US9644812B2 - High-contrast miniature headlamp - Google Patents

High-contrast miniature headlamp Download PDF

Info

Publication number
US9644812B2
US9644812B2 US14/538,972 US201414538972A US9644812B2 US 9644812 B2 US9644812 B2 US 9644812B2 US 201414538972 A US201414538972 A US 201414538972A US 9644812 B2 US9644812 B2 US 9644812B2
Authority
US
United States
Prior art keywords
light
reflective surface
emitting element
contrast
headlamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/538,972
Other versions
US20160102829A1 (en
Inventor
Ching-Cherng Sun
Chih-Yu Tsai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Central University
Original Assignee
National Central University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Central University filed Critical National Central University
Assigned to NATIONAL CENTRAL UNIVERSITY reassignment NATIONAL CENTRAL UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUN, CHING-CHERNG, TSAI, CHIH-YU
Publication of US20160102829A1 publication Critical patent/US20160102829A1/en
Application granted granted Critical
Publication of US9644812B2 publication Critical patent/US9644812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S48/1388
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • F21S48/1159
    • F21S48/1329

Definitions

  • the present invention relates to a high-contrast miniature headlamp and, more particularly, to a high-contrast miniature headlamp which can reflect the light of the light source for a second time to increase the length of the optical path, thereby producing a clear cutoff line between the illuminated area and the non-illuminated area.
  • Another well-known technique is to increase the area used for reflecting the light of the light source. While this approach can enhance optical efficiency to some degree, a car lamp thus designed cannot generate a clear cutoff line without occupying a large volume, which increases the cost of implementation and reduces the willingness of use.
  • the present invention discloses a high-contrast miniature headlamp including at least one light-emitting element, a first reflective surface, and a second reflective surface.
  • a headlamp can produce a clear cutoff line between the illuminated area and the non-illuminated area (i.e., a high-contrast beam pattern) without having to increase the physical volume of the lamp while featuring cost reduction but no reduction in optical efficiency.
  • the goal is to significantly increase the safety provided by automobile lighting.
  • a high-contrast miniature headlamp includes at least one light-emitting element, a first reflective surface, and a second reflective surface.
  • the light-emitting element is provided on one side of the first reflective surface so that the first reflective surface can reflect the light projected thereon by the light-emitting element while the light-emitting element forms a virtual equivalent light source on the other side of the first reflective surface.
  • the second reflective surface is fixedly provided adjacent to the light-emitting element but is not directly exposed to the light projected by the light-emitting element. The second reflective surface reflects the light of the light-emitting element that is reflected by the first reflective surface, and light reflected from the second reflective surface propagates outward through an outgoing surface.
  • a high-contrast miniature headlamp includes at least one light-emitting element and a light-permeable member fixedly provided adjacent to, and directly exposed to the light projected by, the light-emitting element.
  • the light-permeable member includes a first reflective surface and a second reflective surface.
  • the light-emitting element is provided on one side of the first reflective surface in order for the first reflective surface to reflect the light projected thereon by the light-emitting element, and for the light-emitting element to form a virtual equivalent light source on the other side of the first reflective surface.
  • the second reflective surface is fixedly provided adjacent to, but is not directly exposed to the light projected by, the light-emitting element. The second reflective surface reflects the light of the light-emitting element that is reflected by the first reflective surface, and light reflected from the second reflective surface propagates outward through an outgoing surface.
  • the costs of headlamps can be lowered while the miniature headlamp design is retained.
  • the lighting functions of headlamps can be enhanced without compromising optical efficiency.
  • the same headlamp structure can produce a high beam and a low beam, and the length of the optical path is increased by secondary reflection.
  • a headlamp can output a beam pattern with a clear cutoff line between the illuminated area and the non-illuminated area to substantially increase the safety provided by automobile lighting.
  • FIG. 1 is a schematic sectional view of the high-contrast miniature headlamp in an embodiment of the present invention
  • FIG. 2 schematically shows how light travels in the high-contrast miniature headlamp in an embodiment of the present invention
  • FIG. 3 is a schematic sectional view showing the high-contrast miniature headlamp of FIG. 1 further equipped with a light-emitting component;
  • FIG. 4 is a schematic sectional view of the high-contrast miniature headlamp in another embodiment of the present invention.
  • FIG. 5 is a schematic sectional view showing the high-contrast miniature headlamp of FIG. 4 further equipped with a light-emitting component.
  • the high-contrast miniature headlamp 100 in an embodiment of the present invention includes at least one light-emitting element 10 , a first reflective surface 20 , and a second reflective surface 30 .
  • the light-emitting element 10 is fixedly provided at one side of the interior of the high-contrast miniature headlamp 100 .
  • the light-emitting element 10 is fixedly provided at one side of the interior of the high-contrast miniature headlamp 100 .
  • the light-emitting element 10 can be a light-emitting diode (LED) module, wherein the LED module includes at least one LED or at least one organic LED (OLED).
  • LED light-emitting diode
  • the high-contrast miniature headlamp 100 has one first reflective surface 20 , and the light-emitting element 10 is provided on one side of the first reflective surface 20 .
  • the first reflective surface 20 serves to reflect the light projected thereon by the light-emitting element 10 while the light-emitting element 10 forms a virtual equivalent light source 10 ′ on the other side of the first reflective surface 20 .
  • the first reflective surface 20 can be a flat mirror, a convex mirror, or a concave mirror.
  • the second reflective surface 30 of the high-contrast miniature headlamp 100 is fixedly provided adjacent to the light-emitting element 10 but is not directly exposed to the light projected by the light-emitting element 10 .
  • the second reflective surface 30 serves to reflect the light of the light-emitting element 10 that is reflected by the first reflective surface 20 , and light reflected from the second reflective surface 30 propagates outward through an outgoing surface 40 .
  • FIG. 2 in which a single light-emitting element 10 is shown by way of example.
  • a single light-emitting element 10 In the absence of the first reflective surface 20 , light emitted from the light-emitting element 10 directly impinges on and is reflected by a third reflective surface 30 ′ such that an outgoing light beam B 2 is produced.
  • the length of the optical path traveled within the headlamp by the light emitted from the light-emitting element 10 is the sum of the lengths of the optical path sections d 1 and d 2 .
  • the length of the optical path traveled within the headlamp by the light emitted from the light-emitting element 10 is the sum of the lengths of the optical path sections d 1 , d 2 , and d 3 .
  • both the first reflective surface 20 and the second reflective surface 30 reflect the light emitted from the light-emitting element 10 . Therefore, the high-contrast miniature headlamp 100 is a headlamp structure capable of secondary reflection.
  • the optical path traveled by the light emitted from the light-emitting element 10 is extended (d 1 +d 2 +d 3 >d 1 +d 2 ) in comparison with if the first reflective surface 20 is absent.
  • This extension of the optical path is equivalent to placing the light-emitting element 10 at a farther location from the second reflective surface 30 , with a view to effectively modulating the output beam pattern of the high-contrast miniature headlamp 100 .
  • the contrast of the cutoff line of the beam pattern output from the high-contrast miniature headlamp 100 is enhanced.
  • the first reflective surface 20 of the high-contrast miniature headlamp 100 can be further provided with a light-emitting component 50 , wherein the light-emitting component 50 is located at the intersection between the first reflective surface 20 and the optical path from the virtual equivalent light source 10 ′ to the second reflective surface 30 .
  • the light-emitting component 50 can be at least one LED or at least one OLED.
  • the high-contrast miniature headlamp 100 has two light sources (i.e., the light-emitting element 10 and the light-emitting component 50 ) inside.
  • the light-emitting element 10 and the light-emitting component 50 are a low-beam light source and a high-beam light source respectively
  • the high-contrast miniature headlamp 100 can provide both low-beam and high-beam illumination with a high-contrast beam pattern.
  • FIG. 4 shows another embodiment of the present invention, in which the high-contrast miniature headlamp 200 includes at least one light-emitting element 10 and a light-permeable member 90 .
  • the light-emitting element 10 of the high-contrast miniature headlamp 200 is fixedly provided at one side of the light-permeable member 90 , allowing the light emitted from the light-emitting element 10 to enter the light-permeable member 90 .
  • the light-emitting element 10 of the high-contrast miniature headlamp 200 can also be an LED module, wherein the LED module includes at least one LED or at least one OLED.
  • the light-permeable member 90 is fixedly provided adjacent to the light-emitting element 10 , is directly exposed to the light projected by the light-emitting element 10 , and includes a first reflective surface 20 and a second reflective surface 30 .
  • the light-permeable member 90 can be made of glass, sapphire, ceramic, etc. If necessary, the material of the light-permeable member 90 should be so selected that its transmittance matches the intended application.
  • the light-emitting element 10 of the high-contrast miniature headlamp 200 is provided on one side of the first reflective surface 20 .
  • the first reflective surface 20 serves to reflect the light projected thereon by the light-emitting element 10 while the light-emitting element 10 forms a virtual equivalent light source 10 ′ on the other side of the first reflective surface 20 .
  • the first reflective surface 20 can be a flat reflective surface, a convex reflective surface, or a concave reflective surface.
  • the second reflective surface 30 is fixedly provided adjacent to the light-emitting element 10 but is not directly exposed to the light projected by the light-emitting element 10 .
  • the second reflective surface 30 serves to reflect the light of the light-emitting element 10 that is reflected by the first reflective surface 20 , and light reflected from the second reflective surface 30 propagates outward through an outgoing surface 40 .
  • the first reflective surface 20 extends the optical path traveled by the light emitted from the light-emitting element 10 , and this extension of the optical path is equivalent to placing the light-emitting element 10 at a farther location from the second reflective surface 30 , with a view to effectively modulating the output beam pattern of the high-contrast miniature headlamp 200 .
  • the contrast of the cutoff line of the beam pattern output from the high-contrast miniature headlamp 200 is enhanced.
  • the first reflective surface 20 can be further provided with a light-emitting component 50 , wherein the light-emitting component 50 is located at the intersection between the first reflective surface 20 and the optical path from the virtual equivalent light source 10 ′ to the second reflective surface 30 .
  • the light-emitting component 50 can be at least one LED or at least one OLED.
  • the high-contrast miniature headlamp 200 has two light sources (i.e., the light-emitting element 10 and the light-emitting component 50 ) inside.
  • the light-emitting element 10 and the light-emitting component 50 are a low-beam light source and a high-beam light source respectively
  • the high-contrast miniature headlamp 200 can provide both low-beam and high-beam illumination with a high-contrast beam pattern.

Abstract

A high-contrast miniature headlamp includes at least one light-emitting element, a first reflective surface, and a second reflective surface. The high-contrast miniature headlamp forms a virtual equivalent light source of the light-emitting element via the first reflective surface to increase the equivalent distance between the light source and the second reflective surface, thereby enhancing the contrast of the cutoff line of the beam pattern produced by the headlamp. The headlamp is so configured that, under the condition of maintaining its miniature design and reducing cost without compromising optical efficiency, a beam pattern with a high-contrast cutoff line (i.e., a high-contrast beam pattern) can be generated to significantly improve the safety provided by automobile lighting.

Description

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a high-contrast miniature headlamp and, more particularly, to a high-contrast miniature headlamp which can reflect the light of the light source for a second time to increase the length of the optical path, thereby producing a clear cutoff line between the illuminated area and the non-illuminated area.
2. Description of Related Art
With the modernization of society, our demands for transportation means, such as cars, are increasing, and more and more importance is attached to car lamps as their functions are directly linked to the personal safety of car drivers and other road users.
Recently, therefore, improvements and innovative inventions on car lamps or car lamp structures that are intended for better beam patterns are drawing much attention. The mainstream technique, however, still lies in lens improvement, which increases the contrast of a beam pattern only slightly and is disadvantaged by low optical efficiency and bulkiness in design.
Another well-known technique is to increase the area used for reflecting the light of the light source. While this approach can enhance optical efficiency to some degree, a car lamp thus designed cannot generate a clear cutoff line without occupying a large volume, which increases the cost of implementation and reduces the willingness of use.
In view of the above, it has been the hope of car users and the car industry alike to sec the creation of a practical, high-contrast miniature headlamp whose optical design enables a clear cutoff line to be formed not only despite the small volume of the lamp, but also without lowering optical efficiency, so as to significantly increase the safety provided by automobile lighting.
BRIEF SUMMARY OF THE INVENTION
The present invention discloses a high-contrast miniature headlamp including at least one light-emitting element, a first reflective surface, and a second reflective surface. By implementing the present invention, a headlamp can produce a clear cutoff line between the illuminated area and the non-illuminated area (i.e., a high-contrast beam pattern) without having to increase the physical volume of the lamp while featuring cost reduction but no reduction in optical efficiency. The goal is to significantly increase the safety provided by automobile lighting.
According to one aspect of the present invention, a high-contrast miniature headlamp includes at least one light-emitting element, a first reflective surface, and a second reflective surface. The light-emitting element is provided on one side of the first reflective surface so that the first reflective surface can reflect the light projected thereon by the light-emitting element while the light-emitting element forms a virtual equivalent light source on the other side of the first reflective surface. The second reflective surface is fixedly provided adjacent to the light-emitting element but is not directly exposed to the light projected by the light-emitting element. The second reflective surface reflects the light of the light-emitting element that is reflected by the first reflective surface, and light reflected from the second reflective surface propagates outward through an outgoing surface.
According to another aspect of the present invention, a high-contrast miniature headlamp includes at least one light-emitting element and a light-permeable member fixedly provided adjacent to, and directly exposed to the light projected by, the light-emitting element. The light-permeable member includes a first reflective surface and a second reflective surface. The light-emitting element is provided on one side of the first reflective surface in order for the first reflective surface to reflect the light projected thereon by the light-emitting element, and for the light-emitting element to form a virtual equivalent light source on the other side of the first reflective surface. The second reflective surface is fixedly provided adjacent to, but is not directly exposed to the light projected by, the light-emitting element. The second reflective surface reflects the light of the light-emitting element that is reflected by the first reflective surface, and light reflected from the second reflective surface propagates outward through an outgoing surface.
Implementation of the present invention at least provides the following advantageous effects;
1. The costs of headlamps can be lowered while the miniature headlamp design is retained. In addition, the lighting functions of headlamps can be enhanced without compromising optical efficiency.
2. The same headlamp structure can produce a high beam and a low beam, and the length of the optical path is increased by secondary reflection.
3. A headlamp can output a beam pattern with a clear cutoff line between the illuminated area and the non-illuminated area to substantially increase the safety provided by automobile lighting.
The features and advantages of the present invention are detailed hereinafter with reference to the preferred embodiments. The detailed description is intended to enable a person skilled in the art to gain insight into the technical contents disclosed herein and implement the present invention accordingly. In particular, a person skilled in the art can easily understand the objects and advantages of the present invention by referring to the disclosure of the specification, the claims, and the accompanying drawings.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
The invention as well as a preferred mode of use, further objectives and advantages thereof will be best understood by reference to the following detailed description of illustrative embodiments when read in conjunction with the accompanying drawings, wherein:
FIG. 1 is a schematic sectional view of the high-contrast miniature headlamp in an embodiment of the present invention;
FIG. 2 schematically shows how light travels in the high-contrast miniature headlamp in an embodiment of the present invention;
FIG. 3 is a schematic sectional view showing the high-contrast miniature headlamp of FIG. 1 further equipped with a light-emitting component;
FIG. 4 is a schematic sectional view of the high-contrast miniature headlamp in another embodiment of the present invention; and
FIG. 5 is a schematic sectional view showing the high-contrast miniature headlamp of FIG. 4 further equipped with a light-emitting component.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, the high-contrast miniature headlamp 100 in an embodiment of the present invention includes at least one light-emitting element 10, a first reflective surface 20, and a second reflective surface 30. The light-emitting element 10 is fixedly provided at one side of the interior of the high-contrast miniature headlamp 100.
As shown in FIG. 1 and FIG. 2, the light-emitting element 10 is fixedly provided at one side of the interior of the high-contrast miniature headlamp 100. The light-emitting element 10 can be a light-emitting diode (LED) module, wherein the LED module includes at least one LED or at least one organic LED (OLED).
Referring again to FIG. 1 and FIG. 2, the high-contrast miniature headlamp 100 has one first reflective surface 20, and the light-emitting element 10 is provided on one side of the first reflective surface 20. The first reflective surface 20 serves to reflect the light projected thereon by the light-emitting element 10 while the light-emitting element 10 forms a virtual equivalent light source 10′ on the other side of the first reflective surface 20. The first reflective surface 20 can be a flat mirror, a convex mirror, or a concave mirror.
With continued reference to FIG. 1 and FIG. 2, the second reflective surface 30 of the high-contrast miniature headlamp 100 is fixedly provided adjacent to the light-emitting element 10 but is not directly exposed to the light projected by the light-emitting element 10. The second reflective surface 30 serves to reflect the light of the light-emitting element 10 that is reflected by the first reflective surface 20, and light reflected from the second reflective surface 30 propagates outward through an outgoing surface 40.
Reference is now made to FIG. 2, in which a single light-emitting element 10 is shown by way of example. In the absence of the first reflective surface 20, light emitted from the light-emitting element 10 directly impinges on and is reflected by a third reflective surface 30′ such that an outgoing light beam B2 is produced. The length of the optical path traveled within the headlamp by the light emitted from the light-emitting element 10 is the sum of the lengths of the optical path sections d1 and d2.
In the presence of the first reflective surface 20, however, light emitted from the light-emitting element 10 strikes the first reflective surface 20 while the light-emitting element 10 forms an equivalent light source 10′ on the other side of the first reflective surface 20. More specifically, light emitted from the light-emitting element 10 is reflected by the first reflective surface 20, cast onto the second reflective surface 30, and then reflected by the second reflective surface 30 to produce an outgoing light beam B1. The length of the optical path traveled within the headlamp by the light emitted from the light-emitting element 10 is the sum of the lengths of the optical path sections d1, d2, and d3.
In this embodiment, both the first reflective surface 20 and the second reflective surface 30 reflect the light emitted from the light-emitting element 10. Therefore, the high-contrast miniature headlamp 100 is a headlamp structure capable of secondary reflection.
In the high-contrast miniature headlamp 100, the optical path traveled by the light emitted from the light-emitting element 10 is extended (d1+d2+d3>d1+d2) in comparison with if the first reflective surface 20 is absent. This extension of the optical path is equivalent to placing the light-emitting element 10 at a farther location from the second reflective surface 30, with a view to effectively modulating the output beam pattern of the high-contrast miniature headlamp 100. As a result, the contrast of the cutoff line of the beam pattern output from the high-contrast miniature headlamp 100 is enhanced.
Moreover, referring to FIG. 3, the first reflective surface 20 of the high-contrast miniature headlamp 100 can be further provided with a light-emitting component 50, wherein the light-emitting component 50 is located at the intersection between the first reflective surface 20 and the optical path from the virtual equivalent light source 10′ to the second reflective surface 30. The light-emitting component 50 can be at least one LED or at least one OLED.
Thus, the high-contrast miniature headlamp 100 has two light sources (i.e., the light-emitting element 10 and the light-emitting component 50) inside. When the light-emitting element 10 and the light-emitting component 50 are a low-beam light source and a high-beam light source respectively, the high-contrast miniature headlamp 100 can provide both low-beam and high-beam illumination with a high-contrast beam pattern.
FIG. 4 shows another embodiment of the present invention, in which the high-contrast miniature headlamp 200 includes at least one light-emitting element 10 and a light-permeable member 90.
The light-emitting element 10 of the high-contrast miniature headlamp 200 is fixedly provided at one side of the light-permeable member 90, allowing the light emitted from the light-emitting element 10 to enter the light-permeable member 90. The light-emitting element 10 of the high-contrast miniature headlamp 200 can also be an LED module, wherein the LED module includes at least one LED or at least one OLED.
As shown in FIG. 4, the light-permeable member 90 is fixedly provided adjacent to the light-emitting element 10, is directly exposed to the light projected by the light-emitting element 10, and includes a first reflective surface 20 and a second reflective surface 30. The light-permeable member 90 can be made of glass, sapphire, ceramic, etc. If necessary, the material of the light-permeable member 90 should be so selected that its transmittance matches the intended application.
As shown in FIG. 4 and FIG. 5, the light-emitting element 10 of the high-contrast miniature headlamp 200 is provided on one side of the first reflective surface 20. The first reflective surface 20 serves to reflect the light projected thereon by the light-emitting element 10 while the light-emitting element 10 forms a virtual equivalent light source 10′ on the other side of the first reflective surface 20. The first reflective surface 20 can be a flat reflective surface, a convex reflective surface, or a concave reflective surface.
With continued reference to FIG. 4 and FIG. 5, the second reflective surface 30 is fixedly provided adjacent to the light-emitting element 10 but is not directly exposed to the light projected by the light-emitting element 10. The second reflective surface 30 serves to reflect the light of the light-emitting element 10 that is reflected by the first reflective surface 20, and light reflected from the second reflective surface 30 propagates outward through an outgoing surface 40.
In the high-contrast miniature headlamp 200, the first reflective surface 20 extends the optical path traveled by the light emitted from the light-emitting element 10, and this extension of the optical path is equivalent to placing the light-emitting element 10 at a farther location from the second reflective surface 30, with a view to effectively modulating the output beam pattern of the high-contrast miniature headlamp 200. As a result, the contrast of the cutoff line of the beam pattern output from the high-contrast miniature headlamp 200 is enhanced.
Moreover, referring to FIG. 5, the first reflective surface 20 can be further provided with a light-emitting component 50, wherein the light-emitting component 50 is located at the intersection between the first reflective surface 20 and the optical path from the virtual equivalent light source 10′ to the second reflective surface 30. Likewise, the light-emitting component 50 can be at least one LED or at least one OLED.
Thus, the high-contrast miniature headlamp 200 has two light sources (i.e., the light-emitting element 10 and the light-emitting component 50) inside. When the light-emitting element 10 and the light-emitting component 50 are a low-beam light source and a high-beam light source respectively, the high-contrast miniature headlamp 200 can provide both low-beam and high-beam illumination with a high-contrast beam pattern.
The embodiments described above are intended only to demonstrate the technical concept and features of the present invention so as to enable a person skilled in the art to understand and implement the contents disclosed herein. It is understood that the disclosed embodiments are not to limit the scope of the present invention. Therefore, all equivalent changes or modifications based on the concept of the present invention should be encompassed by the appended claims.

Claims (8)

What is claimed is:
1. A high-contrast miniature headlamp, comprising:
at least one light-emitting element;
a first reflective surface on a side of which the light-emitting element is provided in order for the first reflective surface to reflect light projected thereon by the light-emitting element, and for the light-emitting element to form a virtual equivalent light source on an opposite side of the first reflective surface; and
a second reflective surface fixedly provided adjacent to the light-emitting element but not in direct exposure to light projected by the light-emitting element, the second reflective surface reflecting light which is projected by the light-emitting element and reflected by the first reflective surface such that light reflected from the second reflective surface propagates outward through an outgoing surface;
wherein the first reflective surface is further provided with a light-emitting component, and the light-emitting component is mounted into the first reflective surface and located at an intersection between the first reflective surface and an optical path from the virtual equivalent light source to the second reflective surface.
2. The high-contrast miniature headlamp of claim 1, wherein the first reflective surface is a flat, convex, or concave mirror.
3. The high-contrast miniature headlamp of claim 1, wherein the light-emitting element is a light-emitting diode (LED) module and includes at least one LED or at least one organic LED (OLED).
4. The high-contrast miniature headlamp of claim 3, wherein the first reflective surface is a flat, convex, or concave mirror.
5. A high-contrast miniature headlamp, comprising:
at least one light-emitting element; and
a light-permeable member fixedly provided adjacent to the light-emitting element and in direct exposure to light projected by the light-emitting element, the light-permeable member comprising:
a first reflective surface on a side of which the light-emitting element is provided in order for the first reflective surface to reflect light projected thereon by the light-emitting element, and for the light-emitting element to form a virtual equivalent light source on an opposite side of the first reflective surface; and
a second reflective surface fixedly provided adjacent to the light-emitting element but not in direct exposure to the light projected by the light-emitting element, the second reflective surface reflecting light which is projected by the light-emitting element and reflected by the first reflective surface such that light reflected from the second reflective surface propagates outward through an outgoing surface;
wherein the first reflective surface is further provided with a light-emitting component, and the light-emitting component is mounted into the first reflective surface and located at an intersection between the first reflective surface and an optical path from the virtual equivalent light source to the second reflective surface.
6. The high-contrast miniature headlamp of claim 5, wherein the first reflective surface is a flat, convex, or concave reflective surface.
7. The high-contrast miniature headlamp of claim 5, wherein the light-emitting element is a light-emitting diode (LED) module and includes at least one LED or at least one organic LED (OLED).
8. The high-contrast miniature headlamp of claim 7, wherein the first reflective surface is a flat, convex, or concave reflective surface.
US14/538,972 2014-10-14 2014-11-12 High-contrast miniature headlamp Active US9644812B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW103135566A 2014-10-14
TW103135566A TWI571592B (en) 2014-10-14 2014-10-14 High contrast and miniature headlamp
TW103135566 2014-10-14

Publications (2)

Publication Number Publication Date
US20160102829A1 US20160102829A1 (en) 2016-04-14
US9644812B2 true US9644812B2 (en) 2017-05-09

Family

ID=55655185

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/538,972 Active US9644812B2 (en) 2014-10-14 2014-11-12 High-contrast miniature headlamp

Country Status (3)

Country Link
US (1) US9644812B2 (en)
CN (1) CN105588050B (en)
TW (1) TWI571592B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT518552B1 (en) * 2016-08-19 2017-11-15 Zkw Group Gmbh Lighting unit for a motor vehicle headlight for generating at least two light distributions
CN108758545A (en) * 2018-08-01 2018-11-06 华域视觉科技(上海)有限公司 A kind of reflection type mirror LED module
WO2021046940A1 (en) * 2019-09-11 2021-03-18 华域视觉科技(上海)有限公司 Vehicle lamp module, vehicle lamp, and vehicle
US11519578B2 (en) 2019-09-11 2022-12-06 Hasco Vision Technology Co., Ltd. Vehicle lamp assembly, vehicle lamp, and vehicle
DE102021129851A1 (en) * 2021-11-16 2023-05-17 HELLA GmbH & Co. KGaA Light guide element for a lighting device for a motor vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126353A1 (en) * 2004-12-09 2006-06-15 Koito Manufacturing Co., Ltd. Vehicular illumination lamp
US20060285316A1 (en) * 2005-06-20 2006-12-21 Welch Allyn, Inc. Hybrid surgical headlight system utilizing dual illumination paths and coaxial optics
US20120327678A1 (en) * 2011-06-22 2012-12-27 Teruo Koike Vehicle headlamp including two-dimensional optical deflector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI233223B (en) * 2004-08-20 2005-05-21 Ace T Corp Light source structure of light emitting diode
TWI331694B (en) * 2005-10-20 2010-10-11 Ind Tech Res Inst Back-lighted structure
TWI391772B (en) * 2008-12-12 2013-04-01 Young Optics Inc Image display apparatus
CN103900004A (en) * 2012-12-26 2014-07-02 鸿富锦精密工业(深圳)有限公司 Car lamp system
CN103591515B (en) * 2013-11-25 2016-01-20 福州丹诺西诚电子科技有限公司 A kind of automobile rotary knob light guide and automobile rotary knob
CN203671512U (en) * 2013-12-09 2014-06-25 广东雪莱特光电科技股份有限公司 LED light-emitting component of vehicle headlamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126353A1 (en) * 2004-12-09 2006-06-15 Koito Manufacturing Co., Ltd. Vehicular illumination lamp
US20060285316A1 (en) * 2005-06-20 2006-12-21 Welch Allyn, Inc. Hybrid surgical headlight system utilizing dual illumination paths and coaxial optics
US20120327678A1 (en) * 2011-06-22 2012-12-27 Teruo Koike Vehicle headlamp including two-dimensional optical deflector

Also Published As

Publication number Publication date
TW201614164A (en) 2016-04-16
US20160102829A1 (en) 2016-04-14
CN105588050A (en) 2016-05-18
CN105588050B (en) 2018-04-20
TWI571592B (en) 2017-02-21

Similar Documents

Publication Publication Date Title
JP5257665B2 (en) Vehicle headlight unit and vehicle headlight
US9644812B2 (en) High-contrast miniature headlamp
US11015779B2 (en) Vehicle lamp with light guide having rod-shaped part and plate-shaped part
JP2010040322A (en) Lighting fixture for vehicle
JP2010129321A (en) Vehicle lamp
JP5365163B2 (en) Vehicle lighting
JP2014037195A (en) Lighting control system, control device, and lighting device
JP2006339008A (en) Vehicle lamp
JP2018045907A (en) Vehicular headlight
JP2019012623A (en) Vehicular lighting fixture
JP6322931B2 (en) Vehicle lighting
JP2014229441A (en) Lighting fixture for vehicle
JP6597024B2 (en) Vehicle lighting
JP6245022B2 (en) Vehicle light guide member, vehicle lamp
JP2018142457A (en) Vehicular lighting fixture
JP2011018563A (en) Lighting tool for vehicle
JP2016162589A (en) Vehicle lamp fitting
JP2014137896A (en) Vehicular lighting
JP6402592B2 (en) Vehicle headlamp
JP6455004B2 (en) Vehicle lighting
JP5278208B2 (en) Vehicle lighting
JP2014154470A (en) Vehicular lighting device
JP6171266B2 (en) Vehicle lighting
JP2019040677A (en) Vehicular headlight
DE602006015413D1 (en) Automotive optical module with a parking light

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL CENTRAL UNIVERSITY, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUN, CHING-CHERNG;TSAI, CHIH-YU;REEL/FRAME:034152/0889

Effective date: 20141029

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4