JP2011033301A - Corrosion suppressing method and corrosion suppressing device for boiler device - Google Patents

Corrosion suppressing method and corrosion suppressing device for boiler device Download PDF

Info

Publication number
JP2011033301A
JP2011033301A JP2009181931A JP2009181931A JP2011033301A JP 2011033301 A JP2011033301 A JP 2011033301A JP 2009181931 A JP2009181931 A JP 2009181931A JP 2009181931 A JP2009181931 A JP 2009181931A JP 2011033301 A JP2011033301 A JP 2011033301A
Authority
JP
Japan
Prior art keywords
boiler
amine
corrosion
chain aliphatic
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009181931A
Other languages
Japanese (ja)
Other versions
JP5453990B2 (en
Inventor
Shintaro Mori
信太郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009181931A priority Critical patent/JP5453990B2/en
Publication of JP2011033301A publication Critical patent/JP2011033301A/en
Application granted granted Critical
Publication of JP5453990B2 publication Critical patent/JP5453990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion suppressing method and a corrosion suppressing device which effectively, easily and conveniently suppresses corrosion in a retrieving part of a boiler device using counteractive amine and coating forming amine together. <P>SOLUTION: The corrosion suppressing device 20 includes an addition part 30 for adding the counteractive amine and long chain aliphatic amine with the carbon number of 10 to 24 to the boiler device 60 at a constant ratio, a detection part 40 for detecting pH and/or electrical conductivity of condensed water of steam generated by a boiler 63, and a control unit 50 for controlling the addition part 30 so as to adjust the added amounts of the counteractive amine and the long chain aliphatic amine based on the detection result by the detection part 40. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、ボイラ装置の腐食抑制方法及び腐食抑制装置に関する。   The present invention relates to a corrosion control method and a corrosion suppression device for a boiler device.

従来、ボイラ装置は、ボイラで生成される蒸気から生成される復水を回収し、給水として再利用している。かかるボイラ装置では、主に、給水に含まれる重炭酸ナトリウムがボイラで熱分解されて炭酸ガスを生じ、この炭酸ガスは、蒸気とともに蒸気系統に移行し、復水中に溶解して復水のpHを低下させる。これにより、復水に接触する部分(復水の回収部)に腐食が生じ、結果として設備の減肉が誘発される。   Conventionally, a boiler device collects condensate generated from steam generated in a boiler and reuses it as feed water. In such a boiler device, sodium bicarbonate contained in the feed water is mainly pyrolyzed in the boiler to generate carbon dioxide gas, which is transferred to the steam system together with steam, dissolved in the condensate, and the pH of the condensate. Reduce. As a result, corrosion occurs in the portion that comes into contact with the condensate (condensate recovery unit), and as a result, the equipment is thinned.

そこで、ボイラ装置の回収部における腐食を抑制するため、給水又は蒸気に、中和性アミンを添加することで復水のpHを上昇させる対策が採用されている。しかし、この対策において腐食を効果的に抑制するためには、中和性アミンの添加量を適切に調節する必要がある。従来、中和性アミンの添加量の調節は、復水のpHの判定結果に基づいたり(特許文献1、2参照)、復水の炭酸濃度の測定値に基づいたり(特許文献3参照)、復水における中和性アミンの残留濃度に基づいたり(特許文献4参照)して行われている。   Therefore, in order to suppress corrosion in the recovery unit of the boiler device, a measure is taken to increase the pH of the condensate by adding a neutralizing amine to the feed water or steam. However, in order to effectively suppress corrosion in this measure, it is necessary to appropriately adjust the amount of neutralizing amine added. Conventionally, the adjustment of the addition amount of neutralizing amine is based on the determination result of the pH of the condensate (see Patent Documents 1 and 2), based on the measured value of the carbonate concentration of the condensate (see Patent Document 3), This is performed based on the residual concentration of neutralizing amine in the condensate (see Patent Document 4).

特開2003−343804号公報JP 2003-343804 A 特開2008−156698号公報JP 2008-156698 A 特開2005−337585号公報JP 2005-337585 A 特開2008−170113号公報JP 2008-170113 A

ところで、ボイラ装置に添加される腐食抑制剤として、中和性アミンの他に、オクタデシルアミン等の皮膜形成アミンが着目されている。皮膜形成アミンは、ボイラ装置に防食膜を形成することで、復水と回収部との直接的な接触を回避し、腐食を予防する機能を有する。このように、皮膜形成アミンは中和性アミンを補完することから、中和性アミンと併用すれば、ボイラ装置における腐食を大幅に抑制できることが期待される。   By the way, as a corrosion inhibitor added to a boiler apparatus, a film-forming amine such as octadecylamine is attracting attention in addition to a neutralizing amine. The film-forming amine has a function of preventing corrosion by forming a corrosion-proof film on the boiler device, thereby avoiding direct contact between the condensate and the recovery unit. Thus, since the film-forming amine complements the neutralizing amine, it is expected that the corrosion in the boiler apparatus can be significantly suppressed when used in combination with the neutralizing amine.

しかし、皮膜形成アミンを用いた場合、ボイラ装置の現場において復水中の皮膜形成アミンの濃度を測定するのは困難である。このため、皮膜形成アミンの添加量を調節するには、復水の一部を採取し実験施設にてイオンクロマトグラフィを用いて皮膜形成アミンの濃度を測定したり、復水に浸漬した試験片を適宜の間隔で採取しその腐食速度を算出したりしなければならず、作業が煩雑である。   However, when a film-forming amine is used, it is difficult to measure the concentration of the film-forming amine in the condensate at the site of the boiler apparatus. For this reason, in order to adjust the amount of film-forming amine added, a portion of the condensate is collected and the concentration of the film-forming amine is measured using ion chromatography in an experimental facility, or a test piece immersed in the condensate is removed. Samples must be taken at appropriate intervals to calculate the corrosion rate, and the work is complicated.

本発明は、以上の実情に鑑みてなされたものであり、中和性アミン及び皮膜形成アミンを併用し、ボイラ装置の回収部における腐食を効果的且つ簡便に抑制できる腐食抑制方法及び腐食抑制装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and uses a neutralizing amine and a film-forming amine in combination, and a corrosion inhibiting method and a corrosion inhibiting apparatus capable of effectively and simply inhibiting corrosion in a recovery part of a boiler device. The purpose is to provide.

本発明者は、中和性アミン及び皮膜形成アミンを一定比率で添加することで、ボイラで生成される蒸気の凝縮水のpH及び電気伝導率が、復水における皮膜形成アミン濃度を反映したものになることを見出し、本発明を完成するに至った。具体的に、本発明は以下のようなものを提供する。   The inventor added neutralizing amine and film-forming amine in a certain ratio, so that the pH and electrical conductivity of the condensed water of steam generated in the boiler reflected the film-forming amine concentration in the condensate. As a result, the present invention has been completed. Specifically, the present invention provides the following.

(1) 給水を加熱して蒸気を生成するボイラと、このボイラに給水を供給する給水部と、前記ボイラで生成される蒸気を凝縮し、生成される復水を前記給水部に戻す回収部と、を備えるボイラ装置の前記回収部における腐食を抑制する腐食抑制方法であって、
中和性アミンと炭素数10以上24以下の長鎖脂肪族アミンとを一定比率で前記ボイラ装置に添加し、
前記ボイラで生成される蒸気の凝縮水のpH及び/又は電気伝導率を検出し、この検出結果に基づいて前記中和性アミン及び前記長鎖脂肪族アミンの添加量を調節する工程を有する腐食抑制方法。
(1) A boiler that heats feed water to generate steam, a water supply unit that supplies water to the boiler, and a recovery unit that condenses the steam generated in the boiler and returns the generated condensate to the water supply unit A corrosion inhibiting method for inhibiting corrosion in the recovery part of the boiler device comprising:
Adding a neutral amine and a long-chain aliphatic amine having 10 to 24 carbon atoms to the boiler device at a constant ratio;
Corrosion having a step of detecting the pH and / or electric conductivity of steam condensate generated in the boiler and adjusting the addition amount of the neutralizing amine and the long-chain aliphatic amine based on the detection result Suppression method.

(2) 前記中和性アミン及び前記長鎖脂肪族アミンとして、これらが混合された一液の腐食抑制剤を用いる(1)記載の腐食抑制方法。   (2) The method for inhibiting corrosion according to (1), wherein the neutralizing amine and the long-chain aliphatic amine use a one-component corrosion inhibitor mixed with these.

(3) 給水を加熱して蒸気を生成するボイラと、このボイラに給水を供給する給水部と、前記ボイラで生成される蒸気を凝縮し、生成される復水を前記給水部に戻す回収部と、を備えるボイラ装置の前記回収部における腐食を抑制する腐食抑制装置であって、
中和性アミンと炭素数10以上24以下の長鎖脂肪族アミンとを一定比率で前記ボイラ装置に添加する添加手段と、
前記ボイラで生成される蒸気の凝縮水のpH及び/又は電気伝導率を検出する検出手段と、
前記検出手段による検出結果に基づいて、前記中和性アミン及び前記長鎖脂肪族アミンの添加量を調節するよう前記添加手段を制御する制御手段と、を備える腐食抑制装置。
(3) A boiler that heats feed water to generate steam, a water supply unit that supplies water to the boiler, and a recovery unit that condenses the steam generated by the boiler and returns the generated condensate to the water supply unit A corrosion suppressing device for suppressing corrosion in the recovery unit of the boiler device comprising:
An adding means for adding a neutral amine and a long-chain aliphatic amine having 10 to 24 carbon atoms to the boiler device at a constant ratio;
Detection means for detecting the pH and / or electrical conductivity of the condensed water of the steam generated in the boiler;
A corrosion inhibiting device comprising: control means for controlling the addition means so as to adjust the addition amount of the neutralizing amine and the long-chain aliphatic amine based on the detection result by the detection means.

本発明によれば、中和性アミン及び炭素数10以上24以下の長鎖脂肪族アミン(皮膜形成アミン)を一定比率で添加するので、ボイラで生成される蒸気の凝縮水のpH及び電気伝導率が、復水における炭素数10以上24以下の長鎖脂肪族アミン濃度を反映したものになる。このため、ボイラで生成される蒸気の凝縮水のpH及び/又は電気伝導率を検出し、その検出結果に基づいてアミンの添加総量を調節するだけで、復水における炭素数10以上24以下の長鎖脂肪族アミン濃度が所望の範囲に調整される。したがって、中和性アミン及び皮膜形成アミンを併用し、ボイラ装置の回収部における腐食を効果的且つ簡便に抑制できる。   According to the present invention, the neutralizing amine and the long chain aliphatic amine having 10 to 24 carbon atoms (film-forming amine) are added at a constant ratio, so that the pH and electrical conductivity of the condensed water of the steam generated in the boiler The rate reflects the concentration of long chain aliphatic amine having 10 to 24 carbon atoms in the condensate. For this reason, it is possible to detect the pH and / or electrical conductivity of steam condensate produced in the boiler, and adjust the total amount of amine added based on the detection result, so that the number of carbon atoms in the condensate is 10 to 24. The long chain aliphatic amine concentration is adjusted to the desired range. Therefore, the neutralization amine and the film-forming amine are used in combination, and corrosion in the recovery unit of the boiler device can be effectively and simply suppressed.

本発明の一実施形態に係る腐食抑制装置のブロック図である。It is a block diagram of the corrosion control device concerning one embodiment of the present invention. 本発明の一実施形態に係る腐食抑制方法を実施した際の蒸気の凝縮水のpHの推移を示すグラフである。It is a graph which shows transition of pH of the condensed water of steam at the time of implementing the corrosion control method concerning one embodiment of the present invention. 蒸気の凝縮水のpHと、凝縮水中の長鎖脂肪族アミン濃度との関係を示すグラフである。It is a graph which shows the relationship between the pH of the condensed water of a vapor | steam, and the long-chain aliphatic amine density | concentration in condensed water.

以下、本発明の実施形態について説明するが、本発明はこれに特に限定されるものではない。   Hereinafter, although embodiment of this invention is described, this invention is not specifically limited to this.

図1は、本発明の一実施形態に係る腐食抑制装置20のブロック図である。図1に示されるように、ボイラシステム10はボイラ装置60及び腐食抑制装置20を備える。各要素の詳細を以下説明する。   FIG. 1 is a block diagram of a corrosion inhibiting device 20 according to an embodiment of the present invention. As shown in FIG. 1, the boiler system 10 includes a boiler device 60 and a corrosion suppression device 20. Details of each element will be described below.

[ボイラ装置]
ボイラ装置60は、給水を後述のボイラ63に供給する給水部61を備える。具体的に、給水部61は軟水器611を有し、この軟水器611は原水からカルシウム成分、マグネシウム成分等の硬度成分を除去し、軟水を調製する。この軟水は給水タンク613に導入され、必要に応じて貯留された後、所望量の軟水が給水ポンプ617の駆動力で給水路615を通じてボイラ63へと供給される。
[Boiler equipment]
The boiler device 60 includes a water supply unit 61 that supplies water to a boiler 63 described later. Specifically, the water supply unit 61 includes a water softener 611, which removes hardness components such as calcium components and magnesium components from raw water to prepare soft water. After this soft water is introduced into the water supply tank 613 and stored as necessary, a desired amount of soft water is supplied to the boiler 63 through the water supply path 615 by the driving force of the water supply pump 617.

ボイラ装置60のボイラ63は、給水部61から供給された給水を加熱して蒸気を生成し、この蒸気はボイラ装置60の回収部65で凝縮され、生成された復水が給水部61に戻される。具体的に、ボイラ63からの蒸気は蒸気回収路651を通じてヘッダ653に回収され、このヘッダ653から延びる蒸気導入路655及び採取路42へと所望の割合で分配される。蒸気導入路655に分配された方の蒸気は蒸気負荷部657に導入され、この蒸気負荷部657で凝縮されることで、復水が生成される。この復水は復水回収路659を通じて給水タンク613に回収され、ボイラ63の給水として再利用される。   The boiler 63 of the boiler device 60 heats the feed water supplied from the water supply unit 61 to generate steam. The steam is condensed in the recovery unit 65 of the boiler device 60, and the generated condensate is returned to the water supply unit 61. It is. Specifically, the steam from the boiler 63 is recovered in the header 653 through the steam recovery path 651 and distributed to the steam introduction path 655 and the sampling path 42 extending from the header 653 at a desired ratio. The steam distributed to the steam introduction path 655 is introduced into the steam load section 657 and condensed by the steam load section 657, thereby generating condensate. This condensate is recovered in the water supply tank 613 through the condensate recovery path 659 and reused as water supply for the boiler 63.

かかるボイラ装置60では、主に、給水に含まれる重炭酸ナトリウムがボイラ63で熱分解されて炭酸ガスを生じ、この炭酸ガスは、蒸気とともに回収部65に移行し、復水中に溶解して復水のpHを低下させる。このため、特に、復水に接触する蒸気負荷部657、復水回収路659等の回収部65に腐食が生じやすい。そこで、かかる腐食を抑制するための装置を以下説明する。   In such a boiler device 60, sodium bicarbonate contained in the feed water is mainly thermally decomposed in the boiler 63 to generate carbon dioxide gas. This carbon dioxide gas is transferred to the recovery unit 65 together with the steam, dissolved in the condensate, and recovered. Reduce the pH of the water. For this reason, in particular, corrosion is likely to occur in the recovery portions 65 such as the steam load portion 657 and the condensate recovery path 659 that come into contact with the condensate. An apparatus for suppressing such corrosion will be described below.

[腐食抑制装置]
腐食抑制装置20は、添加手段としての添加部30、検出手段としての検出部40、及び制御手段としての制御部50を備える。添加部30は、腐食抑制剤を貯留する抑制剤タンク31を有し、この抑制剤タンク31内の腐食抑制剤が抑制剤供給路33を通じて給水路615に供給される。給水路615に供給された腐食抑制剤は、給水とともにボイラ63内で加熱された蒸気になって回収部65へ移行し、腐食を抑制する。腐食抑制剤の供給の量及びタイミングは、抑制剤供給ポンプ35の駆動によって変更可能である。なお、腐食抑制剤の添加箇所は、本実施形態では給水路615としたが、これに限られず、給水部61の適宜箇所及び/又はボイラ63及び/又はヘッダ653の近傍等であってよい。
[Corrosion suppression device]
The corrosion suppression apparatus 20 includes an addition unit 30 as an addition unit, a detection unit 40 as a detection unit, and a control unit 50 as a control unit. The addition unit 30 includes an inhibitor tank 31 that stores the corrosion inhibitor, and the corrosion inhibitor in the inhibitor tank 31 is supplied to the water supply passage 615 through the inhibitor supply passage 33. The corrosion inhibitor supplied to the water supply channel 615 becomes steam heated in the boiler 63 together with the water supply and moves to the recovery unit 65 to suppress corrosion. The amount and timing of supplying the corrosion inhibitor can be changed by driving the inhibitor supply pump 35. In addition, although the addition place of the corrosion inhibitor was the water supply path 615 in this embodiment, it is not restricted to this, The vicinity of the appropriate place of the water supply part 61 and / or the boiler 63 and / or the header 653, etc. may be sufficient.

本発明では、腐食抑制剤として、中和性アミンと、炭素数10以上24以下の長鎖脂肪族アミンとを併用する。なお、腐食抑制剤としては、必要に応じて中和性アミン及び長鎖脂肪族アミンの他に、従来周知の任意成分を併用してもよい。   In the present invention, as the corrosion inhibitor, a neutralizing amine and a long chain aliphatic amine having 10 to 24 carbon atoms are used in combination. In addition, as a corrosion inhibitor, you may use conventionally well-known arbitrary components together with a neutralizing amine and a long-chain aliphatic amine as needed.

中和性アミンは、揮発性のアミン系化合物であれば特に限定されないが、例えばシクロヘキシルアミン、モルホリン、モノエタノールアミン、モノイソプロパノールアミン、ジエチルエタノールアミン、2−アミノ−2−メチル−1−プロパノール、及びアンモニア等からなる群より選ばれる1種以上であってよい。かかる中和性アミンは、復水のpHを上昇することで腐食を抑制する。   The neutralizing amine is not particularly limited as long as it is a volatile amine compound. For example, cyclohexylamine, morpholine, monoethanolamine, monoisopropanolamine, diethylethanolamine, 2-amino-2-methyl-1-propanol, And one or more selected from the group consisting of ammonia and the like. Such neutralizing amine suppresses corrosion by raising the pH of condensate.

長鎖脂肪族アミンは、腐食が特に問題になる蒸気負荷部657、復水回収路659等の回収部65内に防食膜を形成し、腐食を予防する。長鎖脂肪族基の炭素数は、過小であると防食膜の形成能が不充分になりやすく、過大であるとエマルションがゲル化して安定性が不充分になりやすい。そこで、長鎖脂肪族基の炭素数は10以上24以下であり、好ましくは10以上22以下、より好ましくは12以上20以下である。   Long-chain aliphatic amines prevent corrosion by forming an anticorrosion film in the recovery part 65 such as the steam load part 657 and the condensate recovery path 659 where corrosion is a particular problem. If the number of carbon atoms of the long-chain aliphatic group is too small, the ability to form an anticorrosion film tends to be insufficient, and if it is too large, the emulsion will gel and the stability tends to be insufficient. Therefore, the carbon number of the long-chain aliphatic group is 10 or more and 24 or less, preferably 10 or more and 22 or less, more preferably 12 or more and 20 or less.

なお、長鎖脂肪族アミン化合物を構成する長鎖脂肪族基は、不飽和結合を含まなくても、含んでいてもよい。また、長鎖脂肪族アミン化合物を構成するアミノ基は、その水素部分がメチル基、エチル基等の炭化水素基で置換されていてもよい。長鎖脂肪族アミン化合物は、脂肪酸塩であってもよい。この場合、脂肪酸塩を構成する脂肪酸としては、例えば、オレイン酸、ラウリン酸及びステアリン酸が挙げられる。   The long chain aliphatic group constituting the long chain aliphatic amine compound may or may not contain an unsaturated bond. In the amino group constituting the long-chain aliphatic amine compound, the hydrogen portion may be substituted with a hydrocarbon group such as a methyl group or an ethyl group. The long chain aliphatic amine compound may be a fatty acid salt. In this case, examples of the fatty acid constituting the fatty acid salt include oleic acid, lauric acid, and stearic acid.

長鎖脂肪族アミンの具体例としては、特に限定されないが、例えば、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ヘプタデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ノナデシルアミン、エイコシルアミン、ドコシルアミン等の飽和脂肪族アミン、オレイルアミン、リシノレイルアミン、リノレイルアミン、リノレニルアミン等の不飽和脂肪族アミン、ヤシ油アミン、硬化牛脂アミン等の混合アミンの1種以上が挙げられる。中でも、米国FDA規格においてボイラ水用添加剤として認可されており、ボイラから発生した蒸気が漏れても安全性の面で問題がないので、食品製造業等においても使用できる点で、オクタデシルアミンが好ましい。   Specific examples of the long-chain aliphatic amine are not particularly limited, but are saturated such as dodecylamine, tridecylamine, tetradecylamine, heptadecylamine, hexadecylamine, octadecylamine, nonadecylamine, eicosylamine, docosylamine and the like. One or more kinds of mixed amines such as unsaturated aliphatic amines such as aliphatic amines, oleyl amines, ricinoleyl amines, linoleyl amines, linoleyl amines, coconut oil amines, and hardened tallow amines may be mentioned. Above all, it is approved as an additive for boiler water in the US FDA standard, and there is no problem in terms of safety even if steam generated from the boiler leaks, so octadecylamine is used in the food manufacturing industry. preferable.

なお、腐食抑制剤に加えて、ボイラ63でのスケールを抑制するため、清缶剤を添加してもよい。本実施形態では、添加部30の清缶剤タンク36に貯留されている清缶剤が、清缶剤供給ポンプ38の駆動力で清缶剤供給路37を通じて給水路615へと導入されている。なお、清缶剤の添加の場所及びタイミングは、腐食抑制剤と独立であってよく、清缶剤の成分は適宜選択されてよい。   In addition to the corrosion inhibitor, in order to suppress the scale in the boiler 63, a cleansing agent may be added. In the present embodiment, the cleaning agent stored in the cleaning agent tank 36 of the addition unit 30 is introduced into the water supply channel 615 through the cleaning agent supply channel 37 by the driving force of the cleaning agent supply pump 38. . In addition, the location and timing of the addition of the canning agent may be independent of the corrosion inhibitor, and the components of the canning agent may be appropriately selected.

このように、長鎖脂肪族アミンは中和性アミンを補完することから、中和性アミンと併用すれば、ボイラ装置60における腐食を大幅に抑制できることが期待される。ただし、腐食を効果的に抑制するためには、特に長鎖脂肪族アミンの添加量を簡便に適切化することが必要である。しかし、驚くべきことに本発明者は、後述の実施例で示すように、中和性アミン及び長鎖脂肪族アミンを一定比率で添加することで、ボイラで生成される蒸気の凝縮水のpH及び電気伝導率が、復水における長鎖脂肪族アミン濃度を反映したものになることを見出した。   Thus, since the long-chain aliphatic amine complements the neutralizing amine, it is expected that the corrosion in the boiler device 60 can be significantly suppressed when used in combination with the neutralizing amine. However, in order to effectively suppress corrosion, it is particularly necessary to simply optimize the amount of long-chain aliphatic amine added. Surprisingly, however, the inventor added the neutralizing amine and the long-chain aliphatic amine at a constant ratio, as shown in the examples described later, so that the pH of the condensed water of the steam generated in the boiler was increased. And the electrical conductivity was found to reflect the long chain aliphatic amine concentration in the condensate.

そこで、本発明では、中和性アミンと長鎖脂肪族アミンとを一定比率で添加する。ここで、「一定比率」とは、比率が常時一定であることに限定されず、適宜設定される期間の比率平均値が一定であることも包含する。また、中和性アミン及び長鎖脂肪族アミンが添加されるタイミング及び場所は、同一でも異なっていてもよい。ただし、添加設備を簡素化できる点及び比率を正確に設定できる点では、本実施形態のように中和性アミン及び長鎖脂肪族アミンが混合された一液の腐食抑制剤を用いることが好ましい。   Therefore, in the present invention, the neutralizing amine and the long-chain aliphatic amine are added at a constant ratio. Here, the “constant ratio” is not limited to that the ratio is always constant, but also includes that the ratio average value of a period set as appropriate is constant. Moreover, the timing and place where the neutralizing amine and the long-chain aliphatic amine are added may be the same or different. However, it is preferable to use a one-part corrosion inhibitor in which a neutralizing amine and a long-chain aliphatic amine are mixed, as in this embodiment, in that the addition equipment can be simplified and the ratio can be accurately set. .

また、検出部40は、ボイラで生成される蒸気の凝縮水のpH及び/又は電気伝導率を検出する。具体的に、前述したヘッダ653から延びる採取路42には採取弁421が設けられていて、この採取弁421の開閉に応じて、採取路42に蒸気の一部が分配されてくる。採取路42に分配された蒸気は熱交換器41へと導入され、この熱交換器41で冷却されて凝縮水になる。この凝縮水は、導入弁431の開閉に応じ凝縮水導入路43を通じてpH計45へと導入され、このpH計45でpHを検出された後、排出される。   Moreover, the detection part 40 detects the pH and / or electrical conductivity of the condensed water of the vapor | steam produced | generated with a boiler. Specifically, a sampling valve 421 is provided in the sampling path 42 extending from the header 653 described above, and a part of the steam is distributed to the sampling path 42 according to the opening and closing of the sampling valve 421. The steam distributed to the collection channel 42 is introduced into the heat exchanger 41, and is cooled by the heat exchanger 41 to become condensed water. The condensed water is introduced into the pH meter 45 through the condensed water introduction passage 43 according to the opening and closing of the introduction valve 431, and is discharged after the pH is detected by the pH meter 45.

pH計45で検出されたpHの情報(検出結果)は、制御部50に送信される。この制御部50は、検出結果に基づいて、中和性アミン及び長鎖脂肪族アミンの添加量を調節するよう抑制剤供給ポンプ35を制御する。具体的に制御部50は、pHが所望範囲より小さい場合には、添加量を増加させ、pHが所望範囲より大きい場合には、添加量を低下させる。これにより、pHが所望範囲に収まる結果、復水における長鎖脂肪族アミン濃度も所望の範囲に調整することができる。また、所望範囲を元来腐食の生じにくい範囲(例えば6以上)に設定することで、腐食を相乗的に抑制することができる。なお、pH計45は従来周知の装置であってよい。   Information (detection result) on the pH detected by the pH meter 45 is transmitted to the control unit 50. The control unit 50 controls the inhibitor supply pump 35 so as to adjust the addition amount of the neutralizing amine and the long-chain aliphatic amine based on the detection result. Specifically, the control unit 50 increases the addition amount when the pH is smaller than the desired range, and decreases the addition amount when the pH is larger than the desired range. Thereby, as a result of the pH falling within the desired range, the long-chain aliphatic amine concentration in the condensate can also be adjusted to the desired range. Moreover, corrosion can be suppressed synergistically by setting a desired range to the range (for example, 6 or more) from which corrosion does not occur easily. The pH meter 45 may be a conventionally known device.

本実施形態では、制御の精度を向上するため、凝縮水のpH値を測定したが、これに限られず、pHが所定範囲に属するか否かを検出してもよい。例えば、pHに応じて呈色する指示薬を凝縮水に添加し、添加後の色を機械的もしくは目視により監視することで、凝縮水のpHが所定範囲に属するか否かを検出できる。   In the present embodiment, the pH value of the condensed water is measured in order to improve control accuracy. However, the present invention is not limited to this, and it may be detected whether the pH belongs to a predetermined range. For example, it is possible to detect whether or not the pH of the condensed water belongs to a predetermined range by adding an indicator that colors according to pH to the condensed water and monitoring the color after the addition mechanically or visually.

また、中和性アミン及び長鎖脂肪族アミンの添加量の調節は、凝縮水のpHに代えてもしくはpHとともに、電気伝導率の検出結果に基づいて行ってもよい。電気伝導率の検出は、従来周知の測定器を用い、常法に従って行えばよい。   Moreover, you may adjust the addition amount of a neutralizing amine and a long-chain aliphatic amine based on the detection result of an electrical conductivity instead of the pH of condensed water or with pH. The electrical conductivity may be detected by a conventional method using a conventionally known measuring instrument.

なお、本実施形態で検出対象とした凝縮水は、ヘッダ653から分配された蒸気が凝縮したものであるが、これに限られず、蒸気負荷部657の直前にヘッダを設け、このヘッダから分配された蒸気が凝縮したものであってもよく、あるいは復水回収路659を流通する復水の一部であってもよい。   Note that the condensed water targeted for detection in the present embodiment is obtained by condensing the steam distributed from the header 653. However, the present invention is not limited to this, and a header is provided immediately before the steam load unit 657 and distributed from this header. The vapor may be condensed or a part of the condensate flowing through the condensate recovery path 659 may be used.

図1に示すボイラシステム10を使用し、40℃において空気中の酸素で飽和させた厚木市水の軟化水を容量5リットルの実験用電気ボイラ63に給水し、温度183℃、圧力1MPa、蒸気発生量12リットル/時、ブロー率10%の条件で運転して、3日間に亘り蒸気を発生させた。また、中和性アミンとしてのアミノメチルプロパノールと、長鎖脂肪族アミンとしてのオクタデシルアミンとを一定比率(アミノメチルプロパノール:オクタデシルアミン=37:1.5(質量比))で含有する腐食抑制剤を、抑制剤供給路33から給水路615へと添加した。   Using the boiler system 10 shown in FIG. 1, softened water of Atsugi city water saturated with oxygen in the air at 40 ° C. is supplied to a 5 liter experimental electric boiler 63, temperature 183 ° C., pressure 1 MPa, steam The steam was generated for 3 days by operating at a generation rate of 12 liters / hour and a blow rate of 10%. Further, a corrosion inhibitor containing aminomethylpropanol as a neutralizing amine and octadecylamine as a long-chain aliphatic amine at a constant ratio (aminomethylpropanol: octadecylamine = 37: 1.5 (mass ratio)). Was added from the inhibitor supply path 33 to the water supply path 615.

ボイラ63から発生した蒸気を少量ずつ継続的に採取路42に分配し、凝縮水のpHをpH計45で測定した。実施例では、この測定値の増減に応じて腐食抑制剤の添加量を調節することで、凝縮水のpHを約6に一定化させ続けた。また、比較例では、腐食抑制剤の添加量を調節せず、一定値に固定し続けた。実施例及び比較例における凝縮水のpHの推移を図2に示す。   The steam generated from the boiler 63 was continuously distributed to the collection channel 42 little by little, and the pH of the condensed water was measured with a pH meter 45. In the examples, the pH of the condensed water was kept constant at about 6 by adjusting the addition amount of the corrosion inhibitor according to the increase or decrease of the measured value. Moreover, in the comparative example, the addition amount of the corrosion inhibitor was not adjusted and kept fixed at a constant value. The transition of the pH of the condensed water in Examples and Comparative Examples is shown in FIG.

また、実施例及び比較例において、復水回収路659を流通する復水の一部を継続的に回収し、イオンクロマトグラフによりオクタデシルアミン濃度を分析した。オクタデシルアミン(ODA)濃度と、凝縮水のpHとの関係を図3に示す。また、図1に示す各時点における凝縮水のpH、及びオクタデシルアミン濃度を表1にまとめた。   In Examples and Comparative Examples, a part of the condensate flowing through the condensate recovery path 659 was continuously recovered, and the octadecylamine concentration was analyzed by ion chromatography. The relationship between the octadecylamine (ODA) concentration and the pH of the condensed water is shown in FIG. In addition, the pH of the condensed water and the octadecylamine concentration at each time point shown in FIG.

比較例では、凝縮水のpHが4.9から6.7まで大きく変動し(図2)、復水中のオクタデシルアミン濃度も同様に大きく変動していた(図3)。これに対し、実施例では、凝縮水のpHが約6で安定して推移し(図2)、復水中のオクタデシルアミン濃度の変動幅は比較例よりはるかに狭かった(図3)。   In the comparative example, the pH of the condensed water varied greatly from 4.9 to 6.7 (FIG. 2), and the octadecylamine concentration in the condensate also varied significantly (FIG. 3). In contrast, in the examples, the pH of the condensed water was stable at about 6 (FIG. 2), and the fluctuation range of the octadecylamine concentration in the condensate was much narrower than that of the comparative example (FIG. 3).

これにより、中和性アミン及び長鎖脂肪族アミンを一定比率で添加する場合、復水中の長鎖脂肪族アミン濃度を、ボイラで生成される蒸気の凝縮水のpHに基づいて好適に制御できることが分かった。   Thereby, when neutralizing amine and long-chain aliphatic amine are added at a constant ratio, the long-chain aliphatic amine concentration in the condensate can be suitably controlled based on the pH of the condensed water of steam generated in the boiler. I understood.

水中の中和性アミン濃度は、当該水の電気伝導率と相関性があることが知られている。この事実及び上記結論を踏まえると、中和性アミン及び長鎖脂肪族アミンを一定比率で添加する場合、復水中の中和性アミン濃度、及びこの中和性アミン濃度と一定関係にある長鎖脂肪族アミン濃度を、ボイラで生成される蒸気の凝縮水の電気伝導率に基づいても、好適に制御できることが推測される。   It is known that the neutralizing amine concentration in water correlates with the electrical conductivity of the water. Based on this fact and the above conclusion, when a neutralizing amine and a long-chain aliphatic amine are added at a certain ratio, the neutralizing amine concentration in the condensate and the long-chain having a certain relationship with the neutralizing amine concentration are determined. It is presumed that the aliphatic amine concentration can also be suitably controlled based on the electric conductivity of the condensed water of the steam generated in the boiler.

したがって、ボイラで生成される蒸気の凝縮水のpH及び/又は電気伝導率を検出し、その検出結果に基づいてアミンの添加総量を調節するだけで、復水における炭素数10以上24以下の長鎖脂肪族アミン濃度が所望の範囲に調整されるので、中和性アミン及び皮膜形成アミンを併用し、ボイラ装置の回収部における腐食を効果的且つ簡便に抑制できることが分かった。   Therefore, by detecting the pH and / or electrical conductivity of steam condensate produced in the boiler, and adjusting the total amount of amine added based on the detection result, the length of carbon in the condensate is 10-24. Since the chain aliphatic amine concentration was adjusted to the desired range, it was found that the neutralization amine and the film-forming amine can be used in combination to effectively and easily suppress corrosion in the recovery unit of the boiler device.

20 腐食抑制装置
30 添加部(添加手段)
40 検出部(検出手段)
50 制御部(制御手段)
60 ボイラ装置
61 給水部
63 ボイラ
65 回収部
20 Corrosion inhibitor 30 Addition part (addition means)
40 Detection unit (detection means)
50 Control unit (control means)
60 Boiler device 61 Water supply unit 63 Boiler 65 Recovery unit

Claims (3)

給水を加熱して蒸気を生成するボイラと、このボイラに給水を供給する給水部と、前記ボイラで生成される蒸気を凝縮し、生成される復水を前記給水部に戻す回収部と、を備えるボイラ装置の前記回収部における腐食を抑制する腐食抑制方法であって、
中和性アミンと炭素数10以上24以下の長鎖脂肪族アミンとを一定比率で前記ボイラ装置に添加し、
前記ボイラで生成される蒸気の凝縮水のpH及び/又は電気伝導率を検出し、この検出結果に基づいて前記中和性アミン及び前記長鎖脂肪族アミンの添加量を調節する工程を有する腐食抑制方法。
A boiler that generates steam by heating feed water, a water supply unit that supplies the boiler with water, and a recovery unit that condenses the steam generated in the boiler and returns the generated condensate to the water supply unit. A corrosion suppressing method for suppressing corrosion in the recovery unit of the boiler device comprising:
Adding a neutral amine and a long-chain aliphatic amine having 10 to 24 carbon atoms to the boiler device at a constant ratio;
Corrosion having a step of detecting the pH and / or electric conductivity of steam condensate generated in the boiler and adjusting the addition amount of the neutralizing amine and the long-chain aliphatic amine based on the detection result Suppression method.
前記中和性アミン及び前記長鎖脂肪族アミンとして、これらが混合された一液の腐食抑制剤を用いる請求項1記載の腐食抑制方法。   The corrosion inhibition method according to claim 1, wherein the neutralizing amine and the long-chain aliphatic amine are a one-component corrosion inhibitor mixed with these. 給水を加熱して蒸気を生成するボイラと、このボイラに給水を供給する給水部と、前記ボイラで生成される蒸気を凝縮し、生成される復水を前記給水部に戻す回収部と、を備えるボイラ装置の前記回収部における腐食を抑制する腐食抑制装置であって、
中和性アミンと炭素数10以上24以下の長鎖脂肪族アミンとを一定比率で前記ボイラ装置に添加する添加手段と、
前記ボイラで生成される蒸気の凝縮水のpH及び/又は電気伝導率を検出する検出手段と、
前記検出手段による検出結果に基づいて、前記中和性アミン及び前記長鎖脂肪族アミンの添加量を調節するよう前記添加手段を制御する制御手段と、を備える腐食抑制装置。
A boiler that generates steam by heating feed water, a water supply unit that supplies the boiler with water, and a recovery unit that condenses the steam generated in the boiler and returns the generated condensate to the water supply unit. A corrosion suppression device that suppresses corrosion in the recovery unit of the boiler device comprising:
An adding means for adding a neutral amine and a long-chain aliphatic amine having 10 to 24 carbon atoms to the boiler device at a constant ratio;
Detection means for detecting the pH and / or electrical conductivity of the condensed water of the steam generated in the boiler;
A corrosion inhibiting device comprising: control means for controlling the addition means so as to adjust the addition amount of the neutralizing amine and the long-chain aliphatic amine based on the detection result by the detection means.
JP2009181931A 2009-08-04 2009-08-04 Corrosion inhibiting method and corrosion inhibiting apparatus for boiler equipment Active JP5453990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181931A JP5453990B2 (en) 2009-08-04 2009-08-04 Corrosion inhibiting method and corrosion inhibiting apparatus for boiler equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181931A JP5453990B2 (en) 2009-08-04 2009-08-04 Corrosion inhibiting method and corrosion inhibiting apparatus for boiler equipment

Publications (2)

Publication Number Publication Date
JP2011033301A true JP2011033301A (en) 2011-02-17
JP5453990B2 JP5453990B2 (en) 2014-03-26

Family

ID=43762546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181931A Active JP5453990B2 (en) 2009-08-04 2009-08-04 Corrosion inhibiting method and corrosion inhibiting apparatus for boiler equipment

Country Status (1)

Country Link
JP (1) JP5453990B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127842A1 (en) * 2012-02-28 2013-09-06 Areva Gmbh Method for purifying and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant
JP2017154049A (en) * 2016-02-29 2017-09-07 栗田工業株式会社 Boiler-water water treatment method
JP2017172838A (en) * 2016-03-22 2017-09-28 三浦工業株式会社 Drain recovery system
JP2017194251A (en) * 2016-04-22 2017-10-26 三浦工業株式会社 Drain recovery system
JP2019137957A (en) * 2018-02-15 2019-08-22 栗田工業株式会社 Method for improving steam heating efficiency and papermaking method
JP2019163883A (en) * 2018-03-19 2019-09-26 栗田工業株式会社 Boiler water concentration magnification measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131778A (en) * 1999-10-29 2001-05-15 Kurita Water Ind Ltd Chemical agent for water treatment
JP2003343804A (en) * 2002-05-30 2003-12-03 Miura Co Ltd Corrosion inhibition method for boiler system
JP2005337585A (en) * 2004-05-27 2005-12-08 Miura Co Ltd Boiler device and its corrosion suppressing method
JP2008157582A (en) * 2006-12-26 2008-07-10 Miura Co Ltd Corrosion inhibitor supplying method in steam boiler device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131778A (en) * 1999-10-29 2001-05-15 Kurita Water Ind Ltd Chemical agent for water treatment
JP2003343804A (en) * 2002-05-30 2003-12-03 Miura Co Ltd Corrosion inhibition method for boiler system
JP2005337585A (en) * 2004-05-27 2005-12-08 Miura Co Ltd Boiler device and its corrosion suppressing method
JP2008157582A (en) * 2006-12-26 2008-07-10 Miura Co Ltd Corrosion inhibitor supplying method in steam boiler device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515537A (en) * 2012-02-28 2015-05-28 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツングAreva GmbH Power plant circuit conditioning methods useful for energy production
KR102075378B1 (en) * 2012-02-28 2020-02-10 프라마톰 게엠베하 Method for purifying and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant
CN104025200A (en) * 2012-02-28 2014-09-03 阿海珐有限公司 Method for purifying and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant
CN104040637A (en) * 2012-02-28 2014-09-10 阿海珐有限公司 Method for cleaning and conditioning the water-steam circuit of a power plant
KR20140130738A (en) * 2012-02-28 2014-11-11 아레바 게엠베하 Method for conditioning a power-generating circulatory system of a power plant
KR20140130737A (en) * 2012-02-28 2014-11-11 아레바 게엠베하 Method for purifying and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant
WO2013127844A1 (en) * 2012-02-28 2013-09-06 Areva Gmbh Method for conditioning a power-generating circulatory system of a power plant
JP2015516501A (en) * 2012-02-28 2015-06-11 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツングAreva GmbH Methods for purification and conditioning of water and steam circuits in power plants
WO2013127842A1 (en) * 2012-02-28 2013-09-06 Areva Gmbh Method for purifying and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant
KR102075390B1 (en) * 2012-02-28 2020-02-10 프라마톰 게엠베하 Method for conditioning a power-generating circulatory system of a power plant
US10315234B2 (en) 2012-02-28 2019-06-11 Framatome Gmbh Method for conditioning a power-generating circulatory system of a power plant
US9943890B2 (en) 2012-02-28 2018-04-17 Areva Gmbh Method for cleaning and conditioning the water-steam circuit of a power plant, especially of a nuclear power plant
JP2017154049A (en) * 2016-02-29 2017-09-07 栗田工業株式会社 Boiler-water water treatment method
JP2017172838A (en) * 2016-03-22 2017-09-28 三浦工業株式会社 Drain recovery system
JP2017194251A (en) * 2016-04-22 2017-10-26 三浦工業株式会社 Drain recovery system
WO2019159469A1 (en) * 2018-02-15 2019-08-22 栗田工業株式会社 Method for improving efficiency of heating with steam and method for making paper
JP2019137957A (en) * 2018-02-15 2019-08-22 栗田工業株式会社 Method for improving steam heating efficiency and papermaking method
CN111032955A (en) * 2018-02-15 2020-04-17 栗田工业株式会社 Method for improving efficiency of heating by steam and papermaking method
EP3754108A4 (en) * 2018-02-15 2021-11-17 Kurita Water Industries Ltd. Method for improving efficiency of heating with steam and method for making paper
US11186951B2 (en) 2018-02-15 2021-11-30 Kurita Water Industries Ltd. Method for enhancing efficiency of heating with steam, and papermaking method
JP2019163883A (en) * 2018-03-19 2019-09-26 栗田工業株式会社 Boiler water concentration magnification measuring device

Also Published As

Publication number Publication date
JP5453990B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5453990B2 (en) Corrosion inhibiting method and corrosion inhibiting apparatus for boiler equipment
KR100342269B1 (en) Oxygen scavenger and boiler water treatment chemical
JP3962919B2 (en) Metal anticorrosive, metal anticorrosion method, hydrogen chloride generation inhibitor and method for preventing hydrogen chloride generation in crude oil atmospheric distillation equipment
JPH0630768B2 (en) Oxygen scavenger composition and method
JP5800044B2 (en) Descaling method and descaling agent for steam generating equipment
JP5773091B2 (en) Descale method for steam generating equipment
JPH0623394A (en) Composition and method for removing oxygen
TW201945679A (en) Vapor condensation method
TW201231726A (en) Anticorrosive agent for boiler
JP2010181118A (en) Water treatment method in steam generation plant
WO2008041569A1 (en) Corrosion inhibitor and method of inhibiting corrosion
JP6699234B2 (en) Boiler water treatment method
JP3855961B2 (en) Oxygen absorber and deoxygenation method
JP2008156700A (en) Condensed water treatment agent
JP3356140B2 (en) Water treatment chemicals
JP5900064B2 (en) Water treatment method for a boiler having an economizer
TW201915218A (en) Corrosion suppression method for copper-based material
JP2006274337A (en) Treatment agent and treatment method for boiler water
JP5879699B2 (en) Corrosion prevention method for boiler water supply system
JP2013068341A (en) Method for preventing corrosion of economizer in boiler
JP3896587B2 (en) Method for removing dissolved oxygen from water plants
JP6144399B1 (en) Steam condensate corrosion inhibitor and corrosion inhibition method
JP2003004203A (en) Method for operating softened water specification steam boiler
JP5640608B2 (en) Oxygen removing method and oxygen removing agent
JP2002256466A (en) Corrosion inhibitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5453990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250