US9943890B2 - Method for cleaning and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant - Google Patents

Method for cleaning and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant Download PDF

Info

Publication number
US9943890B2
US9943890B2 US14/104,109 US201314104109A US9943890B2 US 9943890 B2 US9943890 B2 US 9943890B2 US 201314104109 A US201314104109 A US 201314104109A US 9943890 B2 US9943890 B2 US 9943890B2
Authority
US
United States
Prior art keywords
film
forming agent
concentration
water
steam circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/104,109
Other versions
US20140102482A1 (en
Inventor
Ute Ramminger
Joerg Fandrich
Fernando-Mario Roumiguiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Framatome GmbH
Original Assignee
Areva GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva GmbH filed Critical Areva GmbH
Assigned to AREVA GMBH reassignment AREVA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FANDRICH, JOERG, Ramminger, Ute, ROUMIGUIERE, FERNANDO-MARIO
Publication of US20140102482A1 publication Critical patent/US20140102482A1/en
Application granted granted Critical
Publication of US9943890B2 publication Critical patent/US9943890B2/en
Assigned to FRAMATOME GMBH reassignment FRAMATOME GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AREVA GMBH
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/141Amines; Quaternary ammonium compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • F22B37/483Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers specially adapted for nuclear steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/56Boiler cleaning control devices, e.g. for ascertaining proper duration of boiler blow-down
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/28Selection of specific coolants ; Additions to the reactor coolants, e.g. against moderator corrosion
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/022Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
    • G21C17/0225Chemical surface treatment, e.g. corrosion
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • Y02E30/40

Definitions

  • the invention relates to a method for cleaning and conditioning the water/steam circuit of a power plant, in particular of a nuclear power plant.
  • condition should be understood to mean a measure by means of which the surfaces of the components of the water/steam circuit can be protected from corrosion.
  • surfaces should be understood to mean, on the one hand, the inner surfaces of e.g. lines, heat exchangers and containers and, on the other hand, surfaces of components such as turbine blades around which the work medium (water, steam) of the circuit flows.
  • German published patent application DE 2625607 and German patent DD 107962 describe methods in which film-forming amines (FFA) are metered into the secondary circuit of pressurized water reactors during power operation.
  • FFA film-forming amines
  • the object of conditioning of the type in question is to generate a thin film on the surfaces which is as contiguous as possible, with a thickness of at most one to two molecule layers.
  • conventional methods result in the risk here that thicker FFA-deposits are formed, which, on the one hand, interfere with operation, by virtue of e.g. reducing heat transport in steam generators or other heat exchangers or narrowing flow cross sections.
  • risk of parts of the deposits detaching and damaging turbine blades or adversely affecting mechanical filter installations and ion exchangers so that the latter two have to be replaced.
  • a further problem occurring during the generation of a film is that impurities, which are present on the component surfaces or adhere thereto, are released during the metering of the film-forming agent and pass into the work medium.
  • This effect is based on two causes. Firstly, molecules of the film-forming agent, which, due to their chemical make-up, act like a surfactant, attach to particles of corrosion products such as magnetite, as a result of which the particles are detached from the surface and are kept in colloidal suspension in the work medium.
  • ionic impurities for example cations, such as sodium ions, potassium ions, magnesium ions and calcium ions
  • anions such as chloride ions, fluoride ions, sulfate ions, sulfite ions, carbonate ions and silicate ions, that are adsorbed on the surfaces of the components are displaced from the surface during the adsorption there of the film-forming amines and as a result go into solution.
  • the effect in question of the film-forming agent is unwanted because impurities which were previously immobilized in a restricted region of the water/steam circuit are distributed over the whole system. Furthermore, there is the risk of predetermined limits for impurities being exceeded such that appropriate countermeasures have to be taken up.
  • predetermined limits for impurities being exceeded such that appropriate countermeasures have to be taken up.
  • a time-restricted operation with a power reduction to 30% in the case of a sodium concentration of more than 0.1 mg/kg or a conductivity (downstream of the cation exchanger) of more than 2 ⁇ S/cm in the steam generator water and a shutdown of the installation in the case of more than 0.5 mg/kg or 7 ⁇ S/cm.
  • a method of cleaning and conditioning a water/steam circuit of a power plant in particular a nuclear power plant.
  • the method comprises the following steps:
  • the above objects are achieved, in the context of a method as described above, by virtue of the fact that, during power operation, an amine is added to the work medium circulating in the water/steam circuit, which amine acts as film-forming agent and forms a hydrophobic film on the surfaces of the circuit.
  • the method is carried out in such a way that there is control in respect of the concentration of the film-forming agent or the progress of the film formation as well as the effects of the film-forming agent metering in respect of impurities mobilized thereby at practically any time during the method.
  • the concentration of at least one impurity and the concentration of the film-forming agent is measured, namely at least in the steam generator feed water, wherein the concentration of the film-forming agent is modified depending on the concentration of at least one impurity.
  • concentration of the film-forming agent is modified depending on the concentration of at least one impurity.
  • the metering rate of the film-forming agent can be reduced or interrupted, in particular in view of maintaining limits.
  • a further countermeasure consists of reducing the concentration of impurities passing into the work medium. This preferably occurs by virtue of the water/steam circuit being purged and, in the process, particulate impurities, inter alia, being removed by blowing down of the steam generator. This measure preferably occurs, for example for reasons of economy, directly following an interruption of the metering of the film-forming agent. It is also feasible that, in order to remove impurities from the water/steam circuit, filters are employed, for example the filter installations of the condensate cleaning system, which is part of the power plant.
  • the concentration of the film-forming agent and of the impurity is established at a plurality of measurement points distributed over the water/steam circuit, as a result of which a statement can be made in respect of the effect at different points of the water/steam circuit of the effects of a measure, for example a reduction in the metering rate of the film-forming agent.
  • the accuracy of the method open-loop or closed-loop control is increased.
  • metering of the film-forming agent in a method according to the invention is carried out in such a way that, in the water phase of the water/steam circuit, at least in the steam generator feed water, there is a concentration of 1 to 2 ppm, preferably of 1 to 1.5 ppm. It was found that if work is conducted within these boundaries, in particular with at most up to 1.5 ppm film-forming agent, the formation of relatively thick layers of the film-forming agent can be avoided. It was found that, in many cases, an adequate film is already present on the surfaces when the aforementioned concentration or target concentration has been reached.
  • a single-layer or substantially mono-molecular film is obtained with greater reliability on the surfaces, substantially covering the latter completely, if the method is continued under the aforementioned premises until the concentration of the film-forming agent—at a constant metering rate—at a plurality of measurement points distributed over the water/steam circuit remains constant averaged over time at a plurality of measurement points (M 1 , M 2 , M 3 ), i.e., if an equilibrium concentration sets in at the measurement points.
  • the measurement points already mentioned above are, in this case and in general, distributed such that at least one measurement point is situated in the one-phase region and at least one measurement point is situated in the two-phase region of the water/steam circuit.
  • the aforementioned mean averaged over time is understood to mean the profile of the trend which emerges if fluctuations due to the measurement technologies have been eliminated by suitable methods of conventional error calculation.
  • Monoamines with a hydrocarbyl comprising 8 to 22 carbon atoms were found to be particularly effective for both the cleaning effect and for the film formation, with octadecylamine being particularly suitable in this case.
  • Monoamines of the present type are available as waxy substance at room temperature.
  • Conventional emulsions produced therefrom usually contain relatively large amounts of organic emulsifiers, which can have damaging effects in the water/steam circuit. Therefore, the FFA is preferably employed in the pure form during the method according to the invention, namely as an aqueous emulsion without the addition of emulsifiers, which can be obtained by pure mechanical mixing under the application of increased temperature.
  • FIG. 1 shows, in a very schematic view, the water/steam circuit of a pressurized water reactor (PWR);
  • PWR pressurized water reactor
  • FIG. 2 shows a diagram which reproduces the time profile of the concentration of ODA in the steam generator feed water caused by ODA metering
  • FIG. 3 shows a flowchart of the novel conditioning method.
  • a water/steam circuit 1 (abbreviated WSC in the following text) of a pressurized water reactor (PWR) that includes a piping system 2 , a plurality of steam generators 3 , normally a plurality of turbines, for example a high-pressure (HP) turbine 4 and a low-pressure (LP) turbine 5 , a water separator intermediate superheater 17 between the HP and LP turbines, a condenser 6 , a feed water container 7 , a condensate pump 8 arranged between the condenser 6 and the feed water container 7 , a plurality of feed water preheaters 16 and a feed water pump 9 arranged between the feed water container 7 and the steam generator.
  • PWR pressurized water reactor
  • the condensate cleaning system 10 which can comprise mechanical filters and, likewise, ion exchangers.
  • the steam generator 3 is connected to the primary circuit 13 of the nuclear reactor, which includes a reactor pressure vessel 14 and a main coolant pump 15 .
  • the cleaning and conditioning method is carried out during the power operation. This also comprises phases during the startup and shutdown of the power plant.
  • the conditioning of the water/steam circuit or the metering of a film-forming amine is carried out just before shutting down the nuclear reactor.
  • ODA octadecylamine
  • the continuous monitoring of concentrations or concentration changes in ODA and impurities (see step II in FIG. 3 ), carried out from the start of the method, is brought about by a plurality of measurement points arranged at different positions in the WSC 1 . Some of these measurement points M 1 , M 2 , M 3 are depicted in FIG. 1 in an exemplary manner.
  • the film-forming agent may be metered in at any expedient location within the WSC, such as, for instance at the illustrated location just upstream of the condenser 6 .
  • the concentration of these impurities is measured directly, i.e. in relation to a very specific ion with known wet-chemical or physical-chemical measurement methods.
  • the concentration can also be determined indirectly, i.e. by the increase in the electrical conductivity of the work medium caused by the mobilization or the passage of ions into the work medium.
  • the measurement methods used in the process are well known to a person skilled in the art, and so these do not have to be discussed in detail.
  • a further parameter important for carrying out the method in a controlled manner is the FFA or ODA concentration in the work medium—the water present in the WSC.
  • the ODA metering or the amount of ODA metered into the WSC 1 per unit time is—on the basis of the measurement data established at the measurement points M 1 to M 3 regulated such that the concentrations of the type of impurities that have passed into the work medium due to the ODA metering remain below predetermined limits (see step III in FIG. 3 ).
  • concentrations of the type of impurities that have passed into the work medium due to the ODA metering remain below predetermined limits (see step III in FIG. 3 ).
  • concentration values it is already possible to identify a trend in a timely fashion such that a countermeasure can be introduced in a timely fashion, e.g. such that the metering of ODA can be reduced or interrupted.
  • step III in FIG. 3 When a critical concentration of an impurity is reached (step III in FIG. 3 ), an effective measure for reducing the critical concentration lies in interrupting the FFA metering and a subsequent purging or flushing or blowing down of the steam generator, during which the impurity is removed from the WSC (step VII in FIG. 3 ). In the process, there is continuous monitoring of whether the installation-specific control parameters or concentrations lie in an admissible range (step VIII in FIG. 3 ). If this is the case, the conditioning is continued by resuming the FFA metering.
  • the concentration of ODA in the aqueous phase is regulated (closed-loop controlled) by appropriate metering rates in such a way that this value, practically until the end of the process, does not exceed an upper absolute safety limit of 2 ppm, preferably 1.5 ppm.
  • an upper absolute safety limit of 2 ppm preferably 1.5 ppm.
  • this prevents too strong a mobilization of impurities, which goes beyond the set limits, or a no longer controllable massive ODA precipitation from occurring. It also ensures that no unwanted massive ODA deposits are formed.
  • metering is such that initially there is a low ODA concentration, which only rises to a target concentration of above 1 ppm, at most up to 1.5 ppm or 2 ppm (C Target in FIG. 2 ), toward the end of the method.
  • the addition preferably continues until the ODA concentration with increasing tendency has reached the maximum values of 2 ppm or 1.5 ppm (step VI in FIG. 3 ).
  • the measurement at one measuring point is sufficient, wherein, preferably, the target concentration in the steam generator feed water (measurement point M 1 ) is measured.
  • a termination criterion for the metering of the film-forming agent or ODA i.e. a sign for a film being formed on the surfaces of the water/steam circuit, which completely covers the latter.
  • the profile of the ODA concentration in the case of unchanging ODA metering rate is preferably observed in addition to the criterion mentioned in the preceding paragraph. If the equilibrium concentration of the ODA is reached at a plurality of measurement points, preferably at all measurement points, M 1 to M 3 in the example, i.e. if an unchanging or slightly falling ODA concentration is to be observed (step V in FIG.
  • step VI in FIG. 3 line CP in FIG. 2
  • step VI in FIG. 3 line CP in FIG. 2
  • step VI in FIG. 3 line CP in FIG. 2
  • the unchanging ODA concentration toward the end of forming the film could be traced back to the fact that the formation of ODA double and multiple layers is favored for kinetic and/or thermodynamic reasons and therefore occurs more quickly than the initial film formation on the metallic surfaces of the WSC 1 .
  • the ODA film applied to the surfaces of the WSC can lose or reduce its effectiveness over time, for example by virtue of it in part detaching from surfaces or for instance it being subjected to thermal or chemical decomposition processes. It is therefore expedient to undertake a refresh conditioning at a given time.
  • permanent monitoring of the work medium for the presence of corrosion products i.e. products connected with the formation of oxidation layers, for example metal ions originating from the component materials of the WSC, is expedient.
  • a conditioning of the type described above is put into motion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Pipeline Systems (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

A method for cleaning and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant, uses an amine as a film-forming agent. The amine is metered into the working medium circulating in the water-steam circuit. The film-forming agent forms a hydrophobic film on the surfaces of the circuit. During the process, the concentration of at least one impurity contained in the water and the concentration of the film-forming agent in at least in the feed water of the steam generator are measured and monitored. The concentration of the film-forming agent is varied, as needed, subject to the concentration of the impurity.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation, under 35 U.S.C. § 120, of copending international application No. PCT/EP2013/053919, filed Feb. 27, 2013, which designated the United States; this application also claims the priority, under 35 U.S.C. § 119, of German patent application No. DE 10 2012 203 010.7, filed Feb. 28, 2012; the prior applications are herewith incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION Field of the Invention
The invention relates to a method for cleaning and conditioning the water/steam circuit of a power plant, in particular of a nuclear power plant. Here, the term “conditioning” should be understood to mean a measure by means of which the surfaces of the components of the water/steam circuit can be protected from corrosion. When surfaces are mentioned, this should be understood to mean, on the one hand, the inner surfaces of e.g. lines, heat exchangers and containers and, on the other hand, surfaces of components such as turbine blades around which the work medium (water, steam) of the circuit flows. By way of example, German published patent application DE 2625607 and German patent DD 107962 describe methods in which film-forming amines (FFA) are metered into the secondary circuit of pressurized water reactors during power operation. The object of conditioning of the type in question is to generate a thin film on the surfaces which is as contiguous as possible, with a thickness of at most one to two molecule layers. However, conventional methods result in the risk here that thicker FFA-deposits are formed, which, on the one hand, interfere with operation, by virtue of e.g. reducing heat transport in steam generators or other heat exchangers or narrowing flow cross sections. Moreover, there is the risk of parts of the deposits detaching and damaging turbine blades or adversely affecting mechanical filter installations and ion exchangers, so that the latter two have to be replaced.
A further problem occurring during the generation of a film is that impurities, which are present on the component surfaces or adhere thereto, are released during the metering of the film-forming agent and pass into the work medium. This effect is based on two causes. Firstly, molecules of the film-forming agent, which, due to their chemical make-up, act like a surfactant, attach to particles of corrosion products such as magnetite, as a result of which the particles are detached from the surface and are kept in colloidal suspension in the work medium. Secondly, ionic impurities, for example cations, such as sodium ions, potassium ions, magnesium ions and calcium ions, and anions, such as chloride ions, fluoride ions, sulfate ions, sulfite ions, carbonate ions and silicate ions, that are adsorbed on the surfaces of the components are displaced from the surface during the adsorption there of the film-forming amines and as a result go into solution.
The effect in question of the film-forming agent is unwanted because impurities which were previously immobilized in a restricted region of the water/steam circuit are distributed over the whole system. Furthermore, there is the risk of predetermined limits for impurities being exceeded such that appropriate countermeasures have to be taken up. By way of example, in the field of nuclear power plants, there must be a time-restricted operation with a power reduction to 30% in the case of a sodium concentration of more than 0.1 mg/kg or a conductivity (downstream of the cation exchanger) of more than 2 μS/cm in the steam generator water and a shutdown of the installation in the case of more than 0.5 mg/kg or 7 μS/cm.
In the case of prior art conventional processes, the aforementioned problems were ignored or, in order to avoid the problems, work was undertaken with very low FFA concentrations, although this led to extremely long processing durations and corresponding costs.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method of cleaning and conditioning the water/steam circuit of a power plant which overcome the above-mentioned disadvantages of the heretofore-known devices and methods of this general type.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method of cleaning and conditioning a water/steam circuit of a power plant, in particular a nuclear power plant. The method comprises the following steps:
adding an amine as a film-forming agent to a work medium circulating in the water/steam circuit during power operation, to cause the film-forming agent to form a hydrophobic film on the surfaces of the water/steam circuit;
monitoring a concentration of at least one impurity contained in the work medium and a concentration of the film-forming agent in a steam generator feed water, by measurements during a duration of the method; and
modifying the concentration of the film-forming agent depending on the concentration of the at least one impurity.
In other words, the above objects are achieved, in the context of a method as described above, by virtue of the fact that, during power operation, an amine is added to the work medium circulating in the water/steam circuit, which amine acts as film-forming agent and forms a hydrophobic film on the surfaces of the circuit. Here, the method is carried out in such a way that there is control in respect of the concentration of the film-forming agent or the progress of the film formation as well as the effects of the film-forming agent metering in respect of impurities mobilized thereby at practically any time during the method. This is achieved by virtue of the fact that, during the duration of the method, the concentration of at least one impurity and the concentration of the film-forming agent is measured, namely at least in the steam generator feed water, wherein the concentration of the film-forming agent is modified depending on the concentration of at least one impurity. This ensures that, at any time during the method, predetermined guide values and limits of an impurity, in particular a corrosively acting ionic impurity such as e.g. chloride or sodium ions, are maintained or not exceeded. Moreover, it is possible to effectively prevent an impurity, immobilized at a locally restricted surface region of the water/steam circuit, from quickly being mobilized by metering of the film-forming agent and being distributed in large quantities in the whole circuit.
As a countermeasure to an increase in the concentration of an impurity, the metering rate of the film-forming agent can be reduced or interrupted, in particular in view of maintaining limits. A further countermeasure consists of reducing the concentration of impurities passing into the work medium. This preferably occurs by virtue of the water/steam circuit being purged and, in the process, particulate impurities, inter alia, being removed by blowing down of the steam generator. This measure preferably occurs, for example for reasons of economy, directly following an interruption of the metering of the film-forming agent. It is also feasible that, in order to remove impurities from the water/steam circuit, filters are employed, for example the filter installations of the condensate cleaning system, which is part of the power plant.
In a particularly preferred method variant, the concentration of the film-forming agent and of the impurity is established at a plurality of measurement points distributed over the water/steam circuit, as a result of which a statement can be made in respect of the effect at different points of the water/steam circuit of the effects of a measure, for example a reduction in the metering rate of the film-forming agent. Moreover, the accuracy of the method open-loop or closed-loop control is increased.
In addition to the above-described measures for avoiding the disadvantageous effects explained at the outset, metering of the film-forming agent in a method according to the invention is carried out in such a way that, in the water phase of the water/steam circuit, at least in the steam generator feed water, there is a concentration of 1 to 2 ppm, preferably of 1 to 1.5 ppm. It was found that if work is conducted within these boundaries, in particular with at most up to 1.5 ppm film-forming agent, the formation of relatively thick layers of the film-forming agent can be avoided. It was found that, in many cases, an adequate film is already present on the surfaces when the aforementioned concentration or target concentration has been reached.
However, a single-layer or substantially mono-molecular film is obtained with greater reliability on the surfaces, substantially covering the latter completely, if the method is continued under the aforementioned premises until the concentration of the film-forming agent—at a constant metering rate—at a plurality of measurement points distributed over the water/steam circuit remains constant averaged over time at a plurality of measurement points (M1, M2, M3), i.e., if an equilibrium concentration sets in at the measurement points. The measurement points already mentioned above are, in this case and in general, distributed such that at least one measurement point is situated in the one-phase region and at least one measurement point is situated in the two-phase region of the water/steam circuit. The aforementioned mean averaged over time is understood to mean the profile of the trend which emerges if fluctuations due to the measurement technologies have been eliminated by suitable methods of conventional error calculation.
Monoamines with a hydrocarbyl comprising 8 to 22 carbon atoms were found to be particularly effective for both the cleaning effect and for the film formation, with octadecylamine being particularly suitable in this case. Monoamines of the present type are available as waxy substance at room temperature. Conventional emulsions produced therefrom usually contain relatively large amounts of organic emulsifiers, which can have damaging effects in the water/steam circuit. Therefore, the FFA is preferably employed in the pure form during the method according to the invention, namely as an aqueous emulsion without the addition of emulsifiers, which can be obtained by pure mechanical mixing under the application of increased temperature.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a method for purifying and conditioning the water-steam circuit of a power plant especially of a nuclear power plant, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
FIG. 1 shows, in a very schematic view, the water/steam circuit of a pressurized water reactor (PWR);
FIG. 2 shows a diagram which reproduces the time profile of the concentration of ODA in the steam generator feed water caused by ODA metering; and
FIG. 3 shows a flowchart of the novel conditioning method.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the figures of the drawing in detail and first, particularly, to FIG. 1 thereof, there is shown a water/steam circuit 1 (abbreviated WSC in the following text) of a pressurized water reactor (PWR) that includes a piping system 2, a plurality of steam generators 3, normally a plurality of turbines, for example a high-pressure (HP) turbine 4 and a low-pressure (LP) turbine 5, a water separator intermediate superheater 17 between the HP and LP turbines, a condenser 6, a feed water container 7, a condensate pump 8 arranged between the condenser 6 and the feed water container 7, a plurality of feed water preheaters 16 and a feed water pump 9 arranged between the feed water container 7 and the steam generator. Moreover, downstream of the condenser 6, there is a condensate cleaning system 10, which can comprise mechanical filters and, likewise, ion exchangers. On the primary side, the steam generator 3 is connected to the primary circuit 13 of the nuclear reactor, which includes a reactor pressure vessel 14 and a main coolant pump 15.
As mentioned above, the cleaning and conditioning method is carried out during the power operation. This also comprises phases during the startup and shutdown of the power plant. In the exemplary embodiment described below, the conditioning of the water/steam circuit or the metering of a film-forming amine is carried out just before shutting down the nuclear reactor. In the description, reference is made to ODA (octadecylamine) as a film-forming agent in an exemplary manner. The continuous monitoring of concentrations or concentration changes in ODA and impurities (see step II in FIG. 3), carried out from the start of the method, is brought about by a plurality of measurement points arranged at different positions in the WSC 1. Some of these measurement points M1, M2, M3 are depicted in FIG. 1 in an exemplary manner. The film-forming agent may be metered in at any expedient location within the WSC, such as, for instance at the illustrated location just upstream of the condenser 6.
As a result of the surfactant-like properties of the ODA, there is a mobilization of impurities from the start of the FFA metering. Thus, as already mentioned above, limits which may not be exceeded are set for the concentration of these impurities. In the case of ionic impurities, the concentration is measured directly, i.e. in relation to a very specific ion with known wet-chemical or physical-chemical measurement methods. However, the concentration can also be determined indirectly, i.e. by the increase in the electrical conductivity of the work medium caused by the mobilization or the passage of ions into the work medium. The measurement methods used in the process are well known to a person skilled in the art, and so these do not have to be discussed in detail. A further parameter important for carrying out the method in a controlled manner is the FFA or ODA concentration in the work medium—the water present in the WSC.
Finally, as a result of the ODA metering, corrosion products are also released, i.e. very fine particles of magnetite, which adhere to the surfaces and, as a result of the effect of ODA, go into colloidal solution. Since the majority of corrosion products can be traced back to metal oxides such as magnetite, it is normally sufficient only to carry out measurements in this respect. In the process, e.g. the iron content of the feed water is determined in a known fashion. Finally, the pH-value is also monitored in order to prevent corrosion of the metallic components of the WSC 1. It is also feasible for the TOC (total organic carbon) value to be monitored in order to exclude a possible decomposition of the added ODA at the prevalent conditions, i.e. temperatures of over 250°, and hence the formation of decomposition products which could act corrosively.
The ODA metering or the amount of ODA metered into the WSC 1 per unit time is—on the basis of the measurement data established at the measurement points M1 to M3 regulated such that the concentrations of the type of impurities that have passed into the work medium due to the ODA metering remain below predetermined limits (see step III in FIG. 3). Moreover, by controlling the afore-mentioned concentration values, it is already possible to identify a trend in a timely fashion such that a countermeasure can be introduced in a timely fashion, e.g. such that the metering of ODA can be reduced or interrupted. Here, it should be noted that a change in metering only has an effect a couple of hours later due to the volume of water and the length of the piping of the WSC 1. However, this time delay plays practically no role during a method according to the invention since a change of a critical concentration value is identified by permanent whole control at a plurality of measurement points M1 to M3, long before said value has reached its critical limit.
In order to have an indication of which ODA amounts are required for a given WSC 1, it is expedient to estimate what approximate amount of ODA is necessary to generate a mono-molecular hydrophobic film on the surfaces of the WSC. This amount can then still be multiplied by a factor in order to take into account the roughness of the surfaces, which, after all, is significant in the case of sub-microscopic observation, and effects which use up ODA, for example the degree of contamination of the WSC. On the basis of this estimate, it is possible, in the case of a given ODA metering rate, to specify a defined period of time in which an ODA film which completely covers the surfaces, e.g. a mono-molecular ODA film, has been created.
When a critical concentration of an impurity is reached (step III in FIG. 3), an effective measure for reducing the critical concentration lies in interrupting the FFA metering and a subsequent purging or flushing or blowing down of the steam generator, during which the impurity is removed from the WSC (step VII in FIG. 3). In the process, there is continuous monitoring of whether the installation-specific control parameters or concentrations lie in an admissible range (step VIII in FIG. 3). If this is the case, the conditioning is continued by resuming the FFA metering.
The concentration of ODA in the aqueous phase is regulated (closed-loop controlled) by appropriate metering rates in such a way that this value, practically until the end of the process, does not exceed an upper absolute safety limit of 2 ppm, preferably 1.5 ppm. As a result, this prevents too strong a mobilization of impurities, which goes beyond the set limits, or a no longer controllable massive ODA precipitation from occurring. It also ensures that no unwanted massive ODA deposits are formed. In so doing, metering is such that initially there is a low ODA concentration, which only rises to a target concentration of above 1 ppm, at most up to 1.5 ppm or 2 ppm (CTarget in FIG. 2), toward the end of the method. The addition preferably continues until the ODA concentration with increasing tendency has reached the maximum values of 2 ppm or 1.5 ppm (step VI in FIG. 3). In order to determine the target concentration, the measurement at one measuring point is sufficient, wherein, preferably, the target concentration in the steam generator feed water (measurement point M1) is measured.
Reaching the target concentrations mentioned in the preceding paragraph could already be a termination criterion for the metering of the film-forming agent or ODA, i.e. a sign for a film being formed on the surfaces of the water/steam circuit, which completely covers the latter. The profile of the ODA concentration in the case of unchanging ODA metering rate is preferably observed in addition to the criterion mentioned in the preceding paragraph. If the equilibrium concentration of the ODA is reached at a plurality of measurement points, preferably at all measurement points, M1 to M3 in the example, i.e. if an unchanging or slightly falling ODA concentration is to be observed (step V in FIG. 3), the time has been reached to end the ODA metering or the conditioning method (step VI in FIG. 3; line CP in FIG. 2). The unchanging ODA concentration toward the end of forming the film could be traced back to the fact that the formation of ODA double and multiple layers is favored for kinetic and/or thermodynamic reasons and therefore occurs more quickly than the initial film formation on the metallic surfaces of the WSC 1.
The ODA film applied to the surfaces of the WSC can lose or reduce its effectiveness over time, for example by virtue of it in part detaching from surfaces or for instance it being subjected to thermal or chemical decomposition processes. It is therefore expedient to undertake a refresh conditioning at a given time. To this end, permanent monitoring of the work medium for the presence of corrosion products, i.e. products connected with the formation of oxidation layers, for example metal ions originating from the component materials of the WSC, is expedient. As soon as it is possible to identify a—significant—increase of corrosion products (step X in FIG. 3), a conditioning of the type described above is put into motion.
The following summarizes and lists the various steps illustrated in the flowchart of FIG. 3.
  • Step I Start of FFA conditioning
  • Step II Process monitoring
    • FFA concentration (M1-M3 in FIG. 1)
    • Control parameters as per installation specification
  • Step III Limit of control parameters reached?
  • Step IV Target concentration of FFA reached in M1?
  • Step V Equilibrium concentration of FFA reached over M1-M3?
  • Step VI End of FFA conditioning
  • Step VII Interrupt metering, purging
  • Step VIII Values of the control parameters in an admissible range?
  • Step IX Process monitoring of corrosion products
  • Step X Increase in the concentration of corrosion products?

Claims (15)

The invention claimed is:
1. A method of cleaning and conditioning a water/steam circuit of a power plant, the method comprising:
adding an amine as film-forming agent to a work medium circulating in the water/steam circuit during power operation, to cause the film-forming agent to form a hydrophobic film on the surfaces of the water/steam circuit;
monitoring a concentration of at least one impurity contained in the work medium by directly measuring the at least one impurity during a duration of the method and monitoring a concentration of the film-forming agent in a steam generator feed water by directly measuring the concentration of the film-forming agent during a duration of the method;
modifying the concentration of the film-forming agent depending on the directly measured concentration of the at least one impurity; and
decreasing a metering rate of the film-forming agent in the case of an increase in the directly measured concentration of the at least one impurity.
2. The method according to claim 1, which comprises measuring the concentration of the film-forming agent and the concentration of the at least one impurity at a plurality of measurement points distributed over the water/steam circuit.
3. The method according to claim 1, which comprises interrupting a metering-in of the film-forming agent if the concentration of the at least one impurity approaches a threshold value.
4. The method according to claim 1, wherein at least one measurement point is disposed in a dual-phase region of the water/steam circuit and at least one measurement point is disposed in a one-phase region of the water/steam circuit.
5. The method according to claim 1, which comprises carrying out the method in a nuclear power plant.
6. The method according to claim 1, which further comprises purging the water/steam circuit.
7. The method according to claim 6, which comprises purging the water/steam circuit directly following an interruption of a metering-in of the film-forming agent.
8. The method according to claim 1, which comprises using a monoamine with a hydrocarbyl comprising 8 to 22 carbon atoms as the film-forming agent.
9. The method according to claim 8, wherein the film-forming agent is octadecylamine.
10. The method according to claim 1, which comprises metering-in the film-forming agent with such a rate that the concentration of the film-forming agent in a liquid phase of the work medium does not exceed a concentration of 2 ppm.
11. The method according to claim 10, wherein a maximum concentration of the film-forming agent of at most 1.5 ppm.
12. The method according to claim 10, which comprises terminating the metering-in of the film-forming agent when the concentration of the film-form ing agent has reached a value of 1 ppm to 2 ppm.
13. The method according to claim 10, which comprises terminating the metering-in of the film-forming agent when the concentration of the film-forming agent has reached a value of 1 ppm to 1.5 ppm.
14. The method according to claim 10, which comprises terminating the metering-in of the film-forming agent when the concentration of the film-forming agent at a constant metering rate remains constant, averaged over time, at a plurality of measurement points in the water/steam circuit.
15. The method according to claim 14, wherein an unchanging concentration of film-forming agent is measured at a plurality of points distributed over the water/steam circuit.
US14/104,109 2012-02-28 2013-12-12 Method for cleaning and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant Active 2034-11-03 US9943890B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012203010 2012-02-28
DE102012203010.7 2012-02-28
DE102012203010A DE102012203010A1 (en) 2012-02-28 2012-02-28 Process for cleaning and conditioning the water-steam cycle of a power plant, in particular a nuclear power plant
PCT/EP2013/053919 WO2013127842A1 (en) 2012-02-28 2013-02-27 Method for purifying and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/053919 Continuation WO2013127842A1 (en) 2012-02-28 2013-02-27 Method for purifying and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant

Publications (2)

Publication Number Publication Date
US20140102482A1 US20140102482A1 (en) 2014-04-17
US9943890B2 true US9943890B2 (en) 2018-04-17

Family

ID=47901950

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/104,104 Active 2036-08-27 US10315234B2 (en) 2012-02-28 2013-12-12 Method for conditioning a power-generating circulatory system of a power plant
US14/104,109 Active 2034-11-03 US9943890B2 (en) 2012-02-28 2013-12-12 Method for cleaning and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/104,104 Active 2036-08-27 US10315234B2 (en) 2012-02-28 2013-12-12 Method for conditioning a power-generating circulatory system of a power plant

Country Status (11)

Country Link
US (2) US10315234B2 (en)
EP (2) EP2700075B1 (en)
JP (2) JP5992060B2 (en)
KR (2) KR102075378B1 (en)
CN (1) CN104040637A (en)
BR (2) BR112014016702B1 (en)
CA (2) CA2861551C (en)
DE (1) DE102012203010A1 (en)
ES (2) ES2572556T3 (en)
WO (2) WO2013127842A1 (en)
ZA (2) ZA201403653B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10137399B2 (en) * 2015-01-16 2018-11-27 Areva Gmbh Ventilation system and associated operating method for use during a serious accident in a nuclear installation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012203010A1 (en) * 2012-02-28 2013-08-29 Areva Gmbh Process for cleaning and conditioning the water-steam cycle of a power plant, in particular a nuclear power plant
US9758877B2 (en) * 2013-03-01 2017-09-12 General Electric Company Compositions and methods for inhibiting corrosion in gas turbine air compressors
US9947425B2 (en) 2013-08-14 2018-04-17 Areva Gmbh Method for reducing the radioactive contamination of the surface of a component used in a nuclear reactor
JP2015175551A (en) * 2014-03-14 2015-10-05 栗田工業株式会社 Injection method of steam condensate system treatment agent and steam generation plant
DE102015120722B4 (en) * 2015-11-30 2017-07-27 Areva Gmbh Nuclear power plant and method for operating a nuclear power plant
US20210225536A1 (en) * 2017-07-11 2021-07-22 Joint Stock Company Scientific Research and Design Institute for Energy Technologies Atomproekt Method of Corrosion Rate Control of Nuclear Power Plant Process Circuit Equipment
DE102017220977A1 (en) * 2017-11-23 2019-05-23 Siemens Aktiengesellschaft Power plant with cooling system, method for operating such a power plant, method for modifying a power plant
US11474045B2 (en) 2018-04-03 2022-10-18 Framatome Gmbh Method and device for the determination of film forming amines in a liquid
EP3628922A1 (en) 2018-09-28 2020-04-01 Siemens Aktiengesellschaft Method for conditioning a low-pressure part turbine
WO2020174607A1 (en) * 2019-02-27 2020-09-03 Kurita Water Industries Ltd. Method for providing corrosion protection to a water-steam circuit
CN112992394B (en) * 2021-02-22 2022-04-15 中国核动力研究设计院 Method and system for measuring and calculating heat balance of reactor core two-phase heat and mass transfer experiment

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2315226A (en) * 1939-12-06 1943-03-30 Cochrane Corp Method of and apparatus for washing steam
DD107962A1 (en) 1973-11-21 1974-08-20
US4220194A (en) * 1978-07-24 1980-09-02 General Electric Company Scavenging of throttled MSR tube bundles
DE3904733A1 (en) 1988-02-18 1989-08-31 Kurita Water Ind Ltd CORROSION INHIBITOR
US4999161A (en) 1986-09-08 1991-03-12 Nalco Chemical Company Modified polymers incorporating fatty amines
US5026523A (en) 1989-02-09 1991-06-25 Kurita Water Industries Ltd. Process for inhibiting corrosion of vapor/condensed water system
JPH08299968A (en) 1995-05-02 1996-11-19 Otsuka Chem Co Ltd Ph adjustor for boiler water system
US5587025A (en) 1995-03-22 1996-12-24 Framatome Technologies, Inc. Nuclear steam generator chemical cleaning passivation solution
EP0807696A1 (en) 1996-05-06 1997-11-19 Faborga S.A. Alkalizing agent for water conditioning
EP0902232A1 (en) 1997-04-28 1999-03-17 Siemens Aktiengesellschaft Process for operating a device traversed by a fluid and preparation system for a fluid
JP2003343804A (en) 2002-05-30 2003-12-03 Miura Co Ltd Corrosion inhibition method for boiler system
CN1557746A (en) 2004-02-06 2004-12-29 张文利 Corrosion inhibitor for steam condensate system of industrial boiler and process for manufacturing same
JP2008190933A (en) 2007-02-02 2008-08-21 Japan Atom Power Co Ltd:The Method for evaluating concentration of ion impurity in secondary coolant at pwr-type nuclear power plant and method for operating secondary cooling system at pwr-type nuclear power plant using such evaluation system
CN101255307A (en) 2007-12-03 2008-09-03 上海中远关西涂料化工有限公司 Nuclear power plant special-purpose aqueous epoxy paint and preparation thereof
JP2008250592A (en) 2007-03-30 2008-10-16 Hitachi-Ge Nuclear Energy Ltd Plant operation method
JP2011033301A (en) 2009-08-04 2011-02-17 Kurita Water Ind Ltd Corrosion suppressing method and corrosion suppressing device for boiler device
US20140102481A1 (en) * 2012-02-28 2014-04-17 Areva Gmbh Method for conditioning a power-generating circulatory system of a power plant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1393800A (en) * 1918-04-23 1921-10-18 Lillie Samuel Morris Process for conserving heat in steam-power plants
DE2625607A1 (en) 1973-11-21 1977-05-26 Inst Energetik Rational Turbine blades erosion prevention - by metering specific quantities of surfactant into the (wet) steam

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2315226A (en) * 1939-12-06 1943-03-30 Cochrane Corp Method of and apparatus for washing steam
DD107962A1 (en) 1973-11-21 1974-08-20
DE2450253A1 (en) * 1973-11-21 1975-05-22 Inst Energetik Turbine blade erosion prevention - by addition of metered amounts of octodecylamine and morpholine
US4220194A (en) * 1978-07-24 1980-09-02 General Electric Company Scavenging of throttled MSR tube bundles
US4999161A (en) 1986-09-08 1991-03-12 Nalco Chemical Company Modified polymers incorporating fatty amines
DE3904733A1 (en) 1988-02-18 1989-08-31 Kurita Water Ind Ltd CORROSION INHIBITOR
US4975219A (en) 1988-02-18 1990-12-04 Kurita Water Industries, Ltd. Corrosion inhibitor for boiler water systems
US5026523A (en) 1989-02-09 1991-06-25 Kurita Water Industries Ltd. Process for inhibiting corrosion of vapor/condensed water system
DE69007822T2 (en) 1989-02-09 1994-07-28 Kurita Water Ind Ltd Corrosion prevention method for steam / condensate water systems.
US5587025A (en) 1995-03-22 1996-12-24 Framatome Technologies, Inc. Nuclear steam generator chemical cleaning passivation solution
JPH08299968A (en) 1995-05-02 1996-11-19 Otsuka Chem Co Ltd Ph adjustor for boiler water system
EP0807696A1 (en) 1996-05-06 1997-11-19 Faborga S.A. Alkalizing agent for water conditioning
EP0902232A1 (en) 1997-04-28 1999-03-17 Siemens Aktiengesellschaft Process for operating a device traversed by a fluid and preparation system for a fluid
JP2003343804A (en) 2002-05-30 2003-12-03 Miura Co Ltd Corrosion inhibition method for boiler system
CN1557746A (en) 2004-02-06 2004-12-29 张文利 Corrosion inhibitor for steam condensate system of industrial boiler and process for manufacturing same
JP2008190933A (en) 2007-02-02 2008-08-21 Japan Atom Power Co Ltd:The Method for evaluating concentration of ion impurity in secondary coolant at pwr-type nuclear power plant and method for operating secondary cooling system at pwr-type nuclear power plant using such evaluation system
JP2008250592A (en) 2007-03-30 2008-10-16 Hitachi-Ge Nuclear Energy Ltd Plant operation method
CN101255307A (en) 2007-12-03 2008-09-03 上海中远关西涂料化工有限公司 Nuclear power plant special-purpose aqueous epoxy paint and preparation thereof
JP2011033301A (en) 2009-08-04 2011-02-17 Kurita Water Ind Ltd Corrosion suppressing method and corrosion suppressing device for boiler device
US20140102481A1 (en) * 2012-02-28 2014-04-17 Areva Gmbh Method for conditioning a power-generating circulatory system of a power plant

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
English Translation of DE2450253, accessed on Aug. 2015. *
English Translation of JP2011033301, accessed on Aug. 2015. *
Wang Yaoxi, "To Control Corrosion of System with Amine", Electric Technology, No. 5, Dec. 31, 1983, pp. 64-66.
Zhang Yufu "Anticorrosion Technology for Shut-down Thermal Power Equipment by Using Filming Amines", China Power, vol. 34, No. 6, Jun. 30, 2001, pp. 28-30, p. 80-English abstract.
Zhang Yufu "Anticorrosion Technology for Shut-down Thermal Power Equipment by Using Filming Amines", China Power, vol. 34, No. 6, Jun. 30, 2001, pp. 28-30, p. 80—English abstract.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10137399B2 (en) * 2015-01-16 2018-11-27 Areva Gmbh Ventilation system and associated operating method for use during a serious accident in a nuclear installation

Also Published As

Publication number Publication date
US20140102481A1 (en) 2014-04-17
BR112014016787A2 (en) 2017-06-13
EP2700076B1 (en) 2016-02-24
CN104025200A (en) 2014-09-03
JP5992060B2 (en) 2016-09-14
WO2013127842A1 (en) 2013-09-06
JP2015516501A (en) 2015-06-11
WO2013127844A1 (en) 2013-09-06
CA2861551C (en) 2018-05-15
EP2700075B1 (en) 2016-01-20
KR102075390B1 (en) 2020-02-10
JP2015515537A (en) 2015-05-28
BR112014016702A2 (en) 2017-06-13
BR112014016702A8 (en) 2017-07-04
KR20140130737A (en) 2014-11-11
KR20140130738A (en) 2014-11-11
BR112014016702B1 (en) 2020-10-27
CA2863154C (en) 2018-04-24
US20140102482A1 (en) 2014-04-17
EP2700076A1 (en) 2014-02-26
ZA201403641B (en) 2015-09-30
BR112014016787A8 (en) 2017-07-04
ES2567326T3 (en) 2016-04-21
ES2572556T3 (en) 2016-06-01
CA2861551A1 (en) 2013-09-06
CA2863154A1 (en) 2013-09-06
ZA201403653B (en) 2015-07-29
KR102075378B1 (en) 2020-02-10
EP2700075A1 (en) 2014-02-26
JP5978318B2 (en) 2016-08-24
DE102012203010A1 (en) 2013-08-29
CN104040637A (en) 2014-09-10
BR112014016787B1 (en) 2020-10-27
US10315234B2 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
US9943890B2 (en) Method for cleaning and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant
JP5637867B2 (en) Plant operating method and system
RU2475568C2 (en) Corrosion-preventive method and device in hot water supply systems
Dooley et al. Flow-accelerated corrosion in steam generating plants
Betova et al. Film-Forming Amines in Steam/Water Cycles–structure, properties, and influence on corrosion and deposition processes
Rodríguez Corrosion control of nuclear steam generators under normal operation and plant-outage conditions: a review
JP2007263470A (en) Operation method of boiler apparatus
KR101410012B1 (en) Corrosion-resistant structure for high-temperature water system and corrosion-preventing method thereof
Rahman et al. Film-forming amine product as an alternative to carbohydrazide oxygen scavenger in high pressure boilers
JP2020514674A (en) Corrosion rate control method for recirculation facility of nuclear power plant
JP2007131913A (en) Anticorrosive for reducing erosion or corrosion, and method for reducing the same
Vepsäläinen Deposit formation in PWR steam generators
JP5034483B2 (en) Anticorrosive for reducing erosion and corrosion
Kumari et al. Feed water chemistry-related corrosion failures in subcritical 250 MW coal-fired boiler
Zakaria et al. Corrosion-erosion on waste heat recovery boiler system via blowdown optimization
Carvalho et al. The Chemistry and Crystallographic Characteristics of Passive Magnetite Film Formation
Petrova Implementation of water chemistry in fossil power plants with drum boilers and in combined cycle/HRSG plants
JP2008150684A5 (en)
Wang et al. Effects of water chemistry on corrosion and plugging in the copper heat exchangers of water-cooled generators in power plants
Pietralik et al. Flow-accelerated corrosion susceptibility prediction of recirculating steam generator internals
Buecker Water/Steam Treatment Programs and Chemistry Control for Heat Recovery Steam Generators

Legal Events

Date Code Title Description
AS Assignment

Owner name: AREVA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAMMINGER, UTE;FANDRICH, JOERG;ROUMIGUIERE, FERNANDO-MARIO;REEL/FRAME:031806/0158

Effective date: 20131211

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: FRAMATOME GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AREVA GMBH;REEL/FRAME:048138/0812

Effective date: 20181206

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4