoA (provided by the action of acetyl CoA carboxylase (ACC) on acetyl CoA and CO 2 ) with one molecule of p-coumaroyl-CoA. This reaction is catalyzed by the enzyme chalcone synthase (CHS).
  • CHS chalcone synthase
  • the product of this reaction is normally rapidly isomerized by the enzyme chalcone flavanone isomerase (CHI) to produce naringenin. Naringenin is subsequently hydroxylated at the 3 position of the central ring by flavanone 3-hydroxylase (F3H) to produce dihydrokaempferol (DHK).
  • CHI chalcone flavanone isomerase
  • F3H flavanone 3-hydroxylase
  • the pattern of hydroxylation of the B-ring of DHK plays a key role in determining petal color.
  • the B-ring can be hydroxylated at either the 3′, or both the 3′ and 5′ positions, to produce dihydroquercetin (DHQ) or dihydromyricetin (DHM), respectively.
  • DHQ dihydroquercetin
  • HMM dihydromyricetin
  • Two key enzymes involved in this part of the pathway are flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′, 5′-hydroxylase (F3′5′H), both members of the cytochrome P450 class of enzymes.
  • the production of colored anthocyanins from the dihydroflavonols involves dihydroflavonol-4-reductase (DFR) leading to the production of the leucoanthocyanidins.
  • DFR dihydroflavonol-4-reductase
  • the leucoanthocyanidins are subsequently converted to the anthocyanidins, pelargonidin, cyanidin and delphinidin.
  • These flavonoid molecules are unstable under normal physiological conditions and glycosylation at the 3-position, through the action of glycosyltransferases, stabilizes the anthocyanidin molecule thus allowing accumulation of the anthocyanins.
  • DFR The substrate specificity shown by DFR can regulate the anthocyanins that a plant accumulates.
  • Petunia and cymbidium DFRs do not reduce DHK and thus they do not accumulate pelargonidin-based pigments (Forkmann and Ruhnau, Z Naturforsch C. 42c, 1146-1148, 1987, Johnson et al, Plant Journal, 19, 81-85, 1999).
  • Many important floricultural species including iris, delphinium, cyclamen, gentian, cymbidium are presumed not to accumulate pelargonidin due to the substrate specificity of their endogenous DFRs (Tanaka and Brugliera, 2006, supra).
  • the DFR enzyme is capable of metabolizing two dihydroflavonols to leucoanthocyanidins, which are ultimately converted through to anthocyanins (pigments that are responsible for flower color).
  • DHK is converted to leucopelargonidin, the precursor to pelargonidin-based pigments, giving rise to apricot to brick-red colored carnations.
  • DHQ is converted to leucocyanidin, the precursor to cyanidin-based pigments, producing pink to red carnations.
  • Carnation DFR is also capable of converting DHM to leucodelphinidin (Forkmann and Ruhnau, 1987 supra), the precursor to delphinidin-based pigments.
  • naturally occurring carnation lines do not contain a F3′5′H enzyme and therefore do not synthesize DHM.
  • Nucleotide sequences encoding F3′5′Hs have been cloned (see International Patent Application No. PCT/AU92/00334 incorporated herein by reference and Holton et al, Nature, 366:276-279, 1993 and International Patent Application No. PCT/AU03/01111 incorporated herein by reference). These sequences were efficient in modulating 3′, 5′ hydroxylation of flavonoids in petunia (see International Patent Application No. PCT/AU92/00334 and Holton et al, 1993 supra), tobacco (see International Patent Application No. PCT/AU92/00334), carnations (see International Patent Application No. PCT/AU96/00296 incorporated herein by reference) and roses (see International Patent Application No. PCT/AU03/01111).
  • Carnations are one of the most extensively grown cut flowers in the world.
  • Standard carnations are intended for cultivation under conditions in which a single large flower is required per stem. Side shoots and buds are removed (a process called disbudding) to increase the size of the terminal flower. Sprays and/or miniatures are intended for cultivation to give a large number of smaller flowers per stem. Only the central flower is removed, allowing the laterals to form a ‘fan’ of flowers.
  • Spray carnation varieties are popular in the floral trade, as the multiple flower buds on a single stem are well suited to various types of flower arrangements and provide bulk to bouquets used in the mass market segment of the industry.
  • Standard and spray cultivars dominate the carnation cut-flower industry, with approximately equal numbers sold of each type in the USA.
  • spray-type varieties account for 70% of carnation flowers sold by volume, whilst in Europe spray-type carnations account for approximately 50% of carnation flowers traded through out the Dutch auctions.
  • the Dutch auction trade is a good indication of consumption across Europe.
  • Cerise Westpearl line of carnations Dianthus caryophyllus cv. Cerise Westpearl.
  • the variety has excellent growing characteristics and a moderate to good resistance to fungal pathogens such as Fusarium.
  • ‘FLORIAGATE’ The following traits represent the characteristics of the new Dianthus cultivar ‘FLORIAGATE’. These traits distinguish this cultivar from other commercial varieties. ‘FLORIAGATE’ may exhibit phenotypic differences with variations in environmental, climatic and cultural conditions, without any variance in genotype.
  • FIG. 1 is a photographic representation of the flower of the new variety Dianthus ‘FLORIAGATE’. Colors may appear different from the actual colors due to light reflection but are as accurate as possible by conventional photography.
  • the photograph illustrates the overall appearance of the Dianthus ‘FLORIAGATE’ flower showing colors as true as reasonably possible to obtain in colored reproductions of this type. Colors in the photograph may differ from the color values cited in the detailed botanical description, which accurately describe the actual colors of the new variety ‘FLORIAGATE’.
  • FIG. 3 is a photographic representation of a high resolution scan of a Southern blot autoradiograph showing 10 ⁇ g of Eco RI-treated genomic DNA from the transgenic carnation line 25958 (‘FLORIAGATE’), in comparison to 10 ⁇ g of Eco RI-treated genomic DNA from the carnation lines Cerise Westpearl, Purple Spectro and the transgenic carnation lines 19907 ('FLORIAMETRINE) hybridized with the NtALS probe.
  • the present invention relates to a new and distinct cultivar of carnation that is grown for use as a flowering plant for pots and containers.
  • the new cultivar is known botanically as Dianthus caryophyllus and is referred to hereinafter by the cultivar name ‘FLORIAGATE’.
  • the new variety may be referred to herein as Dianthus caryophyllus ‘FLORIAGATE’, Dianthus ‘FLORIAGATE’, D. Caryophyllus ‘FLORIAGATE’ and ‘FLORIAGATE’.
  • ‘FLORIAGATE’ is a complex transgenic plant comprising a functional F3′,5′H and a DFR in petals and chimeric genetic material comprising sense and antisense fragments of the carnation plants indigenous DFR sequence (ds carnDFR), which induces hairpin RNAi (hpRNAi)-mediated silencing primarily via post-transcriptional gene silencing (PTGS).
  • the vector pCGP3366 used to transform cells contains a chimeric AmCHS 5′: BP F3′5′H#0: petD8 3′ gene in tandem with a petunia genomic DFR-A gene, a chimeric 35S 5′: dscarnDFR: 35S 3′ cassette and the 35S SuRB selectable marker gene cassette of the plasmid pWTT2132.
  • the new variety originated in vitro by Agrobacterium tumefaciens - mediated transformation of cells of the Cerise Westpearl carnation with the pCGP3366 vector at Florigene Pty Ltd, in Bundoora, Victoria, Australia. Cuttings of Dianthus caryophyllus cv. Cerise Westpearl were obtained from Propagation Australia, Queensland, Australia. Transgenic plants containing the chimeric AmCHS 5′: BP F3′5′H#0: petD8 3′ gene in tandem with a petunia genomic DFR-A gene and a 35S 5′ dscarnDFR: 35S 3′ cassette were successfully generated from the cells.
  • the plants also contained genes for acetolactate synthase resistance (SuRB) transformation selection markers.
  • the transformation and regeneration process is described in International Patent Application No. PCT/US92/02612; International Patent Application No. PCT/AU96/00296; and Lu et al, Bio/Technology 9: 864-868, 1991 the contents of each of which are incorporated by reference.
  • the primary focus of the carnation generation program was to produce new cultivars of carnations which exhibited a selected and desired purple/violet color in the spray background.
  • the term ‘FLORIAGATE’ was selected because of its pronounced production of delphinidin or delphinidin-based pigments.
  • ‘FLORIAGATE’ is essentially similar to the parent in the morphological aspects of the flower, but can be distinguished from the parent through out due to the accumulation of the purple delphinidin-based pigment in the petals of the flower. For example, ‘Cerise Westpearl’ has a bud color of about 191B, while ‘FLORIAGATE’ has a bud color of about 138A. Furthermore, ‘FLORIAGATE’ can be distinguished from its parent in its node color (192A compared with 192D of the parent), leaf color (138A compared with 137A of the parent), and ground color of blade and color band around the center (N8OB compared with 58B of the parent), among other characteristics. This is a new phenotype of the transgenic line.
  • ‘FLORIAGATE’ has an average height of about 1020 mm at flowering while Purple Spectro' is about 989.4 mm high. ‘FLORIAGATE’ has an average internode length of about 70.4 mm at the fifth internode, while ‘Purple Spectro’ has an average internode length of about 82.2 mm. Furthermore, ‘FLORIAGATE’ has a bud color of about 138A, while ‘Purple Spectro’ has a bud color of about 191B.
  • the new variety was originally selected in vitro as a regenerated shoot from a ‘Cerise Westpearl’ carnation cell that had been transfected with Agrobacterium tumefaciens AGLO (Lazo et al, Bio/technology 9:963-967, 1991) carrying the plasmid pCGP3366 ( FIG. 2 ).
  • a construct (pCGP3366) was prepared that included the use of a F3′5′H gene and a DFR gene and incorporation of a ds carnDFR molecule.
  • the DFR genomic fragment (pet gen DFR) used in this application was isolated from petunia.
  • the petunia DFR enzyme is only capable of using DHQ and DHM as a substrate, but not DHK (Holton and Cornish, 1995 supra). This ensures that most or all of the anthocyanidin produced is delphinidin.
  • the F3′5′H coding sequence in the chimeric gene (AmCHS 5′: BP F3′5′H #40: petD8 3) used in the new construct was from pansy.
  • the dscarnDFR expression cassette (CaMV35S 5′: ds carn DFR: 35S 3) used in pCGP3366 comprised of sequences from carnation (DFR coding sequences in sense and antisense orientation) and petunia (DFR intron 1).
  • the transformation vector pCGP3366 ( FIG. 2 ) contains the AmCHS 5′: BPF3′5′H#40: petD8 3′ expression cassette and the petunia genomic DFR-A (pet gen DFR) genes along with a CaMV35S 5′: ds carn DFR: 35S 3′ expression cassette and the 35S SuRB selectable marker gene.
  • the disarmed Agrobacterium tumefaciens strain used was AGLO (Lazo et al, 1991 supra ).
  • Plasmid DNA was introduced into the Agrobacterium tumefaciens strain AGLO by adding 5 ⁇ g of plasmid DNA to 100 ⁇ L of competent AGLO cells prepared by inoculating a 50 mL LB culture (Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, USA, 1989) and incubation for 16 hours with shaking at 28° C. The cells were then pelleted and resuspended in 0.5 mL of 85% (v/v) 100 mM CaCl2/15% (v/v) glycerol.
  • the DNA- Agrobacterium mixture was frozen by incubation in liquid N2 for 2 minutes and then allowed to thaw by incubation at 37° C. for 5 minutes. The DNA/bacterial mix was then placed on ice for a further 10 minutes. The cells were then mixed with 1mL of LB (Sambrook et al, 1989 supra) media and incubated with shaking for 16 hours at 28° C. Cells of A. tumefaciens carrying the plasmid were selected on LB agar plates containing 50 ⁇ g/mL tetracycline. The confirmation of the plasmid in A. tumefaciens was done by restriction endonuclease mapping of DNA isolated from the antibiotic-resistant transformants.
  • Genomic DNA was isolated from leaf tissues as described by Dellaporta et al, Molecular Biology Reporter 1(14):19-21, 1983.
  • the genomic DNA (10 pg) was digested for 48 hours using 120 units of the restriction endonuclease Eco RI at 37° C. DNA fragments were separated by electrophoresis through a 0.8% w/v agarose gel. The DNA was transferred to Hybond NX membrane (Amersham) as described (Sambrook et al, 1989 supra).
  • the gel was prepared for blotting by a 15 minute depurination step in 0.25 M HC1, two 20 minute washes in denaturing solution (1.5 M NaCl, 0.5 M NaOH) and two 20 minute washes in neutralization solution (0.5 M Tri-HC1, pH 7.5, 0.48 M HC1, 1.5 M NaCl).
  • DNA was capillary transferred to Hybond-NX nylon membrane (Amersham Biosciences, UK) in 20 x SSC (3 M NaC1, 0.3 M Tris-Na citrate, pH 7.0).
  • a probe corresponding to a 770 by fragment of the ALS (acetolactate synthase) gene from Nicotiana tabacum (NtALS) was used for Southern blot analysis.
  • the probe fragment was originally generated by PCR and subsequently sub-cloned into an amplification vector (pBluescript II, Stratagene, USA), given a reference number (pCGP 1651) and the fragment sequenced. After confirmation of the correct sequence, the DNA fragment was isolated from the source plasmid using the restriction endonuclease HinddII. The fragment was separated by 1% w/v agarose gel electrophoresis and purified using the MinElute Gel Extraction kit and protocol (Qiagen, Australia).
  • DNA fragments (25-50 ng) were labeled with 50 ⁇ Ci of [ ⁇ -32P]-dCTP (PerkinElmer Life and Analytical Sciences, USA) using a Decaprime kit (Ambion, USA). Unincorporated [ ⁇ -32P]-dCTP was removed by chromatography on Sephadex G-50 (Fine) columns. The labeled probe fragment was counted using a BioScan radioisotope counter (QC:4000 XER, BioScan, USA).
  • Membranes were pre-hybridized in 10 mL hybridization buffer 50% v/v deionized formamide, 1 M NaC1, 1% w/v SDS and 10% w/v dextran sulfate) at 42° C. for 1 hour. Once denatured, 10,000,000 dpm of 32P —labeled probe was added to the hybridization solution and hybridization was continued at 42° C. for a further 16 hours. Membranes were washed twice in low stringency buffer (2 x SSC, 1% w/v SDS) at 65° C. for 30 minutes. Membranes were exposed to Kodax BioMax MS X-Ray film (Kodak, USA) with an intensifying screen at ⁇ 70° C. for 16 hours. The exposed films were automatically developed using a Curix 60 X-ray developer (AGFR-Gevaert Group, Belgium).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
US12/383,179 2008-12-19 2009-03-20 Dianthus plant named ‘Floriagate’ Active USPP21595P3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/383,179 USPP21595P3 (en) 2008-12-19 2009-03-20 Dianthus plant named ‘Floriagate’

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13935408P 2008-12-19 2008-12-19
US12/383,179 USPP21595P3 (en) 2008-12-19 2009-03-20 Dianthus plant named ‘Floriagate’

Publications (2)

Publication Number Publication Date
US20100162451P1 US20100162451P1 (en) 2010-06-24
USPP21595P3 true USPP21595P3 (en) 2010-12-28

Family

ID=42268144

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/383,179 Active USPP21595P3 (en) 2008-12-19 2009-03-20 Dianthus plant named ‘Floriagate’
US13/140,389 Abandoned US20110321184A1 (en) 2008-02-19 2009-12-18 Plant with altered inflorescence

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/140,389 Abandoned US20110321184A1 (en) 2008-02-19 2009-12-18 Plant with altered inflorescence

Country Status (7)

Country Link
US (2) USPP21595P3 (fr)
EP (1) EP2358870A4 (fr)
JP (1) JP5765711B2 (fr)
CA (1) CA2747552C (fr)
CO (1) CO6400154A2 (fr)
EC (1) ECSP11011216A (fr)
WO (1) WO2010069004A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2590722C2 (ru) * 2010-09-17 2016-07-10 Сантори Холдингз Лимитед Способ получения лилий, содержащих в лепестках делфинидин
CN105586343A (zh) * 2012-02-24 2016-05-18 三得利控股株式会社 在花瓣中发挥功能的来自蓝猪耳的启动子
CN108138166B (zh) 2015-07-01 2021-09-21 三得利控股株式会社 具有蓝色系花色的菊花的制作方法
CN105385697B (zh) * 2015-12-03 2018-06-19 河南省农业科学院芝麻研究中心 芝麻花序有限基因Sidt1及其SNP标记
JP6758622B2 (ja) 2016-03-31 2020-09-23 国立研究開発法人農業・食品産業技術総合研究機構 青系花色を有する植物及びその作出方法
EP3523439A1 (fr) 2016-10-07 2019-08-14 Altria Client Services LLC Compositions et procédés de production de plants de tabac et de produits ayant une teneur réduite en nitrosamines spécifiques du tabac

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001290A1 (fr) 1991-07-11 1993-01-21 International Flower Developments Pty. Ltd. Sequences genetiques codant les enzymes du mecanisme d'action des flavonoïdes et leurs utilisations
WO1996036716A1 (fr) 1995-05-16 1996-11-21 International Flower Developments Pty. Ltd. Plantes transgeniques presentant des couleurs florales modifiees et procedes permettant de les obtenir
WO2004020637A1 (fr) 2002-08-30 2004-03-11 International Flower Developments Pty. Ltd. Sequences genetiques de flavonoide 3',5'hydroxylase et leurs utilisations

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG45175A1 (en) * 1993-05-20 1998-01-16 Int Flower Dev Pty Ltd Transgenic flowering plant
JP4368005B2 (ja) * 1999-01-29 2009-11-18 インターナショナル フラワー ディベロプメンツ プロプライアタリー リミティド フラボン合成酵素をコードする遺伝子
DE19918365A1 (de) * 1999-04-22 2000-10-26 Stefan Martens Genetische Sequenz, die für Flavonsynthase II Enzyme kodiert, und deren Verwendung
US6465630B1 (en) * 2000-08-14 2002-10-15 Korea Kumho Petrochemical Co. Ltd. Genetic sequences encoding substrate-specific dihydroflavonol 4-reductase and uses therefor
AUPS017402A0 (en) * 2002-01-25 2002-02-14 International Flower Developments Pty Ltd Genetic sequences and uses therefor
JP4690197B2 (ja) * 2003-08-13 2011-06-01 インターナショナル フラワー ディベロプメンツ プロプライアタリー リミティド 花色が変更されたバラの製造方法
AU2004299755B2 (en) * 2003-12-17 2009-12-03 Suntory Holdings Limited Method of constructing yellow flower by regulating flavonoid synthesis system
EP2213739A1 (fr) * 2006-02-17 2010-08-04 International Flower Developments Proprietary LTD. Flavonoïde glycosyltransférase et son utilisation
US20110023162A1 (en) * 2007-11-15 2011-01-27 International Flower Developments Pty. Ltd. Genetically modified chrysanthemums

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001290A1 (fr) 1991-07-11 1993-01-21 International Flower Developments Pty. Ltd. Sequences genetiques codant les enzymes du mecanisme d'action des flavonoïdes et leurs utilisations
WO1996036716A1 (fr) 1995-05-16 1996-11-21 International Flower Developments Pty. Ltd. Plantes transgeniques presentant des couleurs florales modifiees et procedes permettant de les obtenir
WO2004020637A1 (fr) 2002-08-30 2004-03-11 International Flower Developments Pty. Ltd. Sequences genetiques de flavonoide 3',5'hydroxylase et leurs utilisations

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
Dellaporta et al, "A Plant DNA Minipreparation: Version II," Molecular Biology Reporter 1(14):19-21, 1983.
Forkmann and Ruhnau, "Distinct Substrate Specificity of Dihydroflavonol 4-Reductase from Flowers of Petunia hybrida," Z Naturforsch C. 42c, 1146-1148, 1987.
Holton and Cornish, "Genetics and Biochemistry of Anthocyanin Biosynthesis," Plant Cell 7:1071-1083, 1995.
Holton et al, "Cloning and expression of cytochrome P450 genes controlling flower colour," Nature, 366: 276-279, 1993.
Johnson et al, "Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins,", Plant Journal, 19, 81-85, 1999.
Lazo et al, "A DNA Transformation-Competent Arabidopsis Genomic Library in Agrobacterium," Bio/technology 9:963-967, 1991.
Lu et al, "Agrobacterium-Mediated Transformation of Carnation (Dianthus Caryophyllus L.)," Bio/Technology 9: 864-868, 1991.
Mol et al, "How Genes Paint Flowers and Seeds," Trends Plant Sci. 3:212-217, 1998.
Sambrook et al, "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, USA, 1989.
Tanaka and Brugliera, "Flower colour," Chapter 9, In Flowering and Its Manipulation, Annual Plant Reviews Ainsworth (ed), Blackwell Publishing, UK,20: 201-239, 2006.
Tanaka and Mason, "Manipulation of Flower Colour by Genetic Engineering," Chapter 15, In Plant Genetic Engineering, Singh and Jaiwal (eds) SciTech Publishing LLC., USA, 1: 361-385, 2003.
Tanaka et al, "Genetic Engineering in Floriculture," Plant Cell, Tissue and Organ Culture 80: 1-24, 2005.
Winkel-Shirley, "Flavinoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology," Plant Physiol. 126:485-493, 2001a.
Winkel-Shirley, "It Takes a Garden. How Work on Diverse Plant Species has Contributed to an Understanding of Flavonoid Metabolism," Plant Physiol. 127:1399-1404, 2001b.

Also Published As

Publication number Publication date
CO6400154A2 (es) 2012-03-15
ECSP11011216A (es) 2011-11-30
CA2747552C (fr) 2016-08-23
JP5765711B2 (ja) 2015-08-19
EP2358870A4 (fr) 2012-05-30
CA2747552A1 (fr) 2010-06-24
WO2010069004A1 (fr) 2010-06-24
US20110321184A1 (en) 2011-12-29
EP2358870A1 (fr) 2011-08-24
US20100162451P1 (en) 2010-06-24
JP2012511916A (ja) 2012-05-31

Similar Documents

Publication Publication Date Title
USPP21595P3 (en) Dianthus plant named ‘Floriagate’
USPP21892P3 (en) Dianthus plant named ‘FLORIAMETRINE’
USPP21515P2 (en) Dianthus plant named ‘Florijade’
USPP33769P2 (en) Phalaenopsis plant named ‘Impulsive’
USPP8419P (en) Carnation plant named CFPC Cupid
USPP34756P2 (en) Lupine plant named ‘ET LPN 813’
USPP33421P2 (en) Dianthus plant named ‘WP20 PPA01’
USPP35572P3 (en) Phalaenopsis plant named ‘Wiggle Giggle’
USPP35391P2 (en) Buddleia plant named ‘PODARASNGA 9-15’
US20240188464P1 (en) Phalaenopsis plant named 'anagram'
USPP31594P3 (en) Phalaenopsis plant named ‘Fancy Freckles’
US20230108151A1 (en) Portulaca plant 'DAPORUMDBL'
USPP21394P3 (en) Dianthus plant named ‘WP08 VER03’
USPP21824P3 (en) Dianthus plant named ‘WP09 MAR05’
USPP21843P3 (en) Dianthus plant named ‘WP09 WEN04’
USPP21398P3 (en) Dianthus plant named ‘WP08 IAN04’
USPP24344P3 (en) Dianthus plant named ‘WP10 ELE04’
USPP23894P2 (en) Dianthus plant named ‘WP10 VEN06’
USPP21397P3 (en) Dianthus plant named ‘WP08 ROS03’
USPP21396P3 (en) Dianthus plant named ‘WP08 ULR03’
USPP15248P2 (en) Dianthus plant named ‘Devon Octavia’
USPP24018P2 (en) Dianthus plant named ‘WP10 XAV04’
USPP21418P3 (en) Dianthus plant named ‘WP08 NIK03’
USPP18828P2 (en) Dianthus plant named ‘WP05 Yves’
USPP24363P3 (en) Dianthus plant named ‘WP10 SAB06’

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL FLOWER DEVELOPMENTS PTY LTD.,AUSTRAL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRUGLIERA, FILIPPA;REEL/FRAME:022717/0510

Effective date: 20090512

Owner name: INTERNATIONAL FLOWER DEVELOPMENTS PTY LTD., AUSTRA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRUGLIERA, FILIPPA;REEL/FRAME:022717/0510

Effective date: 20090512