US9302272B2 - Froth flotation processes - Google Patents
Froth flotation processes Download PDFInfo
- Publication number
- US9302272B2 US9302272B2 US13/653,713 US201213653713A US9302272B2 US 9302272 B2 US9302272 B2 US 9302272B2 US 201213653713 A US201213653713 A US 201213653713A US 9302272 B2 US9302272 B2 US 9302272B2
- Authority
- US
- United States
- Prior art keywords
- salt
- acid
- hydrocarbyl
- froth flotation
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- 230000008569 process Effects 0.000 title claims abstract description 63
- 238000009291 froth flotation Methods 0.000 title claims abstract description 49
- 239000002253 acid Substances 0.000 claims abstract description 119
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 75
- 239000011707 mineral Substances 0.000 claims abstract description 75
- 150000003863 ammonium salts Chemical class 0.000 claims abstract description 34
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 73
- SYFIMIPHNTZHIN-UHFFFAOYSA-N bis(2-methylpropoxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)COP(S)(=S)OCC(C)C SYFIMIPHNTZHIN-UHFFFAOYSA-N 0.000 claims description 60
- 150000007513 acids Chemical class 0.000 claims description 55
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical class C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 claims description 50
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 49
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical class CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 42
- -1 diisobutyl monothiophosphoric acid Chemical compound 0.000 claims description 41
- 125000004432 carbon atom Chemical group C* 0.000 claims description 34
- 238000005188 flotation Methods 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000004381 Choline salt Substances 0.000 claims description 22
- 235000019417 choline salt Nutrition 0.000 claims description 22
- 150000003248 quinolines Chemical class 0.000 claims description 22
- 238000000227 grinding Methods 0.000 claims description 19
- 125000001741 organic sulfur group Chemical group 0.000 claims description 19
- UWNADWZGEHDQAB-UHFFFAOYSA-N i-Pr2C2H4i-Pr2 Natural products CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 230000003750 conditioning effect Effects 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 15
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 claims description 15
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 150000001923 cyclic compounds Chemical class 0.000 claims description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000000654 additive Substances 0.000 claims description 8
- LMBWSYZSUOEYSN-UHFFFAOYSA-N diethyldithiocarbamic acid Chemical compound CCN(CC)C(S)=S LMBWSYZSUOEYSN-UHFFFAOYSA-N 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 6
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 claims description 6
- 229960001231 choline Drugs 0.000 claims description 6
- SZRLKIKBPASKQH-UHFFFAOYSA-N dibutyldithiocarbamic acid Chemical compound CCCCN(C(S)=S)CCCC SZRLKIKBPASKQH-UHFFFAOYSA-N 0.000 claims description 6
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical class CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 claims description 6
- 125000002947 alkylene group Chemical group 0.000 claims description 5
- 125000000732 arylene group Chemical group 0.000 claims description 5
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- IEQPZXXXPVAXRJ-UHFFFAOYSA-N butylcarbamodithioic acid Chemical compound CCCCNC(S)=S IEQPZXXXPVAXRJ-UHFFFAOYSA-N 0.000 claims description 4
- QLTQROJDYKELLI-UHFFFAOYSA-N butylsulfanylmethanedithioic acid Chemical compound CCCCSC(S)=S QLTQROJDYKELLI-UHFFFAOYSA-N 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 4
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 claims description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-O triethanolammonium Chemical compound OCC[NH+](CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-O 0.000 claims description 4
- JSGPBRQYMLFVJQ-UHFFFAOYSA-N 2-sulfanylhexanoic acid Chemical compound CCCCC(S)C(O)=O JSGPBRQYMLFVJQ-UHFFFAOYSA-N 0.000 claims description 3
- 150000001450 anions Chemical class 0.000 claims description 3
- MIHRVCSSMAGKNH-UHFFFAOYSA-N ethylcarbamodithioic acid Chemical compound CCNC(S)=S MIHRVCSSMAGKNH-UHFFFAOYSA-N 0.000 claims description 3
- 150000002334 glycols Chemical class 0.000 claims description 3
- 239000011133 lead Substances 0.000 claims description 3
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- RXMTUVIKZRXSSM-UHFFFAOYSA-N 2,2-diphenylethanamine Chemical class C=1C=CC=CC=1C(CN)C1=CC=CC=C1 RXMTUVIKZRXSSM-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical compound OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 239000003125 aqueous solvent Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 claims description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 239000003921 oil Substances 0.000 claims description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 claims description 2
- IMFACGCPASFAPR-UHFFFAOYSA-O tributylazanium Chemical compound CCCC[NH+](CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-O 0.000 claims description 2
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 claims description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-O triphenylazanium Chemical compound C1=CC=CC=C1[NH+](C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-O 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 24
- 239000011593 sulfur Substances 0.000 abstract description 24
- 229910052717 sulfur Inorganic materials 0.000 abstract description 24
- 235000010755 mineral Nutrition 0.000 description 69
- 239000000203 mixture Substances 0.000 description 43
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 36
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- 239000002002 slurry Substances 0.000 description 25
- 238000002360 preparation method Methods 0.000 description 24
- 239000000047 product Substances 0.000 description 23
- 238000011084 recovery Methods 0.000 description 21
- 238000007792 addition Methods 0.000 description 20
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 11
- 0 *N.C[N+](C)(C)C Chemical compound *N.C[N+](C)(C)C 0.000 description 10
- 159000000000 sodium salts Chemical class 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 239000012467 final product Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 8
- 235000019341 magnesium sulphate Nutrition 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 8
- 239000010953 base metal Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000003607 modifier Substances 0.000 description 7
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 150000003866 tertiary ammonium salts Chemical class 0.000 description 6
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- VLDHWMAJBNWALQ-UHFFFAOYSA-M sodium;1,3-benzothiazol-3-ide-2-thione Chemical compound [Na+].C1=CC=C2SC([S-])=NC2=C1 VLDHWMAJBNWALQ-UHFFFAOYSA-M 0.000 description 5
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 235000011941 Tilia x europaea Nutrition 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000004571 lime Substances 0.000 description 4
- 238000005065 mining Methods 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- FOYPFIDVYRCZKA-UHFFFAOYSA-M sodium;bis(2-methylpropoxy)-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Na+].CC(C)COP([S-])(=S)OCC(C)C FOYPFIDVYRCZKA-UHFFFAOYSA-M 0.000 description 4
- 229910052569 sulfide mineral Inorganic materials 0.000 description 4
- 239000012991 xanthate Substances 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- ZOOODBUHSVUZEM-UHFFFAOYSA-N ethoxymethanedithioic acid Chemical compound CCOC(S)=S ZOOODBUHSVUZEM-UHFFFAOYSA-N 0.000 description 3
- 239000008396 flotation agent Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910017053 inorganic salt Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- VVTVDXPOGQYVFX-UHFFFAOYSA-M sodium;bis(2-methylpropoxy)-oxido-sulfanylidene-$l^{5}-phosphane Chemical compound [Na+].CC(C)COP([O-])(=S)OCC(C)C VVTVDXPOGQYVFX-UHFFFAOYSA-M 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- HMBHAQMOBKLWRX-UHFFFAOYSA-N 2,3-dihydro-1,4-benzodioxine-3-carboxylic acid Chemical compound C1=CC=C2OC(C(=O)O)COC2=C1 HMBHAQMOBKLWRX-UHFFFAOYSA-N 0.000 description 2
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 description 2
- 235000019743 Choline chloride Nutrition 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 description 2
- 229960003178 choline chloride Drugs 0.000 description 2
- 229940075419 choline hydroxide Drugs 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 229940116901 diethyldithiocarbamate Drugs 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- ITOLXGQFDAFXMV-UHFFFAOYSA-N 2-sulfanyltetradecanoic acid Chemical compound CCCCCCCCCCCCC(S)C(O)=O ITOLXGQFDAFXMV-UHFFFAOYSA-N 0.000 description 1
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 1
- HOASVNMVYBSLSU-UHFFFAOYSA-N 6-ethoxy-3h-1,3-benzothiazole-2-thione Chemical compound CCOC1=CC=C2N=C(S)SC2=C1 HOASVNMVYBSLSU-UHFFFAOYSA-N 0.000 description 1
- XOFPCKUPGSTLIT-UHFFFAOYSA-N 6-hexyl-3h-1,3-benzothiazole-2-thione Chemical compound CCCCCCC1=CC=C2NC(=S)SC2=C1 XOFPCKUPGSTLIT-UHFFFAOYSA-N 0.000 description 1
- UTAWWLFJGHVEAJ-UHFFFAOYSA-N C(C)C(C)(CC)OP(O)(O)=S Chemical compound C(C)C(C)(CC)OP(O)(O)=S UTAWWLFJGHVEAJ-UHFFFAOYSA-N 0.000 description 1
- ZZIOMAPMBCPMIK-UHFFFAOYSA-N C(C)C(C)(CC)SP(O)(O)=S Chemical compound C(C)C(C)(CC)SP(O)(O)=S ZZIOMAPMBCPMIK-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- UOJYYXATTMQQNA-UHFFFAOYSA-N Proxan Chemical compound CC(C)OC(S)=S UOJYYXATTMQQNA-UHFFFAOYSA-N 0.000 description 1
- 229910018879 Pt—Pd Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- CBQPQMSTIARRSA-UHFFFAOYSA-N bis(2-methylpropyl)carbamodithioic acid Chemical compound CC(C)CN(C(S)=S)CC(C)C CBQPQMSTIARRSA-UHFFFAOYSA-N 0.000 description 1
- MTGAEKMYDSYMMC-UHFFFAOYSA-N bis(3-methylbutoxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)CCOP(S)(=S)OCCC(C)C MTGAEKMYDSYMMC-UHFFFAOYSA-N 0.000 description 1
- WNFPFXIAVMZVSR-UHFFFAOYSA-N butyl(ethyl)carbamodithioic acid Chemical compound CCCCN(CC)C(S)=S WNFPFXIAVMZVSR-UHFFFAOYSA-N 0.000 description 1
- UMDNAGQYTFTWJW-UHFFFAOYSA-N butyl(phenyl)carbamodithioic acid Chemical compound CCCCN(C(S)=S)C1=CC=CC=C1 UMDNAGQYTFTWJW-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- YJNALOLHXQQOIK-UHFFFAOYSA-N di(butan-2-yloxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CCC(C)OP(S)(=S)OC(C)CC YJNALOLHXQQOIK-UHFFFAOYSA-N 0.000 description 1
- GWXMDJKGVWQLBZ-UHFFFAOYSA-N di(propan-2-yl)carbamodithioic acid Chemical compound CC(C)N(C(C)C)C(S)=S GWXMDJKGVWQLBZ-UHFFFAOYSA-N 0.000 description 1
- SZXCCXFNQHQRGF-UHFFFAOYSA-N di(propan-2-yloxy)-sulfanyl-sulfanylidene-$l^{5}-phosphane Chemical compound CC(C)OP(S)(=S)OC(C)C SZXCCXFNQHQRGF-UHFFFAOYSA-N 0.000 description 1
- PCERBVBQNKZCFS-UHFFFAOYSA-N dibenzylcarbamodithioic acid Chemical compound C=1C=CC=CC=1CN(C(=S)S)CC1=CC=CC=C1 PCERBVBQNKZCFS-UHFFFAOYSA-N 0.000 description 1
- IRDLUHRVLVEUHA-UHFFFAOYSA-N diethyl dithiophosphate Chemical compound CCOP(S)(=S)OCC IRDLUHRVLVEUHA-UHFFFAOYSA-N 0.000 description 1
- KEVMYFLMMDUPJE-UHFFFAOYSA-N diisoamyl Natural products CC(C)CCCCC(C)C KEVMYFLMMDUPJE-UHFFFAOYSA-N 0.000 description 1
- MGJYZNJAQSLHOL-UHFFFAOYSA-N dioctylcarbamodithioic acid Chemical compound CCCCCCCCN(C(S)=S)CCCCCCCC MGJYZNJAQSLHOL-UHFFFAOYSA-N 0.000 description 1
- DHNCYZNCPMWMHP-UHFFFAOYSA-N diphenylcarbamodithioic acid Chemical compound C=1C=CC=CC=1N(C(=S)S)C1=CC=CC=C1 DHNCYZNCPMWMHP-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- 229950004394 ditiocarb Drugs 0.000 description 1
- JGHKDVSIFPFNIJ-UHFFFAOYSA-N dodecylsulfanylmethanedithioic acid Chemical compound CCCCCCCCCCCCSC(S)=S JGHKDVSIFPFNIJ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- DZIXQBQULOSUDA-UHFFFAOYSA-N heptan-3-ylsulfanyl-dihydroxy-sulfanylidene-lambda5-phosphane Chemical compound C(C)C(CCCC)SP(O)(O)=S DZIXQBQULOSUDA-UHFFFAOYSA-N 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229960004011 methenamine Drugs 0.000 description 1
- FMXKDAXGTICXRP-UHFFFAOYSA-N n,n-diethylcarbamodithioate;triethylazanium Chemical compound CCN(CC)CC.CCN(CC)C(S)=S FMXKDAXGTICXRP-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 description 1
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical compound CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/0084—Enhancing liquid-particle separation using the flotation principle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/01—Organic compounds containing nitrogen
- B03D1/011—Quaternary ammonium compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/012—Organic compounds containing sulfur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/014—Organic compounds containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/24—Treatment of water, waste water, or sewage by flotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/08—Subsequent treatment of concentrated product
- B03D1/085—Subsequent treatment of concentrated product of the feed, e.g. conditioning, de-sliming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/02—Collectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2203/00—Specified materials treated by the flotation agents; Specified applications
- B03D2203/02—Ores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2203/00—Specified materials treated by the flotation agents; Specified applications
- B03D2203/02—Ores
- B03D2203/025—Precious metal ores
Definitions
- the disclosed subject matter relates generally to compositions and processes used in the recovery of value minerals from mineral ore bodies. More particularly, the disclosed subject matter relates to froth flotation processes that utilize an organic ammonium salt of a sulfur-containing acid as a value mineral collector.
- Value mineral(s) refer to the metal, metals, mineral or minerals that are the primary object of the flotation process, i.e., the metals and minerals from which it is desirable to remove impurities.
- a typical froth flotation process involves intermixing an aqueous slurry that contains finely ground ore particles with a frothing or foaming agent to produce a froth. Ore particles that contain the value mineral(s) are preferentially attracted to the froth because of an affinity between the froth and the exposed mineral on the surfaces of the ore particles. The resulting beneficiated minerals are then collected by separating them from the froth. Chemical reagents, referred to as “collectors,” are commonly added to the froth flotation process to effect the separation. Certain theory and practice indicates that success of a flotation process for base metal sulfide and precious metal ores is dependent on the collectors which impart selective hydrophobicity to the value mineral separated from other minerals. See, e.g., U.S. Pat. No. 4,584,097, the entirety of which is incorporated by reference herein.
- reagents such as “frothers” may be added to the process to provide a suitable basic froth phase to capture hydrophobic value minerals and facilitate separation and recovery thereof.
- Certain other reagents referred to as “modifiers”, may be used to enhance separation and recovery of the desired minerals and/or metals.
- Modifiers which can include pH regulators, may be used to modify and control the pH of the ore pulp in order to enhance separation and recovery of the desired minerals and/or metals.
- compounds referred to as “activators”, such as copper sulfate may be used to activate a certain value sulfide mineral in order to enhance collector coating on this sulfide mineral.
- Froth flotation is especially useful for separating finely ground value minerals from the associate gangue or for separating value minerals from one another. Because of the large scale on which mining operations are typically conducted, and the large difference in value between the desired minerals and the associated gangue, even relatively small increases in separation efficiency provide substantial gains in productivity. Additionally, the large quantities of chemicals used in mining and mineral processing pose a significant challenge in terms of health and safety to humans and the environment. Consequently, the industry is continually searching for effective alternatives that increase safety while lessening the impact on the environment.
- a commonly used collector, xanthic acid is an ionic compound that is produced and transported as solid sodium or potassium salts of xanthic acid and is used as aqueous solutions at the mine site. While they have shown value in mining processes, xanthates oxidize and hydrolyze in the presence of water thereby releasing hazardous byproducts, and causing reduction in metallurgical performance, such as reduction in value mineral recovery and/or grade. Solid xanthate can pose a fire hazard. Other common water-soluble ionic collectors pose similar hazards to a varying degree and display reduced metallurgical performance. An additional hazard is when such aqueous collectors are mixed with other collectors, some toxic gases may be generated, or precipitates can be formed, which reduce the activity of the available collector or form some other undesirable reaction products, all of which also cause reduced metallurgical performance.
- the value mineral collectors composed of organic amine salts of organic sulfur-containing acids as described herein are practical, economically attractive and environmentally friendly alternatives compared to aqueous ionic collectors such as alkali metal salts of organic sulfur-containing acids. Consequently, the collector compositions of the present invention offer many advantages including easier handling, as well as reduced costs to ship the compositions to remote metallurgical plants. As shown in more detail below, the collector compositions of the present invention surprisingly exhibit improved recovery of value minerals.
- one aspect of the current invention is directed to froth flotation processes for recovering value minerals from mineral ore bodies by: adding a beneficiating amount of a collector to at least one stage of a froth flotation process, wherein the collector is an organic tertiary or quaternary ammonium salt of a sulfur-containing acid selected from the group consisting of hydrocarbyl dithiophosphoric acids, hydrocarbyl monothiophosphoric acids, mercaptobenzothiazoles, hydrocarbyl xanthic acids, hydrocarbyl dithiocarbamic acids, hydrocarbyl thioglycolic acids and hydrocarbyl trithiocarbonic acids.
- a sulfur-containing acid selected from the group consisting of hydrocarbyl dithiophosphoric acids, hydrocarbyl monothiophosphoric acids, mercaptobenzothiazoles, hydrocarbyl xanthic acids, hydrocarbyl dithiocarbamic acids, hydrocarbyl thioglycolic acids and hydrocarbyl trithi
- the present invention is directed to froth flotation processes for recovering at least one value mineral from a mineral ore body, the process comprising the steps of: grinding a mineral ore body containing at least one value mineral to form ground ore; forming a slurry comprising the ground ore; intermixing an effective amount of at least one value mineral collector as described herein with at least one of the ground ore, the slurry, and combinations thereof; generating a froth with the slurry; and recovering the at least one value mineral from the froth.
- the disclosed subject matter generally relates to processes and collectors, used in the recovery of value minerals from an ore.
- ores contain, inter alia, both “value” and “non-value” minerals.
- value mineral(s) refer to the metal, metals, mineral or minerals that are the primary object of the flotation process, i.e., the metals and minerals from which it is desirable to remove impurities.
- metals of interest include, but are not limited to, gold, silver, copper, cobalt, nickel, lead, zinc, molybdenum, and platinum group metals, such as platinum and palladium, as well as combinations thereof.
- non-value mineral refers to the metal, metals, mineral or minerals for which removal from the value mineral is desired, i.e., impurities in the value mineral.
- a non-value mineral is not necessarily discarded, and may be considered a value mineral in a subsequent process.
- base metal sulfide ores examples include, but are not limited to, Cu—Mo ores, Cu—Au ores, primary Au ores, platinum group metal (PGM) ores, Cu ores, Ni ores, and complex polymetallic ores containing Pb, Zn, Cu and Ag.
- PGM platinum group metal
- the value mineral collector includes an organic ammonium salt compound according to Formula I:
- the organic ammonium salt of a sulfur-containing acid collector is derived from sulfur-containing organic acids that contain at least one ionizable —SH or —OH group attached to a carbon atom or a phosphorus atom.
- the organic ammonium salt is a tertiary or quaternary ammonium salt, preferably a tertiary ammonium salt.
- the collector is substantially free of water and substantially fee of inorganic salts.
- substantially free of water encompasses compositions that include less than 10% water by weight.
- compositions that would be considered to be substantially free of water can include less than 10% water by weight, e.g., 7% wt.; 5% wt.; 4% wt.; 3.5% wt, 3.0% wt., 2.75% wt., 2.5% wt., 2.0% wt., 1.5% wt., 1.0% wt., 0.5% wt., 0.1% wt., 100 ppm, and the like.
- collector compositions that include less than 5% inorganic salt by weight can include less than 5% inorganic salt by weight, e.g., 4% wt.; 3.5% wt, 3.0% wt., 2.75% wt., 2.5% wt., 2.0% wt., 1.5% wt., 1.0% wt., 0.5% wt., 0.1% wt., 100 ppm, and the like.
- the pluralized version of acid i.e., acids
- the compounds can be substituted or unsubstituted.
- substituted encompasses the replacement of one element, such as hydrogen, by another atom or a group containing one or more atoms or a heteroatom or a group containing one or more heteroatoms.
- the R a group is a hydrocarbyl group containing 1-16 carbon atoms, optionally substituted by an —OH group.
- the R a group may also be a hydrocarbyl group containing 1-10 carbon atoms or a hydrocarbyl group containing 1-6 carbon atoms, optionally substituted by an —OH group.
- R a is hydrogen
- R a is preferably hydrogen or an alkyl group or an aryl group, and more preferably hydrogen or an alkyl group containing 1 to 10 carbon atoms, most preferably 1 to 4 carbon atoms, optionally substituted with a —OH group.
- each of the R b , R c and R d groups of the organic ammonium cation are, individually, a hydrocarbyl group containing 1-10 carbon atoms, more preferably containing 1-6 carbon atoms.
- R b , R c and R d are preferably independently an alkyl group containing 1 to 10, more preferably 1 to 6 and most preferably 1 to 4, carbon atoms.
- R b , R c and R d are, independently, alkyl groups having 1-16 carbon atoms or aryl groups having 6-12 carbon atoms.
- R b , R c and R d independently are alkyl groups having 1-10 carbon atoms, preferably alkyl groups having 1-6 carbon atoms, more preferably having 1 to 4 carbon atoms, optionally substituted by a —OH group.
- At least three of R a , R b , R c and R d are an alkyl group containing from 1 to 4 carbon atoms.
- R b , R c and R d are linked to form a cyclic compound.
- R b , R c and R d are linked to form a cyclic compound.
- An example of a cyclic compound is hexamethylene tetramine.
- the organic ammonium cation (N + R a R b R c R d ) of Formula I may be selected from choline, tetrahydrocarbyl amines and trihydrocarbyl amines, and mixtures thereof.
- ammonium salts include, but are not limited to, trimethylammonium, (N,N-dimethyl, N-propyl ammonium), (N,N-dimethyl, N-ethyl ammonium), (N-Allyl-N,N-dimethylammonium), triethylammonium, tripropylammonium, tributylammonium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, triallylammonium, trimethanolammonium, triethanolammonium, tripropanolammonium, choline, triphenylammonium, hexamethylene tetraammonium and diphenylethyl ammonium salts, and ammonium salts derived from pyrrole and the like, and mixtures thereof.
- Preferred organic ammonium cations are tertiary ammonium cations
- the organic ammonium cation (N + R a R b R c R d ) of Formula I preferably has a molecular weight that does not exceed 300, more preferably not exceeding 250 and most preferably not exceeding 200.
- the organic ammonium cation (N + R a R b R c R d ) of Formula I preferably has a molecular weight of at least 60.
- the organic sulfur-containing acid of the collector is selected from hydrocarbyl dithiophosphoric acids, hydrocarbyl monothiophosphoric acids, mercaptobenzothiazoles, hydrocarbyl xanthic acids, hydrocarbyl dithiocarbamic acids, hydrocarbyl thioglycolic acids and hydrocarbyl trithiocarbonic acids.
- Hydrocarbyl dithiophosphoric acids are generally according to the general formula
- Hydrocarbyl monothiophosphoric acids are generally according to the general formula
- Hydrocarbyl dithiocarbamic acids are usually selected from the group of dihydrocarbyl dithiocarbamic acids and monohydrocarbyl dithiocarbamic acids and are generally according to the general formula:
- R1 is H or a C1-C12 hydrocarbyl group and R2, independently, is a C1-C12 hydrocarbyl group, with the proviso that R1 and R2 may be linked to form a cyclic compound.
- R1 and R2 are independently H or a C2-C8 hydrocarbyl group. More preferably, R1 and R2 are independently H or a C2-C4 hydrocarbyl group.
- Examples include diisobutyl dithiocarbamic acid, di-n-butyl dithiocarbamic acid, diethyl dithiocarbamic acid, diisopropyl dithiocarbamic acid, dibenzyl dithiocarbamic acid, diphenyl dithiocarbamic acid, dioctyl dithiocarbamic acid, monobutyl dithiocarbamic acid, monoethyl dithiocarbamic acid, butyl phenyl dithiocarbamic acid, ethyl butyl dithiocarbamic acid and the like.
- Hydrocarbyl xanthic acids are generally according to the general formula:
- R1 is a C2-C12 hydrocarbyl group.
- R1 is a C2 to C5 hydrocarbyl group.
- specific hydrocarbyl xanthic acids include ethyl xanthic acid, n-butyl xanthic acid, isobutyl xanthic acid, n-propyl xanthic acid, isopropyl xanthic acid, sec butyl xanthic acid, n-amyl xanthic acid, isoamyl xanthic acid, 2 ethyl-hexyl xanthic acid, phenyl xanthic acid, benzyl xanthic acid.
- Hydrocarbyl trithiocarbonic acids are generally according to the general formula
- R1 is a C2-C12 hydrocarbyl group.
- R1 is a C4-C12 hydrocarbyl group.
- specific hydrocarbyl trithiocarbonic acids include butyl trithiocarbonic acid and dodecyl trithiocarbonic acid.
- Hydrocarbyl thioglycolic acids are generally according to the general formula
- R1 is a C2-C12 hydrocarbyl group.
- R1 is C4 to C8 hydrocarbyl group.
- specific hydrocarbyl thioglycolic acids include butyl thioglycolic acid, octylthioglycolic acid, and dodecyl thioglycolic acid.
- R1 is H or a —O—(C1-C12 hydrocarbyl) group or a C1-C12 hydrocarbyl group.
- R1 is a H or a C1 to C6 hydrocarbyl group.
- specific mercaptobenzothiazoles include 6-hexyl 2-mercaptobenzothiazole and 6-ethoxy 2-mercaptobenzothiazole.
- Preferred mercaptobenzothiazoles are selected from 2-mercaptobenzothiazole and 6-hydrocarbyl-2-mercaptobenzothiazoles.
- the organic sulfur-containing collector is selected from the group consisting of tertiary and quaternary ammonium salts of hydrocarbyl dithiophosphoric acids, hydrocarbyl monothiophosphoric acids, mercaptobenzothiazoles, hydrocarbyl xanthic acids and hydrocarbyl dithiocarbamic acids.
- collectors composed of an ammonium salt of an organic sulfur-containing acid include, but are not limited to, choline salt of diisobutyl dithiophosphoric acid, trimethylammonium salt of diisobutyl monothiophosphoric acid, triethylammonium salt of mercaptobenzothiazole, choline salt of mercaptobenzothiazole, triethylammonium salt of diisobutyl monothiophosphoric acid, choline salt of diisobutyl monothiophosphoric acid, tributylammonium salt of mercaptobenzothiazole, tripropylammonium salt of diisobutyl dithiophosphoric acid, triethylammonium salt of diethyl dithiocarbamic acid, tripropylammonium salt of dibutyl dithiocarbamic acid, trimethylammonium salt of diisobutyl dithiophosphoric acid, hexamethylene te
- the physical state of the ammonium salt of an organic sulfur-containing acid is dependent on the organic ammonium cation and the sulfur-containing anion.
- trimethylammonium salt of diisobutyl dithiophosphoric acid and triethylammonium salt of diisobutyl dithiophosphoric acid are solids. Most other salts are liquid.
- the compounds of organic ammonium salt of an organic sulfur-containing acid as described herein prove useful as value mineral collectors and may be used in methods for recovering at least one value mineral from an ore.
- the organic ammonium salt of an organic sulfur-containing acid are utilized as collectors in froth flotation processes by adding a beneficiating amount of the collector (i.e., an amount of collector sufficient to effectively separate the value minerals from the non-value minerals) to one or more stages of the froth flotation process.
- the collector compositions described herein may be added to the froth flotation processes as the organic ammonium salt of an organic sulfur-containing acid or they may be part of a composition additionally including one or more compound useful for froth flotation.
- the collectors according to the present invention as described herein are present in the collector composition in amounts and ratios that are economically feasible as well as effective to the recovery of the value minerals.
- the amount of collector as described herein present in the collector composition can vary from about 1 wt. % to about 99 wt. % based on the total weight of the collector composition. In one embodiment, the amount of collectors as described herein present in the collector composition is between about 30 wt. % and about 70 wt. % based on the total weight of the collector composition.
- the collector compositions may optionally include one or more other collectors different from the tertiary and quaternary ammonium salts of the organic sulfur-containing acids according to the invention as described herein.
- Such other collectors can be any known collectors, such as anionic collectors and neutral collectors.
- the tertiary and quaternary ammonium salts of the sulfur-containing collectors that are described above display excellent physical compatibility with neutral (so-called oily collectors) collectors.
- the physical stability of collector compositions that include the collector according to the invention as herein described, together with a neutral collector allows them to be handled in an easy manner.
- collector compositions are chemically stable and do not release toxic gases or fumes and do not require the use of hazardous diluents and coupling agents.
- the collector compositions according to the present invention may optionally include one or more additives.
- additives are known to those of skill in the froth flotation art and need not be further described in detail herein.
- Certain additives may include, for example, one or more of hydrocarbon oils, surfactants, aliphatic alcohols, glycols, glycol ethers and non-aqueous solvents. Combinations of the foregoing additives are also contemplated.
- the amount and type of additives present in the collector composition will vary depending on one or more of the following variables: the type of collectors, the amount of the collectors, the type of ore, the value mineral, and the like, and combinations thereof. The person of ordinary skill in the art will be able to determine such values based on no more than routine experimentation.
- the total amount of additives present in the collector composition is between about 1 wt. % and about 95 wt. % based on the total weight of the collector composition. In another embodiment, the total amount of additives present in the collector composition is between about 1 wt. % and about 50 wt. % based on the total weight of the collector composition.
- a froth flotation process includes crushing an ore to form crushed ore (referred to herein as the “pre-grinding” or the “pre-grind” stage), and then grinding the crushed ore particles in a grinding mill to form ground ore.
- a slurry of water and ground ore is formed. The steps of grinding the ore and forming the slurry may be collectively referred to as the “grinding stage”.
- the slurry containing the ground ore is then sent to the “conditioning stage” where the ground ore is conditioned in a conditioner.
- the ground ore is subjected to a flotation process by passing air through the slurry in flotation cells or a bank of flotation cells to cause flotation of the desired minerals in a froth.
- the desired minerals, i.e., the value minerals are collected (“recovered”) from the froth in launders (referred to as the “flotation stage”).
- a froth flotation process may include more than one stage of grinding, conditioning and flotation.
- the flotation concentrate from the first stage (referred to as “roughers” or “rougher-scavengers”) may be ground further and refloated in a circuit referred to as “cleaners”.
- the cleaners may subject the concentrate of the first stage to further grinding, conditioning and flotation stages.
- the concentrate from the first stage may be refloated without further grinding.
- the tails from the cleaners may be refloated in a circuit referred to as “cleaner-scavengers”.
- the froth flotation processes according to the present invention encompass the addition of froth phase modifiers, monovalent ion modifier enhancing agents and other collector compositions at any stage of the process, i.e., addition of the froth phase modifier (and/or monovalent ion modifier enhancing agent and/or collector) in some instance may be done until the second (or third) grinding stage, conditioning stage, or flotation stage.
- Flotation reagents which include the organic ammonium salts of the organic sulfur-containing collectors described herein as well as, for example, frothers, pH regulators, froth phase modifiers, dispersants, depressants, and the like, may be added to the crushed ore, ground ore and/or slurry, during the process at any or all of the stages of the froth flotation process.
- the flotation reagents such as the organic ammonium salts of the sulfur-containing acid collectors, especially those according to Formula I, described herein, are added to the froth flotation process at one or more stages of the process.
- the organic ammonium salt of a sulfur-containing collector may be added to the grinding stage, the conditioning stage, or a combination thereof.
- added means any method that can be used to bring two or more items or compounds together and encompasses intermixing, mixing, combining, incorporating, blending and the like.
- intermixed means any method that can be used to bring two or more items or compounds together and encompasses adding, intermixing, mixing, combining, incorporating, blending and the like.
- the organic ammonium salts of the sulfur-containing collectors described herein are added to processes for recovering a value mineral from an ore in an amount that is effective (“effective amount” or “beneficiating amount”) to recover the value mineral.
- the effective amount of the organic ammonium salt of a sulfur-containing acid may depend on a variety of factors, including the process used, the ore used, the contents of the organic ammonium salt of a sulfur-containing collector, and the like.
- the effective amount of the organic ammonium salt of a sulfur-containing collector added to the process is from about 0.5 gram per ton (g/t) to about 500 g/t.
- the effective amount of the organic ammonium salt of a sulfur-containing collector added to the process is from about 1 g/t to about 200 g/t. In yet another embodiment, the effective amount of the organic ammonium salt of a sulfur-containing collector added to the process is from about 2 g/t to about 100 g/t. In still a further embodiment, the effective amount of the organic ammonium salt of a sulfur-containing collector added to the process is from about 5 g/t to about 50 g/t. In another embodiment, the effective amount of the organic ammonium salt of a sulfur-containing collector is from about 5 g/t to about 20 g/t.
- the organic ammonium salts of sulfur-containing collectors described herein, or the collector compositions containing them, are typically added to processes in a liquid form. Some of the compositions, when manufactured, can be in a solid form, but these can be readily made into liquid form by dissolving in a suitable solvent or diluent.
- collectors can be added to the froth flotation process separately or simulataneously.
- triethylammonium salt of diisobutyl dithiophosphoric acid is as follows: 130 grams (0.54 mole) of diisobutyl dithiophosphoric acid is charged into a jacketed pressure reactor. The system is bubbled through with nitrogen for 20 min and 55.5 grams (0.55 mole) of triethylamine is added to the addition funnel and the entire system is under nitrogen. Then, with the system monitored by a pressure gauge and thermometer, triethylamine is then added drop wise and the reaction temperature is kept under 50° C. and pressure under 10 psi. After the addition is over, the system is brought to 50° C. through the jacket by a heating circulator. The reaction temperature is kept at 50° C. for 1 hour.
- the product is then discharged.
- the acid number (normally below 30) and iodine number (between 40-43) are measured to check the acidity and percent dithiophosphoric acid.
- the product purity (ranging between 88-95%) is measured by LC-MS and NMR.
- tetraethylammonium salt of diisobutyl dithiophosphoric acid is as follows: 264 grams (0.50 mole) of sodium diisobutyl dithiophosphate is charged into a jacketed reactor. The system is bubbled through with nitrogen for 20 min and 165.7 grams (0.50 mole) of tetraethylammonium chloride (50% solution in water) is added slowly through an addition funnel to the DTP acid. The reactor is heated at 50 to 60° C. for 1 hour with vigorous agitation. Then, 50 ml of toluene is added to dissolve the product and the aqueous layer is separated and drained out.
- the toluene solution is then washed with 50 ⁇ 2 ml water and dried with magnesium sulfate. After that filtration is applied to remove the magnesium sulfate and the toluene is stripped out at 20 mm Hg/80° C. condition to obtain final product. The product is then discharged. The product purity (ranging between 80-90%) is measured by LC-MS and NMR.
- Preparation of trimethylammonium salt of diisobutyl dithiophosphoric acid is as follows: 130 grams (0.54 mole) of diisobutyl dithiophosphoric acid is charged into a jacketed pressure reactor. The system is bubbled through with nitrogen for 20 min and 35 grams (0.59 mole) of liquefied trimethylamine is added to the addition funnel and the entire system is then sealed under nitrogen. Then, with the system monitored by a pressure gauge and thermometer, trimethylamine is then added drop wise and kept the reaction temperature under 50° C. and pressure under 10 psi. After the addition is over, the system is brought to 50° C. through the jacket by a heating circulator. The reaction temperature is kept at 50° C. for 1 hour. The product is then discharged. The acid number (normally below 30) and iodine number (between 40-43) are measured to check the acidity and percent dithiophosphoric acid. The product purity (ranging between 88-95%) is measured by LC-MS and NMR.
- tripropylammonium salt of diisobutyl dithiophosphoric acid is as follows: 130 grams (0.54 mole) of diisobutyl dithiophosphoric acid is charged into a jacketed pressure reactor. The system is bubbled through with nitrogen for 20 min and 77.2 grams (0.54 mole) of tripropylamine is added to the addition funnel and the entire system is under nitrogen. Then, with the system monitored by a thermometer, tripropylamine is added drop wise and the reaction temperature is kept under 50° C. After the addition is over, the system is brought to 50° C. through the jacket by a heating circulator. The reaction temperature is kept at 50° C. for 1 hour. The product is then discharged. The acid number (normally below 30) and iodine number (between 40-43) are measured to check the acidity and percent dithiophosphoric acid. The product purity (ranging between 88-95%) is measured by LC-MS and NMR.
- choline salt of diisobutyl dithiophosphoric acid is as follows: 264 grams (0.50 mole) of sodium diisobutyl dithiophosphate is charged into a jacketed reactor. The system is bubbled through with nitrogen for 20 min and 139.6 grams (0.50 mole) of choline chloride (50% solution in water) is added slowly through an addition funnel to the DTP acid. The reactor is heated at 50 to 60° C. for 1 hour with vigorous agitation. Then, 50 ml of toluene is added to dissolve the product and the aqueous layer is separated and drained out. The toluene solution is then washed with 50 ⁇ 2 ml water and dried with magnesium sulfate.
- choline salt of mercaptobenzothiazole is as follows: 83.6 grams (0.50 mole) of powder 2-mercaptobenzothiazole is suspended in 100 ml absolute ethanol and neutralized by mixing 134.4 grams (0.50 mole) of choline hydroxide (45 wt. % in methanol) at room temperature under nitrogen. Then the mixture is heated to 50° C. for 1 hour. The solution is then stripped under vacuum to remove the excess ethanol/methanol to obtain final product. The acid number (normally below 30) is measured to check the acidity. The product purity (ranging between 80-90%) is measured by LC-MS and NMR.
- triethylammonium salt of mercaptobenzothiazole is as follows: 83.6 grams (0.50 mole) of powder 2-mercaptobenzothiazole is suspended in 100 ml absolute ethanol and neutralized by mixing 50.5 grams (0.50 mole) of triethylamine at room temperature under nitrogen. Then the mixture is heated to 50° C. for 1 hour. The solution is then stripped under vacuum to remove the excess ethanol/methanol to obtain final product. The acid number (normally below 30) is measured to check the acidity. The product purity (ranging between 80-90%) is measured by LC-MS and NMR.
- tributylammonium salt of mercaptobenzothiazole is as follows: 83.6 grams (0.50 mole) of powder 2-mercaptobenzothiazole is suspended in 100 ml absolute ethanol and neutralized by mixing with 92.7 grams (0.50 mole) of tributylamine at room temperature under nitrogen. Then the mixture is heated to 50° C. for 1 hour. The solution is then stripped under vacuum to remove the excess ethanol to obtain final product. The acid number (normally below 30) is measured to check the acidity. The product purity (ranging between 80-90%) is measured by LC-MS and NMR.
- triethylammonium salt of diethyl dithiocarbamate is as follows: 76 grams (1 mole) carbon disulfide and 101 grams (1 mole) triethylamine are mixed at 10° C. under nitrogen. To the mixture is added in slowly 80.5 grams (1.1 mole) diethylamine drop wise and maintain the temperature below 30° C. Then the mixture is heated to 50° C. for 1 hour. The solution is then stripped out under vacuum to remove the excess amine and for the removal of low volatiles to obtain final product. The acid number (normally below 30) is measured to check the acidity. The product purity (ranging between 85-95%) is measured by LC-MS and NMR.
- tripropylammonium salt of diethyl dithiocarbamate is as follows: 76 grams (1 mole) carbon disulfide and 143 grams (1 mole) tripropylamine are mixed at 10° C. under nitrogen. 80.5 grams (1.1 mole) diethylamine is added slowly and drop wise to the mixture and the mixture is maintained at a temperature below 30° C. Then the mixture is heated to 50° C. for 1 hour. The solution is then stripped out under vacuum to remove the excess amine and for the removal of low volatiles to obtain final product. The acid number (normally below 30) is measured to check the acidity. The product purity (ranging between 85-95%) is measured by LC-MS and NMR.
- MTP acid diisobutyl monothiophosphoric acid
- 248 grams (0.50 mole) of sodium diisobutyl monothiophosphate (Aero 6697, 50% solution in water) is charged into a jacketed reactor.
- the system is bubbled through with nitrogen for 20 min and 134.4 grams (0.50 mole) of choline chloride (50 wt. % in water) is added slowly through an addition funnel to the MTP acid.
- the reactor is heated at 50 to 60° C. for 1 hour with vigorous agitation.
- 50 ml of toluene is added to dissolve the product and the aqueous layer is separated and drained out.
- the toluene solution is then washed with 50 ⁇ 2 ml water and dried with magnesium sulfate. After that, filtration is applied to remove the magnesium sulfate and the toluene is stripped out at 20 mm Hg/80° C. condition to obtain final product. The product is then discharged. The product purity (ranging between 80-90%) is measured by LC-MS and NMR.
- triethylammonium salt of diisobutyl monothiophosphoric acid is as follows: 248 grams (0.50 mole) of sodium diisobutyl monothiophosphate (Aero 6697, 50% solution in water) is charged into a jacketed reactor. The system is bubbled through with nitrogen for 20 min and 50.5 grams (0.50 mole) of triethylamine is added slowly through an addition funnel to the MTP acid. The reactor is heated at 50 to 60° C. for 1 hour with vigorous agitation. Then, 50 ml of toluene is added to dissolve the product and the aqueous layer is separated and drained out.
- the toluene solution is then washed with 50 ⁇ 2 ml water and dried with magnesium sulfate. After that, filtration is applied to remove the magnesium sulfate and the toluene is stripped out at 20 mm Hg/80° C. condition to obtain final product. The product is then discharged. The product purity (ranging 80-90%) is measured by LC-MS and NMR.
- An ore sample containing Au (1.3 ppm or g/t) is beneficiated by froth flotation.
- 1000 g of ore sample is ground for 17 min in a mild steel rod mill containing a 10 kg rod charge and approximately 660 ml of water resulting in ground ore slurry with a particle size distribution of approximately 80% passing 106 microns.
- Lime is added to the mill to achieve a target pH of approximately 9.7 in the flotation stage.
- the slurry is then transferred to a 2.5 L Denver flotation cell and water is added to adjust the solids density to 33%.
- the slurry is agitated at 1200 rpm in the cell.
- the collector is added in one addition at 25 g of active collector per ton of ore in the conditioning stage.
- the frother used is a (15:85) mixture of glycols and methyl isobutyl carbinol added at 30 g/t of ore in the flotation stage. Flotation is conducted for 7 min. The results are presented in Table 1 (for tests at pH 6.5) and Table 2 (for tests at pH 9.7).
- An ore sample containing Ni (1.6%) is beneficiated by froth flotation.
- 500 g of ore sample is ground for 6 min in a mild steel rod mill containing a 9.2 kg rod charge and approximately 333 ml of water resulting in ground ore slurry with a particle size distribution of approximately 56% passing 75 microns.
- Lime is added to the mill to achieve a target pH of approximately 9.0 in the flotation stage.
- After grinding the slurry is then transferred to a 1.2 L Denver flotation cell and water is added to adjust the solids density to 33%.
- the slurry is agitated at 1000 rpm in the cell.
- the collector is added in one addition at 15 or 30 g of active collector per ton of ore in the conditioning or grinding stage.
- An ore sample containing platinum group precious metals (approximately 2 g/t of Pt and 1.1 g/t of Pd; also containing value mineral Ni) is beneficiated by froth flotation in a single stage of grinding and flotation with the objective of maximizing the recovery of Pt and Pd in this stage. Additionally, it is desirable to recover almost all of the sulfide minerals including those of Ni.
- approximately 1 kg of ore sample is ground for 29.5 min in a mild steel rod mill containing a 10 kg rod charge and approximately 670 ml of water resulting in slurry having a particle size distribution of approximately 80% passing 106 microns.
- a total of 50 g/t of guar gum depressant as a 1% solution is added to the conditioning stage.
- the ground slurry is transferred to the 2.5 L Denver flotation cell and water is added to obtain slurry solids density of 33%.
- the slurry is agitated at 1300 rpm.
- the collector dosages are 40 or 60 g of active collector per ton of ore. The results are presented in Table 4.
- An ore sample containing Cu (0.56%) is beneficiated by froth flotation.
- 1000 g of ore sample is ground for 8.5 min in a mild steel rod mill containing a 10 kg rod charge and approximately 667 ml of water resulting in ground ore slurry with a particle size distribution of approximately 80% passing 106 microns Lime is added to the mill to achieve a target pH of approximately 10.5 in the flotation stage.
- the slurry is then transferred to a 2.5 L Denver flotation cell and water is added to adjust the solids density to 33%.
- the slurry is agitated at 1200 rpm in the cell.
- the collector is added in one addition at 5 g of active collector per ton of ore in the conditioning stage.
- the frother used is PBM 604 frother, available from Cytec Industries Inc., USA, which is added at a dose of 30 g/t. Flotation is conducted for 9 min. The results are presented in Table 5.
- An ore sample containing Cu (0.56%) is beneficiated by froth flotation.
- 1000 g of ore sample is ground for 8.5 min in a mild steel rod mill containing a 10 kg rod charge and approximately 667 ml of water resulting in ground ore slurry with a particle size distribution of approximately 80% passing 106 microns Lime is added to the mill to achieve a target pH of approximately 10.5 in the flotation stage.
- the slurry is then transferred to a 2.5 L Denver flotation cell and water is added to adjust the solids density to 33%.
- the slurry is agitated at 1200 rpm in the cell.
- the collector is added in one addition at 5 g of active collector per ton of ore in the conditioning stage.
- the frother used is X-133, available from Cytec Industries Inc., USA, which is added at a dose of 15 g/t. Flotation is conducted for 9 min. The results are presented in Table 7.
- the same ore and procedure as in Examples 58-59 are used in this example.
- the comparative test is the inorganic ammonium salt of diisobutyl dithiophosphoric acid.
- the trimethylamine salt of diisobutyl dithiophosphoric acid collector composition according to the invention shows higher copper recovery.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Physical Water Treatments (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/653,713 US9302272B2 (en) | 2011-10-18 | 2012-10-17 | Froth flotation processes |
US13/653,732 US9302273B2 (en) | 2011-10-18 | 2012-10-17 | Froth flotation processes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161548408P | 2011-10-18 | 2011-10-18 | |
US13/653,713 US9302272B2 (en) | 2011-10-18 | 2012-10-17 | Froth flotation processes |
US13/653,669 US9302274B2 (en) | 2011-10-18 | 2012-10-17 | Collector compositions and methods of using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130092604A1 US20130092604A1 (en) | 2013-04-18 |
US9302272B2 true US9302272B2 (en) | 2016-04-05 |
Family
ID=47089191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/653,713 Active 2034-02-06 US9302272B2 (en) | 2011-10-18 | 2012-10-17 | Froth flotation processes |
Country Status (14)
Country | Link |
---|---|
US (1) | US9302272B2 (ru) |
EP (1) | EP2768618A2 (ru) |
CN (1) | CN104093492B (ru) |
AP (1) | AP2014007573A0 (ru) |
AR (1) | AR089652A1 (ru) |
AU (1) | AU2012326312B2 (ru) |
BR (1) | BR112014009562A2 (ru) |
CA (1) | CA2852681A1 (ru) |
CL (1) | CL2014000986A1 (ru) |
EA (1) | EA033798B1 (ru) |
IN (1) | IN2014CN02933A (ru) |
MX (1) | MX2014004714A (ru) |
PE (2) | PE20141471A1 (ru) |
WO (1) | WO2013059259A2 (ru) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2017346939B2 (en) * | 2016-10-20 | 2022-06-23 | Newsouth Innovations Pty Limited | Method for removing heavy metals from an aqueous solution |
PL3630363T3 (pl) | 2017-05-24 | 2022-02-28 | Basf Se | Alkilowane trifenylofosforotioniany jako selektywne środki zbierające dla siarczków metali |
CL2022000850A1 (es) * | 2022-04-04 | 2022-10-21 | Oxiquim S A | Composiciones de xantatos iónicos estables en solución acuosa, útiles como colectores en el proceso de flotación por espuma y su proceso de preparación. |
Citations (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1949956A (en) | 1931-03-02 | 1934-03-06 | Peter C Reilly | Ore flotation and flotation reagent |
US2043192A (en) * | 1934-05-09 | 1936-06-02 | American Cyanamid Co | Flotation reagent |
US2063629A (en) | 1935-02-19 | 1936-12-08 | Du Pont | Esters of the thio acids of phosphorus |
US2074699A (en) | 1934-06-02 | 1937-03-23 | Du Pont | Flotation process |
US2120217A (en) * | 1937-12-18 | 1938-06-07 | Benjamin R Harris | Ore flotation |
US2134706A (en) | 1931-02-24 | 1938-11-01 | Peter C Reilly | Process of flotation and agent therefor |
US2185968A (en) | 1937-11-01 | 1940-01-02 | Armour & Co | Process of concentrating ores and flotation agents therefor |
US2201535A (en) * | 1937-08-07 | 1940-05-21 | Benjamin R Harris | Lipophilic-hydrophilic derivatives of thio compounds |
US2221377A (en) * | 1938-10-10 | 1940-11-12 | Emulsol Corp | Substituted ammonium salts of sulphocarboxylic acid esters |
US2267307A (en) | 1936-12-17 | 1941-12-23 | Armour & Co | Concentrating ores |
US2278020A (en) | 1939-11-03 | 1942-03-31 | Armour & Co | Process of separating chalcocite ore |
US2293470A (en) * | 1940-03-07 | 1942-08-18 | American Cyanamid Co | Froth flotation of siliceous material |
US2330587A (en) | 1940-11-06 | 1943-09-28 | American Cyanamid Co | Flotation reagent and process |
US2389718A (en) | 1943-01-07 | 1945-11-27 | American Cyanamid Co | Disubstituted dithiophosphates |
US2812332A (en) | 1955-04-01 | 1957-11-05 | Goodrich Co B F | Quaternary ammonium xanthates |
US2919025A (en) * | 1956-04-04 | 1959-12-29 | American Cyanamid Co | Flotation reagent composition |
US2991430A (en) | 1959-06-03 | 1961-07-04 | Charles M Allred | Automatic r-f level control |
US3002014A (en) | 1958-07-30 | 1961-09-26 | Monsanto Chemicals | S-amine phosphorothioates |
US3203968A (en) * | 1959-06-03 | 1965-08-31 | Sebba Felix | Ion flotation method |
US3214018A (en) * | 1962-10-08 | 1965-10-26 | Feldspar Corp | Froth flotation of micaceous minerals |
US3238127A (en) * | 1961-10-03 | 1966-03-01 | Armour & Co | Ion flotation method |
CA771181A (en) | 1967-11-07 | Du Pont Of Canada Limited | Dithiocarbamate ore collector agents | |
US3355017A (en) * | 1963-12-06 | 1967-11-28 | American Cyanamid Co | Method for effecting ore flotation |
US3425550A (en) | 1966-07-22 | 1969-02-04 | Armour Ind Chem Co | Flotation separation of metallic sulfide ores |
CA808222A (en) | 1969-03-11 | Du Pont Of Canada Limited | Ore flotation process and collector agents | |
US3476553A (en) * | 1965-02-10 | 1969-11-04 | Armour & Co | Precipitate flotation process |
US3536679A (en) * | 1969-05-16 | 1970-10-27 | Exxon Research Engineering Co | Lithiated-amine polymerization catalyst |
US3570772A (en) * | 1969-08-22 | 1971-03-16 | American Cyanamid Co | Di(4-5 carbon branched primary alkyl) dithiophosphate promoters for the flotation of copper middlings |
US3671612A (en) | 1968-04-05 | 1972-06-20 | Knapsack Ag | Process for the manufacture of ammonium dialkyldithiophosphates |
US3737458A (en) * | 1963-03-13 | 1973-06-05 | Exxon | Product of alpha monolithiated amine and carbonyl compounds |
US3742099A (en) | 1970-01-16 | 1973-06-26 | Exxon Research Engineering Co | Preparation of alkyl or aralykyl esters of dithiophosphoric acid or derivatives thereof by transesterification |
US3788467A (en) | 1972-04-27 | 1974-01-29 | American Cyanamid Co | Flotation process for recovering molybdenum |
GB1353976A (en) | 1971-08-27 | 1974-05-22 | Exxon Research Engineering Co | Lubricating oil compositions |
US3845862A (en) | 1973-01-04 | 1974-11-05 | Continental Oil Co | Concentration of oxide copper ores by flotation separation |
US3845863A (en) | 1971-03-25 | 1974-11-05 | Tampella Oy Ab | Pulp sifter with cleaning means |
US3925218A (en) | 1974-08-01 | 1975-12-09 | American Cyanamid Co | Concentration of ore by flotation with solutions of aqueous dithiophosphates and thionocarbamate as collector |
US3971836A (en) | 1974-08-16 | 1976-07-27 | Minerec Corporation | Amine-stabilized dialkyl dithiophosphates |
US4022686A (en) * | 1975-03-13 | 1977-05-10 | Sumitomo Metal Mining Co., Limited | Flotation process for copper ores and copper smelter slags |
US4036746A (en) | 1974-08-16 | 1977-07-19 | Minerec Corporation | Flotation with amine-stabilized dialkyl dithiophosphates |
US4040950A (en) | 1974-08-01 | 1977-08-09 | American Cyanamid Company | Concentration of ore by flotation with solutions of aqueous dithiophosphates and thionocarbamate as collector |
US4102781A (en) | 1976-01-30 | 1978-07-25 | The International Nickel Company, Inc. | Flotation process |
US4215067A (en) * | 1978-12-29 | 1980-07-29 | Standard Oil Company (Indiana) | Process for the preparation of zinc salts of dihydrocarbyldithiophosphoric acids |
CA1105156A (en) | 1978-10-11 | 1981-07-14 | William A. Rickelton | Flotation of sulfide minerals |
US4472288A (en) | 1980-08-29 | 1984-09-18 | Chevron Research Company | Lubricant composition containing alkali metal borate and an oil-soluble amine salt of a phosphorus compound |
CA1188014A (en) | 1982-05-17 | 1985-05-28 | Rory L. Tibbals | Ore flotation method |
US4530758A (en) | 1982-05-17 | 1985-07-23 | Thiotech, Inc. | Ore flotation method |
US4584097A (en) * | 1984-08-17 | 1986-04-22 | American Cyanamid Company | Neutral hydrocarboxycarbonyl thionocarbamate sulfide collectors |
US4595493A (en) * | 1984-08-17 | 1986-06-17 | American Cyanamid Company | Process for the flotation of base metal sulfide minerals in acid, neutral or mildly alkaline circuits |
US4601818A (en) * | 1983-03-30 | 1986-07-22 | Phillips Petroleum Company | Ore flotation |
GB2178446A (en) | 1985-07-31 | 1987-02-11 | Chevron Res | Lubricant additive composition containing a neutralized mixture of phosphates |
US4684459A (en) | 1985-11-29 | 1987-08-04 | The Dow Chemical Company | Collector compositions for the froth flotation of mineral values |
US4699712A (en) | 1984-06-20 | 1987-10-13 | Thiotech, Inc. | Ore dressing method |
US4789466A (en) | 1985-05-11 | 1988-12-06 | Henkel Kommanditgesellschaft Auf Aktien | Method of separating non-sulfidic minerals by flotation |
US4793852A (en) * | 1985-10-28 | 1988-12-27 | The Dow Chemical Company | Process for the recovery of non-ferrous metal sulfides |
US4830739A (en) | 1985-02-20 | 1989-05-16 | Berol Kemi Ab | Process and composition for the froth flotation beneficiation of iron minerals from iron ores |
US4853110A (en) * | 1986-10-31 | 1989-08-01 | Exxon Research And Engineering Company | Method for separating arsenic and/or selenium from shale oil |
US4879022A (en) * | 1987-07-14 | 1989-11-07 | The Lubrizol Corporation | Ore flotation process and use of mixed hydrocarbyl dithiophosphoric acids and salts thereof |
US4908125A (en) * | 1987-07-07 | 1990-03-13 | Henkel Kommanditgesellschaft Auf Aktien | Froth flotation process for the recovery of minerals and a collector composition for use therein |
CA1299777C (en) | 1986-11-21 | 1992-04-28 | Elias M. Klein | Recovery of platinum-group metals and other metal valuables |
US5147572A (en) | 1990-06-15 | 1992-09-15 | The Lubrizol Corporation | Flotation composition using a mixture of collectors |
US5627294A (en) * | 1994-02-25 | 1997-05-06 | Exxon Chemical Patents Inc. | Manufacture of dihydrocarbyl dithiophosphates |
US5874522A (en) * | 1992-08-20 | 1999-02-23 | Dupont Pharmaceuticals Company | Crosslinked polymeric ammonium salts |
US5929408A (en) * | 1996-09-26 | 1999-07-27 | Cytec Technology Corp. | Compositions and methods for ore beneficiation |
JP2001247848A (ja) | 2000-03-08 | 2001-09-14 | Miyoshi Oil & Fat Co Ltd | 金属捕集剤 |
JP2003064347A (ja) | 2001-08-24 | 2003-03-05 | Sanken:Kk | 有害金属捕捉剤 |
WO2003049867A1 (en) | 2001-12-12 | 2003-06-19 | Vladimir Rajic | Selective flotation agent and flotation method |
US6732867B2 (en) | 2002-10-15 | 2004-05-11 | Cytec Technology Corp. | Beneficiation of sulfide minerals |
US6756346B1 (en) | 1998-08-20 | 2004-06-29 | Shell Oil Company | Lubricating oil composition useful in hydraulic fluids |
EP1439216A1 (en) | 2003-01-15 | 2004-07-21 | Ethyl Japan Corporation | Extended drain, thermally stable, gear oil formulations |
US6820746B2 (en) | 2002-10-15 | 2004-11-23 | Cytec Technology Corp. | Process for the beneficiation of sulfide minerals |
US7299930B2 (en) | 2003-11-27 | 2007-11-27 | Procesos Mineros E Industries Conosur S.A. | Collecting agent comprising ammoniated compounds (primary, secondary, tertiary amines), for use in the process of grinding and/or floating copper, molybdenum, zinc, and other contained mineral ores |
WO2008019451A1 (en) | 2006-08-17 | 2008-02-21 | Ab Tall (Holdings) Pty Ltd | Collectors and flotation methods |
US20100021370A1 (en) * | 2008-07-25 | 2010-01-28 | Devarayasamudram Ramachandran Nagaraj | Flotation Reagents and Flotation Processes Utilizing Same |
US8376142B2 (en) * | 2007-02-07 | 2013-02-19 | Cytec Technology Corp. | Dithiocarbamate collectors and their use in the beneficiation of mineral ore bodies |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0368956A4 (en) * | 1988-04-25 | 1990-09-26 | National Starch And Chemical Corporation | Quaternary ammonium dithiocarbamate compounds |
CN101816981B (zh) * | 2010-03-16 | 2012-12-19 | 武汉理工大学 | 一种环境友好型胺类阳离子捕收剂及其使用方法 |
CN102502905A (zh) * | 2011-11-15 | 2012-06-20 | 沈阳创达技术交易市场有限公司 | 污水处理药剂 |
-
2012
- 2012-10-17 WO PCT/US2012/060526 patent/WO2013059259A2/en active Application Filing
- 2012-10-17 MX MX2014004714A patent/MX2014004714A/es unknown
- 2012-10-17 EP EP12779265.3A patent/EP2768618A2/en not_active Withdrawn
- 2012-10-17 PE PE2014000546A patent/PE20141471A1/es active IP Right Grant
- 2012-10-17 AU AU2012326312A patent/AU2012326312B2/en not_active Ceased
- 2012-10-17 BR BR112014009562A patent/BR112014009562A2/pt not_active Application Discontinuation
- 2012-10-17 US US13/653,713 patent/US9302272B2/en active Active
- 2012-10-17 CN CN201280055395.4A patent/CN104093492B/zh not_active Expired - Fee Related
- 2012-10-17 CA CA2852681A patent/CA2852681A1/en not_active Abandoned
- 2012-10-17 AP AP2014007573A patent/AP2014007573A0/xx unknown
- 2012-10-17 IN IN2933CHN2014 patent/IN2014CN02933A/en unknown
- 2012-10-17 EA EA201490816A patent/EA033798B1/ru not_active IP Right Cessation
- 2012-10-17 AR ARP120103865A patent/AR089652A1/es unknown
- 2012-10-17 PE PE2019000329A patent/PE20190646A1/es unknown
-
2014
- 2014-04-17 CL CL2014000986A patent/CL2014000986A1/es unknown
Patent Citations (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA808222A (en) | 1969-03-11 | Du Pont Of Canada Limited | Ore flotation process and collector agents | |
CA771181A (en) | 1967-11-07 | Du Pont Of Canada Limited | Dithiocarbamate ore collector agents | |
US2134706A (en) | 1931-02-24 | 1938-11-01 | Peter C Reilly | Process of flotation and agent therefor |
US1949956A (en) | 1931-03-02 | 1934-03-06 | Peter C Reilly | Ore flotation and flotation reagent |
US2043192A (en) * | 1934-05-09 | 1936-06-02 | American Cyanamid Co | Flotation reagent |
US2074699A (en) | 1934-06-02 | 1937-03-23 | Du Pont | Flotation process |
US2063629A (en) | 1935-02-19 | 1936-12-08 | Du Pont | Esters of the thio acids of phosphorus |
US2267307A (en) | 1936-12-17 | 1941-12-23 | Armour & Co | Concentrating ores |
US2201535A (en) * | 1937-08-07 | 1940-05-21 | Benjamin R Harris | Lipophilic-hydrophilic derivatives of thio compounds |
US2185968A (en) | 1937-11-01 | 1940-01-02 | Armour & Co | Process of concentrating ores and flotation agents therefor |
US2120217A (en) * | 1937-12-18 | 1938-06-07 | Benjamin R Harris | Ore flotation |
US2221377A (en) * | 1938-10-10 | 1940-11-12 | Emulsol Corp | Substituted ammonium salts of sulphocarboxylic acid esters |
US2278020A (en) | 1939-11-03 | 1942-03-31 | Armour & Co | Process of separating chalcocite ore |
US2293470A (en) * | 1940-03-07 | 1942-08-18 | American Cyanamid Co | Froth flotation of siliceous material |
US2330587A (en) | 1940-11-06 | 1943-09-28 | American Cyanamid Co | Flotation reagent and process |
US2389718A (en) | 1943-01-07 | 1945-11-27 | American Cyanamid Co | Disubstituted dithiophosphates |
US2812332A (en) | 1955-04-01 | 1957-11-05 | Goodrich Co B F | Quaternary ammonium xanthates |
US2919025A (en) * | 1956-04-04 | 1959-12-29 | American Cyanamid Co | Flotation reagent composition |
US3002014A (en) | 1958-07-30 | 1961-09-26 | Monsanto Chemicals | S-amine phosphorothioates |
US3203968A (en) * | 1959-06-03 | 1965-08-31 | Sebba Felix | Ion flotation method |
US2991430A (en) | 1959-06-03 | 1961-07-04 | Charles M Allred | Automatic r-f level control |
US3238127A (en) * | 1961-10-03 | 1966-03-01 | Armour & Co | Ion flotation method |
US3214018A (en) * | 1962-10-08 | 1965-10-26 | Feldspar Corp | Froth flotation of micaceous minerals |
US3737458A (en) * | 1963-03-13 | 1973-06-05 | Exxon | Product of alpha monolithiated amine and carbonyl compounds |
US3355017A (en) * | 1963-12-06 | 1967-11-28 | American Cyanamid Co | Method for effecting ore flotation |
US3476553A (en) * | 1965-02-10 | 1969-11-04 | Armour & Co | Precipitate flotation process |
US3425550A (en) | 1966-07-22 | 1969-02-04 | Armour Ind Chem Co | Flotation separation of metallic sulfide ores |
US3671612A (en) | 1968-04-05 | 1972-06-20 | Knapsack Ag | Process for the manufacture of ammonium dialkyldithiophosphates |
US3536679A (en) * | 1969-05-16 | 1970-10-27 | Exxon Research Engineering Co | Lithiated-amine polymerization catalyst |
US3570772A (en) * | 1969-08-22 | 1971-03-16 | American Cyanamid Co | Di(4-5 carbon branched primary alkyl) dithiophosphate promoters for the flotation of copper middlings |
US3742099A (en) | 1970-01-16 | 1973-06-26 | Exxon Research Engineering Co | Preparation of alkyl or aralykyl esters of dithiophosphoric acid or derivatives thereof by transesterification |
US3845863A (en) | 1971-03-25 | 1974-11-05 | Tampella Oy Ab | Pulp sifter with cleaning means |
GB1353976A (en) | 1971-08-27 | 1974-05-22 | Exxon Research Engineering Co | Lubricating oil compositions |
US3788467A (en) | 1972-04-27 | 1974-01-29 | American Cyanamid Co | Flotation process for recovering molybdenum |
US3845862A (en) | 1973-01-04 | 1974-11-05 | Continental Oil Co | Concentration of oxide copper ores by flotation separation |
US3925218A (en) | 1974-08-01 | 1975-12-09 | American Cyanamid Co | Concentration of ore by flotation with solutions of aqueous dithiophosphates and thionocarbamate as collector |
US4040950A (en) | 1974-08-01 | 1977-08-09 | American Cyanamid Company | Concentration of ore by flotation with solutions of aqueous dithiophosphates and thionocarbamate as collector |
US4036746A (en) | 1974-08-16 | 1977-07-19 | Minerec Corporation | Flotation with amine-stabilized dialkyl dithiophosphates |
US3971836A (en) | 1974-08-16 | 1976-07-27 | Minerec Corporation | Amine-stabilized dialkyl dithiophosphates |
US4022686A (en) * | 1975-03-13 | 1977-05-10 | Sumitomo Metal Mining Co., Limited | Flotation process for copper ores and copper smelter slags |
US4102781A (en) | 1976-01-30 | 1978-07-25 | The International Nickel Company, Inc. | Flotation process |
CA1105156A (en) | 1978-10-11 | 1981-07-14 | William A. Rickelton | Flotation of sulfide minerals |
US4215067A (en) * | 1978-12-29 | 1980-07-29 | Standard Oil Company (Indiana) | Process for the preparation of zinc salts of dihydrocarbyldithiophosphoric acids |
US4472288A (en) | 1980-08-29 | 1984-09-18 | Chevron Research Company | Lubricant composition containing alkali metal borate and an oil-soluble amine salt of a phosphorus compound |
CA1188014A (en) | 1982-05-17 | 1985-05-28 | Rory L. Tibbals | Ore flotation method |
US4530758A (en) | 1982-05-17 | 1985-07-23 | Thiotech, Inc. | Ore flotation method |
US4601818A (en) * | 1983-03-30 | 1986-07-22 | Phillips Petroleum Company | Ore flotation |
US4699712A (en) | 1984-06-20 | 1987-10-13 | Thiotech, Inc. | Ore dressing method |
US4584097A (en) * | 1984-08-17 | 1986-04-22 | American Cyanamid Company | Neutral hydrocarboxycarbonyl thionocarbamate sulfide collectors |
US4595493A (en) * | 1984-08-17 | 1986-06-17 | American Cyanamid Company | Process for the flotation of base metal sulfide minerals in acid, neutral or mildly alkaline circuits |
US4830739A (en) | 1985-02-20 | 1989-05-16 | Berol Kemi Ab | Process and composition for the froth flotation beneficiation of iron minerals from iron ores |
US4789466A (en) | 1985-05-11 | 1988-12-06 | Henkel Kommanditgesellschaft Auf Aktien | Method of separating non-sulfidic minerals by flotation |
GB2178446A (en) | 1985-07-31 | 1987-02-11 | Chevron Res | Lubricant additive composition containing a neutralized mixture of phosphates |
US4793852A (en) * | 1985-10-28 | 1988-12-27 | The Dow Chemical Company | Process for the recovery of non-ferrous metal sulfides |
US4684459A (en) | 1985-11-29 | 1987-08-04 | The Dow Chemical Company | Collector compositions for the froth flotation of mineral values |
US4853110A (en) * | 1986-10-31 | 1989-08-01 | Exxon Research And Engineering Company | Method for separating arsenic and/or selenium from shale oil |
CA1299777C (en) | 1986-11-21 | 1992-04-28 | Elias M. Klein | Recovery of platinum-group metals and other metal valuables |
US4908125A (en) * | 1987-07-07 | 1990-03-13 | Henkel Kommanditgesellschaft Auf Aktien | Froth flotation process for the recovery of minerals and a collector composition for use therein |
US4879022A (en) * | 1987-07-14 | 1989-11-07 | The Lubrizol Corporation | Ore flotation process and use of mixed hydrocarbyl dithiophosphoric acids and salts thereof |
US5147572A (en) | 1990-06-15 | 1992-09-15 | The Lubrizol Corporation | Flotation composition using a mixture of collectors |
US5874522A (en) * | 1992-08-20 | 1999-02-23 | Dupont Pharmaceuticals Company | Crosslinked polymeric ammonium salts |
US5627294A (en) * | 1994-02-25 | 1997-05-06 | Exxon Chemical Patents Inc. | Manufacture of dihydrocarbyl dithiophosphates |
US5929408A (en) * | 1996-09-26 | 1999-07-27 | Cytec Technology Corp. | Compositions and methods for ore beneficiation |
US6756346B1 (en) | 1998-08-20 | 2004-06-29 | Shell Oil Company | Lubricating oil composition useful in hydraulic fluids |
JP2001247848A (ja) | 2000-03-08 | 2001-09-14 | Miyoshi Oil & Fat Co Ltd | 金属捕集剤 |
JP2003064347A (ja) | 2001-08-24 | 2003-03-05 | Sanken:Kk | 有害金属捕捉剤 |
US20050150330A1 (en) | 2001-12-12 | 2005-07-14 | Vladimir Rajic | Selective flotation agent and flotation method |
WO2003049867A1 (en) | 2001-12-12 | 2003-06-19 | Vladimir Rajic | Selective flotation agent and flotation method |
US7165680B2 (en) | 2001-12-12 | 2007-01-23 | Vladimir Rajic | Selective flotation agent and flotation method |
US6732867B2 (en) | 2002-10-15 | 2004-05-11 | Cytec Technology Corp. | Beneficiation of sulfide minerals |
US6820746B2 (en) | 2002-10-15 | 2004-11-23 | Cytec Technology Corp. | Process for the beneficiation of sulfide minerals |
US6988623B2 (en) | 2002-10-15 | 2006-01-24 | Cytec Technology Corp. | Beneficiation of sulfide minerals |
US7011216B2 (en) | 2002-10-15 | 2006-03-14 | Cytec Technology Corp. | Process for the beneficiation of sulfide minerals |
EP1439216A1 (en) | 2003-01-15 | 2004-07-21 | Ethyl Japan Corporation | Extended drain, thermally stable, gear oil formulations |
US7299930B2 (en) | 2003-11-27 | 2007-11-27 | Procesos Mineros E Industries Conosur S.A. | Collecting agent comprising ammoniated compounds (primary, secondary, tertiary amines), for use in the process of grinding and/or floating copper, molybdenum, zinc, and other contained mineral ores |
WO2008019451A1 (en) | 2006-08-17 | 2008-02-21 | Ab Tall (Holdings) Pty Ltd | Collectors and flotation methods |
US8376142B2 (en) * | 2007-02-07 | 2013-02-19 | Cytec Technology Corp. | Dithiocarbamate collectors and their use in the beneficiation of mineral ore bodies |
US20100021370A1 (en) * | 2008-07-25 | 2010-01-28 | Devarayasamudram Ramachandran Nagaraj | Flotation Reagents and Flotation Processes Utilizing Same |
US8720694B2 (en) * | 2008-07-25 | 2014-05-13 | Cytec Technology Corp. | Flotation reagents and flotation processes utilizing same |
Non-Patent Citations (5)
Title |
---|
International Search Report and Written Opinion of PCT/US2012/060525; mailing date Jun. 18, 2013. |
International Search Report and Written Opinion of PCT/US2012/060526; mailing date Oct. 9, 2013. |
International Search Report and Written Opinion of PCT/US2012/060527; mailing date Jul. 5, 2013. |
IPRP of PCT/2012/060525-dated Apr. 22, 2014; IPRP for PCT/US2012/060526-dated Apr. 22, 2014; IPRP for PCT/US2012/060527-dated Apr. 22, 2014. |
Office Action of US. Appl. No. 13/653,732 dated Mar. 20, 2015. |
Also Published As
Publication number | Publication date |
---|---|
WO2013059259A2 (en) | 2013-04-25 |
AP2014007573A0 (en) | 2014-04-30 |
BR112014009562A2 (pt) | 2017-06-13 |
EA201490816A1 (ru) | 2014-08-29 |
CA2852681A1 (en) | 2013-04-25 |
CN104093492A (zh) | 2014-10-08 |
CN104093492B (zh) | 2017-05-10 |
EP2768618A2 (en) | 2014-08-27 |
AU2012326312A1 (en) | 2014-04-24 |
WO2013059259A3 (en) | 2013-11-28 |
IN2014CN02933A (ru) | 2015-07-03 |
MX2014004714A (es) | 2014-09-25 |
EA033798B1 (ru) | 2019-11-26 |
PE20190646A1 (es) | 2019-05-06 |
CL2014000986A1 (es) | 2014-09-05 |
PE20141471A1 (es) | 2014-10-17 |
AR089652A1 (es) | 2014-09-10 |
US20130092604A1 (en) | 2013-04-18 |
AU2012326312B2 (en) | 2016-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9302274B2 (en) | Collector compositions and methods of using the same | |
US9302273B2 (en) | Froth flotation processes | |
EP2117718A1 (en) | Novel dithiocarbamate collectors and their use in the benefication of mineral ore bodies | |
AU2013293041B2 (en) | Monothiophosphate containing collectors and methods | |
US9302272B2 (en) | Froth flotation processes | |
US6820746B2 (en) | Process for the beneficiation of sulfide minerals | |
US6988623B2 (en) | Beneficiation of sulfide minerals | |
CA2501079C (en) | Process for the beneficiation of sulfide minerals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CYTEC TECHNOLOGY CORP., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAGARAJ, DEVARAYASAMUDRAM RAMACHANDRAN;RICCIO, PETER;BHAMBHANI, TARUN;AND OTHERS;SIGNING DATES FROM 20121019 TO 20121108;REEL/FRAME:029303/0525 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |