US9856346B2 - Lignin-based biomass epoxy resin, method for manufacturing the same, and compositions including the same - Google Patents
Lignin-based biomass epoxy resin, method for manufacturing the same, and compositions including the same Download PDFInfo
- Publication number
- US9856346B2 US9856346B2 US14/879,871 US201514879871A US9856346B2 US 9856346 B2 US9856346 B2 US 9856346B2 US 201514879871 A US201514879871 A US 201514879871A US 9856346 B2 US9856346 B2 US 9856346B2
- Authority
- US
- United States
- Prior art keywords
- lignin
- weight
- parts
- epoxy resin
- based biomass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- OIQWCXFXHYPDNT-UHFFFAOYSA-N CC1=CC(C)=C(C)C=C1OC=O.CC1=CC(OC=O)=C(C)C=C1 Chemical compound CC1=CC(C)=C(C)C=C1OC=O.CC1=CC(OC=O)=C(C)C=C1 OIQWCXFXHYPDNT-UHFFFAOYSA-N 0.000 description 2
- DPFGZKTVZFHSLU-UHFFFAOYSA-N CCOC(C)COCC(COCC(C)OCC)OCC(C)OCC1CO1 Chemical compound CCOC(C)COCC(COCC(C)OCC)OCC(C)OCC1CO1 DPFGZKTVZFHSLU-UHFFFAOYSA-N 0.000 description 2
- 0 COC(=O)[2*]C(=O)O[1*]OC(=O)[2*]C(=O)OCC(O)*C1CO1.COC(=O)[2*]C(=O)O[1*]OC(=O)[2*]C(=O)OCC(O)*C1CO1 Chemical compound COC(=O)[2*]C(=O)O[1*]OC(=O)[2*]C(=O)OCC(O)*C1CO1.COC(=O)[2*]C(=O)O[1*]OC(=O)[2*]C(=O)OCC(O)*C1CO1 0.000 description 2
- STQPICVKOXSVCF-UHFFFAOYSA-N CC1=CC(C(C)C(C)CO)=CC(C)=C1O Chemical compound CC1=CC(C(C)C(C)CO)=CC(C)=C1O STQPICVKOXSVCF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08H—DERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
- C08H8/00—Macromolecular compounds derived from lignocellulosic materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/14—Polycondensates modified by chemical after-treatment
- C08G59/1433—Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
- C08G59/1438—Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
- C08G59/1455—Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07G—COMPOUNDS OF UNKNOWN CONSTITUTION
- C07G1/00—Lignin; Lignin derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/027—Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
- C08G59/06—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08H—DERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
- C08H6/00—Macromolecular compounds derived from lignin, e.g. tannins, humic acids
-
- C08K3/0016—
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/011—Crosslinking or vulcanising agents, e.g. accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0025—Crosslinking or vulcanising agents; including accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L97/00—Compositions of lignin-containing materials
- C08L97/005—Lignin
Definitions
- the disclosure relates to lignin-based biomass epoxy resins, and in particularly it relates to methods of manufacturing the same.
- Gasoline supplement is running dry, such that the gasoline costs are rising. Production, usage, and waste of gasoline products are not environmentally friendly and result in a lot of carbon dioxide and pollutants. As such, plant type and bio-based materials is a major area being developed for replacing gasoline materials which are used as raw materials in critical industries.
- a lignin source can be straw, pulp black liquor, wood flour, lumber, or any plants. According to methods of obtaining the lignin, the lignin can be classified to alkali lignin, organosolv lignin, lignosulfonate, and the likes.
- alkali lignin can be obtained from pulp black liquor and is cheap and stably sourced lignin material around.
- lignin is applied in additives, dispersant, and for organic synthesis, wherein lignin-based epoxy resins are mainly formed.
- a method for manufacturing a lignin-based biomass epoxy resin comprises: (a) mixing a lignin, an acid anhydride compound, and a solvent to react for forming a first intermediate product; (b) reacting the first intermediate product with a first polyol to form a second intermediate product; and (c) reacting the second intermediate product with an epoxy compound to form the lignin-based biomass epoxy resin.
- a method for manufacturing the lignin-based biomass epoxy resin comprises: (a) mixing a lignin, an acid anhydride compound, a solvent, and a polyol to react for forming an intermediate product, wherein the lignin and the polyol have a weight ratio between 1:0.05 and 1:3, and the polyol comprises diol, triol, or a combination thereof; and (b) reacting the intermediate product with an epoxy compound to form the lignin-based biomass epoxy resin.
- a lignin-based biomass epoxy resin has a chemical formula:
- Lignin is lignin;
- R is —CH 2 OCH 2 —, —CH 2 O(CH 2 ) 2 OCH 2 —, —CH 2 O(CH 2 ) 4 OCH 2 —,
- R 1 is C 2-8 alkanediyl group, —C 3-8 hydroxyl alkanediyl group, or a combination thereof;
- R 2 is —CH ⁇ CH—,
- n is an integer from 0 to 20; and, p is an integer from 1 to 5.
- a method for manufacturing the lignin-based biomass epoxy resin is provided. First, (a) mixing the lignin, the acid anhydride compound, and the solvent to react for forming a first intermediate product.
- the lignin can be kraft lignin, lignosulfonate, organosolv lignin, or a combination thereof, and the lignin has a repeat unit represented by formula as:
- R′ and R′′ are independently OCH 3 or H; X is SO 3 M or H, M is alkali metal element; and X′ is SH or H.
- the acid anhydride compound comprises maleic anhydride, 1,2,4,5-benzenetetracarboxylic anhydride, trimellitic anhydride, derivatives thereof, or a combination thereof.
- the hydroxyl group of lignin can react with the acid anhydride compound to form a carboxylic acid group.
- the end carboxylic acid group can react with a hydroxyl group of the polyol, and another hydroxyl group of the polyol can react with another acid anhydride compound to form another carboxylic acid group via esterification reaction. It should be noted that the acid anhydride compound would remain some unreacted carboxylic acid groups and the polyol would remain some unreacted hydroxyl groups after the reaction.
- the lignin and the acid anhydride compound may have a weight ratio between 1:0.1 and 1:6.5.
- An overly high amount of the acid anhydride compound may influence the subsequent epoxidation reforming reaction.
- An overly low amount of the acid anhydride compound may cause poor epoxidation of the lignin.
- the lignin and the first polyol have a weight ratio between 1:0.1 and 1:2.
- An overly high amount of the first polyol may cause too few of the carboxylic acid groups remained in lignin molecular structure, so that may influence the subsequent epoxidation reforming reaction.
- An overly low amount of the first polyol may cause too many of the carboxylic acid groups remained in lignin molecular structure which may lead the second intermediate product gel easily, thereby the subsequent epoxidation reforming reaction will be failed.
- the first polyol comprises diol, triol, or a combination thereof. Because of the first polyol being added in the step (b), which is after the step (a). The first polyol would not affect the reaction between the lignin and the acid anhydride compound in the step (a).
- the epoxy compound have plurality epoxy groups, such as glycidyl ether, diglycidyl ether, bisphenol A diglycidyl ether, epoxidized vegetable oil, derivatives thereof, or a combination thereof.
- the lignin and the epoxy compound have a weight ratio of 1:0.7 to 1:5. An overly high amount of the epoxy compound may cause incomplete crosslinking unless adding extra hardener in the coating composition. An overly low amount of the epoxy compound may reduce the epoxidation modification which may lead degrading of the properties of the coating.
- the composition of the step (a) may dissolve incompletely and some particles remained, therefore taking a portion amount of the first polyol from the step (b) (as mentioned above), which serves as the second polyol, to add to the composition to enhance dissolution.
- the amount of the lignin and the second polyol of the step (a) have a weight ratio between 1:0.3 and 1:0.9
- the amount of the lignin and the first polyol of the step (b) have a weight ratio between 1:0.1 and 1:0.7.
- the second polyol comprises diol, triol, or a combination thereof. An overly low amount of the second polyol will be unhelpful dissolving the composition.
- the composition of the step (a) dissolves incompletely, therefore taking all amount of the first polyol from the step (b) (as mentioned above), which serves as the second polyol, to add to the composition to enhance dissolution and omitting the step (b).
- the steps adjusted includes: (a) mixing a lignin, an acid anhydride compound, a solvent, and a polyol to react for forming an intermediate product, wherein the lignin and the polyol have a weight ratio between 1:0.05 and 1:3, and the polyol comprises diol, triol, or a combination thereof; and (b) reacting the intermediate product and an epoxy compound to form the lignin-based biomass epoxy resin.
- weight ratio of the lignin to the acid anhydride compound the weight ratio of the lignin to the epoxy compound, the lignin species, the acid anhydride compound species, and the epoxy species are similar to above-mentioned, no longer repeat here.
- the solvent can be ether such as ethylene glycol dibutyl ether, propylene glycol mono-methyl ether, diethylene glycol monomethyl ether, dipropylene glycol methyl ether, or anisole; ketone such as cyclohexanone, cyclopentanone, methyl ethyl ketone, diisobutyl ketone, methyl propyl ketone, or methyl iso-amyl ketone; ester such as propylene glycol mono-methyl ether acetate, mixed dibasic ester, ethyl acetate, n-butyl acetate, or isopropyl acetate; alcohol such as ethanol, isobutanol, or diacetone alcohol; amide such as dimethylformamide, or dimethylacetamide; or a combination thereof.
- ether such as ethylene glycol dibutyl ether, propylene glycol mono-methyl ether, diethylene glycol monomethyl ether, dipropylene glyco
- the catalyst includes Lewis acids such as p-benzenesulfonic acid or derivatives thereof (e.g. methylbenzenesulfonic acid, sulfuric acid, or a combination thereof).
- the polyol may compete with the lignin to react with the anhydride, leading the reducing of the amount of anhydride which reacting with the lignin, and resulting in poor properties of the products.
- the anhydride would react with the lignin, and then react with the polyol.
- the lignin-based biomass epoxy resin which obtained from the reactions mentioned above, has a chemical formula as follows:
- Lignin is lignin;
- R is —CH 2 OCH 2 —, —CH 2 O(CH 2 ) 2 OCH 2 —, —CH 2 O(CH 2 ) 4 OCH 2 —,
- R 1 is C 2-8 alkanediyl group (e.g. —CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 —), —C 3-8 hydroxyl alkanediyl group (e.g. —CH 2 CH(OH)CH 2 —), or a combination thereof;
- R 2 is —CH ⁇ CH—,
- n is an integer from 0 to 20; and, p is an integer from 1 to 5.
- auxiliary mixing 100 parts by weight of the lignin-based biomass epoxy resin, 0.5 to 1.5 (or 1.1 to 1.3) parts by weight of auxiliary, and 25 to 40 (or 30 to 40) parts by weight of crosslinking agent to form the lignin-based biomass epoxy resin composition for coating.
- An overly low amount of the auxiliary may cause defects (e.g. pinhole or shrinkage cavity) in the coating.
- An overly high amount of the auxiliary may influence the properties of the coating after sterilization tests or boiling water treatment and also influence the stability of coating.
- An overly low amount of the crosslinking agent may cause incompletely crosslinking and influence the properties of the coating.
- An overly high amount of the crosslinking agent may cause the coating become too hard and poor toughness to apply, and the residual unreacted crosslinking agent may also affect the stability of the coating.
- the solid content of the lignin-based biomass epoxy resin composition can be adjusted for applying on surface of a variety of metal substrates.
- the lignin-based biomass epoxy resin composition can be applied on the substrates such as glasses, ceramics, stones, plastics, metals, or polymers, and dried to form a film.
- the method of applying the bio-based epoxy composition on the substrates may be spin coating, immersion coating, brush coating, spray coating, roller coating, or a combination thereof.
- the process of removing or drying the solvent of the bio-based epoxy composition is performed at a temperature of 180° C. to 220° C. for a period of 10 minutes to 30 minutes.
- the auxiliary may be polymeric additives, polyether modified organosilicon, polyether siloxane copolymer, organosilicon additives, silicon-free additives, poly acrylate additives, or a combination thereof.
- the crosslinking agent includes phenolic resin, amine, anhydride, polyamide resin, or biomass such as lignin, carbohydrate, starch, cellulose, or a combination thereof.
- the source of lignin which used in the embodiments is large amount and stable.
- the lignin which modified with a simple method to improve compatibility and epoxidation reaction efficiency could be applied in epoxy coating of metal substrates.
- the bio-based epoxy coatings can replace the present petrochemical raw material epoxy coatings and develop no bisphenol A-based (BPA-free) epoxy coating used for inner paint of food cans.
- lignin commercially available from Laiher Company
- EG ethylene glycol
- DMAc dimethylacetamide
- TMA trimellitic anhydride
- BE-188 was dissolved in 18 parts by weight of DMAc, and added to the first intermediate product, which reacted at 100° C. for 1 hour. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
- crosslinking agent PR722, commercially available from Cytec Company
- mixed auxiliary mixed auxiliary
- the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained.
- the lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
- the film After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 40/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 95/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 95/100 as measured by a cross cut tape test. The result of soaking in boiling water test shows that the coating is not suitable using for inner paint of food cans.
- Example 4 (A Portion Amount of the Polyol Serving as the Second Polyol and the Remaining Part Serving as the First Polyol)
- crosslinking agent PR722
- mixed auxiliary obtained polymeric additives and polyether modified organosilicon auxiliary
- the lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 6H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
- the film After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 95/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 90/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 90/100 as measured by a cross cut tape test. The results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
- crosslinking agent 8215-BX-50
- polyether modified organosilicon auxiliary a suitable amount of polyether modified organosilicon auxiliary
- the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained.
- the lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 190° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 2H, and an adhesiveness of 80/100 as measured by a cross cut tape test.
- Example 6 (A Portion Amount of the Polyol Serving as the Second Polyol and the Remaining Part Serving as the First Polyol)
- the film After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 90/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 90/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. The results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
- crosslinking agent which was one of 8215-BX-50, BL-3175-SN, and Cymel 303 (commercially available from Cytec Company), and a suitable amount of polyether modified organosilicon auxiliary were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 190° C. for 15 minutes to form a film. All of the films prepared from the three crosslinking agents have a smooth and bright appearance.
- the film prepared from 8215-BX-50 had a pencil hardness of 4H and an adhesiveness of 100/100 as measured by a cross cut tape test.
- the film prepared from BL-3175-SN had a pencil hardness of 2H and an adhesiveness of 90/100 as measured by a cross cut tape test.
- the film prepared from Cymel 303 had a pencil hardness of 2H and an adhesiveness of 0/100 as measured by a cross cut tape test.
- crosslinking agent PR722
- mixed auxiliary obtained polymeric additives and polyether modified organosilicon auxiliary
- the lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 4H, and an adhesiveness of 95/100 as measured by a cross cut tape test.
- the film After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 95/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 95/100 as measured by a cross cut tape test. The results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
- the film which placed under hot steam had the same appearance and an adhesiveness of 40/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test.
- the cross cut tape test result of the film which placed under hot steam shows that the coating is not suitable using for inner paint of food cans.
- Example 11 (A Portion Amount of the Polyol Serving as the Second Polyol and the Remaining Part Serving as the First Polyol)
- the film which placed under hot steam had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test.
- the other film which soaked in deionized water had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test.
- the results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
- Example 12 (A Portion Amount of the Polyol Serving as the Second Polyol and the Remaining Part Serving as the First Polyol)
- the film which placed under hot steam had the same appearance and an adhesiveness of 80/100 as measured by a cross cut tape test.
- the other film which soaked in deionized water had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test.
- the results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
- crosslinking agent PR722
- mixed auxiliary obtained polymeric additives and polyether modified organosilicon auxiliary
- the lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
- the film After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. The results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
- crosslinking agent PR722
- mixed auxiliary obtained polymeric additives and polyether modified organosilicon auxiliary
- the lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
- crosslinking agent PR722
- mixed auxiliary obtained polymeric additives and polyether modified organosilicon auxiliary
- the lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
- lignin commercially available from Stora Enso Company
- 10 parts by weight of ethylene glycol (EG), 127.86 parts by weight of propylene glycol mono-methyl ether (PGME), 25.57 parts by weight of methyl ethyl ketone (MEK), and 25.57 parts by weight of diisobutyl ketone (DIBK) were mixed to form a mixture.
- PGME propylene glycol mono-methyl ether
- MEK methyl ethyl ketone
- DIBK diisobutyl ketone
- crosslinking agent PR722
- mixed auxiliary obtained polymeric additives and polyether modified organosilicon auxiliary
- the lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
- lignin commercially available from Stora Enso Company
- 10 parts by weight of ethylene glycol (EG), 149.17 parts by weight of propylene glycol mono-methyl ether (PGME), and 29.83 parts by weight of propylene glycol mono-methyl ether acetate (PGMEA) were mixed to form a mixture.
- PGME propylene glycol mono-methyl ether
- PGMEA propylene glycol mono-methyl ether acetate
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Epoxy Resins (AREA)
- Emergency Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Paints Or Removers (AREA)
Abstract
A method of forming a lignin-based biomass epoxy resin is provided, which includes: (a) mixing a lignin, an acid anhydride compound, and a solvent to react for forming a first intermediate product, (b) reacting the first intermediate compound with a first polyol to form a second intermediate compound, and (c) reacting the second intermediate compound with an epoxy compound to form a lignin-based biomass epoxy resin.
Description
This application is based upon and claims the benefit of priority from the prior Taiwan Patent Application No. 103135456 filed on Oct. 14, 2014, and claims priority of Taiwan Patent Application No. 104118709, filed on Jun. 10, 2015, the entire contents of which are incorporated herein by reference.
The disclosure relates to lignin-based biomass epoxy resins, and in particularly it relates to methods of manufacturing the same.
Gasoline supplement is running dry, such that the gasoline costs are rising. Production, usage, and waste of gasoline products are not environmentally friendly and result in a lot of carbon dioxide and pollutants. As such, plant type and bio-based materials is a major area being developed for replacing gasoline materials which are used as raw materials in critical industries. In plants, the reserve of lignin is after cellulose. A lignin source can be straw, pulp black liquor, wood flour, lumber, or any plants. According to methods of obtaining the lignin, the lignin can be classified to alkali lignin, organosolv lignin, lignosulfonate, and the likes. Compared to other lignins, alkali lignin can be obtained from pulp black liquor and is cheap and stably sourced lignin material around. Currently, lignin is applied in additives, dispersant, and for organic synthesis, wherein lignin-based epoxy resins are mainly formed.
In one embodiment, a method for manufacturing a lignin-based biomass epoxy resin comprises: (a) mixing a lignin, an acid anhydride compound, and a solvent to react for forming a first intermediate product; (b) reacting the first intermediate product with a first polyol to form a second intermediate product; and (c) reacting the second intermediate product with an epoxy compound to form the lignin-based biomass epoxy resin.
In one embodiment, a method for manufacturing the lignin-based biomass epoxy resin comprises: (a) mixing a lignin, an acid anhydride compound, a solvent, and a polyol to react for forming an intermediate product, wherein the lignin and the polyol have a weight ratio between 1:0.05 and 1:3, and the polyol comprises diol, triol, or a combination thereof; and (b) reacting the intermediate product with an epoxy compound to form the lignin-based biomass epoxy resin.
In one embodiment, a lignin-based biomass epoxy resin has a chemical formula:
epoxidized soybean oil group, or a combination thereof; R1 is C2-8 alkanediyl group, —C3-8 hydroxyl alkanediyl group, or a combination thereof; R2 is —CH═CH—,
or a combination thereof; m is an integer from 1 to 10; n is an integer from 0 to 20; and, p is an integer from 1 to 5.
A detailed description is given in the following embodiments.
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details.
In some embodiments, a method for manufacturing the lignin-based biomass epoxy resin is provided. First, (a) mixing the lignin, the acid anhydride compound, and the solvent to react for forming a first intermediate product. In one embodiment, the lignin can be kraft lignin, lignosulfonate, organosolv lignin, or a combination thereof, and the lignin has a repeat unit represented by formula as:
wherein R′ and R″ are independently OCH3 or H; X is SO3M or H, M is alkali metal element; and X′ is SH or H.
In the embodiments, the acid anhydride compound comprises maleic anhydride, 1,2,4,5-benzenetetracarboxylic anhydride, trimellitic anhydride, derivatives thereof, or a combination thereof. The hydroxyl group of lignin can react with the acid anhydride compound to form a carboxylic acid group. Further, the end carboxylic acid group can react with a hydroxyl group of the polyol, and another hydroxyl group of the polyol can react with another acid anhydride compound to form another carboxylic acid group via esterification reaction. It should be noted that the acid anhydride compound would remain some unreacted carboxylic acid groups and the polyol would remain some unreacted hydroxyl groups after the reaction. The lignin and the acid anhydride compound may have a weight ratio between 1:0.1 and 1:6.5. An overly high amount of the acid anhydride compound may influence the subsequent epoxidation reforming reaction. An overly low amount of the acid anhydride compound may cause poor epoxidation of the lignin.
Next, (b) reacting the first intermediate product with the first polyol to form a second intermediate product. In one embodiment, the lignin and the first polyol have a weight ratio between 1:0.1 and 1:2. An overly high amount of the first polyol may cause too few of the carboxylic acid groups remained in lignin molecular structure, so that may influence the subsequent epoxidation reforming reaction. An overly low amount of the first polyol may cause too many of the carboxylic acid groups remained in lignin molecular structure which may lead the second intermediate product gel easily, thereby the subsequent epoxidation reforming reaction will be failed. In one embodiment, the first polyol comprises diol, triol, or a combination thereof. Because of the first polyol being added in the step (b), which is after the step (a). The first polyol would not affect the reaction between the lignin and the acid anhydride compound in the step (a).
Next, (c) reacting the second intermediate product with the epoxy compound to form the lignin-based biomass epoxy resin. In one embodiment, the epoxy compound have plurality epoxy groups, such as glycidyl ether, diglycidyl ether, bisphenol A diglycidyl ether, epoxidized vegetable oil, derivatives thereof, or a combination thereof. In one embodiment, the lignin and the epoxy compound have a weight ratio of 1:0.7 to 1:5. An overly high amount of the epoxy compound may cause incomplete crosslinking unless adding extra hardener in the coating composition. An overly low amount of the epoxy compound may reduce the epoxidation modification which may lead degrading of the properties of the coating.
Alternatively, the composition of the step (a) may dissolve incompletely and some particles remained, therefore taking a portion amount of the first polyol from the step (b) (as mentioned above), which serves as the second polyol, to add to the composition to enhance dissolution. In the embodiment, the amount of the lignin and the second polyol of the step (a) have a weight ratio between 1:0.3 and 1:0.9, and the amount of the lignin and the first polyol of the step (b) have a weight ratio between 1:0.1 and 1:0.7. The second polyol comprises diol, triol, or a combination thereof. An overly low amount of the second polyol will be unhelpful dissolving the composition.
Alternatively, the composition of the step (a) dissolves incompletely, therefore taking all amount of the first polyol from the step (b) (as mentioned above), which serves as the second polyol, to add to the composition to enhance dissolution and omitting the step (b). For example, the steps adjusted includes: (a) mixing a lignin, an acid anhydride compound, a solvent, and a polyol to react for forming an intermediate product, wherein the lignin and the polyol have a weight ratio between 1:0.05 and 1:3, and the polyol comprises diol, triol, or a combination thereof; and (b) reacting the intermediate product and an epoxy compound to form the lignin-based biomass epoxy resin. Other parameters include the weight ratio of the lignin to the acid anhydride compound, the weight ratio of the lignin to the epoxy compound, the lignin species, the acid anhydride compound species, and the epoxy species are similar to above-mentioned, no longer repeat here.
According to the embodiments, the solvent can be ether such as ethylene glycol dibutyl ether, propylene glycol mono-methyl ether, diethylene glycol monomethyl ether, dipropylene glycol methyl ether, or anisole; ketone such as cyclohexanone, cyclopentanone, methyl ethyl ketone, diisobutyl ketone, methyl propyl ketone, or methyl iso-amyl ketone; ester such as propylene glycol mono-methyl ether acetate, mixed dibasic ester, ethyl acetate, n-butyl acetate, or isopropyl acetate; alcohol such as ethanol, isobutanol, or diacetone alcohol; amide such as dimethylformamide, or dimethylacetamide; or a combination thereof.
It should be noted that not any one step of (a), (b), and (c) needs adding catalyst. The catalyst includes Lewis acids such as p-benzenesulfonic acid or derivatives thereof (e.g. methylbenzenesulfonic acid, sulfuric acid, or a combination thereof).
According to the conventional methods for manufacturing lignin-based biomass epoxy resin, there are almost using the polyol with the anhydride compound for modifying the lignin. However, the polyol may compete with the lignin to react with the anhydride, leading the reducing of the amount of anhydride which reacting with the lignin, and resulting in poor properties of the products. To avoid the foregoing problem, the anhydride would react with the lignin, and then react with the polyol.
The lignin-based biomass epoxy resin, which obtained from the reactions mentioned above, has a chemical formula as follows:
epoxidized soybean oil group, or a combination thereof; R1 is C2-8 alkanediyl group (e.g. —CH2CH2—, —CH2CH2CH2CH2—), —C3-8 hydroxyl alkanediyl group (e.g. —CH2CH(OH)CH2—), or a combination thereof; R2 is —CH═CH—,
or a combination thereof; m is an integer from 1 to 10; n is an integer from 0 to 20; and, p is an integer from 1 to 5.
According to some embodiments, mixing 100 parts by weight of the lignin-based biomass epoxy resin, 0.5 to 1.5 (or 1.1 to 1.3) parts by weight of auxiliary, and 25 to 40 (or 30 to 40) parts by weight of crosslinking agent to form the lignin-based biomass epoxy resin composition for coating. An overly low amount of the auxiliary may cause defects (e.g. pinhole or shrinkage cavity) in the coating. An overly high amount of the auxiliary may influence the properties of the coating after sterilization tests or boiling water treatment and also influence the stability of coating. An overly low amount of the crosslinking agent may cause incompletely crosslinking and influence the properties of the coating. An overly high amount of the crosslinking agent may cause the coating become too hard and poor toughness to apply, and the residual unreacted crosslinking agent may also affect the stability of the coating.
Because of well compatibility with solvent, the solid content of the lignin-based biomass epoxy resin composition can be adjusted for applying on surface of a variety of metal substrates. The lignin-based biomass epoxy resin composition can be applied on the substrates such as glasses, ceramics, stones, plastics, metals, or polymers, and dried to form a film. The method of applying the bio-based epoxy composition on the substrates may be spin coating, immersion coating, brush coating, spray coating, roller coating, or a combination thereof. In some embodiments, the process of removing or drying the solvent of the bio-based epoxy composition is performed at a temperature of 180° C. to 220° C. for a period of 10 minutes to 30 minutes. The auxiliary may be polymeric additives, polyether modified organosilicon, polyether siloxane copolymer, organosilicon additives, silicon-free additives, poly acrylate additives, or a combination thereof. The crosslinking agent includes phenolic resin, amine, anhydride, polyamide resin, or biomass such as lignin, carbohydrate, starch, cellulose, or a combination thereof.
The source of lignin which used in the embodiments is large amount and stable. The lignin which modified with a simple method to improve compatibility and epoxidation reaction efficiency could be applied in epoxy coating of metal substrates. The bio-based epoxy coatings can replace the present petrochemical raw material epoxy coatings and develop no bisphenol A-based (BPA-free) epoxy coating used for inner paint of food cans.
Below, exemplary embodiments will be described in detail so as to be easily realized by a person having ordinary knowledge in the art. The disclosure concept may be embodied in various forms without being limited to the exemplary embodiments set forth herein. Descriptions of well-known parts are omitted for clarity.
(a) 20 parts by weight of lignin (alkali-MKBH3445, commercially available from Aldrich), 20 parts by weight of ethylene glycol (EG), and 149 parts by weight of propylene glycol mono-methyl ether (PGME) were mixed to form a mixture. Subsequently, 38.95 parts by weight of maleic anhydride (MA) was added to the mixture, and heated to 120° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 74.68 parts by weight of multi-epoxy compound (BE-188, epoxy value of 0.5319 mol/100 g, commercially available from Chang Chun Grop) was dissolved in 40 parts by weight of PGME, and added to the first intermediate product, which reacted at 90° C. for 1 hour. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent (8215-BX-50, commercially available from Eternal Company, Taiwan) and a suitable amount of polyether modified organosilicon auxiliary were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 190° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 2H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
(a) 40 parts by weight of lignin (commercially available from Laiher Company), 4 parts by weight of ethylene glycol (EG), and 98 parts by weight of dimethylacetamide (DMAc) were mixed to form a mixture. Subsequently, 4.78 parts by weight of trimellitic anhydride (TMA) was added to the mixture, and heated to 150° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 46.78 parts by weight of multi-epoxy compound (BE-188) was dissolved in 18 parts by weight of DMAc, and added to the first intermediate product, which reacted at 100° C. for 1 hour. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
1 g of crosslinking agent (Desmodur® BL 3175 SN, commercially available from Bayer) and a suitable amount of polyether modified organosilicon auxiliary were added to 4 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 190° C. for 11 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
(a) 20 Parts by Weight of Lignin (Commercially Available from Chung Hwa Pulp Corporation), 21 parts by weight of ethylene glycol (EG), and 191 parts by weight of dimethylacetamide (DMAc) were mixed to form a mixture. Subsequently, 69.41 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) was added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 86.16 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil, epoxy value of 0.4125 mol/100 g, commercially available from Chang Chun Grop) was dissolved in 50 parts by weight of DMAc, and added to the first intermediate product, which reacted at 90° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent (PR722, commercially available from Cytec Company) and a suitable amount of mixed auxiliary (contained polymeric additives and polyether modified organosilicon auxiliary) were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test. After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 40/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 95/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 95/100 as measured by a cross cut tape test. The result of soaking in boiling water test shows that the coating is not suitable using for inner paint of food cans.
(a) 17 parts by weight of lignin (commercially available from Chung Hwa Pulp Corporation), 9.76 parts by weight of ethylene glycol (EG), and 163.2 parts by weight of dimethylacetamide (DMAc) were mixed to form a mixture. Subsequently, 58.9 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) was added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (b) 8.09 parts by weight of EG was dissolved in 8.5 parts by weight of DMAc, and added to the first intermediate product, which reacted at 130° C. for 2 hours, thereby the second intermediate product was obtained. (c) 73.35 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 42.5 parts by weight of DMAc, and added to the second intermediate product, which reacted at 90° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (contained polymeric additives and polyether modified organosilicon auxiliary) were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 6H, and an adhesiveness of 100/100 as measured by a cross cut tape test. After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 95/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 90/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 90/100 as measured by a cross cut tape test. The results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
(a) 20 parts by weight of lignin (commercially available from Chung Hwa Pulp Corporation) and 47 parts by weight of dimethylacetamide (DMAc) were mixed to form a mixture. Subsequently, 11.77 parts by weight of maleic anhydride (MA) was added to the mixture, and heated to 160° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 14.1 parts by weight of multi-epoxy compound (BE-188) was dissolved in 9 parts by weight of DMAc, and added to the first intermediate product, which reacted at 90° C. for 1 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent (8215-BX-50) and a suitable amount of polyether modified organosilicon auxiliary were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 190° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 2H, and an adhesiveness of 80/100 as measured by a cross cut tape test.
(a) 20 parts by weight of lignin (commercially available from Chung Hwa Pulp Corporation), 11.48 parts by weight of ethylene glycol (EG), and 192 parts by weight of dimethylacetamide (DMAc) were mixed to form a mixture. Subsequently, 69.31 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) was added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (b) 8.52 parts by weight of EG was dissolved in 10 parts by weight of DMAc, and added to the first intermediate product, which reacted at 130° C. for 2 hours, thereby the second intermediate product was obtained. (c) 96.29 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 50 parts by weight of DMAc, and added to the second intermediate product, which reacted at 90° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
72 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (contained polymeric additives and polyether modified organosilicon auxiliary) were added to 240 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 95/100 as measured by a cross cut tape test. After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 90/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 90/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. The results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
(a) 20 parts by weight of lignin (commercially available from Chung Hwa Pulp Corporation), 20 parts by weight of ethylene glycol (EG), and 177 parts by weight of dimethylacetamide (DMAc) were mixed to form a mixture. Subsequently, 62.32 parts by weight of maleic anhydride (MA) was added to the mixture, and heated to 160° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 74.68 parts by weight of multi-epoxy compound (BE-188) was dissolved in 40 parts by weight of DMAc, and added to the first intermediate product, which reacted at 90° C. for 1 hour. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent, which was one of 8215-BX-50, BL-3175-SN, and Cymel 303 (commercially available from Cytec Company), and a suitable amount of polyether modified organosilicon auxiliary were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 190° C. for 15 minutes to form a film. All of the films prepared from the three crosslinking agents have a smooth and bright appearance. The film prepared from 8215-BX-50 had a pencil hardness of 4H and an adhesiveness of 100/100 as measured by a cross cut tape test. The film prepared from BL-3175-SN had a pencil hardness of 2H and an adhesiveness of 90/100 as measured by a cross cut tape test. The film prepared from Cymel 303 had a pencil hardness of 2H and an adhesiveness of 0/100 as measured by a cross cut tape test.
(a) 20 parts by weight of lignin (commercially available from Chung Hwa Pulp Corporation) and 181 parts by weight of propylene glycol mono-methyl ether (PGME) were mixed to form a mixture. Subsequently, 69.41 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) was added to the mixture, and heated to 120° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (b) 21 parts by weight of EG was dissolved in 10 parts by weight of PGME, and added to the first intermediate product, which reacted at 120° C. for 2 hours, thereby the second intermediate product was obtained. (c) 86.16 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 50 parts by weight of PGME, and added to the second intermediate product, which reacted at 90° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (contained polymeric additives and polyether modified organosilicon auxiliary) were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 4H, and an adhesiveness of 95/100 as measured by a cross cut tape test. After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 95/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 95/100 as measured by a cross cut tape test. The results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
(a) 10 parts by weight of lignosulfonate (DP651, commercially available from Borregaard), 6 parts by weight of ethylene glycol (EG), 20 parts by weight of 1,4-butanediol (BD), and 138 parts by weight of dimethylacetamide (DMAc) were mixed to form a mixture. Subsequently, 60.83 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) was added to the mixture, and heated to 140° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 44.93 parts by weight of multi-epoxy compound (ethylene glycol diglycidyl ether (EGDE), commercially available from TCI) was dissolved in 35 parts by weight of DMAc, and added to the first intermediate product, which reacted at 110° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
1 g of crosslinking agent (PR722) and a suitable amount of polyether modified organosilicon auxiliary were added to 4 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 190° C. for 11 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
(a) 20 parts by weight of lignosulfonate (DP651), 20 parts by weight of ethylene glycol (EG), and 190 parts by weight of dimethylacetamide (DMAc) were mixed to form a mixture. Subsequently, 66.7 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) was added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 92.65 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 58 parts by weight of DMAc, and added to the first intermediate product, which reacted at 90° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
4.8 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (mixture of polymeric additives) were added to 16 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance. After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 40/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. The cross cut tape test result of the film which placed under hot steam shows that the coating is not suitable using for inner paint of food cans.
(a) 20 parts by weight of lignosulfonate (DP651), 12.4 parts by weight of ethylene glycol (EG), and 190 parts by weight of dimethylacetamide (DMAc) were mixed to form a mixture. Subsequently, 66.7 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) was added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (b) 7.6 parts by weight of EG was added to the first intermediate product and reacted at 130° C. for 2 hours, thereby the second intermediate product was obtained. (c) 92.65 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 58 parts by weight of DMAc, and added to the second intermediate product, which reacted at 90° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
4.8 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (mixture of polymeric additives) were added to 16 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance. After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. The results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
(a) 20 parts by weight of lignosulfonate (DP651), 12.4 parts by weight of ethylene glycol (EG), and 173 parts by weight of dimethylacetamide (DMAc) were mixed to form a mixture. Subsequently, 66.7 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) was added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (b) 7.6 parts by weight of EG was dissolved in 10 parts by weight of DMAc, and added to the first intermediate product, which reacted at 130° C. for 2 hours, thereby the second intermediate product was obtained. (c) 46.32 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 20 parts by weight of DMAc, and added to the second intermediate product, which reacted at 90° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
6 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (contained polymeric additives and polyether modified organosilicon auxiliary) were added to 16 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance. After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 90/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 80/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. The results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
(a) 40 parts by weight of lignin (commercially available from Stora Enso Company) and 139 parts by weight of propylene glycol mono-methyl ether (PGME) were mixed to form a mixture. Subsequently, 19.65 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) and 35.34 parts by weight of maleic anhydride (MA) were added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (b) 10 parts by weight of ethylene glycol (EG) was dissolved in 10 parts by weight of PGME, and added to the first intermediate product, which reacted at 130° C. for 2 hours, thereby the second intermediate product was obtained. (c) 32.78 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 20 parts by weight of PGME, and added to the second intermediate product, which reacted at 90° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (contained polymeric additives and polyether modified organosilicon auxiliary) were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test. After soaking in boiling water (100° C.) for 1 hour, the film had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. After sterilization tests, the film which placed under hot steam had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. And the other film which soaked in deionized water had the same appearance and an adhesiveness of 100/100 as measured by a cross cut tape test. The results which passed all the testing standards show that the coating is suitable using for inner paint of food cans.
(a) 40 parts by weight of lignin (commercially available from Stora Enso Company), 10 parts by weight of ethylene glycol (EG), and 174 parts by weight of cyclohexanone were mixed to form a mixture. Subsequently, 19.65 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) and 35.34 parts by weight of maleic anhydride (MA) were added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 49.14 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 20 parts by weight of cyclohexanone, and added to the first intermediate product, which reacted at 90° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (contained polymeric additives and polyether modified organosilicon auxiliary) were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
(a) 80 parts by weight of lignin (commercially available from Stora Enso Company), 20 parts by weight of ethylene glycol (EG), 298.33 parts by weight of cyclohexanone, and 59.67 parts by weight of methyl ethyl ketone (MEK) were mixed to form a mixture. Subsequently, 39.3 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) and 70.68 parts by weight of maleic anhydride (MA) were added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 163.84 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 83.33 parts by weight of cyclohexanone and 16.67 parts by weight of MEK, and added to the first intermediate product, which reacted at 90° C. for 1.5 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (contained polymeric additives and polyether modified organosilicon auxiliary) were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
(a) 40 parts by weight of lignin (commercially available from Stora Enso Company), 10 parts by weight of ethylene glycol (EG), 127.86 parts by weight of propylene glycol mono-methyl ether (PGME), 25.57 parts by weight of methyl ethyl ketone (MEK), and 25.57 parts by weight of diisobutyl ketone (DIBK) were mixed to form a mixture. Subsequently, 19.65 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) and 35.34 parts by weight of maleic anhydride (MA) were added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 81.92 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 33.33 parts by weight of MEK and 16.67 parts by weight of DIBK, and added to the first intermediate product, which reacted at 90° C. for 2 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (contained polymeric additives and polyether modified organosilicon auxiliary) were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a cross cut tape test.
(a) 40 parts by weight of lignin (commercially available from Stora Enso Company), 10 parts by weight of ethylene glycol (EG), 149.17 parts by weight of propylene glycol mono-methyl ether (PGME), and 29.83 parts by weight of propylene glycol mono-methyl ether acetate (PGMEA) were mixed to form a mixture. Subsequently, 19.65 parts by weight of 1,2,4,5-benzenetetracarboxylic anhydride (PMDA) and 35.34 parts by weight of maleic anhydride (MA) were added to the mixture, and heated to 130° C. and reacted for 3 hours, thereby the first intermediate product was obtained. (c) 81.92 parts by weight of multi-epoxy compound (B22, epoxidized soybean oil) was dissolved in 41.67 parts by weight of PGME and 8.33 parts by weight of PGMEA, and added to the first intermediate product, which reacted at 100° C. for 2 hours. After cooling down to room temperature, a homogeneous solution of the lignin-based biomass epoxy resin was obtained, which was a liquid dark brown solution.
2.4 g of crosslinking agent (PR722) and a suitable amount of mixed auxiliary (contained polymeric additives and polyether modified organosilicon auxiliary) were added to 8 g of the lignin-based biomass epoxy resin solution. After stirring for a moment, the lignin-based biomass epoxy resin composition having a solid content of 35-50% was obtained. The lignin-based biomass epoxy resin composition was coated on the tinplate sheet and solidified at 210° C. for 15 minutes to form a film having a smooth and bright appearance, a pencil hardness of 3H, and an adhesiveness of 100/100 as measured by a scotch tape test.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed methods and materials. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.
Claims (6)
1. A method for manufacturing a lignin-based biomass epoxy resin, comprising:
(a) mixing a lignin, an acid anhydride compound, and a solvent to form a mixture and reacting to form a first intermediate product, wherein the mixture consists of the lignin, the acid anhydride compound, and the solvent;
(b) mixing the first intermediate product with a first polyol in the absence of an epoxy compound to form a second mixture and reacting to forma a second intermediate product;
(c) reacting the second intermediate product with an epoxy compound to form the lignin-based biomass epoxy resin, wherein the first polyol is not lignin.
2. The method as claimed in claim 1 , wherein the lignin comprises alkali lignin, lignosulfonate, organosolv lignin, or a combination thereof.
3. The method as claimed in claim 1 , wherein the lignin and the acid anhydride compound have a weight ratio of 1:0.1 to 1:6.5, and the acid anhydride compound comprises maleic anhydride, 1,2,4,5-benzenetetracarboxylic anhydride, trimellitic anhydride, derivatives thereof, or a combination thereof.
4. The method as claimed in claim 1 , wherein the lignin and the first polyol have a weight ratio of 1:0.1 to 1:2, and the first polyol comprises diol, triol, or a combination thereof.
5. The method as claimed in claim 1 , wherein the lignin and the epoxy compound have a weight ratio of 1:0.7 to 1:5, and the epoxy compound comprises glycidyl ether, diglycidyl ether, bisphenol A diglycidyl ether, epoxidized vegetable oil, derivatives thereof, or a combination thereof.
6. The method as claimed in claim 1 , wherein the solvent comprises ether, ketone, ester, alcohol, amide, or a combination thereof.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103135456 | 2014-10-14 | ||
TW103135456A | 2014-10-14 | ||
TW103135456 | 2014-10-14 | ||
TW104118709 | 2015-06-10 | ||
TW104118709A TWI549997B (en) | 2014-10-14 | 2015-06-10 | Method for manufacturing lignin-based biomass epoxy resin and lignin-based biomass epoxy resin compositions |
TW104118709A | 2015-06-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160102170A1 US20160102170A1 (en) | 2016-04-14 |
US9856346B2 true US9856346B2 (en) | 2018-01-02 |
Family
ID=54329405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/879,871 Active 2035-12-05 US9856346B2 (en) | 2014-10-14 | 2015-10-09 | Lignin-based biomass epoxy resin, method for manufacturing the same, and compositions including the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US9856346B2 (en) |
EP (1) | EP3009462B1 (en) |
CN (1) | CN106188501B (en) |
TW (1) | TWI549997B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3409727A1 (en) * | 2017-05-29 | 2018-12-05 | Annikki GmbH | Method for the preparation of a lignin prepolymer |
US20210253922A1 (en) * | 2018-07-02 | 2021-08-19 | Stora Enso Oyj | Process for preparing a bonding resin |
EP3632949A1 (en) | 2018-10-02 | 2020-04-08 | Vito NV | Process for the production of epoxy resins |
KR102179075B1 (en) * | 2019-07-23 | 2020-11-16 | 단국대학교 산학협력단 | Method for preparing epoxidized soybean oil modified lignin and biodegradable polymeric composite comprising the modified lignin |
CA3202309A1 (en) * | 2020-12-22 | 2022-06-30 | Mojgan NEJAD | Lignin-based epoxide prepolymers, polymers, related compositions, and related methods |
CN113402852B (en) * | 2021-07-27 | 2022-07-05 | 山西生物质新材料产业研究院有限公司 | Corrosion-resistant lignin epoxy resin/carbon fiber composite material and preparation method thereof |
Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4017474A (en) | 1975-08-15 | 1977-04-12 | Research Corporation | Polyurethane intermediates and products and methods of producing same from lignin |
US4087407A (en) | 1976-04-19 | 1978-05-02 | Blount David H | Process for the production of epoxy silicate foam |
US4235974A (en) | 1979-12-26 | 1980-11-25 | Blount David H | Process for the production of epoxy cellular solid products |
US4292413A (en) | 1979-12-26 | 1981-09-29 | Blount David H | Process for the production of epoxy cellular solid products |
US4304877A (en) | 1979-01-26 | 1981-12-08 | Blount David H | Process for the production of alkali metal lignin-cellulose silicate polymer and reaction products |
US4323494A (en) | 1980-12-30 | 1982-04-06 | Blount David H | Process for the production of cellulose-silicate products |
US4324864A (en) | 1980-12-30 | 1982-04-13 | Blount David H | Process for the production of cellulose-silicate products |
US4328136A (en) | 1980-12-30 | 1982-05-04 | Blount David H | Process for the production of cellulose-silicate products |
US4547224A (en) | 1984-09-17 | 1985-10-15 | Westvaco Corporation | Emulsifiers for bituminous emulsions |
US4861377A (en) | 1988-04-18 | 1989-08-29 | Westvaco Corporation | Cationic aqueous bituminous emulsion-aggregate slurries |
US4957560A (en) | 1988-04-18 | 1990-09-18 | Westvaco Corporation | Cationic aqueous bituminous emulsion-aggregate slurries |
US4994508A (en) | 1987-07-16 | 1991-02-19 | Asahi Kasei Kogyo Kabushiki Kaisha | Specific hydrogenated block copolymer composition and process for producing the same |
US5073297A (en) | 1988-04-18 | 1991-12-17 | Westvaco Corporation | Cation-active emulsifier |
US5093416A (en) | 1987-09-28 | 1992-03-03 | Blount David H | Production of poly (polyisocyanate-alkali metal silicate) products |
US5348621A (en) | 1979-11-01 | 1994-09-20 | Coalition Technologies, Limited | Low bulk and light-weight products |
US5959016A (en) | 1997-07-31 | 1999-09-28 | The Dow Chemical Company | Composition for preparing a solvent-resistant coating |
US6284838B1 (en) | 1996-08-12 | 2001-09-04 | Novamont S.P.A. | Biodegradable composition |
US20030157268A1 (en) | 2000-02-04 | 2003-08-21 | Gutowski Wojciech Stanislaw | Treatment of natural polymer based materials and the products based thereon |
JP2006028528A (en) | 2005-09-09 | 2006-02-02 | National Institute Of Advanced Industrial & Technology | Epoxy resin composition |
JP2008077377A (en) | 2006-09-21 | 2008-04-03 | Nec Fielding Ltd | Transportation service execution system, transportation service execution method, article request reception server and program |
CN101348558A (en) | 2008-09-12 | 2009-01-21 | 福州大学 | Enzymatic hydrolysis lignin epoxide resin and preparation thereof |
US20100124441A1 (en) | 2008-11-19 | 2010-05-20 | Satoru Ariyoshi | Toner and method of manufacturing the same, two-component developer, developing device and image forming apparatus |
CN101724136A (en) | 2009-12-11 | 2010-06-09 | 北京工业大学 | Novel method for preparing lignosulphonate epoxy resin |
CN101851429A (en) | 2010-06-11 | 2010-10-06 | 奇瑞汽车股份有限公司 | Lignin composite material and preparation method thereof |
US20110024168A1 (en) | 2009-07-28 | 2011-02-03 | Hitachi, Ltd. | Biomass-derived epoxy resin composition |
US20110098384A1 (en) | 2009-10-23 | 2011-04-28 | Blount David H | Production of amino lignin and amino lignin cellulose resins and adhesives |
TW201141954A (en) | 2010-02-10 | 2011-12-01 | Hitachi Chemical Co Ltd | Resin composition, molded body and composite molded body |
US20120077725A1 (en) | 2010-09-20 | 2012-03-29 | Xiaoru Jenny Wang | Fabric care formulations and methods |
US20120148740A1 (en) | 2010-12-14 | 2012-06-14 | Yang Chia-Wei | Raw materials and methods of manufacturing bio-based epoxy resins |
US20120184701A1 (en) | 2009-10-02 | 2012-07-19 | Kao Corporation | Binder resin for toner |
US20120277349A1 (en) * | 2011-04-26 | 2012-11-01 | Industrial Technology Research Institute | Flame retardant agents and flame retardant materials comprising the same |
JP2013018822A (en) | 2011-07-08 | 2013-01-31 | Hitachi Ltd | Epoxidized lignin resin or epoxidized lignophenol resin, resin composition, varnish and cured product thereof |
US20130210967A1 (en) | 2012-02-14 | 2013-08-15 | Christian Krueger | Aqueous binder composition |
US20130287993A1 (en) | 2012-04-27 | 2013-10-31 | Georgia-Pacific Chemicals Llc | Composite products made with binder compositions that include tannins and multifunctional aldehydes |
US20130289191A1 (en) | 2012-04-27 | 2013-10-31 | Georgia-Pacific Chemicals Llc | Composite products made with lewis acid catalyzed binder compositions that include tannins and multifunctional aldehydes |
US20130303711A1 (en) | 2012-05-11 | 2013-11-14 | Cyclewood Solutions, Inc. | Chemical modification of lignin and lignin derivatives |
US20130338347A1 (en) | 2012-05-11 | 2013-12-19 | Cyclewood Solutions, Inc. | Chemical modification of lignin and lignin derivatives |
US8674079B2 (en) | 2008-03-27 | 2014-03-18 | Tohoku University | Cancer cell migration and cancer cell invasion inhibitor |
US20140094562A1 (en) | 2012-10-01 | 2014-04-03 | Georgia-Pacific Chemicals Llc | Modified polyphenol binder compositions and methods for making and using same |
US20140090577A1 (en) | 2012-10-01 | 2014-04-03 | Georgia-Pacific Chemicals Llc | Methods for making lignocellulose containing composite products |
US20140235811A1 (en) | 2010-12-14 | 2014-08-21 | Industrial Technology Research Institute | Raw materials and methods of manufacturing bio-based epoxy resins |
-
2015
- 2015-06-10 TW TW104118709A patent/TWI549997B/en active
- 2015-07-02 CN CN201510380872.XA patent/CN106188501B/en active Active
- 2015-10-09 US US14/879,871 patent/US9856346B2/en active Active
- 2015-10-13 EP EP15189620.6A patent/EP3009462B1/en active Active
Patent Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4017474A (en) | 1975-08-15 | 1977-04-12 | Research Corporation | Polyurethane intermediates and products and methods of producing same from lignin |
US4087407A (en) | 1976-04-19 | 1978-05-02 | Blount David H | Process for the production of epoxy silicate foam |
US4304877A (en) | 1979-01-26 | 1981-12-08 | Blount David H | Process for the production of alkali metal lignin-cellulose silicate polymer and reaction products |
US5348621A (en) | 1979-11-01 | 1994-09-20 | Coalition Technologies, Limited | Low bulk and light-weight products |
US4235974A (en) | 1979-12-26 | 1980-11-25 | Blount David H | Process for the production of epoxy cellular solid products |
US4292413A (en) | 1979-12-26 | 1981-09-29 | Blount David H | Process for the production of epoxy cellular solid products |
US4323494A (en) | 1980-12-30 | 1982-04-06 | Blount David H | Process for the production of cellulose-silicate products |
US4324864A (en) | 1980-12-30 | 1982-04-13 | Blount David H | Process for the production of cellulose-silicate products |
US4328136A (en) | 1980-12-30 | 1982-05-04 | Blount David H | Process for the production of cellulose-silicate products |
US4547224A (en) | 1984-09-17 | 1985-10-15 | Westvaco Corporation | Emulsifiers for bituminous emulsions |
US4994508A (en) | 1987-07-16 | 1991-02-19 | Asahi Kasei Kogyo Kabushiki Kaisha | Specific hydrogenated block copolymer composition and process for producing the same |
US5093416A (en) | 1987-09-28 | 1992-03-03 | Blount David H | Production of poly (polyisocyanate-alkali metal silicate) products |
US5073297A (en) | 1988-04-18 | 1991-12-17 | Westvaco Corporation | Cation-active emulsifier |
US4861377A (en) | 1988-04-18 | 1989-08-29 | Westvaco Corporation | Cationic aqueous bituminous emulsion-aggregate slurries |
US4957560A (en) | 1988-04-18 | 1990-09-18 | Westvaco Corporation | Cationic aqueous bituminous emulsion-aggregate slurries |
US6284838B1 (en) | 1996-08-12 | 2001-09-04 | Novamont S.P.A. | Biodegradable composition |
US5959016A (en) | 1997-07-31 | 1999-09-28 | The Dow Chemical Company | Composition for preparing a solvent-resistant coating |
US20030157268A1 (en) | 2000-02-04 | 2003-08-21 | Gutowski Wojciech Stanislaw | Treatment of natural polymer based materials and the products based thereon |
JP2006028528A (en) | 2005-09-09 | 2006-02-02 | National Institute Of Advanced Industrial & Technology | Epoxy resin composition |
JP2008077377A (en) | 2006-09-21 | 2008-04-03 | Nec Fielding Ltd | Transportation service execution system, transportation service execution method, article request reception server and program |
US8674079B2 (en) | 2008-03-27 | 2014-03-18 | Tohoku University | Cancer cell migration and cancer cell invasion inhibitor |
CN101348558A (en) | 2008-09-12 | 2009-01-21 | 福州大学 | Enzymatic hydrolysis lignin epoxide resin and preparation thereof |
US20100124441A1 (en) | 2008-11-19 | 2010-05-20 | Satoru Ariyoshi | Toner and method of manufacturing the same, two-component developer, developing device and image forming apparatus |
US8273515B2 (en) | 2008-11-19 | 2012-09-25 | Sharp Kabushiki Kaisha | Toner and method of manufacturing the same, two-component developer, developing device and image forming apparatus |
US8420766B2 (en) | 2009-07-28 | 2013-04-16 | Hitachi, Ltd. | Biomass-derived epoxy resin composition |
US20110024168A1 (en) | 2009-07-28 | 2011-02-03 | Hitachi, Ltd. | Biomass-derived epoxy resin composition |
US20120184701A1 (en) | 2009-10-02 | 2012-07-19 | Kao Corporation | Binder resin for toner |
US20110098384A1 (en) | 2009-10-23 | 2011-04-28 | Blount David H | Production of amino lignin and amino lignin cellulose resins and adhesives |
US8409403B2 (en) | 2009-10-23 | 2013-04-02 | David H. Blount | Production of amino lignin and amino lignin cellulose resins and adhesives |
CN101724136A (en) | 2009-12-11 | 2010-06-09 | 北京工业大学 | Novel method for preparing lignosulphonate epoxy resin |
TW201141954A (en) | 2010-02-10 | 2011-12-01 | Hitachi Chemical Co Ltd | Resin composition, molded body and composite molded body |
US20120302699A1 (en) | 2010-02-10 | 2012-11-29 | Hitachi Chemical Company, Ltd. | Resin composition, molded body and composite molded body |
CN101851429A (en) | 2010-06-11 | 2010-10-06 | 奇瑞汽车股份有限公司 | Lignin composite material and preparation method thereof |
US20120077725A1 (en) | 2010-09-20 | 2012-03-29 | Xiaoru Jenny Wang | Fabric care formulations and methods |
CN102558507A (en) | 2010-12-14 | 2012-07-11 | 财团法人工业技术研究院 | Raw material of biomass epoxy resin and preparation method of biomass epoxy resin |
TW201224012A (en) | 2010-12-14 | 2012-06-16 | Ind Tech Res Inst | Raw materials and methods of manufacturing bio-based epoxy resins |
US20120148740A1 (en) | 2010-12-14 | 2012-06-14 | Yang Chia-Wei | Raw materials and methods of manufacturing bio-based epoxy resins |
US20140235811A1 (en) | 2010-12-14 | 2014-08-21 | Industrial Technology Research Institute | Raw materials and methods of manufacturing bio-based epoxy resins |
TWI445740B (en) | 2010-12-14 | 2014-07-21 | Ind Tech Res Inst | Raw materials and methods of manufacturing bio-based epoxy resins |
US20120277349A1 (en) * | 2011-04-26 | 2012-11-01 | Industrial Technology Research Institute | Flame retardant agents and flame retardant materials comprising the same |
JP2013018822A (en) | 2011-07-08 | 2013-01-31 | Hitachi Ltd | Epoxidized lignin resin or epoxidized lignophenol resin, resin composition, varnish and cured product thereof |
US20130210967A1 (en) | 2012-02-14 | 2013-08-15 | Christian Krueger | Aqueous binder composition |
US20130289191A1 (en) | 2012-04-27 | 2013-10-31 | Georgia-Pacific Chemicals Llc | Composite products made with lewis acid catalyzed binder compositions that include tannins and multifunctional aldehydes |
US20130287993A1 (en) | 2012-04-27 | 2013-10-31 | Georgia-Pacific Chemicals Llc | Composite products made with binder compositions that include tannins and multifunctional aldehydes |
US20130303738A1 (en) | 2012-05-11 | 2013-11-14 | Cyclewood Solutions, Inc. | Chemical modification of lignin and lignin derivatives |
US20130303667A1 (en) | 2012-05-11 | 2013-11-14 | Cyclewood Solutions, Inc. | Chemical modification of lignin and lignin derivatives |
US20130338347A1 (en) | 2012-05-11 | 2013-12-19 | Cyclewood Solutions, Inc. | Chemical modification of lignin and lignin derivatives |
US20130303711A1 (en) | 2012-05-11 | 2013-11-14 | Cyclewood Solutions, Inc. | Chemical modification of lignin and lignin derivatives |
US20140094562A1 (en) | 2012-10-01 | 2014-04-03 | Georgia-Pacific Chemicals Llc | Modified polyphenol binder compositions and methods for making and using same |
US20140090577A1 (en) | 2012-10-01 | 2014-04-03 | Georgia-Pacific Chemicals Llc | Methods for making lignocellulose containing composite products |
Non-Patent Citations (9)
Title |
---|
El Mansouri et al., "Synthesis and Characterization of Kraft Lignin-Based Epoxy Resins", BioResources, vol. 6, No. 3, 2011, pp. 2492-2503. |
Extended European Search Report, dated Feb. 2, 2016, for European Application No. 15189620.6. |
Hu et al., "Synthesis of Straw Alkaline Lignin-based Epoxy Resin", Journal of Northeast Forestry University, vol. 35, No. 4, Apr. 2007, pp. 53-55. |
Malutan et al., "Contribution to the Study of Hydroxymetylation Reaction of Alkali Lignin", BioResources, vol. 3, No. 1, 2008, pp. 13-20. |
Malutan et al., "Lignin Modification by Epoxidation", BioResources, vol. 3, No. 4, 2008, pp. 1371-1376. |
Taiwanese Office Action and Search Report, dated Dec. 23, 2015, for Taiwanese Application No. 104118709. |
Toledo et al., "Calcium Lignosulfonate (40-65) Chemical and Technical Assessment" prepared for 69th JECFA (2008). * |
Zhao et al., "Synthesis and Characterization of Lignin Base Epoxy Resin", Journal of Cellulose Science and Technology, vol. 8, No. 4, Dec. 2000, pp. 19-26. |
Zhao et al., "Synthesis of lignin base epoxy resin and its characterization", Journal of Materials Science Letters, vol. 20, 2001, pp. 859-862. |
Also Published As
Publication number | Publication date |
---|---|
CN106188501B (en) | 2019-04-26 |
CN106188501A (en) | 2016-12-07 |
TWI549997B (en) | 2016-09-21 |
US20160102170A1 (en) | 2016-04-14 |
EP3009462A1 (en) | 2016-04-20 |
TW201613987A (en) | 2016-04-16 |
EP3009462B1 (en) | 2020-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9856346B2 (en) | Lignin-based biomass epoxy resin, method for manufacturing the same, and compositions including the same | |
TWI445740B (en) | Raw materials and methods of manufacturing bio-based epoxy resins | |
US20140235811A1 (en) | Raw materials and methods of manufacturing bio-based epoxy resins | |
İşeri-Çağlar et al. | Preparation and evaluation of linseed oil based alkyd paints | |
CN103492453A (en) | Polyester binder resin for coating, and coating composition containing same | |
Acar et al. | The use of intermediates obtained from aminoglycolysis of waste poly (ethylene terephthalate)(PET) for the synthesis of water-reducible alkyd resin | |
CN114127128B (en) | Cardanol derivative modified polymer and coating composition containing the same | |
JP7461345B2 (en) | Epoxy resin manufacturing method | |
CN107573494B (en) | Hydroxyl polyester resin for polypropylene primer and preparation method and application thereof | |
CN105949439A (en) | Preparation method of waterborne modified epoxy resin | |
TWI509034B (en) | Biomass epoxy resin paint and method of preparing a biomass epoxy coating | |
KR102065574B1 (en) | Polyester resin having high gloss and high hardness and powder coating material comprising the same | |
Kalita et al. | Novel biobased polymers for coating applications | |
Gómez et al. | Efficient processing of bioglycerol to a novel biobased polyunsaturated monomer | |
Yuan et al. | Preparation and properties of tung oil-based polyurethane | |
CN104672395A (en) | Waterborne composite resin emulsion for fabric slurry | |
Uzoh et al. | Self‐cured Alkyd Resin Using Non‐Drying Avocado Seed Oil as a Material of Regenerative Resource | |
JP2014136741A (en) | Resin composition and resin molding | |
CN105951514A (en) | Waterproof paint for cartons and preparation method of waterproof paint | |
KR101052934B1 (en) | VOC Reducing High Solid Coating Composition | |
KR20160107541A (en) | Resin Composition for Oil-Stain and Manufacture Method of Using The Same | |
CN114045070B (en) | Nitro varnish taking dimer acid modified castor oil alkyd resin as internal plasticizer and preparation method thereof | |
CN114835883B (en) | Carboxylic acid micro-nano cellulose-based alkyd resin and preparation method thereof | |
CN112646158B (en) | Modification method and modification intermediate of waterborne alkyd resin and preparation method of modified waterborne alkyd resin | |
CN115160556A (en) | Bio-polyether ester polyol and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHEEN, YUUNG-CHING;WANG, YI-TING;CHEN WEI, SU-MEI;AND OTHERS;REEL/FRAME:036784/0813 Effective date: 20150917 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |