US9543273B2 - Reduced volume interconnect for three-dimensional chip stack - Google Patents
Reduced volume interconnect for three-dimensional chip stack Download PDFInfo
- Publication number
- US9543273B2 US9543273B2 US14/599,824 US201514599824A US9543273B2 US 9543273 B2 US9543273 B2 US 9543273B2 US 201514599824 A US201514599824 A US 201514599824A US 9543273 B2 US9543273 B2 US 9543273B2
- Authority
- US
- United States
- Prior art keywords
- conductive structures
- interconnect
- silicon layers
- conductive
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000010703 silicon Substances 0.000 claims abstract description 96
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 96
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 65
- 239000004020 conductor Substances 0.000 claims abstract description 53
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 238000005272 metallurgy Methods 0.000 claims abstract description 8
- 229910000765 intermetallic Inorganic materials 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims 1
- 239000011800 void material Substances 0.000 claims 1
- 229910000679 solder Inorganic materials 0.000 description 59
- 230000008569 process Effects 0.000 description 32
- 238000009736 wetting Methods 0.000 description 23
- 239000000758 substrate Substances 0.000 description 20
- 230000009471 action Effects 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 238000002844 melting Methods 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- -1 for example Substances 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 229910018082 Cu3Sn Inorganic materials 0.000 description 1
- 229910018471 Cu6Sn5 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 241000724291 Tobacco streak virus Species 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/19—Manufacturing methods of high density interconnect preforms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/565—Moulds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/17—Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/038—Post-treatment of the bonding area
- H01L2224/0381—Cleaning, e.g. oxide removal step, desmearing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05647—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05655—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/061—Disposition
- H01L2224/0612—Layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/065—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/11001—Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
- H01L2224/11003—Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the bump preform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/113—Manufacturing methods by local deposition of the material of the bump connector
- H01L2224/1133—Manufacturing methods by local deposition of the material of the bump connector in solid form
- H01L2224/11334—Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/114—Manufacturing methods by blanket deposition of the material of the bump connector
- H01L2224/1141—Manufacturing methods by blanket deposition of the material of the bump connector in liquid form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/114—Manufacturing methods by blanket deposition of the material of the bump connector
- H01L2224/1143—Manufacturing methods by blanket deposition of the material of the bump connector in solid form
- H01L2224/11436—Lamination of a preform, e.g. foil, sheet or layer
- H01L2224/1144—Lamination of a preform, e.g. foil, sheet or layer by transfer printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/118—Post-treatment of the bump connector
- H01L2224/11848—Thermal treatments, e.g. annealing, controlled cooling
- H01L2224/11849—Reflowing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13109—Indium [In] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
- H01L2224/141—Disposition
- H01L2224/14104—Disposition relative to the bonding areas, e.g. bond pads, of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/1601—Structure
- H01L2224/16012—Structure relative to the bonding area, e.g. bond pad
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16135—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/16145—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16135—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/16145—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
- H01L2224/16146—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a via connection in the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16227—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/165—Material
- H01L2224/16501—Material at the bonding interface
- H01L2224/16503—Material at the bonding interface comprising an intermetallic compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/17—Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
- H01L2224/171—Disposition
- H01L2224/1718—Disposition being disposed on at least two different sides of the body, e.g. dual array
- H01L2224/17181—On opposite sides of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/81009—Pre-treatment of the bump connector or the bonding area
- H01L2224/81022—Cleaning the bonding area, e.g. oxide removal step, desmearing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/81053—Bonding environment
- H01L2224/81054—Composition of the atmosphere
- H01L2224/81065—Composition of the atmosphere being reducing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/81053—Bonding environment
- H01L2224/8109—Vacuum
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/811—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector the bump connector being supplied to the parts to be connected in the bonding apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8112—Aligning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/812—Applying energy for connecting
- H01L2224/81201—Compression bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/812—Applying energy for connecting
- H01L2224/81201—Compression bonding
- H01L2224/81203—Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/812—Applying energy for connecting
- H01L2224/8121—Applying energy for connecting using a reflow oven
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8138—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/81399—Material
- H01L2224/814—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/81438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/81447—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8138—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/81399—Material
- H01L2224/814—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/81438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/81455—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81801—Soldering or alloying
- H01L2224/8181—Soldering or alloying involving forming an intermetallic compound at the bonding interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81801—Soldering or alloying
- H01L2224/81815—Reflow soldering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/81986—Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06517—Bump or bump-like direct electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06541—Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/03—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
- H01L2924/3511—Warping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/38—Effects and problems related to the device integration
- H01L2924/381—Pitch distance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/38—Effects and problems related to the device integration
- H01L2924/384—Bump effects
- H01L2924/3841—Solder bridging
Definitions
- the present invention relates generally to the electrical, electronic and computer arts, and, more particularly, to integrated circuit (IC) interconnects.
- IC integrated circuit
- Three-dimensional (3D) chip stacking relies on metallized interconnect structures between silicon layers to enable electrical communication between the respective chips.
- Chip stacking refers to an IC packaging methodology in which a completed computer chip (e.g., dynamic random access memory (DRAM)) is placed on top of another chip (e.g., a central processing unit (CPU)).
- DRAM dynamic random access memory
- CPU central processing unit
- soldering remains one of the most popular.
- plating, evaporation or other solder deposition methods are typically expensive and complex and limit the alloys that may be used.
- conventional solder deposition methods produce a spacing between adjacent chips, referred to herein as standoff height, which substantially increases the overall package height of the chip stack and furthermore is not sufficient for high-frequency signals.
- the shorter interconnect wires will decrease both the average parasitic load capacitance and the resistance. Also there is a demand to make the total stacked package height as low as possible in a mobile application industry market.
- a method of forming a reduced volume interconnect for a chip stack including multiple silicon layers includes: forming multiple conductive structures, each of at least a subset of the conductive structures having a volume of conductive material for a corresponding under bump metallurgy pad onto which the conductive structure is transferred that is configured such that a ratio of an unreflowed diameter of the conductive structure to a diameter of the corresponding pad is about one third-to-one or less; transferring the conductive structures to the silicon layers; stacking the silicon layers in a substantially vertical dimension such that each of the conductive structures on a given silicon layer is aligned with a corresponding electrical contact location on an underside of an adjacent silicon layer; and heating the interconnect so as to metallurgically bond multiple electrical contact locations of adjacent silicon layers in such a manner that at least a given one of the conductive structures between aligned electrical contact locations on corresponding adjacent silicon
- a method of forming a reduced volume electrical interconnect for a chip stack including multiple silicon layers includes: forming a plurality of conductive structures; transferring the conductive structures to the silicon layers; stacking the silicon layers in a substantially vertical dimension such that each of the conductive structures on a given silicon layer is aligned with a corresponding electrical contact location on an underside of an adjacent silicon layer; and heating the interconnect so as to metallurgically bond multiple electrical contact locations of adjacent silicon layers in such a manner that at least a given one of the conductive structures between aligned electrical contact locations on corresponding adjacent silicon layers collapses to reduce an interconnect gap therebetween.
- Each of at least a subset of the conductive structures is formed having a volume of conductive material that is configured such that a percentage of intermetallic compounds in a junction between the conductive structure and corresponding aligned under bump metallurgy (UBM) pads formed on corresponding opposing surfaces of adjacent silicon layers is about forty percent or more of a total volume of conductive material.
- UBM under bump metallurgy
- a reduced volume electrical interconnect for a 3D chip stack includes: multiple silicon layers having multiple electrical contact locations formed on a surface thereof; multiple UBM pads, each of the UBM pads being formed between a corresponding one of the silicon layers and a corresponding one of the electrical contact locations; and multiple conductive structures, each of the conductive structures being aligned with a corresponding one of the electrical contact locations and having a volume of conductive material for a corresponding one of the UBM pads that is configured such that a ratio of an unreflowed diameter of the conductive structure to a diameter of the corresponding pad is about one third-to-one or less.
- the interconnect is configured having the plurality of silicon layers stacked in a substantially vertical dimension such that each of the conductive structures on a given silicon layer is aligned with a corresponding electrical contact location on an underside of an adjacent silicon layer.
- the conductive structures when heated to a prescribed temperature, metallurgically bond the electrical contact locations of adjacent silicon layers in such a manner that at least a given one of the conductive structures between aligned electrical contact locations on corresponding adjacent silicon layers collapses to thereby reduce an interconnect gap therebetween.
- a reduced volume electrical interconnect for a 3D chip stack includes: multiple silicon layers having multiple electrical contact locations formed on a surface thereof; multiple UBM pads, each of the UBM pads being formed between a corresponding one of the silicon layers and a corresponding one of the electrical contact locations; and multiple conductive structures.
- Each of the conductive structures is aligned with a corresponding one of the electrical contact locations and has a volume of conductive material for a corresponding one of the UBM pads that is configured such that a ratio of an unreflowed diameter of the conductive structure to a diameter of the corresponding pad is about one third-to-one or less.
- Each of at least a subset of the conductive structures is formed having a volume of conductive material that is configured such that a percentage of intermetallic compounds in a junction between the conductive structure and corresponding aligned UBM pads formed on corresponding opposing surfaces of adjacent silicon layers is about forty percent or more of a total volume of conductive material.
- facilitating includes performing the action, making the action easier, helping to carry the action out, or causing the action to be performed.
- instructions executing on one processor might facilitate an action carried out by instructions executing on a remote processor, by sending appropriate data or commands to cause or aid the action to be performed.
- the action is nevertheless performed by some entity or combination of entities.
- one or more embodiments may provide reduced standoff height, which reduces the overall height/size of the interconnect and reduces stacked package height, improved power efficiency, increased bandwidth and/or reduced cost.
- FIGS. 1A and 1B are cross-sectional views depicting at least a portion of an exemplary 3D chip stack in which techniques according to one or more embodiments of the invention can be employed;
- FIG. 2 is a cross-sectional view conceptually depicting a comparison between an exemplary controlled collapse chip connection (C4) and an exemplary low-volume interconnect for a 3D chip stack;
- FIGS. 3A through 3E are cross-sectional views depicting at least a portion of an illustrative controlled collapse chip connection new process (C4NP) solder transfer process for forming interconnect structures between silicon layers that are of standard (i.e., full) height;
- C4NP controlled collapse chip connection new process
- FIGS. 4A through 4E are cross-sectional views depicting at least a portion of an exemplary process for forming a reduced volume interconnect for a three-dimensional chip stack, according to an embodiment of the invention
- FIGS. 5A and 5B are cross-sectional views conceptually depicting solder reflow processes over an under bump metallurgy (UBM) pad using a single centered preform and multiple spaced preforms, respectively; and
- UBM under bump metallurgy
- FIGS. 6A through 6E are cross-sectional views depicting at least a portion of an exemplary process for forming a three-dimensional chip stack comprising a reduced volume interconnect, according to an embodiment of the invention.
- Embodiments of the present invention will be described herein in the context of illustrative interconnect structures for 3D chip stacks and for methods of making same. It is to be appreciated, however, that the invention is not limited to the specific apparatus and/or methods illustratively shown and described herein. Rather, embodiments of the invention are directed to a reduced volume interconnect for decreasing an interconnect height between adjacent silicon layers of a chip stack. Moreover, it will become apparent to those skilled in the art given the teachings herein that numerous modifications can be made to the embodiments shown that are within the scope of the claimed invention. Thus, no limitations with respect to the embodiments shown and described herein are intended or should be inferred.
- C4NP controlled collapse chip connection new process
- FIGS. 1A and 1B are cross-sectional views depicting at least a portion of an exemplary 3D chip stack in which techniques according to one or more embodiments of the invention can be employed.
- the chip stack module 100 includes a substrate 102 electrically connected to a interposer 108 , which is stacked vertically above at least a portion of the substrate, by way of a first plurality of conductive structures 110 (e.g., C4 solder balls).
- the interposer 108 such as, for example, a silicon, glass or organic interposer, may comprise, for example, a microprocessor or other circuit component, positioned vertically above at least a portion of the substrate using a first plurality of conductive structures 110 (e.g., C4 solder balls).
- the interposer 108 is electrically connected with one or more other die 112 , each of which may comprise, for example, memory stacked vertically above at least a portion of the interposer using a corresponding plurality of conductive structures 114 , as shown
- TSV through-silicon vias
- TSV through-glass vias
- FIG. 1B illustrates a portion of the exemplary chip stack module 100 depicted in FIG.
- a first plurality of vias 118 are formed through the interposer 108 for connecting the first plurality of conductive structures 110 with a wiring later 120 formed on an upper surface of the interposer.
- a second plurality of vias (e.g., TSV) 122 formed through the respective die 112 are used to connect corresponding conductive structures 114 with one another.
- the 3D chip stack module 100 is carried out using flip-chip technology and an underfill material 116 is used in the spaces between chips (e.g., between chips 112 , or between interposer 108 and chip 112 ) and between chip and substrate (e.g., between interposer 108 and substrate 102 ), primarily for increasing the structural integrity of the chip stack module.
- an underfill material 116 is used in the spaces between chips (e.g., between chips 112 , or between interposer 108 and chip 112 ) and between chip and substrate (e.g., between interposer 108 and substrate 102 ), primarily for increasing the structural integrity of the chip stack module.
- FIG. 2 is a cross-sectional view conceptually depicting a comparison between an exemplary controlled collapse chip connection (C4) and an exemplary low-volume interconnect for a 3D chip stack.
- C4 controlled collapse chip connection
- a chip 204 is electrically connected with a corresponding circuit on the substrate 202 via one or more C4 solder balls 206 .
- Each solder ball 206 preferably contacts corresponding wetting pads, 208 and 210 , formed on surfaces of the substrate 202 and chip 204 , respectively, the wetting pads being aligned with one another.
- intermetallic compounds (IMC) 212 are formed during the bonding or solder reflow processes, particularly when using C4 solder balls; in this illustration, an 80-micron C4 solder ball is used.
- a chip 214 is electrically connected with a corresponding circuit on the substrate 202 via one or more low-volume lead-free solder structures.
- the low-volume solder structure is preferably attached to corresponding wetting pads, 218 and 220 , on surfaces of the substrate 202 and chip 214 , respectively.
- very small solder volumes e.g., less than about ten microns in height, as in the example shown
- IMC 222 in junctions between solder structure 223 and the respective wetting pads 218 , 220 during the bonding or reflow processes.
- the percentage of IMC 222 in the junction between wetting pads 218 and 220 for the low-volume solder structure according to one or more embodiments of the invention will be significantly higher (e.g., about forty percent or more) compared to the percentage of IMC 212 between wetting pads 208 and 210 in a standard C4 process (e.g., generally, about ten percent or less).
- C4 solder interconnects require a larger spacing between balls and higher joint gaps than low-volume solder interconnects.
- Lead-free solder interconnects such as, for example, tin (Sn) or indium (In), or alloys including tin, silver and/or copper, tin/silver/copper (Sn/Ag/Cu), tin/silver (Sn/Ag), etc., can be joined at a relatively low temperature and form an intermetallic phase with a melting temperature much higher than the low bonding temperature.
- the melting point of indium is 156 degrees Celsius (° C.) and the melting point of the resulting Cu/In IMC is expected to be more than about 400° C.; higher than the standard solder reflow temperature (260° C.) in the subsequent bonding.
- This is a desirable feature for 3D chip-stack processes because high thermal stability is needed to allow repetition of the same bonding process steps for subsequent chip-stack assemblies, or for other subsequent die-stack or module level assemblies.
- a low-temperature bonding process has the potential to overcome issues such as wafer or chip warpage during alloying up.
- Some benefits of low-volume solder interconnects include, but are not limited to: (i) increased vertical heat transfer within a 3D die stack; (ii) extension to fine-pitch interconnection design rules; and (iii) a temperature hierarchy for low temperature bonding but also supporting subsequent process steps with less re-melting than C4 interconnects.
- the temperature hierarchy supports the creation of tested and known-good die (KGD) stacks without the risk of die stack interconnections melting again during reflow for module level assembly or surface mount assembly to a board. Once created, the IMC bonds have good thermal stability.
- FIGS. 3A through 3E are cross-sectional views depicting an illustrative C4NP solder transfer process used to form interconnect structures between silicon layers that are of standard (i.e., full) height.
- a mold 302 includes a plurality of depressions or cavities 304 in an upper surface 305 of the mold.
- each of the cavities 304 has a trapezoidally-shaped cross section and does not extend completely through the mold 302 .
- Such a trapezoidal shape is produced, in accordance with one or more embodiments, by laser ablation in polyimide.
- PI polyimide
- C4NP molds are usually glass, and the cross section of the cavities 304 form a flattened hemisphere, in this embodiment.
- the cavities 304 are adapted to receive solder or an alternative conductive material, which may be introduced into the cavities in molten form via an injection molding process or the like, as will be understood by those skilled in the art. Alloy flexibility includes multi-component lead-free alloys. The width and depth of each of the cavities 304 will define a volume of the resulting interconnect structures.
- the mold 302 may be formed using a semiconductor material, such as, for example, borosilicate glass, although the invention is not limited to glass molds.
- a semiconductor material such as, for example, borosilicate glass
- the cavities 304 will be formed having cross sections shaped as flattened hemispheres by etching, in one or more embodiments.
- the glass molds are reusable, thus keeping costs low.
- each of the cavities 304 in the mold 302 are filled with a conductive material 306 , preferably molten solder, and made substantially planar with the upper surface 305 of the mold.
- a conductive material 306 preferably molten solder
- FIG. 3C once the molten solder material 306 in cavities 304 is allowed to solidify, the mold 302 is inverted (i.e., turned upside down) and placed over under bump metallurgy (UBM) pads 309 on an upper surface 307 of a corresponding workpiece 308 , which may be one of a plurality of chips forming a 3D chip stack.
- UBM bump metallurgy
- a width, E, of each of at least a subset of the UBM pads 309 is slightly larger than a width of a corresponding one of the cavities 304 .
- solid conductive structures 310 e.g., solid solder structures
- all solder in a mold is again melted and transferred onto the UBM structure of a silicon wafer and then solidified.
- a spacing or pitch between adjacent conductive structures 310 is set to a prescribed distance, A. Although the invention is not limited to any specific pitch A, the spacing between adjacent conductive structures 310 should be selected such that an electrical short does not occur even after subsequent processing.
- a volume of each of the conductive structures 310 in a standard C4NP process, will be selected such that a diameter of the conductive structure is substantially equal to one half of the pitch A.
- the conductive structures on corresponding workpieces (chips) 308 will form interconnections 312 between adjacent workpieces.
- the interconnections 312 have a standoff height associated therewith which defines a minimum spacing, B, referred to herein as a standard interface gap, between adjacent chips 308 .
- the shape of the interconnections 312 will be attributable primarily to a surface tension of the solder (or other material, in other embodiments) forming the interconnections.
- the minimum spacing B prevents stacked chips from being positioned too close together, thereby increasing an overall height of the 3D stacked chip.
- the standoff height of the standard volume interconnections 312 is not well-suited for use in high-frequency signal applications, wherein a reduced minimum spacing between silicon layers is desired.
- An underfill material including filler content comprising filler particles of a set size, is used to fill the gap between silicon layers. But thermal conductivity values for typical underfill materials are 0.3 to 0.5 W/m-K, which is worse than that of silicon (149 W/m-K). From a thermal point of view, reduced minimum spacing between silicon layers is also desired.
- FIGS. 4A through 4E are cross-sectional views depicting at least a portion of an exemplary process for forming a reduced volume interconnect for a 3D chip stack, according to an embodiment of the invention.
- a mold 402 includes a plurality of depressions or cavities 404 in an upper surface 405 of the mold.
- each of the cavities 404 has a trapezoidally-shaped cross section and does not extend completely through the mold 402 .
- the cavities 404 may be formed in a manner consistent with the cavities 304 shown in FIG. 3A and described above. Although it is to be appreciated that the shape and/or depth of the cavities 404 are not limited by the present invention, a volume of the cavities in the mold 402 is configured to be less compared to the cavities 304 shown in FIG. 3A .
- the cavities 404 are preferably aligned with corresponding electrical contact locations on a chip or substrate and are adapted to receive solder or an alternative conductive material, which is preferably introduced into the cavities in molten form, for example via an injection molding process or the like, as will be understood by those skilled in the art.
- solder or an alternative conductive material which is preferably introduced into the cavities in molten form, for example via an injection molding process or the like.
- the width and depth of each of the cavities 404 will define a volume of each of the corresponding interconnect structures.
- each of the cavities 404 in the mold 402 are filled with a conductive material 406 , preferably molten solder.
- a conductive material 406 preferably molten solder.
- the mold 402 is heated to a temperature at or above the melting point of the conductive material 406 and the molten conductive material is forced into the cavities 404 .
- An injection plate or similar mechanism is then advanced to slide over the upper surface 405 of the mold 402 to wipe away the excess conductive material 406 above the upper surface of the mold to thereby make the conductive material in the cavities 404 substantially planar with the upper surface of the mold.
- the workpiece 408 can be, for example, a semiconductor chip (a plurality of which may form a 3D chip stack), a substrate, such as, for example, silicon (e.g., semiconductor packaging substrate), or a dummy substrate onto which the injection-molded conductive material adheres (e.g., a polymer layer forming a carrier substrate).
- the workpieces 408 are silicon layers. As shown in FIG.
- solid conductive structures 410 are transferred from the mold 402 to the UBM pads 409 on the upper surface of the workpiece 408 .
- all solder in a mold are again melted and transferred onto the UBM structure of a silicon wafer and then solidified.
- a spacing or pitch between adjacent conductive structures 410 is set to a prescribed distance, A, so as to be in alignment with corresponding electrical contact locations on the workpiece 408 .
- the spacing between adjacent conductive structures 410 should be selected such that an electrical short does not occur even after subsequent processing (e.g., wetting).
- a width, F, of each of at least a subset of the UBM pads 409 is considerably greater (e.g., about five times or more) than the width of a corresponding one of the cavities 404 .
- the transferred solder can be reflowed, for example in a nitrogen environment, to make it spread radially to cover the entire pad surface before the bonding process or during the bonding process. If solder reflow is performed during the bonding process, a total thickness of the intermetallic compounds is reduced compared to a sample with reflow performed before the bonding process.
- the conductive structures on corresponding workpieces (e.g., silicon layers) 408 will form interconnections 412 between adjacent workpieces.
- the interconnections 412 have a standoff height associated therewith which defines a minimum spacing, D, referred to herein as an interface or chip stack gap, between adjacent silicon layers 408 .
- a wetting area diameter, C is configured to be greater than about twice the diameter of the corresponding conductive structure.
- a diameter of each of the conductive structures 410 is selected to be about 40 microns and a wetting area diameter C is selected to be about 100 microns, although embodiments of the invention are not limited to these specific dimensions.
- wetting or wet soldering
- heat from the molten conductive material e.g., solder
- the material forming a corresponding wetting pad e.g., copper
- the conductive structures 410 on the silicon layers 408 will wet out over the wetting pad and thus collapse in a vertical (z) dimension to a very small standoff height D.
- the wetting pad is first subjected to an oxide-reducing environment, such as, for example, a fluxing means (including gaseous/vapor fluxing or liquid fluxing), according to one or more embodiments.
- a fluxing means including gaseous/vapor fluxing or liquid fluxing
- the wetting pad may be formed of a material which inhibits oxide growth, such as, for example, gold, in which case solder wetting is achieved with minimal oxide reduction. This enables the silicon layers 408 to come very close together, thus reducing the overall height of the chip stack.
- an aspect ratio of depth to width for each of at least a subset of the cavities 404 is selected to be between about one half to one third.
- the cavities are still on pitch centers that are considerably larger than cavity dimensions. These cavities are therefore adapted to hold a smaller fraction of conductive material 406 compared to the cavities 304 depicted in FIG. 3A .
- this reduced volume of conductive material just suffices to wet the entire wetting area of each corresponding silicon pad.
- the vertical height of this solder layer is significantly less than that of a standard solder bump.
- FIGS. 5A and 5B are cross-sectional views conceptually depicting illustrative solder reflow processes over a UBM pad using a single centered preform or multiple spaced preforms, respectively.
- a chip or other workpiece 502 includes a UBM pad 504 configured to facilitate the flow of molten conductive material on an upper surface of the workpiece.
- a single preform 506 is used, substantially centered on the pad 504 .
- the preform 506 is preferably a small volume solder preform, for example transferred from a mold (not explicitly shown but implied) in accordance with a known process, which may be consistent with the solder transfer process described herein above.
- the transferred solder preform 506 is reflowed, for example in a nitrogen or hydrogen environment, to make it spread radially to cover the entire pad surface before the bonding process or during the bonding process.
- the nitrogen environment is beneficial in reducing the formation of oxide on the pad during reflow, but it will not necessarily remove native oxides on the pad; this can be achieved by subjecting the pad to an oxide-reducing environment to remove native oxides, as previously explained.
- a plurality of spaced preforms 508 may be formed on the upper surface of the pad 504 , as shown in FIG. 5B .
- the preforms 508 are preferably small volume solder preforms, a volume of each of the preforms being less than a volume of the single preform 506 shown in FIG. 5A .
- the preforms 508 are reflowed, preferably in a vacuum environment to prevent the formation of voids between adjacent preforms during bonding, such that the conductive material forming the preforms (e.g., solder) spreads radially to cover the entire surface of the pad 504 .
- Vacuum reflow is beneficial, particularly with multiple small preforms, to prevent oxide formation during reflow but will generally not remove native solder oxides; exposure to an oxide-reducing environment (e.g., a fluxing means) may be used to remove native oxides.
- an oxide-reducing environment e.g., a fluxing means
- FIGS. 6A through 6E are cross-sectional views depicting at least a portion of an exemplary process for forming a 3D chip stack comprising a reduced volume interconnect, according to an embodiment of the invention.
- a mold 602 includes a plurality of depressions or cavities 604 in an upper surface 605 of the mold.
- a perspective view 603 depicts an illustrative arrangement of the cavities 604 in the mold 602 .
- Each of the cavities 604 in this embodiment, has a trapezoidally-shaped cross section and does not extend completely through the mold 602 , although it is to be appreciated that the shape and/or depth of the cavities 604 are not limited by the present invention.
- the cavities 604 can be formed, in one or more embodiments, using laser ablation in polyimide, in a manner consistent with the formation of the cavities 304 shown in FIG. 3A .
- a volume of the cavities in the mold 602 is configured to be less compared to the cavities 304 shown in FIG. 3A .
- the cavities 604 are preferably aligned with corresponding electrical contact locations on a chip or substrate and are adapted to receive solder or an alternative conductive material, which is preferably introduced into the cavities in molten form, for example via an injection molding process or the like, as will be understood by those skilled in the art.
- the width and depth of each of the cavities 604 will ultimately define a volume of each of the corresponding interconnect structures.
- Each of the cavities 604 in the mold 602 are filled with a conductive material, such as molten solder.
- a conductive material such as molten solder.
- the mold 602 is heated to a temperature at or above the melting point of the conductive material and the molten conductive material is forced into the cavities 604 .
- An injection plate or similar mechanism is then advanced to slide over the upper surface 605 of the mold 602 to wipe away the excess conductive material above the upper surface of the mold to thereby make the conductive material in the cavities 604 substantially planar with the upper surface of the mold.
- the mold 602 is inverted and placed over a UBM pad 608 , or alternative pad, configured to facilitate the flow of molten conductive material, on an upper surface of a corresponding workpiece 606 .
- the workpiece 606 can be, for example, a semiconductor chip (a plurality of which may form a 3D chip stack), a substrate, such as, for example, silicon (e.g., semiconductor packaging substrate), or a dummy substrate onto which the injection-molded conductive material adheres (e.g., a polymer layer forming a carrier substrate).
- solid conductive structures 610 e.g., solid solder bumps
- a thin bump having a larger diameter compared to conventional methodologies, can be formed.
- the conductive material forming the plurality of conductive structures 610 becomes molten and flows together over an upper surface of the pad 608 to thereby form a thin bump 612 having a larger diameter.
- the diameter, G, of the bump 612 will be substantially the same as a diameter of the pad on which the bump is formed.
- the pad is first subjected to an oxide-reducing environment (e.g., a fluxing means, such as vapor flux, formic acid, etc.) to remove native oxides on the surface thereof prior to reflow, as previously stated.
- an oxide-reducing environment e.g., a fluxing means, such as vapor flux, formic acid, etc.
- the low-volume conductive structures 610 are used to form a 3D chip stack having a reduced spacing between silicon chips compared to conventional processes.
- a second chip or workpiece 614 which, like the workpiece 606 , has a UBM pad 608 formed on a surface thereof, is inverted and placed above an upper surface of the workpiece.
- the second chip 614 is positioned relative to the workpiece 606 such that the pads 608 of each chip are substantially aligned with one another and the conductive structures 610 are in contact with both pads.
- a vacuum bonding process is then performed, as shown in FIG. 6E .
- the chips 606 and 614 are exposed to heat and/or joining pressure.
- the pads 608 are exposed to an oxide-reducing environment (e.g., formic acid vapor) to remove native solder oxides prior to vacuum reflow.
- a formic acid vapor reflow is preferably performed without joining pressure, followed by vacuum reflow with joining pressure, according to one or more embodiments.
- the amount of heat and/or pressure applied to the chips 606 , 614 is configured so as to allow the conductive structures 610 between the pads 608 to reflow and, in conjunction with the material forming pads 608 , form an IMC layer 616 bonding the chips together.
- the IMC layer 616 may comprise more than one type of intermetallic compound.
- the UBM pads 608 comprise copper (Cu) and the conductive structures 610 comprise tin (Sn) or tin alloy, resulting in the formation of a tin- and copper-based IMC layer 616 . As shown in FIG.
- the IMC layer 616 is comprised of at least two different types of compounds; namely, a first compound 618 , which in this embodiment comprises Cu 6 Sn 5 , formed proximate a center of the IMC layer, and a second compound 620 , which in this embodiment comprises Cu 3 Sn, formed proximate the junctions between the IMC layer and the respective pads 608 .
- the thicknesses of the first and second compounds 618 , 620 in the IMC layer 616 will be based, at least in part, on the respective volumes of the materials (e.g., tin and copper) forming the pads 608 and the conductive structures 610 .
- a barrier metal e.g., nickel
- IMC between the conductive structures 610 and the barrier metal forms at a much slower rate compared to the formation of IMC between the conductive structures and the UBM pads 608 .
- an exemplary method includes the steps of: forming a plurality of conductive structures, each of at least a subset of the conductive structures having a volume of conductive material for a corresponding under bump metallurgy (UBM) pad onto which the conductive structure is transferred that is configured such that a ratio of an unreflowed diameter of the conductive structure to a diameter of the corresponding pad is about one third-to-one or less; transferring the conductive structures to the silicon layers; stacking the silicon layers in a substantially vertical dimension such that each of the conductive structures on a given silicon layer is aligned with a corresponding electrical contact location on an underside of an adjacent silicon layer; and heating the interconnect so as to metallurgically bond multiple electrical contact locations of adjacent silicon layers in such a manner that at least a given one of the conductive structures between aligned electrical contact locations on corresponding adjacent silicon layers collapses to reduce an interconnect gap therebetween.
- UBM under bump metallurgy
- An exemplary method includes the steps of: forming a plurality of conductive structures; transferring the conductive structures to the silicon layers; stacking the silicon layers in a substantially vertical dimension such that each of the conductive structures on a given silicon layer is aligned with a corresponding electrical contact location on an underside of an adjacent silicon layer; and heating the interconnect so as to metallurgically bond multiple electrical contact locations of adjacent silicon layers in such a manner that at least a given one of the conductive structures between aligned electrical contact locations on corresponding adjacent silicon layers collapses to reduce an interconnect gap therebetween.
- Each of at least a subset of the conductive structures is formed having a volume of conductive material that is configured such that a percentage of intermetallic compounds in a junction between the conductive structure and corresponding aligned under bump metallurgy (UBM) pads formed on corresponding opposing surfaces of adjacent silicon layers is about forty percent or more of a total volume of conductive material.
- UBM under bump metallurgy
- a reduced volume electrical interconnect for a 3D chip stack includes: multiple silicon layers having multiple electrical contact locations formed on a surface thereof; multiple UBM pads, each of the UBM pads being formed between a corresponding one of the silicon layers and a corresponding one of the electrical contact locations; and multiple conductive structures, each of the conductive structures being aligned with a corresponding one of the electrical contact locations and having a volume of conductive material for a corresponding one of the UBM pads that is configured such that a ratio of an unreflowed diameter of the conductive structure to a diameter of the corresponding pad is about one third-to-one or less.
- the interconnect is configured having the plurality of silicon layers stacked in a substantially vertical dimension such that each of the conductive structures on a given silicon layer is aligned with a corresponding electrical contact location on an underside of an adjacent silicon layer.
- the conductive structures when heated to a prescribed temperature, metallurgically bond the electrical contact locations of adjacent silicon layers in such a manner that at least a given one of the conductive structures between aligned electrical contact locations on corresponding adjacent silicon layers collapses to thereby reduce an interconnect gap therebetween.
- a reduced volume electrical interconnect for a 3D chip stack includes: multiple silicon layers having multiple electrical contact locations formed on a surface thereof; multiple UBM pads, each of the UBM pads being formed between a corresponding one of the silicon layers and a corresponding one of the electrical contact locations; and multiple conductive structures.
- Each of the conductive structures is aligned with a corresponding one of the electrical contact locations and has a volume of conductive material for a corresponding one of the UBM pads that is configured such that a ratio of an unreflowed diameter of the conductive structure to a diameter of the corresponding pad is about one third-to-one or less.
- Each of at least a subset of the conductive structures is formed having a volume of conductive material that is configured such that a percentage of intermetallic compounds in a junction between the conductive structure and corresponding aligned UBM pads formed on corresponding opposing surfaces of adjacent silicon layers is about forty percent or more of a total volume of conductive material.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Wire Bonding (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
Claims (13)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/599,824 US9543273B2 (en) | 2015-01-19 | 2015-01-19 | Reduced volume interconnect for three-dimensional chip stack |
CN201610031246.4A CN105810603B (en) | 2015-01-19 | 2016-01-18 | Form the method and its interconnection of the interconnection of the volume reduction stacked for chip |
US15/135,599 US9679875B2 (en) | 2015-01-19 | 2016-04-22 | Reduced volume interconnect for three-dimensional chip stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/599,824 US9543273B2 (en) | 2015-01-19 | 2015-01-19 | Reduced volume interconnect for three-dimensional chip stack |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/135,599 Division US9679875B2 (en) | 2015-01-19 | 2016-04-22 | Reduced volume interconnect for three-dimensional chip stack |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160211242A1 US20160211242A1 (en) | 2016-07-21 |
US9543273B2 true US9543273B2 (en) | 2017-01-10 |
Family
ID=56408404
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/599,824 Active 2035-01-22 US9543273B2 (en) | 2015-01-19 | 2015-01-19 | Reduced volume interconnect for three-dimensional chip stack |
US15/135,599 Expired - Fee Related US9679875B2 (en) | 2015-01-19 | 2016-04-22 | Reduced volume interconnect for three-dimensional chip stack |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/135,599 Expired - Fee Related US9679875B2 (en) | 2015-01-19 | 2016-04-22 | Reduced volume interconnect for three-dimensional chip stack |
Country Status (2)
Country | Link |
---|---|
US (2) | US9543273B2 (en) |
CN (1) | CN105810603B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10347602B1 (en) * | 2018-07-23 | 2019-07-09 | Mikro Mesa Technology Co., Ltd. | Micro-bonding structure |
US10388627B1 (en) * | 2018-07-23 | 2019-08-20 | Mikro Mesa Technology Co., Ltd. | Micro-bonding structure and method of forming the same |
US11817411B2 (en) | 2020-12-22 | 2023-11-14 | Samsung Electronics Co., Ltd. | Semiconductor package and method of fabricating the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11189550B2 (en) * | 2018-04-10 | 2021-11-30 | Jmj Korea Co., Ltd. | Low-cost semiconductor package using conductive metal structure |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6847105B2 (en) | 2001-09-21 | 2005-01-25 | Micron Technology, Inc. | Bumping technology in stacked die configurations |
US6979591B2 (en) | 2002-05-28 | 2005-12-27 | Infineon Technologies Ag | Connection of integrated circuits |
TW200908280A (en) | 2007-08-14 | 2009-02-16 | Powertech Technology Inc | Multi-chip stacked device with a composite spacer layer |
US20090072374A1 (en) | 2007-09-17 | 2009-03-19 | Stephan Dobritz | Electric Device, Stack of Electric Devices, and Method of Manufacturing a Stack of Electric Devices |
US20100025863A1 (en) * | 2008-07-29 | 2010-02-04 | International Business Machines Corporation | Integrated Circuit Interconnect Method and Apparatus |
US20100244226A1 (en) | 2009-03-24 | 2010-09-30 | James Sabatini | Stackable electronic package and method of fabricating same |
US20110201194A1 (en) * | 2010-02-16 | 2011-08-18 | International Business Machines Corporation | Direct IMS (Injection Molded Solder) Without a Mask for Forming Solder Bumps on Substrates |
US20140077358A1 (en) * | 2012-09-18 | 2014-03-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bump Structure and Method of Forming Same |
US20140196746A1 (en) * | 2013-01-17 | 2014-07-17 | Applied Materials, Inc. | In situ chamber clean with inert hydrogen helium mixture during wafer process |
US20150184446A1 (en) * | 2013-12-31 | 2015-07-02 | Guardian Industries Corp. | Vacuum insulating glass (vig) unit with metallic peripheral edge seal and/or methods of making the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5673846A (en) * | 1995-08-24 | 1997-10-07 | International Business Machines Corporation | Solder anchor decal and method |
US7736950B2 (en) * | 2003-11-10 | 2010-06-15 | Stats Chippac, Ltd. | Flip chip interconnection |
US8970035B2 (en) * | 2012-08-31 | 2015-03-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bump structures for semiconductor package |
US8803337B1 (en) * | 2013-03-14 | 2014-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit structure having dies with connectors |
-
2015
- 2015-01-19 US US14/599,824 patent/US9543273B2/en active Active
-
2016
- 2016-01-18 CN CN201610031246.4A patent/CN105810603B/en active Active
- 2016-04-22 US US15/135,599 patent/US9679875B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6847105B2 (en) | 2001-09-21 | 2005-01-25 | Micron Technology, Inc. | Bumping technology in stacked die configurations |
US6979591B2 (en) | 2002-05-28 | 2005-12-27 | Infineon Technologies Ag | Connection of integrated circuits |
TW200908280A (en) | 2007-08-14 | 2009-02-16 | Powertech Technology Inc | Multi-chip stacked device with a composite spacer layer |
US20090072374A1 (en) | 2007-09-17 | 2009-03-19 | Stephan Dobritz | Electric Device, Stack of Electric Devices, and Method of Manufacturing a Stack of Electric Devices |
US20100025863A1 (en) * | 2008-07-29 | 2010-02-04 | International Business Machines Corporation | Integrated Circuit Interconnect Method and Apparatus |
US20100244226A1 (en) | 2009-03-24 | 2010-09-30 | James Sabatini | Stackable electronic package and method of fabricating same |
US20110210440A1 (en) | 2009-03-24 | 2011-09-01 | James Sabatini | Stackable electronic package and method of fabricating same |
US20110201194A1 (en) * | 2010-02-16 | 2011-08-18 | International Business Machines Corporation | Direct IMS (Injection Molded Solder) Without a Mask for Forming Solder Bumps on Substrates |
US20140077358A1 (en) * | 2012-09-18 | 2014-03-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bump Structure and Method of Forming Same |
US20140196746A1 (en) * | 2013-01-17 | 2014-07-17 | Applied Materials, Inc. | In situ chamber clean with inert hydrogen helium mixture during wafer process |
US20150184446A1 (en) * | 2013-12-31 | 2015-07-02 | Guardian Industries Corp. | Vacuum insulating glass (vig) unit with metallic peripheral edge seal and/or methods of making the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10347602B1 (en) * | 2018-07-23 | 2019-07-09 | Mikro Mesa Technology Co., Ltd. | Micro-bonding structure |
US10388627B1 (en) * | 2018-07-23 | 2019-08-20 | Mikro Mesa Technology Co., Ltd. | Micro-bonding structure and method of forming the same |
US11817411B2 (en) | 2020-12-22 | 2023-11-14 | Samsung Electronics Co., Ltd. | Semiconductor package and method of fabricating the same |
US12100681B2 (en) | 2020-12-22 | 2024-09-24 | Samsung Electronics Co., Ltd. | Semiconductor package and method of fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
US20160240501A1 (en) | 2016-08-18 |
CN105810603A (en) | 2016-07-27 |
US20160211242A1 (en) | 2016-07-21 |
CN105810603B (en) | 2019-01-18 |
US9679875B2 (en) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190123025A1 (en) | Integrated circuit package assembly | |
US8877556B2 (en) | Copper post solder bumps on substrates | |
TWI483357B (en) | Package structure | |
US9082763B2 (en) | Joint structure for substrates and methods of forming | |
US9263412B2 (en) | Packaging methods and packaged semiconductor devices | |
US8237273B2 (en) | Metal post chip connecting device and method free to use soldering material | |
US7867842B2 (en) | Method and apparatus for forming planar alloy deposits on a substrate | |
Koh et al. | Copper pillar bump technology progress overview | |
US11101261B2 (en) | Package-on-package structures and methods for forming the same | |
US7576434B2 (en) | Wafer-level solder bumps | |
JP6004441B2 (en) | Substrate bonding method, bump forming method, and semiconductor device | |
US9679875B2 (en) | Reduced volume interconnect for three-dimensional chip stack | |
US11315902B2 (en) | High bandwidth multichip module | |
EP3828922A1 (en) | A method for bonding semiconductor components | |
US9349705B2 (en) | Method of fabricating a semiconductor structure having conductive bumps with a plurality of metal layers | |
US9425174B1 (en) | Integrated circuit package with solderless interconnection structure | |
Smet et al. | Interconnection materials, processes and tools for fine-pitch panel assembly of ultra-thin glass substrates | |
KR101827608B1 (en) | Variable interconnection joints in package structures | |
Su et al. | Reliability assessment of flip chip interconnect electronic packaging under thermal shocks | |
Busby et al. | C4NP lead free solder bumping and 3D micro bumping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRUBER, PETER A.;SAKUMA, KATSUYUKI;SHIH, DA-YUAN;SIGNING DATES FROM 20141029 TO 20141103;REEL/FRAME:034781/0274 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |