US9201400B2 - Frequency regulation of a timepiece regulator via action on the rigidity of an elastic return means - Google Patents
Frequency regulation of a timepiece regulator via action on the rigidity of an elastic return means Download PDFInfo
- Publication number
- US9201400B2 US9201400B2 US14/620,733 US201514620733A US9201400B2 US 9201400 B2 US9201400 B2 US 9201400B2 US 201514620733 A US201514620733 A US 201514620733A US 9201400 B2 US9201400 B2 US 9201400B2
- Authority
- US
- United States
- Prior art keywords
- balance spring
- return means
- elastic return
- regulator device
- resonator mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B18/00—Mechanisms for setting frequency
- G04B18/02—Regulator or adjustment devices; Indexing devices, e.g. raquettes
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/063—Balance construction
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/26—Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B18/00—Mechanisms for setting frequency
- G04B18/04—Adjusting the beat of the pendulum, balance, or the like, e.g. putting into beat
Definitions
- the invention concerns a method of maintaining and regulating the frequency of a timepiece resonator mechanism around its natural frequency, the mechanism including at least one elastic return means that includes at least one balance spring or torsion wire or flexible guide member, where there is implemented at least one regulator device acting on said resonator mechanism with a periodic motion.
- the invention also concerns a timepiece movement including at least one timepiece resonator mechanism devised to oscillate at a natural frequency, said timepiece resonator mechanism including at least one elastic return means comprising at least one balance spring or torsion wire or flexible guide member.
- the invention also concerns a timepiece, more specifically a watch, including at least one such timepiece movement.
- the invention concerns the field of time bases in mechanical watchmaking, in particular those based on a sprung balance resonator mechanism.
- EP Patent Application No 1843227A1 by the same Applicant discloses a coupled resonator including a first low frequency resonator, for example around a few hertz, and a second higher frequency resonator, for example around one kilohertz.
- the invention is characterized in that the first resonator and the second resonator include permanent mechanical coupling means, said coupling making it possible to stabilise the frequency in the event of external interference, for example in the event of shocks.
- CH Patent Application No 615314A3 in the name of PATEK PHILIPPE SA discloses a movable assembly for regulating a timepiece movement, including an oscillating balance maintained mechanically by a balance spring, and a vibrating member magnetically coupled to a stationary member for synchronising the balance.
- the balance and the vibrating member are formed by the same single, movable, vibrating and simultaneously oscillating element.
- the vibration frequency of the vibrating member is an integer multiple of the oscillation frequency of the balance.
- the invention proposes to manufacture a time base that is as accurate as possible.
- the invention concerns a method for maintaining and regulating the frequency of a timepiece resonator mechanism around its natural frequency, the mechanism including at least one elastic return means that includes at least one balance spring or torsion wire or flexible guide member, where there is implemented at least one regulator device acting on said resonator mechanism with a periodic motion, characterized in that said periodic motion imposes a periodic modulation, with a frequency regulation which is comprised between 0.9 times and 1.1 times the value of an integer multiple of said natural frequency, said integer being greater than or equal to 2 and less than or equal to 10, by controlling a periodic variation in the real part and/or in the imaginary part of the rigidity of at least one said elastic return means.
- said periodic motion imposes a periodic modulation of the resonant frequency of said resonator mechanism, by imposing a modulation of the cross-section of at least one said elastic return means, and/or a modulation of the modulus of elasticity of at least one said elastic return means, and/or a modulation of the shape of at least one said elastic return means, and/or a modulation of the stresses at the attachment points of at least one said elastic return means.
- At least one said regulator device imparting a periodic motion to at least one component of said resonator mechanism or to a tool affecting the position of such a component of said resonator mechanism and said periodic motion is imparted to a said resonator mechanism comprising at least one elastic return means comprising at least one balance spring or torsion wire or flexible guide member, and at least one said regulator device is made to act by controlling a periodic variation in the rigidity of said elastic return means by modulating the cross-section and/or modulus of elasticity and/or shape thereof and/or the stresses at its points of attachment.
- the invention also concerns a timepiece movement including at least one timepiece resonator mechanism devised to oscillate at a natural frequency, said timepiece resonator mechanism including at least one elastic return means comprising at least one balance spring or torsion wire or flexible guide member, characterized in that said movement comprises at least one regulator device arranged to control a periodic variation in the rigidity of said elastic return means with a regulation frequency comprised between 0.9 times and 1.1 times the value of an integer multiple of said natural frequency of said resonator, said integer being greater than or equal to 2 and less than or equal to 10, and in that said regulator device is arranged to impart a periodic motion to at least one component of said resonator mechanism to exert on said component a twisting or traction or compression force, and/or to impart a periodic motion to at least one tool affecting the position of such a component of said resonator mechanism, and in that at least one said regulator device is arranged to impose a modulation of the cross-section of at least one said elastic return means, and/or a modul
- the invention also concerns a timepiece, more specifically a watch, including at least one such timepiece movement.
- FIG. 1 shows a schematic view of a pendulum whose length is made to vary.
- FIG. 2 shows a schematic view of a tuning fork with two sprung balances attached to each other.
- FIG. 3 shows a partial, schematic view of the balance spring of a sprung-balance assembly, with an additional coil fixed to the balance-spring and locally lining the outer terminal curve of the balance spring, and a regulator device for creating twists in opposite directions in the outer terminal curve and in this additional coil.
- FIG. 4 shows, in a similar manner to FIG. 3 , an additional coil and a regulator device actuating one end of the additional coil.
- FIG. 5 shows a balance spring to which an arm is attached, and a regulator device actuating one end of the arm.
- FIG. 6 illustrates a balance spring with, in proximity to its outer terminal curve, another coil which is held at a first end by a support operated by a regulator device, and which is free at a second end arranged to periodically come into contact with the outer terminal curve under the action of the regulator device on this support.
- FIG. 7 illustrates a balance spring comprising two conductive strips separated by isolating elements
- FIGS. 7A and 7B show, in cross-section, two cross-sections of the balance spring according to the electrical fields applied thereto.
- FIG. 8 illustrates a regulator device comprising a rotating wheel set provided with magnets at its periphery and whose field periodically cooperates with a magnet placed on the outer terminal curve of a balance spring.
- FIG. 9 illustrates a resonator mechanism comprising a balance including a collet holding a torsion wire, wherein a resonator device controls a periodic variation in tension.
- FIG. 10 shows a block diagram of a watch including a mechanical movement with a resonator mechanism regulated according to the invention.
- One method of achieving this consists in associating different resonators, either directly or via the escapement.
- a parametric resonator system makes it possible to reduce the influence of the escapement and thereby render the watch more accurate.
- a parametric oscillator utilises, for maintaining oscillations, parametric actuation which consists in varying one of the parameters of the oscillator with a regulation frequency ⁇ R comprised between 0.9 times and 1.1 times the value of an integer multiple of the natural frequency ⁇ 0 of the oscillator system to be regulated, said integer being greater than or equal to 2, and preferably an integer multiple (particularly double) of the natural frequency ⁇ 0 .
- regulator 2 refers here to the oscillator used for maintaining and regulating the frequency of the other maintained system, which is referred to here as “resonator” 1.
- the Lagrangian L of a parametric resonator of dimension 1 is:
- T is the kinetic energy and V the potential energy
- I(t) rigidity k(t) and rest position x 0 (t) of said resonator are a periodic function of time
- x is the generalized coordinate of the resonator.
- the forced and damped parametric resonator equation is obtained via the Lagrange equation for Lagrangian L by adding a forcing function f(t) and a Langevin force taking account of the dissipative mechanisms:
- the invention consists in varying, via the action of a maintenance or regulator oscillator, one or another or all of the terms ⁇ (t), ⁇ (t), by modifying the real and/or imaginary part of the rigidity, with a regulation frequency ⁇ R that is comprised between 0.9 times and 1.1 times the value of an integer multiple, this integer being greater than or equal to 2 (particularly double) of the natural frequency ⁇ 0 of the oscillator system to be regulated.
- the regulation frequency ⁇ R is an integer multiple, particularly double, of the natural frequency ⁇ 0 of the resonator system to be regulated.
- the rest position x 0 (t) varies simultaneously with the parameters ⁇ (t), ⁇ (t), with a regulation frequency ⁇ R which is comprised between 0.9 times and 1.1 times the value of an integer multiple, said integer being greater than or equal to 2 (particularly double) of the natural frequency ⁇ 0 of the oscillator system to be regulated.
- all the terms ⁇ (t), ⁇ (t), x 0 (t), vary with a regulation frequency ⁇ R which is preferably an integer multiple (particularly double) of the natural frequency ⁇ 0 of the resonator system to be regulated.
- the maintenance or regulator oscillator therefore introduces a non-parametric maintenance term f(t), whose amplitude is negligible once the parametric regime is attained [W. B. Case, The pumping of a swing from the standing position, Am. J. Phys. 64, 215 (1996)].
- the forcing term f(t) may be introduced by a second maintenance mechanism.
- the parameters of this equation are the frequency term ⁇ and the friction loss term ⁇ .
- the principle can be used in a timepiece or a watch which includes a mechanical sprung balance resonator, with one end of the balance spring fixed to a collet integral with the balance, and the other end fixed to a balance spring stud.
- Parametric maintenance of this type of sprung balance system can be achieved notably by periodically making the balance spring stud movable.
- Oscillation can be maintained and the accuracy of the system is clearly improved.
- These two functions may be separated, as illustrated in FIG. 2 , by using a tuning fork with two sprung balances attached to each other, wherein one oscillating at a frequency 2 ⁇ is linked to the escapement, and the other oscillating at a frequency ⁇ is linked to the counting function.
- the mechanical maintenance means may take various forms.
- the present invention consists in varying the rigidity of the balance spring.
- Excitation at double the frequency can be achieved with a square signal, or with a pulsed signal; sinusoidal excitation is not necessary.
- the maintenance regulator does not need to be very accurate: any lack of accuracy results only in a loss of amplitude, but with no frequency variation (except of course if the frequency is very variable, which is to be avoided).
- these two oscillators, the regulator that maintains and the maintained resonator, are not coupled, but one maintains the other, in a single direction.
- the invention differs from other known coupled oscillators: indeed, the implementation of the invention does not require reversibility of the transfer of energy between two oscillators, but rather, insofar as possible, a transfer of energy in a single direction from one oscillator to the other.
- the invention more specifically concerns the frequency regulation of a timepiece resonator via action on the rigidity of an elastic return means.
- the invention concerns a method of regulating the frequency of a timepiece resonator mechanism 1 around its natural frequency ⁇ 0 .
- This method implements at least one regulator device 2 imparting a periodic motion to at least one component of resonator mechanism 1 or to a tool affecting the position or the rigidity of such a component of resonator mechanism 1 .
- This periodic motion imposes a periodic modulation of at least the resonant frequency of resonator mechanism 1 , by acting on at least the rigidity of an elastic return means comprised in resonator mechanism 1 with a regulation frequency ⁇ R which is comprised between 0.9 times and 1.1 times the value of an integer multiple of natural frequency ⁇ 0 , this integer being greater than or equal to 2 and less than or equal to 10.
- the periodic motion imposes a periodic modulation of the resonant frequency of resonator mechanism 1 by imposing both a modulation of the rigidity of resonator mechanism 1 and a modulation of the inertia resonator mechanism 1 .
- the periodic motion imposes a periodic modulation of the resonant frequency of resonator mechanism 1 , by imposing a modulation of the cross-section of an elastic return means, particularly but not restrictively a spring, comprised in said resonator mechanism 1 and/or a modulation of the modulus of elasticity of a return means comprised in resonator mechanism 1 , and/or a modulation of the shape of a return means comprised in said resonator mechanism 1 .
- an elastic return means particularly but not restrictively a spring
- this periodic motion may also require a periodic modulation of the resonant frequency of resonator mechanism 1 , by also imposing a modulation of the active length of an elastic return means, particularly of a spring, comprised in resonator mechanism 1 .
- the periodic motion imposes a periodic modulation of the resonant frequency of resonator mechanism 1 by imposing both a modulation of the rigidity of resonator mechanism 1 and a modulation of the rest point of resonator mechanism 1 .
- At least one said regulator device 2 imparting a periodic motion to at least one component of resonator mechanism 1 or to a tool affecting the position of such a component of resonator mechanism 1 , and this periodic motion is imparted to a resonator mechanism 1 comprising at least one elastic return means 40 comprising at least one balance spring 4 or torsion wire 46 or flexible, elastic, guide member, particularly with a virtual pivot (such as a butterfly guide member, or RCC guide member with 4 collars, a combination of flexible strips, or a set of crossed strips, or similar, made in one-piece using technologies for micromachinable materials, “MEMS”, “LIGA” or similar), and at least one said regulator device 2 is made to act by controlling a periodic variation of the rigidity of elastic return means 40 by modulating its cross-section and/or modulus of elasticity and/or shape and/or the stresses at its points of attachment.
- a virtual pivot such as a butterfly guide member, or RCC guide member with 4 collars, a combination of flexible strips, or
- Shape modulation refers here to a deformation, under the effect of an external stress, relative to the free shape of the elastic return means, and not the normal deformation in operation that, for example, a balance spring undergoes during its contraction and elongation. It is, for example, a deformation induced by contact, by aerodynamic friction, by a contactless force such as a force of magnetic or electrostatic origin, or other means.
- the elastic return means 40 considered here is the means used to ensure the oscillation frequency of resonator mechanism 1 .
- the preferred application of the invention concerns watches, more specifically for an application where elastic return means 40 is formed by a torsion wire.
- this method is applied to a resonator mechanism 1 comprising at least one elastic return means 40 including at least one balance spring 4 or torsion wire 46 or flexible guide member 46 , and at least one regulator device 2 is made to act by controlling a periodic variation in the real part and/or the imaginary part of the rigidity of elastic return means 40 , the real pat of the rigidity defining the frequency of resonator mechanism 1 , and the imaginary part of the rigidity defining the quality factor of resonator mechanism 1 .
- this method is applied to a sprung balance assembly 3 whose balance spring 4 forms the elastic return means 40 and is held between a balance spring stud 5 at a first outer end 6 and on a collet 7 at a second inner end 8 , and at least one regulator device 2 is made to act by controlling a periodic variation of the real part and/or the imaginary part of the rigidity of balance spring 4 .
- the outer terminal curve 17 of balance spring 4 is lined locally by an additional coil 18 , fixed to balance spring 4 at at least a first attachment point 19 , and twists are periodically created with regulator device 2 in opposite directions on outer terminal curve 17 and on additional coil 18 by acting on balance spring stud 5 , for outer terminal curve 17 , and on an end 18 A opposite first attachment point 19 of additional coil 18 , for additional coil 18 .
- This double twisting has the advantage of making it possible to modify the rigidity of the balance spring without modifying its position in its plane.
- outer terminal curve 17 of balance spring 4 is locally lined by an additional coil 18 , fixed to balance spring 4 at at least a first attachment point 19 , and a motion is periodically created with regulator device 2 on an end 18 A opposite first attachment point 19 of additional coil 18 .
- This therefore modifies the rigidity of the outer terminal curve and consequently that of the balance spring.
- Regulator device 2 can also be used to move balance spring stud 5 and end 18 A.
- either additional coil 18 is chosen to have equivalent flexibility to that of outer terminal curve 17 ,
- additional coil 18 is chosen to be more rigid than outer terminal curve 17 .
- an arm 20 is fixed to outer terminal curve 17 of balance spring 4 at at least a second attachment point 21 , and a motion is periodically made with regulator device 2 on one end 22 of arm 20 opposite second attachment point 21 .
- arm 20 is chosen to be more rigid than outer terminal curve 17 .
- balance spring 4 is made with at least two conductive strips 41 , 42 , separated by isolating elements 43 , and a regulator device 2 is used to periodically apply a field to the two strips 41 , 42 so as to modify the distance E 1 ( FIG. 7A ) or E 2 ( FIG. 7B ) between these two strips 41 , 42 and thereby modify the total cross-section and the rigidity of balance spring 4 .
- a different field is periodically applied thereto.
- the two strips 41 , 42 are subjected to a different electromagnetic and/or electrostatic and/or magnetostatic field by a motion imparted to a ferromagnetic or magnetised or electrostatically conductive or electrified pole piece (particularly magnets or electrets) in immediate proximity to each strip so that an electric or magnetic or electrostatic or magnetostatic force is created between them and the strips move towards or away from each other.
- the rigidity of balance spring 4 is modified because its cross-section varies. The motion is preferably mechanically imparted to these pole pieces.
- the two strips 41 , 42 are subjected to an electrical or electrostatic field so as to locally polarize balance spring 4 and locally modify its rigidity 4 .
- FIG. 8 uses this type of regulator device 2 , including a rotating wheel set 28 provided with magnets 29 at its periphery and whose field periodically cooperates with at least one magnet 45 placed on balance spring 4 (the magnet could be placed on the side of the collet), to periodically modify the rigidity of balance spring 4 .
- the prestress of the balance spring and the radial position of the counting point are also periodically modified.
- Another variant uses an inhomogeneously magnetised rotating wheel set 28 to periodically modify the rigidity of balance spring 4 by the phenomenon of magnetostriction.
- An electrostatic variant uses this type of regulator device 2 , comprising a similar rotating wheel set 28 , this time provided with electrets at its periphery, and whose electric field periodically cooperates with at least one electret placed on the outer terminal curve 17 of the balance spring 4 to periodically modify the rigidity of balance spring 4 by the phenomenon of piezoelectricity.
- rigidity is modulated via a temperature variation.
- the regulation frequency ⁇ R is double the natural frequency ⁇ 0 .
- the relative amplitude of modulation of the real part of the rigidity of resonator mechanism 1 is more than two times the inverse quality factor of resonator mechanism 1 .
- the invention also concerns a timepiece movement 10 including at least one timepiece resonator mechanism 1 devised to oscillate at a natural frequency ⁇ 0 , this timepiece resonator mechanism 1 comprising at least one elastic return means 40 including at least one balance spring 4 or torsion wire 46 or flexible guide member.
- this movement 10 comprises at least one regulator device 2 controlling a periodic variation of the rigidity of elastic return means 40 with a regulation frequency ⁇ R, which is comprised between 0.9 times and 1.1 times the value of an integer multiple of the natural frequency ⁇ 0 of resonator 1 , said integer being greater than or equal to 2 and less than or equal to 10.
- timepiece regulator mechanism 1 comprises at least one sprung balance assembly 3 , whose balance spring 4 forms the elastic return means 40 and is held between balance spring stud 5 at a first outer end 6 and on a collet 7 at a second inner end 8 , and regulator device 2 controls a periodic variation of the rigidity of balance spring 4 .
- movement 10 includes an additional coil 18 fixed to balance spring 4 at at least a first attachment point 19 and locally lining outer terminal curve 17 of balance spring 4 .
- Regulator device 2 periodically creates twists in opposite directions on outer terminal curve 17 and on additional coil 18 , by acting on balance spring stud 5 for outer terminal curve 17 , and on an end 18 A of additional coil 18 opposite first attachment point 19 .
- movement 10 includes an additional coil 18 fixed to balance spring 4 at at least a first attachment point 19 and locally lining outer terminal curve 17 of balance spring 4 , and regulator device 2 periodically makes a motion on an end 18 A of additional coil 18 opposite the first attachment point 19 .
- Additional coil 18 is either of equivalent flexibility to that of outer terminal curve 17 or much more rigid than outer terminal curve 17 .
- movement 10 includes an arm 20 fixed to outer terminal curve 17 of balance spring 4 at at least a second attachment point 21 , and regulator device 2 periodically makes a motion on one end 22 of arm 20 opposite to second attachment point 21 .
- arm 20 is more rigid than outer terminal curve 17 .
- movement 10 includes, in proximity to outer terminal curve 17 of balance spring 4 , another coil 23 which is held at a first end by a support 24 operated by regulator device 2 and which is free at a second end 25 arranged to periodically come into contact with outer terminal curve 17 under the action of regulator device 2 on support 24 .
- balance spring 4 includes at least two conductive strips 41 , 42 , separated by isolating elements 43 and regulator device 2 is arranged to periodically subject the two strips 41 , 42 to an electrical and/or magnetic field (in the broad sense of the above definition of “field”), so as to modify the distance E 1 , E 2 , between the two strips 41 , 42 and thereby modify the total cross-section and the rigidity of balance spring 4 .
- regulator 2 is arranged to periodically subject the two strips 41 , 42 to a different electrical field.
- regulator device 2 includes a rotating wheel set 28 provided with magnets 29 at its periphery and whose magnetic field periodically cooperates with at least one magnet 45 placed on outer terminal curve 17 of balance spring 4 , to periodically modify the rigidity of balance spring 4 .
- resonator mechanism 1 includes at least one balance 26 comprising a collet 7 holding a torsion wire 46 which forms the elastic return means 40 and regulator device 2 controls a periodic variation in the tension of torsion wire 46 .
- electrostatic layers or elements may be implemented to vary the rigidity of a spring or balance spring by partially or completely covering it with a piezoelectric layer activated by a small electronic module.
- the regulation frequency ⁇ R of regulator device 2 is double the natural frequency ⁇ 0 of resonator mechanism 1 .
- the invention also concerns a timepiece, more specifically a watch 30 , including at least one such timepiece movement 10 .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Springs (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Electric Clocks (AREA)
- Vibration Prevention Devices (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
where the coefficient of the first order derivative at x is:
γ(t)=[β(t)+{dot over (I)}(t)]/I(t),
β(t)>0 being the term describing losses, and where the coefficient of zero order term depends on the resonator frequency ω(t)=√{square root over (k(t)/I(t))}{square root over (k(t)/I(t))}.
The function f(t) takes the value 0 in the case of a non-forced oscillator.
This function f(t) may also be a periodic function, or be representative of a Dirac impulse.
where L is the length of the pendulum and g the attraction of gravity.
Claims (41)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14155433.7A EP2908188B1 (en) | 2014-02-17 | 2014-02-17 | Adjustment of a clock piece resonator by changing the rigidity of a resilient return means |
EP14155433.7 | 2014-02-17 | ||
EP14155433 | 2014-02-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150234356A1 US20150234356A1 (en) | 2015-08-20 |
US9201400B2 true US9201400B2 (en) | 2015-12-01 |
Family
ID=50101823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/620,733 Active US9201400B2 (en) | 2014-02-17 | 2015-02-12 | Frequency regulation of a timepiece regulator via action on the rigidity of an elastic return means |
Country Status (6)
Country | Link |
---|---|
US (1) | US9201400B2 (en) |
EP (2) | EP2908188B1 (en) |
JP (1) | JP5997305B2 (en) |
CN (1) | CN104849994B (en) |
HK (1) | HK1213646A1 (en) |
RU (1) | RU2015105166A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160216693A1 (en) * | 2014-02-17 | 2016-07-28 | The Swatch Group Research And Development Ltd | Method for maintaining and regulating a timepiece resonator |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6826673B2 (en) * | 2017-03-28 | 2021-02-03 | ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド | Mechanical timekeeper with movement enhanced by adjustment device |
EP3457224B1 (en) * | 2017-09-14 | 2020-10-28 | The Swatch Group Research and Development Ltd | Piezoelectric element for a frequency self-regulation circuit, oscillating mechanical system and device including the same, and method for manufacturing the piezoelectric element |
EP3457223A1 (en) * | 2017-09-14 | 2019-03-20 | The Swatch Group Research and Development Ltd | Piezoelectric element for a frequency self-regulation circuit, and oscillating mechanical system and device including the same |
CH714480A2 (en) * | 2017-12-20 | 2019-06-28 | Swatch Group Res & Dev Ltd | Autonomous adjustment device for the active length of a hairspring. |
EP3629103B1 (en) * | 2018-09-28 | 2021-05-12 | The Swatch Group Research and Development Ltd | Timepiece comprising a mechanical movement of which the oscillation precision is regulated by an electronic device |
EP4009115A1 (en) * | 2020-12-02 | 2022-06-08 | Omega SA | Hairspring for timepiece resonator mechanism provided with a means for adjusting rigidity |
EP4016193A1 (en) * | 2020-12-18 | 2022-06-22 | Omega SA | Timepiece resonator mechanism with flexible guide provided with a means for adjusting the rigidity |
EP4187326A1 (en) * | 2021-11-29 | 2023-05-31 | Omega SA | Hairspring for timepiece resonator mechanism provided with a means for adjusting stiffness |
CN115603698B (en) * | 2022-11-28 | 2023-05-05 | 电子科技大学 | Tunable film bulk acoustic resonator based on elastic softening effect |
WO2024141600A1 (en) * | 2022-12-28 | 2024-07-04 | Csem | Regulating system for a timepiece movement |
WO2024141601A1 (en) * | 2022-12-28 | 2024-07-04 | Rolex Sa | Regulating system for a timepiece movement |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1217883B (en) | 1960-04-06 | 1966-05-26 | Baehni & Co S A | Electric clock with a pulse generator and a drive element for the gear train, using a magnetostrictive oscillator |
US3451210A (en) * | 1966-07-01 | 1969-06-24 | Benrus Corp | System for maintaining oscillations in an electric timing mechanism having an oscillatory element |
US5740131A (en) * | 1996-05-07 | 1998-04-14 | Asulab S.A. | Stabilising of an electronic circuit for regulating a mechanical movement of a timepiece |
US6023446A (en) * | 1998-02-05 | 2000-02-08 | Asulab S.A. | Timepiece comprising a generator driven by the main spring of a barrel |
EP1843227A1 (en) | 2006-04-07 | 2007-10-10 | The Swatch Group Research and Development Ltd. | Coupled resonator for control system |
US7306364B2 (en) * | 2003-10-01 | 2007-12-11 | Asulab S.A. | Timepiece having a mechanical movement associated with an electronic regulator |
EP2690507A1 (en) | 2012-07-26 | 2014-01-29 | Nivarox-FAR S.A. | Holorological hairspring |
CN103543631A (en) | 2012-07-17 | 2014-01-29 | 动力专家有限公司 | Hairspring for mechanical timepiece |
US20140286143A1 (en) * | 2013-03-19 | 2014-09-25 | Nivarox-Far S.A. | Timepiece balance spring adjustment mechanism |
US8979359B2 (en) * | 2011-09-14 | 2015-03-17 | Montres Breguet S.A. | Balance spring with two hairsprings |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH594201B5 (en) * | 1972-12-13 | 1977-12-30 | Ebauches Sa | |
ATE557328T1 (en) * | 2004-10-26 | 2012-05-15 | Lvmh Swiss Mft Sa | CHRONOGRAPH MODULE FOR WRISTWATCH |
EP2410386B1 (en) * | 2010-07-19 | 2018-10-03 | Nivarox-FAR S.A. | balance wheel with inertia adjustment with insert |
-
2014
- 2014-02-17 EP EP14155433.7A patent/EP2908188B1/en active Active
-
2015
- 2015-01-30 EP EP15153321.3A patent/EP2908191B1/en active Active
- 2015-02-12 US US14/620,733 patent/US9201400B2/en active Active
- 2015-02-12 CN CN201510075805.7A patent/CN104849994B/en active Active
- 2015-02-16 JP JP2015027462A patent/JP5997305B2/en active Active
- 2015-02-16 RU RU2015105166A patent/RU2015105166A/en not_active Application Discontinuation
-
2016
- 2016-02-11 HK HK16101510.1A patent/HK1213646A1/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1217883B (en) | 1960-04-06 | 1966-05-26 | Baehni & Co S A | Electric clock with a pulse generator and a drive element for the gear train, using a magnetostrictive oscillator |
US3451210A (en) * | 1966-07-01 | 1969-06-24 | Benrus Corp | System for maintaining oscillations in an electric timing mechanism having an oscillatory element |
US5740131A (en) * | 1996-05-07 | 1998-04-14 | Asulab S.A. | Stabilising of an electronic circuit for regulating a mechanical movement of a timepiece |
US6023446A (en) * | 1998-02-05 | 2000-02-08 | Asulab S.A. | Timepiece comprising a generator driven by the main spring of a barrel |
US7306364B2 (en) * | 2003-10-01 | 2007-12-11 | Asulab S.A. | Timepiece having a mechanical movement associated with an electronic regulator |
EP1843227A1 (en) | 2006-04-07 | 2007-10-10 | The Swatch Group Research and Development Ltd. | Coupled resonator for control system |
US20100283556A1 (en) | 2006-04-07 | 2010-11-11 | The Swatch Group Research And Development Ltd | Coupled resonator for regulating system |
US8979359B2 (en) * | 2011-09-14 | 2015-03-17 | Montres Breguet S.A. | Balance spring with two hairsprings |
CN103543631A (en) | 2012-07-17 | 2014-01-29 | 动力专家有限公司 | Hairspring for mechanical timepiece |
EP2690507A1 (en) | 2012-07-26 | 2014-01-29 | Nivarox-FAR S.A. | Holorological hairspring |
US20140286143A1 (en) * | 2013-03-19 | 2014-09-25 | Nivarox-Far S.A. | Timepiece balance spring adjustment mechanism |
Non-Patent Citations (1)
Title |
---|
European Search Report issued Nov. 5, 2014 in European Application 14155433, filed on Feb. 17, 2014 ( with English Translation). |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160216693A1 (en) * | 2014-02-17 | 2016-07-28 | The Swatch Group Research And Development Ltd | Method for maintaining and regulating a timepiece resonator |
US20170277124A1 (en) * | 2014-02-17 | 2017-09-28 | The Swatch Group Research And Development Ltd. | Method for maintaining and regulating the frequency of a timepiece resonator |
US10241473B2 (en) * | 2014-02-17 | 2019-03-26 | The Swatch Group Research And Development Ltd | Method for maintaining and regulating a timepiece resonator |
US10324416B2 (en) * | 2014-02-17 | 2019-06-18 | The Swatch Group Research And Development Ltd. | Method for maintaining and regulating the frequency of a timepiece resonator |
Also Published As
Publication number | Publication date |
---|---|
US20150234356A1 (en) | 2015-08-20 |
EP2908191B1 (en) | 2020-03-18 |
EP2908191A2 (en) | 2015-08-19 |
EP2908188B1 (en) | 2018-06-27 |
JP5997305B2 (en) | 2016-09-28 |
RU2015105166A3 (en) | 2018-09-20 |
HK1213646A1 (en) | 2016-07-08 |
CN104849994B (en) | 2017-12-05 |
CN104849994A (en) | 2015-08-19 |
EP2908191A3 (en) | 2015-09-02 |
JP2015152604A (en) | 2015-08-24 |
RU2015105166A (en) | 2016-09-10 |
EP2908188A1 (en) | 2015-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9201400B2 (en) | Frequency regulation of a timepiece regulator via action on the rigidity of an elastic return means | |
US9354607B2 (en) | Frequency regulation of a timepiece resonator via action on the active length of a balance spring | |
US9256206B2 (en) | Device for maintaining and regulating a timepiece resonator | |
US10324416B2 (en) | Method for maintaining and regulating the frequency of a timepiece resonator | |
JP6159797B2 (en) | Energy harvesting apparatus and method | |
Lin et al. | The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency | |
US20170373611A1 (en) | Miniature kinetic energy harvester for generating electrical energy from mechanical vibrations | |
US10971986B2 (en) | Broadband vibrational energy harvesting device combining multiple nonlinearity | |
US20090218824A1 (en) | Electromechanical Generator for Converting Mechanical Vibrational Energy Into Electrical Energy | |
US20210044221A1 (en) | Energy Harvester for Harvesting Energy from Broadband Ambient Vibrations | |
JP2017508996A (en) | Rotating clock member, clock oscillator | |
CH709279A2 (en) | Regulation of a clockwork resonator by acting on the rigidity of an elastic return means. | |
US3491257A (en) | Resonance motor for portable timekeepers | |
KR101504867B1 (en) | Active Energy Harvester | |
JP6136758B2 (en) | Power generation device | |
US20220308527A1 (en) | Timepiece incorporating an actuator comprising an electromechanical device | |
US20150042409A1 (en) | System for continuously oscillating a cantilevered beam | |
Jia | The convergence of parametric resonance and vibration energy harvesting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE SWATCH GROUP RESEARCH AND DEVELOPMENT LTD, SWI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HESSLER, THIERRY;SARCHI, DAVIDE;STRANCZL, MARC;REEL/FRAME:034950/0447 Effective date: 20150130 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |