New! View global litigation for patent families

US8900651B2 - Polymer films for medical device coating - Google Patents

Polymer films for medical device coating Download PDF

Info

Publication number
US8900651B2
US8900651B2 US12601101 US60110108A US8900651B2 US 8900651 B2 US8900651 B2 US 8900651B2 US 12601101 US12601101 US 12601101 US 60110108 A US60110108 A US 60110108A US 8900651 B2 US8900651 B2 US 8900651B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
polymer
coating
impermeable
embodiments
device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12601101
Other versions
US20100228348A1 (en )
Inventor
James McClain
Douglas Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MiCell Technologies Inc
Original Assignee
MiCell Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/025Processes for applying liquids or other fluent materials performed by spraying using gas close to its critical state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/90Form of the coating product, e.g. solution, water dispersion, powders or the like at least one component of the composition being in supercritical state or close to supercritical state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers

Abstract

A method for depositing a coating comprising a polymer and impermeable dispersed solid on a substrate, comprising the following steps: discharging at least one impermeable dispersed solid in dry powder form through a first orifice; discharging at least one polymer in dry powder form through a second orifice; depositing the polymer and/or impermeable dispersed solid particles onto said substrate, wherein an electrical potential is maintained between the substrate and the impermeable dispersed solid and/or polymer particles, thereby forming said coating; and sintering said coating under conditions that do not disrupt the activity and/or function of the substrate. A similar method is provided for depositing a coating comprising a hydrophobic polymer and a water-vapor-trapping material on a substrate.

Description

RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 60/940,365 filed May 25, 2007 and U.S. Provisional Patent Application Ser. No. 60/979,375 filed Oct. 11, 2007. The disclosure of these applications are incorporated herein by reference in their entirety.

BACKGROUND OF THE INVENTION

Medical devices often must be shielded from interacting with body fluids in vivo. For example, for devices that are electrical in nature, for example, such as pacemakers and other “active” implants for sensing, delivery of therapeutics and/or active control of various bodily functions should be protected.

One prevalent method used to provide this protection is to weld the device inside a titanium or other biocompatible metal “can.” Another method to provide the shield necessary to protect a medical device from interaction with bodily fluids in vivo is polymer coating the device. Polymer coating such “active” implants has significant technical challenges and limitations which have made polymer coatings relatively unsuccessful as a means of sealing the devices.

For example, one limitation of traditional coating processes in providing a seal is that traditional polymer coating processes (e.g. dip, spray, etc.) all require the use of a solvent-based system. Exposing the device to a solvent causes problems in the device. Furthermore, there are inherent challenges with effective drying of solvent-based polymer coatings.

Solvent-less coating processes (e.g. vapor deposition, plasma deposition, dry powder coating, etc.) also have limitations in providing seals to active devices. Solvent-less coating processes all require very aggressive conditions that could damage the device—such as elevated temperatures to cure a dry powder coated device.

Additionally, for most current coating technologies, solvent-based and solvent-less, it is often difficult to achieve coatings of uniform thicknesses and prevent the occurrence of defects (e.g. bare spots, webs, pools, clumps). As the size of the substrate decreases, and as the mechanical complexity increases, it grows increasingly difficult to uniformly coat all surfaces of a substrate. Supplemental steps, therefore, are sometimes necessary to assure proper coating, including, for example, multiple coating steps and/or drying between or after the coating steps (in solvent-based systems).

Conventional polymer films likewise have limitations in providing a seal. Conventional polymer films are known to be quite ineffective barriers to the transport of gaseous materials. While this is especially true of small molecule gases, the problem extends to providing a barrier to water vapors and other gases that could deleteriously effect an electrical biomedical implant.

SUMMARY OF THE INVENTION

A cost-effective, easy to apply polymer-based coatings and coating methods to seal a substrate, where the collection process on the substrate is efficient, the coating produced is conformal, substantially defect-free and uniform, and the composition of the coating can be regulated and controlled is provided herein. The method and coatings provide a seal which is impermeable and/or imperveous to gas and/or fluid. The seal can be applied to a variety of substrates, including, but not limited to, implantable medical devices that are electrical in nature such as pacemakers and other “active” implants, which can shield the substrates from interacting with body fluids in vivo.

The present invention relates to coatings and methods for depositing a coating comprising a polymer and a impermeable dispersed solid onto a substrate. Provided herein are novel, easy to apply, polymer-based coatings and coating methods to seal and, thereby, shield, for example, medical devices that are electrical in nature such as pacemakers and other “active” implants from interacting with body fluids in vivo in a manner that disrupts the substrate's (e.g. active medical device's) intended functions and/or proper functioning, if any, or in a manner that has unintended consequences within and/or to the patient. Provided herein are novel, easy to apply, polymer-based coatings and coating methods to seal, for example, implantable medical devices that are electrical in nature such as pacemakers and other “active” implants and, thereby, shield the body from degradation products, leachants, and extractables from the medical device. The coatings and methods provided herein result in a collection process on the substrate that is efficient, a conformal, substantially defect-free, and uniform coating, and a regulatable and controllable coating composition. The coating structures and methods provided herein not only avoid the problems of polymer coatings (solvent-based, and solvent-less), but they also improve the barrier properties of polymer films for use as a seal upon, for example, biologically implanted devices.

Provided herein is a method for electrostatic capture of polymer particles upon a substrate followed by sintering of these particles by exposure to compressed gasses. The coating methods used, including e-RESS, e-SEDS, and/or eDPC are free from elevated temperatures, solvent exposure, plasma environments, and other challenges associated with traditional polymer coating methods.

In some embodiments, a coating comprising electrostatically captured polymer particles (generated by eRESS, eSEDS or eDPC) with either concurrent or sequential captured impermeable particles (by eDFC, eRESS, eSEDS) on a medical implant substrate. A method is also provided for electrostatically capturing polymer particles (generated by eRESS, eSEDS or eDPC) with either concurrent or sequential capturing impermeable particles (by eDPC, eRESS, eSEDS) on a medical implant substrate. Following electrostatic capture of the impermeable particles and the polymer, the method comprises sintering the medical implant substrate with a compressed gas at conditions adequate to cause flow of the polymer particles into a continuous film on the substrate.

The polymers that could be used in the coatings or methods provided herein are all solution or thermally processible polymers (e.g. acrylates, olefins, fluoropolymers, urethanes, etc.). For example, a polymer (or polymers) could be used with known biocompatibility and high resistance to chemical degradation such as polymers of fluorinated olefins. The impermeable particles that could be used in this coating method includes all inorganic particles that can be obtained in the micron and/or sub-micron size range (for example, various compositions of clay, metal-oxides, ceramics, etc.)

In one embodiment, a polymer coating is sufficient to provide the requisite sealing properties. In another embodiment, the coating would contain a polymer continuous phase with particles embedded therein. The existence and distribution of the particles cases an increase in the barrier properties of the film to small molecules and gases by blocking diffusion pathways.

In some embodiments, the surface of the particles is chemically modified to provide greater dispersion and incorporation into the polymer film. In some embodiments of the method for coating, the method comprises chemically modifying the surface of the particles to provide greater dispersion and incorporation into the polymer film. For example in the case of a highly polar particle (e.g. clay, SiO2, TiO2, etc.) in a highly non-polar polymer (e.g. polymeric fluorinated olefins), the process comprises binding or bonding a non-polar chemistry to the surface of the particle prior to incorporation into the powder-coating and sintering process.

Also, provided herein are stacked polymer films with an intervening impermeable layer which could provide similar protection for sensitive devices in vivo without the difficulty associated with welding metal cans around the device. In some embodiments, polymers to be used in the processes and in the coatings provided herein are inherently hydrophobic, thereby greatly reducing the likelihood of penetration of biological fluids. For example, fluoropolymers as a class yield high surface energy surfaces that meet this requirement. However, surfaces created from such polymers in some cases act as membranes through which water vapor transport can occur. Thus, in some embodiments, a second layer that can trap any water vapor that might permeate the fluoropolymer membrane is provided. In some embodiments, the method comprises depositing a hydrophilic polymer layer such as a silicon based polymer over the initial fluoropolymer layer. Silicon based polymers can be designed to possess differing degrees of hydrophilicity and therefore trap any water vapor that might permeate the fluoropolymer layer membrane. In some embodiments, the silicon-based polymer is reduced to native silicon and metallized with titanium. In some embodiments, a third layer of fluoropolymer is deposited to encapsulate the silicon based polymer layer between the fluoropolymer layers. In some embodiments, the coating comprises multiple alternating layers of fluoropolymers and silicon based polymers. In some embodiments, the method comprises alternating multiple layers of the silicon based polymer and the fluoropolymer.

In some embodiments, the coating is designed to remain impermeable and/or impervious to gas and/or fluid for at least as long as the expected life span (e.g., period of time inside a subjects body) of the device and/or substrate it coats.

One aspect of the invention provides methods for depositing a coating comprising a polymer and impermeable dispersed solid on a substrate, comprising discharging at least one impermeable dispersed solid in dry powder form through a first orifice; discharging at least one polymer in dry powder form through a second orifice; depositing the polymer and/or impermeable dispersed solids onto said substrate, wherein an electrical potential is maintained between the substrate and the impermeable dispersed solid and/or polymer particles, thereby forming said coating; and sintering said coating under conditions that do not substantially affect the substrate. In some embodiments, the impermeable dispersed solid is dispersed uniformly on all exposed surfaces of the substrate. In some embodiments, the impermeable dispersed solid is impermeable and/or impervious to gas. In some embodiments, the impermeable dispersed solid is impermeable and/or impervious to fluid. In some embodiments, the impermeable dispersed solid is impermeable and/or impervious to biological material.

In some embodiments, the impermeable dispersed solid comprises nanoparticles, such as, for example, a polyurethane adhesive nanocomposite (organically modified montmorillonite and polyurethane). In some embodiments, the oxygen transmission rate across the coating is at most about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%. In some embodiments the water vapor permeation through the coating is at most about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%. In referring to transmission rate or permeation, “about” refers to variations of 0.01% to 0.1%, or 1% to 5%.

Although the size, resistivity and moisture content of the polymer and impermeable dispersed solid may vary widely based on the conditions used, desired particle sizes are typically in the range of 0.01 μm-2500 μm, and more preferably in the range of 0.01 μm-100 μm, resistivity is typically in the range of from about 106 Ωm to about 1024 Ωm and moisture content is less than 5% by weight. In one embodiment of the invention the molecular weight range of the polymer is from about 5,000 a.u. to about 100,000 a.u.

In other embodiments, the first and second orifices are provided as one single orifice wherein the impermeable dispersed solid and polymer may be mixed together prior to discharging. In yet other embodiments the impermeable dispersed solid and polymer particles may be discharged simultaneously or in succession. In another embodiment of the invention the method further comprises discharging a third dry powder comprising a second impermeable dispersed solid whereby a coating comprising at least two different impermeable dispersed solids is deposited on said substrate. In certain other embodiments of the invention the impermeable dispersed solid is prepared by milling, jet-milling, granulation, spray drying, crystallizing or fluidizing.

In a further embodiment the impermeable dispersed solid and/or the polymer becomes electrostatically charged prior to deposition, and the substrate may be electrically grounded. In a preferred embodiment, the substrate is electrostatically charged. In some embodiments the polymer and impermeable dispersed solid are discharged using a gas based propellant, which typically comprises carbon dioxide, nitrous oxide, hydrofluorocarbons, chlorofluorocarbons, helium, nitrogen, compressed air, argon, or volatile hydrocarbons with a vapor pressure greater than 750 Torr at 20° C., and is preferably carbon dioxide.

In one embodiment of the invention the impermeable dispersed solid comprises at least one drug. In another embodiment of the invention the ratio of impermeable dispersed solid to polymer is from about 1:1000 to about 3:10. In some embodiments, the amount of impermeable dispersed solid will depend on the particular dispersed solid being employed, the type of substrate, and the medical condition being treated.

Yet another aspect of the invention provides methods for depositing a coating comprising a polymer and a impermeable dispersed solid on a substrate, comprising discharging at least one impermeable dispersed solid in a therapeutically desirable morphology in dry powder form through a first orifice; forming a supercritical or near supercritical fluid mixture that includes at least one supercritical fluid solvent and at least one polymer and discharging said supercritical or near supercritical fluid solution through a second orifice under conditions sufficient to form solid particles of the polymer; depositing the polymer and/or impermeable dispersed solids onto said substrate, wherein an electrical potential is maintained between the substrate and the impermeable dispersed solids and/or polymer particles, thereby forming said coating and sintering said coating under conditions that do not substantially disrupt the substrate's (e.g. active medical device's) intended functions and proper functioning, if any, or that have unintended consequences within and/or to the patient once implanted.

Each of the above methods may be carried out from about 0° C. to about 80° C. and from about 0.1 atmospheres to about 73 atmospheres, in either open or closed vessel. In some embodiments, the substrate is a biomedical implant which may be a. a stent (e.g., vascular stents), electrode, catheter, lead, implantable pacemaker, implantable cardioverter, a housing for an implantable pacemaker, a housing for an implantable defibrillator, a housing for an implantable cardioverter, sensor, drug delivery device, therapy delivery device, device comprising telemetry capability, device comprising electrical impulses, diagnostic device, measurement device, joint, screw, rod, ophthalmic implant, femoral pin, bone plate, graft, anastomotic device, perivascular wrap, suture, staple, shuntsfor hydrocephalus, dialysis graft, colostomy bag attachment device, ear drainage tube, lead for pace makers and implantable cardioverters and defibrillators, vertebral disk, bone pin, suture anchor, hemostatic barrier, clamp, screws, plate, clip, vascular implant, tissue adhesive, sealant, tissue scaffolds, shunts, opthalmic implant, prosthetic, shunt, urologic implant, reproductive anatomy device, gastrologic device, neurologic lead, neurologic device, various types of dressings (e.g., wound dressings), bone substitutes, intraluminal devices, and vascular supports.

In some embodiments of the invention the thickness of said coating is from about 1 to about 100 μm, preferably about 10 μm, and the variation in the thickness along said coating is within 0.5 μm, within 0.25 μm, within 0.1 μm or within 10% of the total thickness of said coating, within 5% of the total thickness of said coating, or within 2.5% of the total thickness of said coating. In yet other embodiments, the impermeable dispersed solid is positioned at a selected distance from top of said coating. In further embodiments, the impermeable dispersed solid is positioned at about midway between the top of said coating and the substrate surface. In other embodiments of the invention the variability in the amount of impermeable dispersed solid deposited on said substrate is 20% or less, 15% or less, 10% or less, 5% or less, for a batch of substrates coated at the same time. Preferably the variability is 5% or less.

In yet other embodiments of the invention, the methods further comprise depositing a top layer on said coating wherein said top layer is a polymer film. In some embodiments, the polymer film has a thickness of 0.5 to 10 microns, and can be deposited by an eRESS or eSEDS, or a eDPC process. In yet other embodiments, the polymer film is formed by depositing a single polymer and for example by depositing substantially pure PBMA.

The invention further relates to the use of a supercritical solution comprising a second fluid in its supercritical state.

In some embodiments, the addition of a second fluid in its supercritical state is to act as a flammability suppressor. In other embodiments, a second fluid is used, wherein said second fluid has critical parameters lower than the first fluid's critical parameters, and therefore lowers the critical properties of the mixture/solution enabling access to the mixture supercritical state.

In some embodiments the supercritical solution comprises isobutylene. In other embodiments, the supercritical fluid comprises isobutylene and carbon dioxide as a second fluid.

Other embodiments of the invention provide a way to dissolve two polymers in a supercritical solvent. In some embodiments said two polymers are PEVA and PBMA. In other embodiments, a supercritical solution comprising two polymers is used to create a RESS spray of the polymers generating ˜10 to 100 nm particles of each polymer. In further embodiments, PEVA and PBMA are dissolved in a supercritical solvent that further comprises CO2 to act as a fire suppressor in the event of an ignition source causing a fire.

INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended Claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

FIG. 1. Schematic Representation of the Coating and Sintering Process Apparatus.

FIG. 2. Detailed images of the Coating and Sintering Process Apparatus.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is explained in greater detail below. This description is not intended to be a detailed catalog of all the different ways in which the invention may be implemented, or all the features that may be added to the instant invention. For example, features illustrated with respect to one embodiment may be incorporated into other embodiments, and features illustrated with respect to a particular embodiment may be deleted from that embodiment. In addition, numerous variations and additions to the various embodiments suggested herein will be apparent to those skilled in the art in light of the instant disclosure, which do not depart from the instant invention. Hence, the following specification is intended to illustrate some particular embodiments of the invention, and not to exhaustively specify all permutations, combinations and variations thereof.

Applicants specifically intend that all United States patent references cited herein be incorporated herein by reference in their entirety.

The present invention relates to coatings and methods for depositing a coating comprising a polymer and a impermeable dispersed solid onto a substrate. Provided herein are novel, easy to apply, polymer-based coatings and coating methods to seal and, thereby, shield, for example, implantable medical devices that are electrical in nature such as pacemakers and other “active” implants from interacting with body fluids in vivo in a manner that disrupts the medical device's intended functions and proper functioning, or in a manner that has unintended consequences within and/or to the patient. Provided herein are novel, easy to apply, polymer-based coatings and coating methods to seal, for example, implantable medical devices that are electrical in nature such as pacemakers and other “active” implants and, thereby, shield the body from degradation products, leachants, extractables from the medical device. The coatings and methods provided herein result in a collection process on the substrate that is an efficient, conformal, substantially defect-free, and uniform coating, and a regulatable and controllable coating composition. The coating structures and methods provided herein not only avoid the problems of polymer coatings (solvent-based, and solvent-less), but they also improve the barrier properties of polymer films for use as a seal upon, for example, biologically implanted devices.

Provided herein is a composite material coating containing polymer to provide increased barrier properties for gases such as water vapor, and method of creating such coating.

Provided herein is a composite material coating containing polymer plus a impermeable dispersed solid to provide increased barrier properties for gases such as water vapor, and method of creating such coating.

Provided herein is the a method for electrostatic capture of polymer particles upon a substrate followed by sintering of these particles by exposure to compressed gasses. The coating methods used, including e-RESS, e-SEDS, and/or eDPC are free from elevated temperatures, solvent exposure, plasma environments, and other challenges associated with traditional polymer coating methods.

In some embodiments, a coating comprising electrostatically captured polymer particles (generated by eRESS, eSEDS or eDPC) alone or optionally with either concurrent or sequential captured impermeable particles (by eDPC, eRESS, eSEDS) on a medical implant substrate. A method is also provided for electrostatically capturing polymer particles (generated by eRESS, eSEDS or eDPC) alone or with either concurrent or sequential capturing impermeable particles (by eDPC, eRESS, eSEDS) on a medical implant substrate. Following electrostatic capture of the polymer and optionally impermeable particles, the method comprises sintering the medical implant substrate with a compressed gas at conditions adequate to cause flow of the polymer particles into a continuous film on the substrate.

The polymers that could be used in the coatings or methods provided herein are all solution or thermally processible polymers (e.g. acrylates, olefins, fluoropolymers, urethanes, etc.). For example, a polymer (or polymers) could be used with known biocompatibility and high resistance to chemical degradation such as polymers of fluorinated olefins. The impermeable particles that could be used in this coating method includes all inorganic particles that can be obtained in the micron and/or sub-micron size range. For example various compositions of clay, metal-oxides, ceramics, etc.

The resulting film would contain a polymer continuous phase optionally with particles embedded therein. The existence and distribution of the particles causes an increase in the barrier properties of the film to small molecules and gases by blocking diffusion pathways.

In some embodiments of the coating, the surface of the particles is chemically modified to provide greater dispersion and incorporation into the polymer film. In some embodiments of the method for coating, the method comprises chemically modifying the surface of the particles to provide greater dispersion and incorporation into the polymer film. For example in the case of a highly polar particle (e.g. clay, SiO2, TiO2, etc.) in a highly non-polar polymer (e.g. polymeric fluorinated olefins), the process comprises binding or bonding a non-polar chemistry to the surface of the particle prior to incorporation into the powder-coating and sintering process.

Provided herein are stacked polymer films with an intervening impermeable layer which could provide similar protection for sensitive devices in vivo without the difficulty associated with welding metal cans around the device. In some embodiments, polymers to be used in the processes and in the coatings provided herein are inherently hydrophobic, thereby greatly reducing the likelihood of penetration of biological fluids. For example, fluoropolymers as a class yield high surface energy surfaces that meet this requirement. However, surfaces created from such polymers in some cases act as membranes through which water vapor transport can occur. Thus, in some embodiments, a second layer that can trap any water vapor that might permeate the fluoropolymer membrane is provided. In some embodiments, the method comprises depositing a hydrophilic polymer layer such as a silicon based polymer over the initial fluoropolymer layer. Silicon based polymers can be designed to possess differing degrees of hydrophilicity and therefore trap any water vapor that might permeate the fluoropolymer layer membrane. In some embodiments, the silicon-based polymer is reduced to native silicon and metallized with titanium.

In some embodiments, a highly absorbent material is used as the water-vapor trapping material. In some embodiments, the highly absorbent material comprises a hydrophilic polymer. In some embodiments, highly absorbent material comprises a superabsorbent polymer.

In some embodiments, a third layer of fluoropolymer is deposited to encapsulate the silicon based polymer layer between the fluoropolymer layers. In some embodiments, the coating comprises multiple alternating layers of fluoropolymers and silicon based polymers. In some embodiments, the method comprises alternating multiple layers of the silicon based polymer and the fluoropolymer.

In some embodiments, the coating is designed to remain impermeable for at least as long as the expected life span of the device and/or substrate it coats.

One aspect of the invention provides methods for depositing a coating comprising a polymer and impermeable dispersed solid on a substrate, comprising discharging at least one impermeable dispersed solid in dry powder form through a first orifice; discharging at least one polymer in dry powder form through a second orifice; depositing the polymer and/or impermeable dispersed solids onto said substrate, wherein an electrical potential is maintained between the substrate and the impermeable dispersed solid and/or polymer particles, thereby forming said coating; and sintering said coating under conditions that do not substantially affect the substrate. In some embodiments, the impermeable dispersed solid is dispersed uniformly on all exposed surfaces of the substrate.

In some embodiments, the impermeable dispersed solid comprises a nanoparticle, such as, for example, a polyurethane adhesive nanocomposite (organically modified montmorillonite and polyurethane). In some embodiments, the oxygen transmission rate across the coating is at most about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%. In some embodiments the water vapor permeation through the coating is at most about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%. In referring to transmission rate or permeation, “about” refers to variations of 0.01% to 0.1%, or 1% to 5%.

In some embodiments, the impermeable dispersed solid comprises a nanoparticle that is impervious to small particle transport. In some embodiments, the nanoparticle comprises at least one of a ceramic and a metal. In some embodiments, the nanoparticle comprises clay. In some embodiments the nanoparticle comprises silica. In some embodiments, the nanoparticle comprises titanium oxide. In some embodiments, the nanoparticle does not include nickel. In some embodiments, the nanoparticle does not include copper. In some embodiments, the small particle transmission rate across the coating is at most about 0.001%, 0.01%, 0.1%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%. In some embodiments, the oxygen transmission rate across the coating is at most about 0.001%, 0.01%, 0.1%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%. In some embodiments the water vapor permeation through the coating is at most about 0.001%, 0.01%, 0.1%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%. In referring to transmission rate or permeation, “about” refers to variations of 0.001% to 0.01%, 0.01% to 0.1%, or 1% to 5%.

Although the size, resistivity and moisture content of the polymer and impermeable dispersed solid may vary widely based on the conditions used, desired particle sizes are typically in the range of 0.01 μm-2500 μm, and more preferably in the range of 0.01 μm-100 μm, resistivity is typically in the range of from about 106 Ωm to about 1024 Ωm and moisture content is less than 5% by weight. In one embodiment of the invention the molecular weight range of the polymer is from about 5,000 a.u. to about 100,000 a.u.

In other embodiments, the first and second orifices are provided as one single orifice wherein the impermeable dispersed solid and polymer may be mixed together prior to discharging. In yet other embodiments the impermeable dispersed solid and polymer particles may be discharged simultaneously or in succession. In another embodiment of the invention the method further comprises discharging a third thy powder comprising a second impermeable dispersed solid whereby a coating comprising at least two different impermeable dispersed solids is deposited on said substrate. In certain other embodiments of the invention the impermeable dispersed solid is prepared by milling, jet-milling, granulation, spray drying, crystallizing or fluidizing.

In a further embodiment the impermeable dispersed solid and/or the polymer becomes electrostatically charged prior to deposition, and the substrate may be electrically grounded. In a preferred embodiment, the substrate is electrostatically charged. In some embodiments the polymer and impermeable dispersed solid are discharged using a gas based propellant, which typically comprises carbon dioxide, nitrous oxide, hydrofluorocarbons, chlorofluorocarbons, helium, nitrogen, compressed air, argon, or volatile hydrocarbons with a vapor pressure greater than 750 Torr at 20° C., and is preferably carbon dioxide.

In one embodiment of the invention the impermeable dispersed solid comprises at least one drug. In another embodiment of the invention the ratio of impermeable dispersed solid to polymer is from about 1:1000 to about 3:10. In some embodiments, the amount of impermeable dispersed solid will depend on the particular dispersed solid being employed, the type of substrate, and the medical condition being treated.

Yet another aspect of the invention provides methods for depositing a coating comprising a polymer and a impermeable dispersed solid on a substrate, comprising discharging at least one a impermeable dispersed solid in a therapeutically desirable morphology in dry powder form through a first orifice; forming a supercritical or near supercritical fluid mixture that includes at least one supercritical fluid solvent and at least one polymer and discharging said supercritical or near supercritical fluid solution through a second orifice under conditions sufficient to form solid particles of the polymer; depositing the polymer and/or impermeable dispersed solids onto said substrate, wherein an electrical potential is maintained between the substrate and the impermeable dispersed solids and/or polymer particles, thereby forming said coating and sintering said coating under conditions that do not substantially disrupt the substrate's (e.g. implantable active medical device's) intended functions and proper functioning, if any, or that have unintended consequences within and/or to the patient once implanted.

Each of the above methods may be carried out from about 0° C. to about 80° C. and from about 0.1 atmospheres to about 73 atmospheres, in either open or closed vessel. In some embodiments, the substrate is a stent (e.g., vascular stents), electrode, catheter, lead, implantable pacemaker, implantable cardioverter, a housing for an implantable pacemaker, a housing for an implantable defibrillator, a housing for an implantable cardioverter, sensor, drug delivery device, therapy delivery device, device comprising telemetry capability, device comprising electrical impulses, diagnostic device, measurement device, joint, screw, rod, ophthalmic implant, femoral pin, bone plate, graft, anastomotic device, perivascular wrap, suture, staple, shunts for hydrocephalus, dialysis graft, colostomy bag attachment device, ear drainage tube, lead for pace makers and implantable cardioverters and defibrillators, vertebral disk, bone pin, suture anchor, hemostatic barrier, clamp, screws, plate, clip, vascular implant, tissue adhesive, sealant, tissue scaffolds, shunts, opthalmic implant, prosthetic, shunt, urologic implant, reproductive anatomy device, gastrologic device, neurologic lead, neurologic device, various types of dressings (e.g., wound dressings), bone substitutes, intraluminal devices, and vascular supports.

In some embodiments of the invention the thickness of said coating is from about 1 to about 100 μm, preferably about 10 μm, and the variation in the thickness along said coating is within 0.5 μm, within 0.25 μm, within 0.1 μm or within 10% of the total thickness of said coating, within 5% of the total thickness of said coating, or within 2.5% of the total thickness of said coating. In yet other embodiments, the impermeable dispersed solid is positioned at a selected distance from top of said coating. In further embodiments, the impermeable dispersed solid is positioned at about midway between the top of said coating and the substrate surface. In other embodiments of the invention the variability in the amount of impermeable dispersed solid deposited on said substrate is 20% or less, 15% or less, 10% or less, 5% or less, for a batch of substrates coated at the same time. Preferably the variability is 5% or less.

In yet other embodiments of the invention, the methods further comprise depositing a top layer on said coating wherein said top layer is a polymer film. In some embodiments, the polymer film has a thickness of 0.5 to 10 microns, and can be deposited by an eRESS or eSEDS, or a eDPC process. In yet other embodiments, the polymer film is formed by depositing a single polymer and can be formed by depositing substantially pure PBMA.

The invention further relates to the use of a supercritical solution comprising a second fluid in its supercritical state.

In some embodiments, the addition of a second fluid in its supercritical state is to act as a flammability suppressor. In other embodiments, a second fluid is used, wherein said second fluid has critical parameters lower than the first fluid's critical parameters, and therefore lowers the critical properties of the mixture/solution enabling access to the mixture supercritical state.

In some embodiments the supercritical solution comprises isobutylene. In other embodiments, the supercritical fluid comprises isobutylene and carbon dioxide as a second fluid.

Other embodiments of the invention provide a way to dissolve two polymers in a supercritical solvent. In some embodiments said two polymers are PEVA and PBMA. In other embodiments, a supercritical solution comprising two polymers is used to create a RESS spray of the polymers generating ˜10 to 100 nm particles of each polymer. In further embodiments, PEVA and PBMA are dissolved in a supercritical solvent that further comprises CO2 to act as a fire suppressor in the event of an ignition source causing a fire.

One aspect of the invention entails the deposition of the a impermeable dispersed solid as dry powders, using electrostatic capture to attract the powder particles to the substrate. Dry powder spraying is well known in the art, and dry powder spraying coupled with electrostatic capture has been described, for example in U.S. Pat. No. 5,470,603 6,319,541 or 6,372,246. The deposition of the polymer can be performed in any number of standard procedures, as the morphology of the polymer, so long as it provides coatings possessing the desired properties (e.g. thickness, conformity, defect-free, uniformity), and are free from elevated temperatures, solvent exposure, plasma environments, and other challenges associated with traditional polymer coating methods.

The second step of the coating process involves taking the substrates that have been coated with impermeable dispersed solids and polymers and subjecting them to a sintering process that takes place under conditions free from elevated temperatures, solvent exposure, plasma environments, and other challenges associated with traditional polymer coating methods. The sintering process as used in the current invention refers to the process by which the co-deposited impermeable dispersed solid—polymer matrix become fused and adherent to the substrate by treatment of the coated substrate with a compressed gas, compressed liquid, or supercritical fluid that is a non-solvent for the polymers and the impermeable dispersed solid(s), but a plasticizing agent for the polymer. The sintering process takes place under conditions (e.g. mild temperatures), and using benign fluids (e.g. supercritical carbon dioxide) which will not affect the active substrate or its subsequent function, if any.

One aspect of the invention is the combination of two or more of the e-DPC, e-RESS and e-SEDS spraying techniques.

A specific aspect of the invention involves the dry powder spraying of impermeable dispersed solid, in a preferred particle size, into the same capture vessel as a polymer that is also dry powder sprayed, whereby the spraying of the impermeable dispersed solid and the polymer is sequential or simultaneous.

In some embodiments, the invention involves the e-DPC spraying of the impermeable dispersed solid, into the same capture vessel as a polymer that is sequentially or simultaneously sprayed by the eRESS spray process. In some embodiments, the invention involves the e-DPC spraying of the impermeable dispersed solid, into the same capture vessel as a polymer that is sequentially or simultaneously sprayed by the eSEDS spray process. In some embodiments, the invention involves the e-DPC spraying of the impermeable dispersed solid, into the same capture vessel as a polymer that is sequentially or simultaneously sprayed by the eDPC spray process.

In some embodiments, the invention involves the e-RESS spraying of the impermeable dispersed solid, into the same capture vessel as a polymer that is sequentially or simultaneously sprayed by the eRESS spray process. In some embodiments, the invention involves the e-RESS spraying of the impermeable dispersed solid, into the same capture vessel as a polymer that is sequentially or simultaneously sprayed by the eSEDS spray process. In some embodiments, the invention involves the e-RESS spraying of the impermeable dispersed solid, into the same capture vessel as a polymer that is sequentially or simultaneously sprayed by the eDPC spray process.

In some embodiments, the invention involves the e-SEDS spraying of the impermeable dispersed solid, into the same capture vessel as a polymer that is sequentially or simultaneously sprayed by the eRESS spray process. In some embodiments, the invention involves the e-SEDS spraying of the impermeable dispersed solid, into the same capture vessel as a polymer that is sequentially or simultaneously sprayed by the eSEDS spray process. In some embodiments, the invention involves the e-SEDS spraying of the impermeable dispersed solid, into the same capture vessel as a polymer that is sequentially or simultaneously sprayed by the eDPC spray process.

Any combination of the above processes is contemplated by this aspect of the invention.

In further aspects of the invention the substrates that have been coated with impermeable dispersed solid and polymers, as described in the above embodiments are then subjected to a sintering process. The sintering process takes place under conditions free from elevated temperatures, solvent exposure, plasma environments, and other challenges associated with traditional polymer coating methods, and refers to a process by which the co-deposited impermeable dispersed solid-polymer matrix, becomes fused and adherent to the substrate. This is achieved by treating the coated substrate with a compressed gas, compressed liquid or supercritical fluid that is a non-solvent for the polymers, the impermeable dispersed solids, but a plasticizing agent for the polymer. The sintering process takes place under conditions (e.g. mild temperatures), and using benign fluids (e.g. supercritical carbon dioxide) which will not affect the active substrate or its subsequent function, if any. Other sintering processes, which do not affect the active substrate or its subsequent function, if any may also be contemplated by the present invention.

DEFINITIONS

As used in the present specification, the following words and phrases are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.

“Substrate” as used herein, refers to any surface upon which it is desirable to deposit a coating comprising a polymer or a mix of polymer with or without impermeable dispersed solid, or hydrophobic polymers and a water-vapor-trapping material, wherein the coating process does not substantially disrupt the substrate's (e.g. implantable active medical device's) intended functions and/or proper functioning, if any, or in a manner that has unintended consequences within and/or to the patient. Biomedical implants are of particular interest for the present invention; however the present invention is not intended to be restricted to this class of substrates. Those of skill in the art will appreciate alternate substrates that could benefit from the coating process described herein, such as temporary implantable devices, diagnostic tests or kits.

“Biomedical implant” as used herein refers to any implant for insertion into the body of a human or animal subject, including but not limited to a stent (e.g., vascular stents), electrode, catheter, lead, implantable pacemaker, implantable cardioverter, a housing for an implantable pacemaker, a housing for an implantable defibrillator, a housing for an implantable cardioverter, sensor, drug delivery device, therapy delivery device, device comprising telemetry capability, device comprising electrical impulses, diagnostic device, measurement device, joint, screw, rod, ophthalmic implant, femoral pin, bone plate, graft, anastomotic device, perivascular wrap, suture, staple, shuntsfor hydrocephalus, dialysis graft, colostomy bag attachment device, ear drainage tube, lead for pace makers and implantable cardioverters and defibrillators, vertebral disk, bone pin, suture anchor, hemostatic barrier, clamp, screws, plate, clip, vascular implant, tissue adhesive, sealant, tissue scaffolds, shunts, opthalmic implant, prosthetic, shunt, urologic implant, reproductive anatomy device, gastrologic device, neurologic lead, neurologic device, various types of dressings (e.g., wound dressings), bone substitutes, intraluminal devices, and vascular supports, etc.

The implants may be formed from any suitable material, including but not limited to organic polymers (including stable or inert polymers and biodegradable polymers), metals, inorganic materials such as silicon, and composites thereof, including layered structures with a core of one material and one or more coatings of a different material.

Subjects into which biomedical implants of the invention may be applied or inserted include both human subjects (including male and female subjects and infant, juvenile, adolescent, adult and geriatric subjects) as well as animal subjects (including but not limited to dog, cat, horse, monkey, etc.) for veterinary purposes.

In a preferred embodiment the biomedical implant is an implantable pacemaker, cardioverter or defibrillator, or another active device or any implantable (permanent or temporary) device requiring sealing to prevent gas or fluid permeation.

“Active” or “Active medical device” as used herein refers to medical devices that are electrical in nature, such as pacemakers and other medical devices for sensing, delivery of therapeutics and/or active control of various bodily functions.

“Medical device” as used herein can refer to biological implants as defined herein active or inactive. A medical device may be permanently implantable, temporarily implantable, entirely implantable (such as, for example, an implantable defibrillator), partially implantable (such as, for example, a sensing drainage catheter) and/or can refer to devices used on or in a patient during a diagnostic or therapeutic procedure, including during an invasive surgery or during a minimally invasive surgery. A medical device includes any instrument, apparatus, appliance, material or other article, whether used alone or in combination, including any software necessary for its proper application intended by the manufacturer to be used for human beings for the purpose of: diagnosis, prevention, monitoring, treatment or alleviation of disease, alleviation of pain, diagnosis, monitoring, treatment, alleviation of or compensation for an injury or handicap, investigation, replacement or modification of the anatomy or of a physiological process, control of conception, and which does not achieve its principal intended action in or on the human body by pharmacological, immunological or metabolic means, but which may be assisted in its function by such means. For example, an insulin pump implanted in a diabetic person which dispenses insulin stored in the pump into the patient's blood based upon glucose levels sensed by the pump is a medical device (and is an active medical device and a biological implant).

“Biological material” as used herein can refer a biological material in gas or fluid state including small solid particles.

“Defect” as used herein can refer to, but is not limited to: surface topology variability, such as a clump, a web, or a pool; a through-layer deficiency, such as a bare spot, a fracture, a crack, a pin hole, a thin spot, a blemish; or a under-layer defect, such as a bubble between layers, a bubble beneath a layer, matter trapped beneath a layer or between layers of coating which is not a part of the substrate or of the layer(s), such as dust, liquid, gas, or particulate, An under-layer defect might affect the seal of a substrate device. For example, an under-layer water vapor bubble might act as a sink for diffusion of water vapor, making an active device more prone to interacting with the vapor and/or potentially with body fluids in vivo in a manner that disrupts the substrate's (e.g. active device's) intended functions and/or proper functioning, if any, or in a manner that has unintended consequences within and/or to the patient. Likewise, any other defect (through-layer, or surface topology variability) which allows gas or fluids to interact with the substrate can potentially result in disruption of the substrate's (e.g. active device's) intended functions and/or proper functioning, if any, or in a manner that has unintended consequences within and/or to the patient (such as, for a non-limiting example, freeing leachables, and/or creating or releasing degradation products or extractables from the device and into the body of the patient).

“Conformal coating”, “conformally coated”, or “conformably coated” as used herein can refer to a protective covering that conforms to the configuration of the objects coated. A covering that is conformal covers susbtantially all surfaces with a uniform layer. For example, a coating layering process may confomally coat a device with a 10 micron coating (of a layer or of layers) plus or minus 10%, which results in a 10 micron plus or minus 10% coating on every external surface of the device that is at least about 20 microns apart from another external surface of the device (external surfaces of the device that are closer may appear to have thicker coatings as the coatings on of the two nearby surfaces join).

“Seal” or “Substantially seal” as used herein can refer to coating that substantially shields a substrate from interacting with materials (fluids, gases, solids), in a manner that disrupts the substrate's intended functions and/or proper functioning, if any, or in a manner that has unintended consequences within and/or to the patient. As used herein, the term(s) can refer to coating that substantially shields transmission of degradation products, leachants, and extractables from the substrate past and/or through the coating. Seals on a substrate can be applied to electronic circuitry to act as protection for the circuitry against, for example, moisture, dust, chemicals, and/or temperature extremes. Similarly, seals can be applied to devices to act as protection against, for example, moisture, dust, chemicals, leachants, extractable components (extractables) and/or degradation products, from passing from the device through the coating layer(s). A seal, therefore can be a one-way and/or two-way barrier to moisture, dust, chemicals, leachants, degradation products, and/or other material (fluid or gas), including biologic material. The one-way barrier can be a barrier in either direction, a barrier to allowing material to contact the substrate, or a barrier to allowing material to pass from the substrate through the coating for example to the blood stream of a subject. For example, a medical device that is electrical in nature such as a pacemaker and/or another “active” implant body fluids in vivo can be substantially sealed by a coating and, thereby, substantially shielded from interacting with materials (fluids, gases, solids), in a manner that disrupts the substrate's intended functions and/or proper functioning, if any, or in a manner that has unintended consequences within and/or to the patient. Medical devices that are not electrical in nature (or not primarily electrical in nature) may also be sealed as provided herein. “Substantially” where used herein with respect to sealing or seals, can mean at least about one of 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5% 99.6%, 99.7%, 99.8%, 99.9%, 99.95%, 99.99%, and 99.995% sealed. “About” where used herein with respect to sealing or seals percentages, can mean variability of 0.1 to 0.5%, or 1-5%. “Substantially” where used herein with respect to sealing or seals, can also or alternatively mean a seal that passes a coating visual inspection, an adhesion test, a chemical resistance test, and/or a coating fatigue test, device fatigue in an in vitro test, device fatigue in a simulated in vivo environment test, a resistance test in a simulated in vivo environment Examples of such tests include, but are not limited to, ASTM D6677, ASTM D3359, ASTM D4541, ASTM D2197, ASTM D2370, ASTM D5179, ASTM D4145, ASTM 4146, ASTM F1854-01.

“Polymer” as used herein, refers to a series of repeating monomeric units that have been cross-linked or polymerized. Any suitable polymer can be used to carry out the present invention. It is possible that the polymers of the invention may also comprise two, three, four or more different polymers. In some embodiments, of the invention only one polymer is used. In some preferred embodiments a combination of two polymers are used. Combinations of polymers can be in varying ratios, to provide coatings with differing properties. Those of skill in the art of polymer chemistry will be familiar with the different properties of polymeric compounds. Examples of ploymers that may be used in the present invention include, but are not limited to polycarboxylic acids, cellulosic polymers, proteins, polypeptides, polyvinylpyrrolidone, maleic anhydride polymers, polyamides, polyvinyl alcohols, polyethylene oxides, glycosaminoglycans, polysaccharides, polyesters, polyurethanes, polystyrenes, copolymers, silicones, polyorthoesters, polyanhydrides, copolymers of vinyl monomers, polycarbonates, polyethylenes, polypropylenes, polylactic acids, polyglycolic acids, polycaprolactones, polyhydroxybutyrate valerates, polyacrylamides, polyethers, polyurethane dispersions, polyacrylates, acrylic latex dispersions, polyacrylic acid, mixtures and copolymers thereof. The polymers of the present invention may be natural or synthetic in origin, including gelatin, chitosan, dextrin, cyclodextrin, Poly(urethanes), Poly(siloxanes) or silicones, Poly(acrylates) such as poly(methyl methacrylate), poly(butyl methacrylate), and Poly(2-hydroxy ethyl methacrylate), Poly(vinyl alcohol) Poly(olefins) such as poly(ethylene), poly(isoprene), halogenated polymers such as Poly(tetrafluoroethylene)—and derivatives and copolymers such as those commonly sold as Teflon® products, Poly(vinylidine fluoride), Poly(vinyl acetate), Poly(vinyl pyrrolidone), Poly(acrylic acid), Polyacrylamide, Poly(ethylene-co-vinyl acetate), Poly(ethylene glycol), Poly(propylene glycol), Poly(methacrylic acid); etc. Suitable polymers also include absorbable and/or resorbable polymers including the following, combinations, copolymers and derivatives of the following: Polylactides (PLA), Polyglycolides (PGA), Poly(lactide-co-glycolides) (PLGA), Polyanhydrides, Polyorthoesters, Poly(N-(2-hydroxypropyl) methacrylamide), Poly(1-aspartamide), etc.

“Water-vapor trapping material” as used herein includes, but is not limited to a hydrophilic polymer. “Water-vapor trapping material” as used herein includes, but is not limited to a highly absorbent material, which may comprises a superabsorbent polymer. Examples of water-vapor trapping materials include, but are not limited to, acrylate polymers, generally formed from acrylic acid, methacrylic acid, acrylate, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, a dialkylaminoalkyl acrylate, a dialkylaminoalkyl methacrylate, a trialkylammonioalkyl acrylate, and/or a trialkylammonioalkyl methacrylate, and include the polymers or copolymers of acrylic acid, methacrylic acid, methyl methacrylate, ethyl methacrylate, 2-dimethylaminoethyl methacrylate, and trimethylammonioethyl methacrylate chloride. Examples of hydrophilic polymers include, but is not limited to poly(N-vinyl lactams), poly(N-vinyl acrylamides), poly(N-alkylacrylamides), substituted and unsubstituted acrylic and methacrylic acid polymers, polyvinyl alcohol (PVA), polyvinylamine, copolymers thereof and copolymers with other types of hydrophilic monomers (e.g. vinyl acetate), polysaccharides, crosslinked acrylate polymers and copolymers, carbomers, crosslinked acrylamide-sodium acrylate copolymers, gelatin, vegetable polysaccharides, such as alginates, pectins, carrageenans, or xanthan, starch and starch derivatives, galactomannan and galactomannan derivatives. polyvinyl pyrrolidone (PVP), poly(N-vinyl caprolactam) (PVCap), poly(N-vinyl acetamides), polyacrylic acid, polymethacrylic acid, and copolymers and blends thereof. PVP and PVCap. Examples of superabsorbent polymers include hydrogels. Copolymers of any of the water-vapor trapping materials mentioned herein, and blends thereof may also be used.

“Hydrophobic polymer” as used herein can refer to any polymer resistant to wetting, or not readily wet, by water, i.e., having a lack of affinity for water. Examples of hydrophobic polymers include, by way of illustration only, polyolefins, such as polyethylene, poly(isobutene), poly(isoprene), poly(4-methyl-1-pentene), polypropylene, ethylene-propylene copolymers, ethylene-propylene-hexadiene copolymers, and ethylene-vinyl acetate copolymers; metallocene polyolefins, such as ethylene-butene copolymers and ethylene-octene copolymers; styrene polymers, such as poly(styrene), poly(2-methylstyrene), and styrene-acrylonitrile copolymers having less than about 20 mole-percent acrylonitrile; vinyl polymers, such as poly(vinyl butyrate), poly(vinyl decanoate), poly(vinyl dodecanoate), poly(vinyl hexadecanoate), poly(vinyl hexanoate), poly(vinyl octanoate), and poly(methacrylonitrile); acrylic polymers, such as poly(n-butyl acetate), and poly(ethyl acrylate); methacrylic polymers, such as poly(benzyl methacrylate), poly(n-butyl methacrylate), poly(isobutyl methacrylate), poly(t-butyl methacrylate), poly(t-butylaminoethyl methacrylate), poly(do-decyl methacrylate), poly(ethyl methacrylate), poly(2-ethylhexyl methacrylate), poly(n-hexyl methacrylate), poly(phenyl methacrylate), poly(n-propyl methacrylate), and poly(octadecyl methacrylate); polyesters, such a poly(ethylene terephthalate) and poly(butylene terephthalate); and polyalkenes and polyalkynes, such as polybutylene and polyacetylene. Copolymers of any of the hydrophobic polymers mentioned herein, and blends thereof may also be used. The hydrophobic polymer also may contain minor amounts of additives as is customary in the art. For example, the hydrophobic polymer may contain pigments, delustrants, antioxidants, antistatic agents, stabilizers, oxygen scavengers, and the like. In some embodiments, the hydrophobic polymer is a polymer having a bulk density of at least about 1.00 grams per cubic centimeter (g/cc). In some embodiments, the hydrophobic polymer is a polymer having a bulk density of greater than about 1.00 gram per cubic centimeter (g/cc). In some embodiments, the hydrophobic polymer is a polymer having a bulk density of one of at least about 1.01, 1.02, 1.03, 1.05, 1.06, 1.07, 1.08, 1.09, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05, 2.06, 2.07, 2.08, 2.09, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.30, 2.31, 2.32, 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.39, 2.40 grams per cubic centimeter (g/cc). In referring to bulk density, “about” refers to variations of 0.001 to 0.005, or of 0.005 to 0.01 grams per cubic centimeter (g/cc).

“Polyolefin” as used herein can refer to a polymer prepared by the addition polymerization of one or more unsaturated monomers which contain only carbon and hydrogen atoms. Examples of such polyolefins include polyethylene, polypropylene, poly(1-butene), poly(2-butene), poly(1-pentene), poly(2-pentene), poly(3-methyl-1-pentene), poly(4-methyl-1-pentene), and the like. In addition, such term is meant to include blends of two or more polyolefins and random and block copolymers prepared from two or more different unsaturated monomers.

“Compressed fluid” as used herein refers to a fluid of appreciable density (e.g., >0.2 g/cc) that is a gas at standard temperature and pressure. “Supercritical fluid”, “near-critical fluid”, “near-supercritical fluid”, “critical fluid”, “densified fluid” or “densified gas” as used herein refers to a compressed fluid under conditions wherein the temperature is at least 80% of the critical temperature of the fluid and the pressure is at least 50% of the critical pressure of the fluid.

Examples of substances that demonstrate supercritical or near critical behavior suitable for the present invention include, but are not limited to carbon dioxide, isobutylene, ammonia, water, methanol, ethanol, ethane, propane, butane, pentane, dimethyl ether, xenon, sulfur hexafluoride, halogenated and partially halogenated materials such as chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, perfluorocarbons (such as perfluoromethane and perfluoropropane, chloroform, trichloro-fluoromethane, dichloro-difluoromethane, dichloro-tetrafluoroethane), 1,1,1,2,3,3-hexafluoropropane (R236ea) and mixtures thereof.

“Sintering” as used herein refers to the process by which the co-deposited impermeable dispersed solid-polymer matrix, as described herein, or the hydrophobic polymer and water-vapor-trapping material becomes fused and adherent to the substrate by treatment of the coated substrate with a compressed gas, compressed liquid, or supercritical fluid that is a non-solvent for both the polymer and the impermeable dispersed solid or the hydrophobic polymer and water-vapor-trapping material, but a plasticizing agent for the polymer(s).

“Rapid Expansion of Supercritical Solutions” or “RESS” as used herein involves the dissolution of a polymer into a compressed fluid, typically supercritical CO2, followed by rapid expansion into a chamber at atmospheric pressure. The rapid expansion of the supercritical fluid solution through a small opening, with its accompanying decrease in density, reduces the dissolution capacity of the fluid and results in the nucleation and growth of polymer particles.

“Solution Enhanced Dispersion of Supercritical Solutions” or “SEDS” as used herein involves a spray process for the generation of polymer particles, which are formed when a compressed fluid (e.g. supercritical fluid, preferably supercritical CO2) is used as a diluent to a vehicle in which a polymer dissolved, (one that can dissolve both the polymer and the compressed gas). The mixing of the compressed fluid diluent with the polymer-containing solution may be achieved by encounter of a first stream containing the polymer solution and a second stream containing the diluent compressed fluid, for example, within one spray nozzle or by the use of multiple spray nozzles. The solvent in the polymer solution may be one compound or a mixture of two or more ingredients and may be or comprise an alcohol (including diols, triols, etc.), ether, amine, ketone, carbonate, or alkanes, or hydrocarbon (aliphatic or aromatic) or may be a mixture of compounds, such as mixtures of alkanes, or mixtures of one or more alkanes in combination with additional compounds such as one or more alcohols. (e.g., from 0 or 0.1 to 5% of a C1 to C15 alcohol, including diols, triols, etc.). See for example U.S. Pat. No. 6,669,785. The solvent may optionally contain a surfactant, as also described in (for example) U.S. Pat. No. 6,669,785.

In one embodiment of the SEDS process, a first stream of fluid comprising a polymer dissolved in a common solvent is co-sprayed with a second stream of compressed fluid. Polymer particles are produced as the second stream acts as a diluent that weakens the solvent in the polymer solution of the first stream. The now combined streams of fluid, along with the polymer particles, flow out of the nozzle assembly into a collection vessel. Control of particle size, particle size distribution, and morphology is achieved by tailoring the following process variables: temperature, pressure, solvent composition of the first stream, flow-rate of the first stream, flow-rate of the second stream, composition of the second stream (where soluble additives may be added to the compressed gas), and conditions of the capture vessel. Typically the capture vessel contains a fluid phase that is at least five to ten times (5-10×) atmospheric pressure.

“Electrostatically charged” or “electrical potential” or “electrostatic capture” as used herein refers to the collection of the spray-produced particles upon a substrate that has a different electrostatic potential than the sprayed particles. Thus, the substrate is at an attractive electronic potential with respect to the particles exiting, which results in the capture of the particles upon the substrate. i.e. the substrate and particles are oppositely charged, and the particles transport through the fluid medium of the capture vessel onto the surface of the substrate is enhanced via electrostatic attraction. This may be achieved by charging the particles and grounding the substrate or conversely charging the substrate and grounding the particles, or by some other process, which would be easily envisaged by one of skill in the art of electrostatic capture.

“Electrostatic Rapid Expansion of Supercritical Solutions” or “e-RESS” or “eRESS” as used herein refers to Electrostatic Capture as described herein combined with Rapid Expansion of Supercritical Solutions as described herein.

“Electrostatic Solution Enhanced Dispersion of Supercritical Solutions” or “e-SEDS” or “eSEDS” as used herein refers to Electrostatic Capture as described herein combined with Solution Enhanced Dispersion of Supercritical Solutions as described herein.

“Electrostatic Dry Powder Coating” or “e-DPC” or “eDPC” as used herein refers to Electrostatic Capture as described herein combined with Dry Powder Coating. e-DPC deposits material (including, for example, polymer or impermeable dispersed solid) on the device or other substrate as dry powder, using electrostatic capture to attract the powder particles to the substrate. Dry powder spraying (“Dry Powder Coating” or “DPC”) is well known in the art, and dry powder spraying coupled with electrostatic capture has been described, for example in U.S. Pat. Nos. 5,470,603; 6,319,541; or 6,372,246.

“Open vessel” as used herein refers to a vessel open to the outside atmosphere, and thus at substantially the same temperature and pressure as the outside atmosphere.

“Closed vessel” as used herein refers to a vessel sealed from the outside atmosphere, and thus may be at significantly different temperatures and pressures to the outside atmosphere.

EXAMPLES

The following examples are given to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.

Example 1

A biocompatible fluoropolymer or other hydrophobic biocompatible polymer is dissolved in an appropriate supercritical solvent such as carbon dioxide. This solution is maintained in a syringe pump or other pressure vessel and transferred to a spraying vessel that is maintained above the compressed gas's critical pressure and temperature as modified by the solute. The device or other substrate to be coated is held such that it can placed at an electrical potential relative to a nozzle through which the compressed gas solution is to be sprayed (10 kV, for example, with the device held at 5 kV and the nozzle held at −5 kV). The electrical field between the device and the nozzle is designed to be homogenous and constant. The polymer solution is expanded through the restrictor nozzle by electrostatic rapid expansion of a supercritical solution (e-RESS), thereby coating the device with a fine film controllable in both thickness and conformality. Subsequent processing in the gas in its uncompressed state further reduces the volume of the film increasing its conformality. A second layer is deposited consisting of a silicon based polymer in the same manner as the first polymer layer. Alternatively, this polymer could be deposited as a dry dispersed solid using e-DPC or from solution in a compressed gas solvent. This silicon based polymer is selected so that it traps any water vapor that permeates the fluoropolymer layer. Finally, the polymer stack is completed by deposition of another layer of fluoropolymer using the e-RESS process and processed to reduce its volume (processing in the gas in its uncompressed state to further reduce the volume of the film and increase its conformality).

Example 2

A biocompatible fluoropolymer or other hydrophobic biocompatible polymer is dissolved in an appropriate supercritical solvent such as carbon dioxide. This solution is maintained in a syringe pump or other pressure vessel and transferred to a spraying vessel that is maintained above the compressed gas's critical pressure and temperature as modified by the solute. The device or other substrate to be coated is held such that it can placed at an electrical potential relative to a nozzle through which the compressed gas solution is to be sprayed (10 kV, for example, with the device held at 5 kV and the nozzle held at −5 kV). The electrical field between the device and the nozzle is designed to be homogenous and constant. The polymer solution is expanded through the restrictor nozzle by electrostatic rapid expansion of a supercritical solution (e-RESS), thereby coating the device with a fine film controllable in both thickness and conformality. Subsequent processing in the gas in its uncompressed state further reduces the volume of the film increasing its conformality. A second layer of carbonaceous material is deposited by e-DPC. A quantity of carbonaceous material is loaded as a plug into a chamber. The quantity of material initially loaded is dependent upon the desired coating mass and is a function of the potential at which the device or other substrate is held and the backpressure placed on the plug. A valve is rapidly opened through which the material expands creating an aerosolized cloud which coats the device or other substrate as a dry powder. This coating is immediately followed with a second fluoropolymer coating and undergoes the same volume reducing process as the initial layer (processing in the gas in its uncompressed state to further reduce the volume of the film and increase its conformality).

While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following Claims define the scope of the invention and that methods and structures within the scope of these Claims and their equivalents be covered thereby.

Claims (25)

What is claimed is:
1. A method of preparing a coated biomedical implant comprising:
providing a biomedical implant;
depositing on said biomedical implant a first layer comprising a hydrophobic polymer;
depositing on said biomedical implant a second layer comprising an impermeable dispersed solid, wherein the impermeable dispersed solid and the hydrophobic polymer are discharged separately through a first and/or second orifice and wherein the impermeable solid is discharged through the first or second orifice as a dry powder and deposited in dry powder form, and
sintering the first and second layers under conditions that do not substantially disrupt the activity and/or function of the biomedical implant thereby forming a coating,
wherein the coating substantially seals the biomedical implant; and
wherein the coating is substantially impermeable to a gas; the coating is substantially impermeable to a fluid; and the coating is substantially impervious to a biological material.
2. The method of claim 1, wherein the polymer is at least one of a polyolefin, a metallocene polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, a polyalkene, and a polyalkyne.
3. The method of claim 1, wherein the polymer has a bulk density of at least about one of 1.01, 1.02, 1.03, 1.05, 1.06, 1.07, 1.08, 1.09, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05, 2.06, 2.07, 2.08, 2.09, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.30, 2.31, 2.32, 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.39, and 2.40 grams per cubic centimeter (g/cc).
4. The method of claim 1, wherein the impermeable dispersed solid is impermeable to a gas.
5. The method of claim 4, wherein at least one of the polymer and the impermeable dispersed solid is electrostatically deposited onto the biomedical implant, wherein the polymer initially forms individual polymer nanoparticles that subsequently coalesce with adjacent polymer nanoparticles to form the coating.
6. The method of claim 1, comprising depositing 5, 10, 20, 50, or 100 layers of the polymer and the impermeable dispersed solid.
7. The method of claim 1, wherein depositing said impermeable dispersed solid provides improved adherence of the impermeable dispersed solid to at least one of the biomedical implant and the hydrophobic polymer.
8. The method of claim 1, wherein the oxygen transmission rate across the coating is at most about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%.
9. The method of claim 1 wherein the water vapor permeation through the coating is at most about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%.
10. The method of claim 1 wherein the small particle transmission rate across the coating is at most about 0.001%, 0.01%, 0.1%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%.
11. The method of claim 1, wherein said biomedical implant is selected from the group consisting of a stent, electrode, catheter, lead, implantable pacemaker, implantable cardioverter, a housing for an implantable pacemaker, a housing for an implantable defibrillator, a housing for an implantable cardioverter, sensor, drug delivery device, therapy delivery device, device comprising telemetry capability, device comprising electrical impulses, diagnostic device, measurement device, joint, screw, rod, ophthalmic implant, femoral pin, bone plate, graft, anastomotic device, perivascular wrap, suture, staple, shunts for hydrocephalus, dialysis graft, colostomy bag attachment device, ear drainage tube, lead for pace makers and implantable cardioverters and defibrillators, vertebral disk, bone pin, suture anchor, hemostatic barrier, clamp, screws, plate, clip, vascular implant, tissue adhesive, sealant, tissue scaffolds, shunts, opthalmic implant, prosthetic, shunt, urologic implant, reproductive anatomy device, gastrologic device, neurologic lead, neurologic device, various types of dressings, bone substitutes, intraluminal devices, and vascular supports.
12. The method of claim 1, wherein the coating is substantially impermeable to leachants from the biomedical implant.
13. The method of claim 1, wherein the impermeable dispersed solid comprises a nanoparticle that is impervious to small molecule transport, wherein said nanoparticle comprises ceramic, metal, clay, silica, silicon, or metal-oxide.
14. The method of claim 13, wherein said nanoparticle comprises titanium oxide.
15. The method of claim 1, wherein the impermeable dispersed solid comprises an inorganic particle of a micron or sub-micron size.
16. The method of claim 1, wherein a third layer is deposited on said biomedical implant comprising a hydrophobic polymer and the third layer is sintered under conditions that do not substantially disrupt the activity and/or function of the biomedical implant.
17. A method for depositing a coating comprising a hydrophobic polymer on a biomedical implant, comprising the following steps:
forming a coating by
a) discharging at least one hydrophobic polymer in dry powder form through a first orifice;
b) depositing the hydrophobic polymer onto said biomedical implant, wherein an electrical potential is maintained between the biomedical implant and the polymer particles, thereby forming said coating;
c) discharging at least one impermeable dispersed solid in dry powder form through a second orifice;
d) depositing the impermeable dispersed solid onto said biomedical implant, wherein an electrical potential is maintained between the biomedical implant and the impermeable dispersed solid particles; and
e) sintering said coating under conditions that do not substantially disrupt the activity and/or function of the biomedical implant;
wherein the coating substantially seals the biomedical implant.
18. The method of claim 17, wherein the oxygen transmission rate across the coating is at most about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%.
19. The method of claim 17 wherein the water vapor permeation through the coating is at most about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%.
20. The method of claim 17 wherein the small particle transmission rate across the coating is at most about 0.001%, 0.01%, 0.1%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%.
21. The method of claim 17, wherein said biomedical implant is selected from the group consisting of a stent, electrode, catheter, lead, implantable pacemaker, implantable cardioverter, a housing for an implantable pacemaker, a housing for an implantable defibrillator, a housing for an implantable cardioverter, sensor, drug delivery device, therapy delivery device, device comprising telemetry capability, device comprising electrical impulses, diagnostic device, measurement device, joint, screw, rod, ophthalmic implant, femoral pin, bone plate, graft, anastomotic device, perivascular wrap, suture, staple, shunts for hydrocephalus, dialysis graft, colostomy bag attachment device, ear drainage tube, lead for pace makers and implantable cardioverters and defibrillators, vertebral disk, bone pin, suture anchor, hemostatic barrier, clamp, screws, plate, clip, vascular implant, tissue adhesive, sealant, tissue scaffolds, shunts, opthalmic implant, prosthetic, shunt, urologic implant, reproductive anatomy device, gastrologic device, neurologic lead, neurologic device, various types of dressings, bone substitutes, intraluminal devices, and vascular supports.
22. The method of claim 17, wherein the impermeable dispersed solid is impermeable to a gas, wherein the impermeable dispersed solid is electrostatically deposited onto the biomedical implant.
23. The method of claim 22, wherein the coating comprises a microstructure; wherein the impermeable dispersed solid is sequestered within said microstructure.
24. The method of claim 17, wherein the polymer layer has a bulk density of at least about 1.00 grams per cubic centimeter (g/cc).
25. The method of claim 24, wherein the polymer has a bulk density of at least about one of 1.01, 1.02, 1.03, 1.05, 1.06, 1.07, 1.08, 1.09, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05, 20.6, 20.7, 20.8, 20.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.30, 2.31, 2.32, 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.39, 2.40 grams per cubic centimeter (g/cc).
US12601101 2007-05-25 2008-12-04 Polymer films for medical device coating Active 2028-10-25 US8900651B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US94036507 true 2007-05-25 2007-05-25
US97937507 true 2007-10-11 2007-10-11
PCT/US2008/064732 WO2008148013A1 (en) 2007-05-25 2008-05-23 Polymer films for medical device coating
US12601101 US8900651B2 (en) 2007-05-25 2008-12-04 Polymer films for medical device coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12601101 US8900651B2 (en) 2007-05-25 2008-12-04 Polymer films for medical device coating

Publications (2)

Publication Number Publication Date
US20100228348A1 true US20100228348A1 (en) 2010-09-09
US8900651B2 true US8900651B2 (en) 2014-12-02

Family

ID=40075522

Family Applications (1)

Application Number Title Priority Date Filing Date
US12601101 Active 2028-10-25 US8900651B2 (en) 2007-05-25 2008-12-04 Polymer films for medical device coating

Country Status (6)

Country Link
US (1) US8900651B2 (en)
EP (1) EP2170418B1 (en)
JP (1) JP2010527746A (en)
CN (1) CN101815540B (en)
CA (1) CA2688314C (en)
WO (1) WO2008148013A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9415142B2 (en) 2006-04-26 2016-08-16 Micell Technologies, Inc. Coatings containing multiple drugs
US9433516B2 (en) 2007-04-17 2016-09-06 Micell Technologies, Inc. Stents having controlled elution
US9486431B2 (en) 2008-07-17 2016-11-08 Micell Technologies, Inc. Drug delivery medical device
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
WO2017044789A1 (en) 2015-09-09 2017-03-16 Micell Technologies, Inc. Biopharma application of micell technology
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2552735C (en) 2004-01-07 2012-09-11 Noxilizer, Inc. Sterilization system and device
US8017074B2 (en) 2004-01-07 2011-09-13 Noxilizer, Inc. Sterilization system and device
CA2667228C (en) 2006-10-23 2015-07-14 Micell Technologies, Inc. Holder for electrically charging a substrate during coating
EP2170418B1 (en) 2007-05-25 2016-03-16 Micell Technologies, Inc. Polymer films for medical device coating
US20090269480A1 (en) * 2008-04-24 2009-10-29 Medtronic Vascular, Inc. Supercritical Fluid Loading of Porous Medical Devices With Bioactive Agents
US8834913B2 (en) 2008-12-26 2014-09-16 Battelle Memorial Institute Medical implants and methods of making medical implants
WO2010096766A1 (en) 2009-02-23 2010-08-26 Noxilizer, Inc. Device and method for gas sterilization
EP2413847A4 (en) * 2009-04-01 2013-11-27 Micell Technologies Inc Coated stents
JP2010251745A (en) 2009-04-10 2010-11-04 Asml Netherlands Bv Immersion lithography device and device manufacturing method
US8795762B2 (en) 2010-03-26 2014-08-05 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
US8377365B2 (en) * 2010-04-29 2013-02-19 Medtronic Vascular, Inc. System and method for stent manufacture
US9636309B2 (en) 2010-09-09 2017-05-02 Micell Technologies, Inc. Macrolide dosage forms
US9913933B2 (en) 2013-03-15 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Multilayered catheter shaft containing polyvinylidene fluoride polymers
CN103272280A (en) * 2013-05-24 2013-09-04 南京大学医学院附属鼓楼医院 Method for modifying decellularized vascular stent or artificial blood vessel
US9345897B2 (en) * 2014-02-21 2016-05-24 Boston Scientific Neuromodulation Corporation Multi-layer covering for control modules of electrical implantable medical devices and methods of making and using
US9480777B2 (en) 2014-03-07 2016-11-01 Iconlab Inc. Multipurpose implant with modeled surface structure for soft tissue reconstruction

Citations (387)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087860A (en) 1958-12-19 1963-04-30 Abbott Lab Method of prolonging release of drug from a precompressed solid carrier
US3087660A (en) 1962-07-24 1963-04-30 Yankee Plasties Inc Two-step garment hanger
US3123077A (en) 1964-03-03 Surgical suture
US3457280A (en) 1967-06-12 1969-07-22 American Cyanamid Co Alpha-glycolide and methods for the isolation thereof
US3597449A (en) 1967-11-16 1971-08-03 American Cyanamid Co Stable glycolide and lactide composition
US3929992A (en) 1972-09-29 1975-12-30 Ayerst Mckenna & Harrison Rapamycin and process of preparation
US4000137A (en) 1975-06-10 1976-12-28 American Home Products Corporation Antitumor derivatives of periodate-oxidized nucleosides
US4285987A (en) * 1978-10-23 1981-08-25 Alza Corporation Process for manufacturing device with dispersion zone
US4326532A (en) 1980-10-06 1982-04-27 Minnesota Mining And Manufacturing Company Antithrombogenic articles
US4582731A (en) 1983-09-01 1986-04-15 Battelle Memorial Institute Supercritical fluid molecular spray film deposition and powder formation
US4655771A (en) 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4734451A (en) 1983-09-01 1988-03-29 Battelle Memorial Institute Supercritical fluid molecular spray thin films and fine powders
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4734227A (en) 1983-09-01 1988-03-29 Battelle Memorial Institute Method of making supercritical fluid molecular spray films, powder and fibers
US4931037A (en) 1988-10-13 1990-06-05 International Medical, Inc. In-dwelling ureteral stent and injection stent assembly, and method of using same
US4950239A (en) 1988-08-09 1990-08-21 Worldwide Medical Plastics Inc. Angioplasty balloons and balloon catheters
US4985625A (en) 1986-03-06 1991-01-15 Finnigan Corporation Transfer line for mass spectrometer apparatus
US5000519A (en) 1989-11-24 1991-03-19 John Moore Towed vehicle emergency brake control system
US5090419A (en) 1990-08-23 1992-02-25 Aubrey Palestrant Apparatus for acquiring soft tissue biopsy specimens
US5096848A (en) 1990-02-23 1992-03-17 Sharp Kabushiki Kaisha Method for forming semiconductor device isolating regions
US5106650A (en) 1988-07-14 1992-04-21 Union Carbide Chemicals & Plastics Technology Corporation Electrostatic liquid spray application of coating with supercritical fluids as diluents and spraying from an orifice
US5158986A (en) 1991-04-05 1992-10-27 Massachusetts Institute Of Technology Microcellular thermoplastic foamed with supercritical fluid
US5195969A (en) 1991-04-26 1993-03-23 Boston Scientific Corporation Co-extruded medical balloons and catheter using such balloons
US5243023A (en) 1991-08-28 1993-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Polyimides containing amide and perfluoroisopropylidene connecting groups
US5270086A (en) 1989-09-25 1993-12-14 Schneider (Usa) Inc. Multilayer extrusion of angioplasty balloons
US5288711A (en) 1992-04-28 1994-02-22 American Home Products Corporation Method of treating hyperproliferative vascular disease
US5324049A (en) 1992-12-23 1994-06-28 Xerox Corporation Mandrel with flared, dish shaped disk and process for using mandrel
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5340614A (en) 1993-02-11 1994-08-23 Minnesota Mining And Manufacturing Company Methods of polymer impregnation
US5342621A (en) 1992-09-15 1994-08-30 Advanced Cardiovascular Systems, Inc. Antithrombogenic surface
US5350627A (en) 1993-06-11 1994-09-27 Camelot Technologies, Inc. Coated webs
US5350361A (en) 1993-11-10 1994-09-27 Medtronic, Inc. Tri-fold balloon for dilatation catheter and related method
US5356433A (en) 1991-08-13 1994-10-18 Cordis Corporation Biocompatible metal surfaces
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5368045A (en) 1989-07-18 1994-11-29 Boston Scientific Corporation Biopsy needle instrument
JPH0698902B2 (en) 1986-01-30 1994-12-07 マツダ株式会社 Transmission torque control apparatus for a vehicle
US5372676A (en) * 1991-05-15 1994-12-13 Lowe; Michael Method for producing replicated paving stone
US5385776A (en) * 1992-11-16 1995-01-31 Alliedsignal Inc. Nanocomposites of gamma phase polymers containing inorganic particulate material
US5403347A (en) 1993-05-27 1995-04-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
WO1995006487A3 (en) 1993-08-30 1995-04-06 Neal E Fearnot Intravascular medical device
US5470603A (en) 1991-02-22 1995-11-28 Hoechst Uk Limited Electrostatic coating of substrates of medicinal products
US5494620A (en) 1993-11-24 1996-02-27 United States Surgical Corporation Method of manufacturing a monofilament suture
US5500180A (en) 1992-09-30 1996-03-19 C. R. Bard, Inc. Method of making a distensible dilatation balloon using a block copolymer
US5556383A (en) 1994-03-02 1996-09-17 Scimed Lifesystems, Inc. Block copolymer elastomer catheter balloons
US5562922A (en) 1993-03-18 1996-10-08 Cedars-Sinai Medical Center Drug incorporating and release polymeric coating for bioprosthesis
US5569463A (en) 1990-05-17 1996-10-29 Harbor Medical Devices, Inc. Medical device polymer
JPH0956807A (en) 1995-08-22 1997-03-04 Kanegafuchi Chem Ind Co Ltd Stent adhered and coated with medicine and its production
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5626862A (en) 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
US5626611A (en) 1994-02-10 1997-05-06 United States Surgical Corporation Composite bioabsorbable materials and surgical articles made therefrom
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
WO1997045502A1 (en) 1996-05-31 1997-12-04 Toto Ltd. Antifouling member and antifouling coating composition
WO1996020698A3 (en) 1995-01-05 1998-01-22 Univ Michigan Surface-modified nanoparticles and method of making and using same
US5725570A (en) 1992-03-31 1998-03-10 Boston Scientific Corporation Tubular medical endoprostheses
US5800511A (en) 1993-01-19 1998-09-01 Schneider (Usa) Inc Clad composite stent
US5811032A (en) 1995-09-19 1998-09-22 Mitsubishi Gas Chemical Company, Inc. Biodegradable water-soluble polymer
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US5876426A (en) 1996-06-13 1999-03-02 Scimed Life Systems, Inc. System and method of providing a blood-free interface for intravascular light delivery
US5924631A (en) 1996-07-10 1999-07-20 Sames Sa Triboelectric projector, installation for projecting coating product and process for controlling such a projector
US5948020A (en) 1995-05-01 1999-09-07 Sam Yang Co., Ltd. Implantable bioresorbable membrane and method for the preparation thereof
US5957975A (en) 1997-12-15 1999-09-28 The Cleveland Clinic Foundation Stent having a programmed pattern of in vivo degradation
US6013855A (en) 1996-08-06 2000-01-11 United States Surgical Grafting of biocompatible hydrophilic polymers onto inorganic and metal surfaces
EP0982041A1 (en) 1998-08-21 2000-03-01 Medtronic Ave, Inc. Thromboresistant coating using silanes or siloxanes
US6077880A (en) 1997-08-08 2000-06-20 Cordis Corporation Highly radiopaque polyolefins and method for making the same
US6129755A (en) 1998-01-09 2000-10-10 Nitinol Development Corporation Intravascular stent having an improved strut configuration
US6143037A (en) 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
US6143314A (en) 1998-10-28 2000-11-07 Atrix Laboratories, Inc. Controlled release liquid delivery compositions with low initial drug burst
US6146404A (en) 1999-09-03 2000-11-14 Scimed Life Systems, Inc. Removable thrombus filter
US6146356A (en) 1994-03-02 2000-11-14 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6171327B1 (en) 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6190699B1 (en) 1998-05-08 2001-02-20 Nzl Corporation Method of incorporating proteins or peptides into a matrix and administration thereof through mucosa
US6206914B1 (en) 1998-04-30 2001-03-27 Medtronic, Inc. Implantable system with drug-eluting cells for on-demand local drug delivery
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US6245104B1 (en) 1999-02-28 2001-06-12 Inflow Dynamics Inc. Method of fabricating a biocompatible stent
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6284758B1 (en) 1997-08-28 2001-09-04 Welfide Corporation Angiogenesis promoters and angiogenesis potentiators
US20010026804A1 (en) 2000-01-18 2001-10-04 Francois Boutignon Compressed microparticles for dry injection
US6309669B1 (en) 1984-03-16 2001-10-30 The United States Of America As Represented By The Secretary Of The Army Therapeutic treatment and prevention of infections with a bioactive materials encapsulated within a biodegradable-biocompatible polymeric matrix
US6319541B1 (en) 1995-06-06 2001-11-20 Delsys Pharmaceutical Corporation Method and apparatus for electrostatically depositing a medicament powder upon predefined regions of a substrate
US20010044629A1 (en) 1998-07-27 2001-11-22 Schneider (Usa), Inc. Neuroaneurysm occlusion and delivery device and method of using same
WO2001087372A1 (en) 2000-05-12 2001-11-22 Cordis Corporation Drug combinations useful for prevention of restenosis
US20010049551A1 (en) 1999-03-19 2001-12-06 David Tseng Polymer coated stent
US6336934B1 (en) 1997-11-07 2002-01-08 Salviac Limited Embolic protection device
US20020007209A1 (en) 2000-03-06 2002-01-17 Scheerder Ivan De Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US6342062B1 (en) 1998-09-24 2002-01-29 Scimed Life Systems, Inc. Retrieval devices for vena cava filter
WO2001087371A3 (en) 2000-05-12 2002-03-07 Advanced Bio Prosthetic Surfac Self-supporting laminated films, structural materials and medical devices
US6355691B1 (en) 1998-11-12 2002-03-12 Tobias M. Goodman Urushiol therapy of transitional cell carcinoma of the bladder
US6368658B1 (en) 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension
EP1195822A2 (en) 2000-09-01 2002-04-10 Itochu Corporation Lithium based battery with extensible cover
US6372246B1 (en) 1998-12-16 2002-04-16 Ortho-Mcneil Pharmaceutical, Inc. Polyethylene glycol coating for electrostatic dry deposition of pharmaceuticals
US20020051845A1 (en) 2000-05-16 2002-05-02 Mehta Deepak B. Process for coating stents and other medical devices using super-critical carbon dioxide
US6387121B1 (en) 1996-10-21 2002-05-14 Inflow Dynamics Inc. Vascular and endoluminal stents with improved coatings
WO2002043799A1 (en) 2000-11-30 2002-06-06 Kabushikikaisha Igaki Iryo Sekkei Stent for blood vessel and material for stent for blood vessel
US6409716B1 (en) 1989-12-15 2002-06-25 Scimed Life Systems, Inc. Drug delivery
US20020082680A1 (en) 2000-10-16 2002-06-27 Shanley John F. Expandable medical device for delivery of beneficial agent
US6414050B1 (en) 1997-05-10 2002-07-02 University Of Nottingham Biofunctional polymers prepared in supercritical fluid
US6416779B1 (en) 1997-06-11 2002-07-09 Umd, Inc. Device and method for intravaginal or transvaginal treatment of fungal, bacterial, viral or parasitic infections
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US20020099332A1 (en) 1988-08-24 2002-07-25 Slepian Marvin J. Biodegradable polymeric endoluminal sealing process, apparatus and polymeric products for use therein
US6448315B1 (en) 1999-02-17 2002-09-10 Bone Support Ab Method for the preparation of UHMWPE doped with an antioxidant and an implant made thereof
US20020125860A1 (en) 2001-02-14 2002-09-12 Ernst Schworm Mains-independent power supply unit
US20020133072A1 (en) 1999-09-10 2002-09-19 Guo-Bin Wang Graft polymerization of substrate surfaces
US6461644B1 (en) 1996-03-25 2002-10-08 Richard R. Jackson Anesthetizing plastics, drug delivery plastics, and related medical products, systems and methods
US20020144757A1 (en) 2000-07-07 2002-10-10 Craig Charles Horace Stainless steel alloy with improved radiopaque characteristics
WO2002090085A8 (en) 2001-05-04 2002-12-12 Juan C Cardona Injection molding systems and methods
US6495163B1 (en) * 1994-07-12 2002-12-17 Bpsi Holdings, Inc. Moisture barrier film coating composition, method and coated form
US6497729B1 (en) 1998-11-20 2002-12-24 The University Of Connecticut Implant coating for control of tissue/implant interactions
US20030001830A1 (en) 2001-06-29 2003-01-02 Wampler Scott D. Dynamic device for billboard advertising
US6506213B1 (en) 2000-09-08 2003-01-14 Ferro Corporation Manufacturing orthopedic parts using supercritical fluid processing techniques
US6517860B1 (en) 1996-12-31 2003-02-11 Quadrant Holdings Cambridge, Ltd. Methods and compositions for improved bioavailability of bioactive agents for mucosal delivery
US20030031699A1 (en) 2002-09-30 2003-02-13 Medtronic Minimed, Inc. Polymer compositions containing bioactive agents and methods for their use
US6521258B1 (en) 2000-09-08 2003-02-18 Ferro Corporation Polymer matrices prepared by supercritical fluid processing techniques
US6524698B1 (en) 1990-09-27 2003-02-25 Helmuth Schmoock Fluid impermeable foil
US6537310B1 (en) 1999-11-19 2003-03-25 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable devices and method of making same
US6541033B1 (en) 1998-06-30 2003-04-01 Amgen Inc. Thermosensitive biodegradable hydrogels for sustained delivery of leptin
US20030077200A1 (en) 2000-07-07 2003-04-24 Craig Charles H. Enhanced radiopaque alloy stent
US20030088307A1 (en) 2001-11-05 2003-05-08 Shulze John E. Potent coatings for stents
US6572813B1 (en) 2000-01-13 2003-06-03 Advanced Cardiovascular Systems, Inc. Balloon forming process
US20030125800A1 (en) 2001-11-05 2003-07-03 Shulze John E. Drug-delivery endovascular stent and method for treating restenosis
JP2003205037A (en) 2002-01-08 2003-07-22 Translumina Gmbh Coating system
US20030143315A1 (en) 2001-05-16 2003-07-31 Pui David Y H Coating medical devices
US6610013B1 (en) 1999-10-01 2003-08-26 Life Imaging Systems, Inc. 3D ultrasound-guided intraoperative prostate brachytherapy
US20030170305A1 (en) 2000-09-01 2003-09-11 O'neil Alexander George B. Slow release pharmaceutical preparation and method of administering same
US20030180376A1 (en) 2001-03-02 2003-09-25 Dalal Paresh S. Porous beta-tricalcium phosphate granules and methods for producing same
US20030185964A1 (en) * 2002-03-28 2003-10-02 Jan Weber Method for spray-coating a medical device having a tubular wall such as a stent
US20030204238A1 (en) 2002-04-26 2003-10-30 Eugene Tedeschi Coated stent with crimpable coating
JP2003533492A (en) 2000-05-17 2003-11-11 サムヤン コーポレイション Pharmaceutical composition of the stable polymer micelle form and production method thereof
US6649627B1 (en) 1998-06-18 2003-11-18 Sanofi-Synthelabo Phenoxylpropanolamines, method for the production thereof and pharmaceutical compositions containing the same
US20030222018A1 (en) 2002-05-28 2003-12-04 Battelle Memorial Institute Methods for producing films using supercritical fluid
US20030222017A1 (en) 2002-05-28 2003-12-04 Battelle Memorial Institute Electrostatic deposition of particles generated from rapid expansion of supercritical fluid solutions
US6660176B2 (en) 2001-01-24 2003-12-09 Virginia Commonwealth University Molecular imprinting of small particles, and production of small particles from solid state reactants
WO2003101624A1 (en) 2002-05-28 2003-12-11 Battelle Memorial Institute Electrostatic deposition of particles generated from rapid expansion of supercritical fluid solutions
US20030232014A1 (en) 2002-03-01 2003-12-18 Mds Proteomics Inc. Phosphorylated proteins and uses related thereto
US6669785B2 (en) 2002-05-15 2003-12-30 Micell Technologies, Inc. Methods and compositions for etch cleaning microelectronic substrates in carbon dioxide
US6669980B2 (en) 2001-09-18 2003-12-30 Scimed Life Systems, Inc. Method for spray-coating medical devices
CN1465410A (en) 2002-06-27 2004-01-07 微创医疗器械(上海)有限公司 Drug-eluting stent (DES) with multicoating
WO2002040702A3 (en) 2000-11-09 2004-01-08 Univ Vanderbilt Methods for the treatment of cancer and other diseases and methods of developing the same
US20040013792A1 (en) 2002-07-19 2004-01-22 Samuel Epstein Stent coating holders
US6682757B1 (en) 2000-11-16 2004-01-27 Euro-Celtique, S.A. Titratable dosage transdermal delivery system
US20040018228A1 (en) 2000-11-06 2004-01-29 Afmedica, Inc. Compositions and methods for reducing scar tissue formation
US20040022853A1 (en) 2001-04-26 2004-02-05 Control Delivery Systems, Inc. Polymer-based, sustained release drug delivery system
US20040044397A1 (en) 2002-08-28 2004-03-04 Stinson Jonathan S. Medical devices and methods of making the same
US6706283B1 (en) 1999-02-10 2004-03-16 Pfizer Inc Controlled release by extrusion of solid amorphous dispersions of drugs
US6710059B1 (en) 1999-07-06 2004-03-23 Endorecherche, Inc. Methods of treating and/or suppressing weight gain
US20040059290A1 (en) 2002-09-24 2004-03-25 Maria Palasis Multi-balloon catheter with hydrogel coating
US6720003B2 (en) 2001-02-16 2004-04-13 Andrx Corporation Serotonin reuptake inhibitor formulations
US6726712B1 (en) 1999-05-14 2004-04-27 Boston Scientific Scimed Prosthesis deployment device with translucent distal end
KR20040034064A (en) 2002-10-21 2004-04-28 한국과학기술연구원 Blood compatible metallic materials and preparation thereof
US6736996B1 (en) 1997-10-10 2004-05-18 North Carolina State University Compositions for protecting civil infrastructure
WO2004043506A1 (en) 2002-11-14 2004-05-27 Synecor, Llc. Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
US6743505B2 (en) 2001-07-27 2004-06-01 Ethicon, Inc. Bioabsorbable multifilament yarn and methods of manufacture
US20040106982A1 (en) 1999-03-16 2004-06-03 Jalisi Marc M. Multilayer stent
JP2004518458A (en) 2000-09-29 2004-06-24 コーディス・コーポレイションCordis Corporation Coated medical devices
JP2004173770A (en) 2002-11-25 2004-06-24 Terumo Corp In vivo implanting medical appliance
US20040122205A1 (en) 2002-12-18 2004-06-24 Aruna Nathan Alkyd-lactone copolymers for medical applications
US6756084B2 (en) 2002-05-28 2004-06-29 Battelle Memorial Institute Electrostatic deposition of particles generated from rapid expansion of supercritical fluid solutions
US6755871B2 (en) 1999-10-15 2004-06-29 R.R. Street & Co. Inc. Cleaning system utilizing an organic cleaning solvent and a pressurized fluid solvent
US20040126542A1 (en) 2002-07-29 2004-07-01 Nitto Denko Corporation Pressure-sensitive adhesive tape or sheet
WO2003039553B1 (en) 2001-11-09 2004-07-08 Pharmacia Corp Compositions for treatment of postmenopausal female sexual dysfunction
US20040143317A1 (en) 2003-01-17 2004-07-22 Stinson Jonathan S. Medical devices
US6767558B2 (en) 2000-03-10 2004-07-27 Pfizer Inc. Inhibiting oxidative degradation of pharmaceutical formulations
US20040157789A1 (en) 2002-12-23 2004-08-12 Vical Incorporated. Method for freeze-drying nucleic acid/block copolymer/cationic surfactant complexes
WO2004028589A3 (en) 2002-09-26 2004-08-26 Endovascular Devices Inc Apparatus and method for delivery of mitomycin through an eluting biocompatible implantable medical device
US20040170685A1 (en) 2003-02-26 2004-09-02 Medivas, Llc Bioactive stents and methods for use thereof
EP1454677A2 (en) 2002-12-06 2004-09-08 Eastman Kodak Company Method for producing patterned deposition from compressed fluid
US6794902B2 (en) 2002-06-14 2004-09-21 Sun Microsystems, Inc. Virtual ground circuit
US20040193262A1 (en) 2003-03-29 2004-09-30 Shadduck John H. Implants for treating ocular hypertension, methods of use and methods of fabrication
US20040193177A1 (en) 2003-03-31 2004-09-30 Houghton Michael J. Modified delivery device for coated medical devices
US6800663B2 (en) 2002-10-18 2004-10-05 Alkermes Controlled Therapeutics Inc. Ii, Crosslinked hydrogel copolymers
WO2004045450A3 (en) 2002-11-15 2004-10-07 Synecor Llc Improved endoprostheses and methods of manufacture
US20040220660A1 (en) 2001-02-05 2004-11-04 Shanley John F. Bioresorbable stent with beneficial agent reservoirs
US6815218B1 (en) 1999-06-09 2004-11-09 Massachusetts Institute Of Technology Methods for manufacturing bioelectronic devices
US20040224001A1 (en) 2003-05-08 2004-11-11 Pacetti Stephen D. Stent coatings comprising hydrophilic additives
WO2004098574A1 (en) 2003-05-06 2004-11-18 The Queen's University Of Belfast Nanocomposite drug delivery composition
US20040236416A1 (en) 2003-05-20 2004-11-25 Robert Falotico Increased biocompatibility of implantable medical devices
US20040260000A1 (en) * 2003-06-23 2004-12-23 Chaiko David J. Polyolefin nanocomposites
US6838528B2 (en) 2001-01-19 2005-01-04 Nektar Therapeutics Al, Corporation Multi-arm block copolymers as drug delivery vehicles
US6837611B2 (en) 2001-12-28 2005-01-04 Metal Industries Research & Development Centre Fluid driven agitator used in densified gas cleaning system
US6838089B1 (en) 1998-04-14 2005-01-04 Astrazeneca Ab Antigen delivery system and method of production
US20050004661A1 (en) 2001-01-11 2005-01-06 Lewis Andrew L Stens with drug-containing amphiphilic polymer coating
US20050003074A1 (en) 1996-11-13 2005-01-06 Phoqus Pharmaceuticals Limited Method and apparatus for the coating of substrates for pharmaceutical use
US20050010275A1 (en) 2002-10-11 2005-01-13 Sahatjian Ronald A. Implantable medical devices
US20050015046A1 (en) 2003-07-18 2005-01-20 Scimed Life Systems, Inc. Medical devices and processes for preparing same
US20050019747A1 (en) 2002-08-07 2005-01-27 Anderson Daniel G. Nanoliter-scale synthesis of arrayed biomaterials and screening thereof
US20050038498A1 (en) 2003-04-17 2005-02-17 Nanosys, Inc. Medical device applications of nanostructured surfaces
US6858598B1 (en) 1998-12-23 2005-02-22 G. D. Searle & Co. Method of using a matrix metalloproteinase inhibitor and one or more antineoplastic agents as a combination therapy in the treatment of neoplasia
JP2005505318A (en) 2001-06-13 2005-02-24 ボストン サイエンティフィック リミテッド The use of supercritical fluids for injecting the drug into the medical device
US6860123B1 (en) 1999-03-19 2005-03-01 Aktiebolaget Electrolux Apparatus for cleaning textiles with a densified liquid treatment gas
US20050048121A1 (en) 2003-06-04 2005-03-03 Polymerix Corporation High molecular wegiht polymers, devices and method for making and using same
US20050049694A1 (en) 2003-08-07 2005-03-03 Medtronic Ave. Extrusion process for coating stents
US20050070990A1 (en) 2003-09-26 2005-03-31 Stinson Jonathan S. Medical devices and methods of making same
US20050069630A1 (en) 2003-09-30 2005-03-31 Advanced Cardiovascular Systems, Inc. Stent mandrel fixture and method for selectively coating surfaces of a stent
US20050075714A1 (en) 2003-09-24 2005-04-07 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US20050079274A1 (en) 2003-10-14 2005-04-14 Maria Palasis Method for coating multiple stents
US20050079199A1 (en) 2003-02-18 2005-04-14 Medtronic, Inc. Porous coatings for drug release from medical devices
US20050084533A1 (en) 2002-03-13 2005-04-21 Howdle Steven M. Polymer composite with internally distributed deposition matter
US6884377B1 (en) 1996-08-27 2005-04-26 Trexel, Inc. Method and apparatus for microcellular polymer extrusion
US6884823B1 (en) 1997-01-16 2005-04-26 Trexel, Inc. Injection molding of polymeric material
WO2005042623A1 (en) 2003-10-23 2005-05-12 University Of Nottingham Preparing active polymer extrudates
US6897205B2 (en) 2001-01-31 2005-05-24 Roehm Gmbh & Co. Kg Multi-particulate form of medicament, comprising at least two differently coated forms of pellet
US6905555B2 (en) 2001-02-15 2005-06-14 Micell Technologies, Inc. Methods for transferring supercritical fluids in microelectronic and other industrial processes
US20050131513A1 (en) 2003-12-16 2005-06-16 Cook Incorporated Stent catheter with a permanently affixed conductor
US6908624B2 (en) 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US20050147734A1 (en) 2004-01-07 2005-07-07 Jan Seppala Method and system for coating tubular medical devices
US6923979B2 (en) 1999-04-27 2005-08-02 Microdose Technologies, Inc. Method for depositing particles onto a substrate using an alternating electric field
US20050166841A1 (en) 2004-01-30 2005-08-04 Todd Robida Clamping fixture for coating stents, system using the fixture, and method of using the fixture
US20050177223A1 (en) 2003-09-18 2005-08-11 Palmaz Julio C. Medical devices having MEMs functionality and methods of making same
US20050175772A1 (en) 2004-02-10 2005-08-11 Robert Worsham Apparatus and method for electrostatic spray coating of medical devices
US20050191491A1 (en) 2003-04-08 2005-09-01 Yulu Wang Polymer coating/encapsulation of nanoparticles using a supercritical antisolvent process
US6939569B1 (en) 1998-06-19 2005-09-06 Oxibio, Inc. Medical device having anti-infective and contraceptive properties
US20050196424A1 (en) 2003-05-02 2005-09-08 Chappa Ralph A. Medical devices and methods for producing the same
WO2005063319A8 (en) 2003-12-24 2005-09-09 Michael Ausborn Parmaceutical compositions
US20050208102A1 (en) 2003-04-09 2005-09-22 Schultz Clyde L Hydrogels used to deliver medicaments to the eye for the treatment of posterior segment diseases
US20050216075A1 (en) 2003-04-08 2005-09-29 Xingwu Wang Materials and devices of enhanced electromagnetic transparency
JP2005296690A (en) 1996-06-13 2005-10-27 Schneider Usa Inc Stent coating for releasing medicine and method therefor
US20050238829A1 (en) 2004-04-22 2005-10-27 John Motherwell Differentially coated medical devices, system for differentially coating medical devices, and coating method
US20050255327A1 (en) 2004-05-14 2005-11-17 Bryce Chaney Articles having bioactive surfaces and solvent-free methods of preparation thereof
US20050260186A1 (en) 2003-03-05 2005-11-24 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
US20050268573A1 (en) * 2004-01-20 2005-12-08 Avantec Vascular Corporation Package of sensitive articles
US6973718B2 (en) * 2001-05-30 2005-12-13 Microchips, Inc. Methods for conformal coating and sealing microchip reservoir devices
WO2005117942A2 (en) 2004-05-14 2005-12-15 The Regents Of The University Of Michigan Methods for encapsulation of biomacromolecules in polymers
JP2004529674T5 (en) 2005-12-22
US20050288481A1 (en) 2004-04-30 2005-12-29 Desnoyer Jessica R Design of poly(ester amides) for the control of agent-release from polymeric compositions
US20060001011A1 (en) 2004-07-02 2006-01-05 Wilson Neil R Surface conditioner for powder coating systems
US20060020325A1 (en) 2004-07-26 2006-01-26 Robert Burgermeister Material for high strength, controlled recoil stent
US20060030652A1 (en) * 2004-08-06 2006-02-09 Paul Adams Fuel supplies for fuel cells
US20060045901A1 (en) 2004-08-26 2006-03-02 Jan Weber Stents with drug eluting coatings
US20060094744A1 (en) 2004-09-29 2006-05-04 Maryanoff Cynthia A Pharmaceutical dosage forms of stable amorphous rapamycin like compounds
US20060093771A1 (en) 2002-02-15 2006-05-04 Frantisek Rypacek Polymer coating for medical devices
WO2005069889A3 (en) 2004-01-15 2006-05-26 Accelr8 Technology Corp Hydroxyl functional surface coating
US20060121089A1 (en) 2002-03-20 2006-06-08 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
CA2589761A1 (en) 2004-12-07 2006-06-15 Surmodics, Inc. Coatings with crystallized active agent(s) and methods
US20060134211A1 (en) 2004-12-16 2006-06-22 Miv Therapeutics Inc. Multi-layer drug delivery device and method of manufacturing same
US20060136041A1 (en) 2004-12-17 2006-06-22 Schmid Eric V Slide-and-lock stent
US20060147698A1 (en) * 2002-06-13 2006-07-06 Kappler, Inc. Garments preventing transmission of human body odor
US20060153729A1 (en) 2005-01-13 2006-07-13 Stinson Jonathan S Medical devices and methods of making the same
US20060160455A1 (en) 2003-06-06 2006-07-20 Mitsubishi Chemical Corporation Water-absorbent article and method for producing the same
WO2006014534A3 (en) 2004-07-08 2006-07-20 Afmedica Inc Combination drug therapy for reducing scar tissue formation
WO2006083796A2 (en) 2005-01-31 2006-08-10 Nanoset, Llc Novel composition with magnetic nanoparticles
US20060188547A1 (en) 2005-01-28 2006-08-24 Bezwada Biomedical, Llc Bioabsorbable and biocompatible polyurethanes and polyamides for medical devices
WO2006065685A3 (en) 2004-12-16 2006-08-24 Advanced Cardiovascular System Abluminal, multilayer coating constructs for drug-delivery stents
US20060193890A1 (en) 2002-11-13 2006-08-31 Owens Gary K Method for loading nanoporous layers with therapeutic agent
US20060198868A1 (en) 2005-01-05 2006-09-07 Dewitt David M Biodegradable coating compositions comprising blends
US20060210638A1 (en) 2005-03-17 2006-09-21 Elan Pharma International Limited Injectable compositions of nanoparticulate immunosuppressive compounds
WO2006099276A2 (en) 2005-03-14 2006-09-21 3M Innovative Properties Company Biocompatible polymer compounds for medicinal formulations
US20060216324A1 (en) 2004-03-26 2006-09-28 Stucke Sean M Composition and method for preparing biocompatible surfaces
WO2006052575A3 (en) 2004-11-04 2006-10-05 Boston Scient Scimed Inc Medical device for delivering therapeutic agents over different time periods
US20060222756A1 (en) 2000-09-29 2006-10-05 Cordis Corporation Medical devices, drug coatings and methods of maintaining the drug coatings thereon
US20060228415A1 (en) * 2003-08-08 2006-10-12 Biovail Laboratories International S.R.L. Modified release tablet of bupropion hydrochloride
US7148201B2 (en) 1996-10-17 2006-12-12 The Regents Of The University Of California Use of human plasma hyaluronidase in cancer treatment
US7152452B2 (en) 2002-12-26 2006-12-26 Advanced Cardiovascular Systems, Inc. Assembly for crimping an intraluminal device and method of use
WO2007002238A2 (en) 2005-06-22 2007-01-04 Micell Technologies Inc. Drug/polymer composite materials and methods of making the same
US7160592B2 (en) 2002-02-15 2007-01-09 Cv Therapeutics, Inc. Polymer coating for medical devices
US7163715B1 (en) 2001-06-12 2007-01-16 Advanced Cardiovascular Systems, Inc. Spray processing of porous medical devices
WO2007011708A2 (en) 2005-07-15 2007-01-25 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
WO2007011707A2 (en) 2005-07-15 2007-01-25 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US7169404B2 (en) 2003-07-30 2007-01-30 Advanced Cardiovasular Systems, Inc. Biologically absorbable coatings for implantable devices and methods for fabricating the same
US7171255B2 (en) 1995-07-26 2007-01-30 Computerized Medical Systems, Inc. Virtual reality 3D visualization for surgical procedures
US20070032864A1 (en) 1998-07-27 2007-02-08 Icon Interventional Systems, Inc. Thrombosis inhibiting graft
US20070038227A1 (en) 2005-08-12 2007-02-15 Massicotte J M Method and device for extracting objects from the body
US20070059350A1 (en) 2004-12-13 2007-03-15 Kennedy John P Agents for controlling biological fluids and methods of use thereof
US7201750B1 (en) 1992-01-07 2007-04-10 Arthrocare Corporation System for treating articular cartilage defects
US20070110888A1 (en) 2005-11-14 2007-05-17 Rajesh Radhakrishnan Coated and imprinted medical devices and methods of making the same
US20070123977A1 (en) 2000-03-15 2007-05-31 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
US20070123973A1 (en) 2001-10-26 2007-05-31 Roth Noah M Biodegradable device
US20070128274A1 (en) * 2005-08-03 2007-06-07 Jingxu Zhu Direct coating solid dosage forms using powdered materials
US7229837B2 (en) 2002-05-30 2007-06-12 Uchicago Argonne, Llc Enhanced photophysics of conjugated polymers
US20070148251A1 (en) 2005-12-22 2007-06-28 Hossainy Syed F A Nanoparticle releasing medical devices
WO2007092179A2 (en) 2006-01-27 2007-08-16 Med Institute, Inc. Device with nanocomposite coating for controlled drug release
US20070198081A1 (en) 2000-09-28 2007-08-23 Daniel Castro Poly(butylmethacrylate) and rapamycin coated stent
US20070196423A1 (en) 2005-11-21 2007-08-23 Med Institute, Inc. Implantable medical device coatings with biodegradable elastomer and releasable therapeutic agent
US20070203569A1 (en) 2006-02-24 2007-08-30 Robert Burgermeister Implantable device formed from polymer blends having modified molecular structures
US7282020B2 (en) 2001-04-24 2007-10-16 Microspherix Llc Deflectable implantation device and method of use
WO2007127363A2 (en) 2006-04-26 2007-11-08 Micell Technologies, Inc. Coatings containing multiple drugs
US20070259017A1 (en) 2006-05-05 2007-11-08 Medtronic Vascular, Inc. Medical Device Having Coating With Zeolite Drug Reservoirs
US20070280992A1 (en) 2004-10-04 2007-12-06 Qlt Usa, Inc. Sustained delivery formulations of rapamycin compounds
WO2007143609A2 (en) 2006-06-02 2007-12-13 Xtent, Inc. Use of plasma in formation of biodegradable stent coating
US7326734B2 (en) 2003-04-01 2008-02-05 The Regents Of The University Of California Treatment of bladder and urinary tract cancers
US20080051866A1 (en) 2003-02-26 2008-02-28 Chao Chin Chen Drug delivery devices and methods
US20080071359A1 (en) 2003-07-09 2008-03-20 Medtronic Vascular, Inc. Laminated Drug-Polymer Coated Stent Having Dipped Layers
US20080077232A1 (en) 2004-09-08 2008-03-27 Kaneka Corporation Stent for Placement in Body
US20080075753A1 (en) 2006-09-25 2008-03-27 Chappa Ralph A Multi-layered coatings and methods for controlling elution of active agents
WO2008046641A2 (en) 2006-10-19 2008-04-24 Schoemig Albert Coated implant
WO2008046642A2 (en) 2006-10-19 2008-04-24 Schoemig Albert Coated implant
US20080097575A1 (en) 2006-10-20 2008-04-24 Orbusneich Medical, Inc. Bioabsorbable Medical Device with Coating
US20080097591A1 (en) * 2006-10-20 2008-04-24 Biosensors International Group Drug-delivery endovascular stent and method of use
US20080095919A1 (en) 2006-10-23 2008-04-24 Mcclain James B Holder For Electrically Charging A Substrate During Coating
US20080107702A1 (en) 1997-11-24 2008-05-08 Morphoplant Gmbh Method for the Immobilization of Mediator Molecules on Inorganic and Metallic Implant Materials
US7378105B2 (en) 1997-09-26 2008-05-27 Abbott Laboratories Drug delivery systems, kits, and methods for administering zotarolimus and paclitaxel to blood vessel lumens
US20080124372A1 (en) 2006-06-06 2008-05-29 Hossainy Syed F A Morphology profiles for control of agent release rates from polymer matrices
US20080138375A1 (en) 2006-09-13 2008-06-12 Elixir Medical Corporation Macrocyclic lactone compounds and methods for their use
WO2008070996A1 (en) 2006-12-13 2008-06-19 Angiotech Pharmaceuticals Inc. Medical implants with a combination of compounds
WO2008086369A1 (en) 2007-01-08 2008-07-17 Micell Technologies, Inc. Stents having biodegradable layers
WO2008042909A3 (en) 2006-10-02 2008-08-07 Jim Mcclain Surgical sutures having increased strength
US20080206304A1 (en) 2007-02-27 2008-08-28 Boston Scientific Scimed, Inc. Medical devices having polymeric regions based on styrene-isobutylene copolymers
US7419696B2 (en) 1993-04-26 2008-09-02 Medtronic, Inc. Medical devices for delivering a therapeutic agent and method of preparation
US20080213464A1 (en) 2007-01-03 2008-09-04 Boston Scientific Scimed, Inc. Methods of applying coating to the inside surface of a stent
US7429378B2 (en) 2003-05-13 2008-09-30 Depuy Spine, Inc. Transdiscal administration of high affinity anti-MMP inhibitors
US20080255510A1 (en) 2006-11-20 2008-10-16 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
US7444162B2 (en) 2004-02-10 2008-10-28 Samsung Electronics Co., Ltd Apparatus and a method for distributing a transmission power in a cellular communications network
US20080269449A1 (en) 2007-01-23 2008-10-30 Ferro Pfanstiehl Laboratories, Inc. Methods for the purification of polymers
WO2008131131A1 (en) 2007-04-17 2008-10-30 Micell Technologies, Inc. Stents having biodegradable layers
US7455688B2 (en) 2004-11-12 2008-11-25 Con Interventional Systems, Inc. Ostial stent
US7456151B2 (en) 2004-07-14 2008-11-25 University Of Utah Research Foundation Promoting angiogenesis with netrin1 polypeptides
US20080292776A1 (en) 2005-12-09 2008-11-27 Aylvin Jorge Angelo Athanasius Dias Hydrophilic Coating
US20080300669A1 (en) 2007-05-29 2008-12-04 Hossainy Syed F A In situ trapping and delivery of agent by a stent having trans-strut depots
WO2008148013A1 (en) 2007-05-25 2008-12-04 Micell Technologies, Inc. Polymer films for medical device coating
US7462593B2 (en) 2002-11-07 2008-12-09 Us Gov Health & Human Serv Compositions and methods for promoting angiogenesis
US7485113B2 (en) 2001-06-22 2009-02-03 Johns Hopkins University Method for drug delivery through the vitreous humor
US20090043379A1 (en) 2002-01-10 2009-02-12 Margaret Forney Prescott Drug delivery systems for the prevention and treatment of vascular diseases
US20090068266A1 (en) 2007-09-11 2009-03-12 Raheja Praveen Sirolimus having specific particle size and pharmaceutical compositions thereof
US20090076446A1 (en) 2007-09-14 2009-03-19 Quest Medical, Inc. Adjustable catheter for dilation in the ear, nose or throat
US20090082855A1 (en) 2003-07-31 2009-03-26 John Borges Coating for controlled release of a therapeutic agent
US20090098178A1 (en) 2005-09-16 2009-04-16 Heinrich Hofmann Porous Coating Loaded with a Liquid or a Solid Substance
WO2009051780A1 (en) 2007-10-19 2009-04-23 Micell Technologies, Inc. Drug coated stents
US20090105809A1 (en) 2007-10-19 2009-04-23 Lee Michael J Implantable and lumen-supporting stents and related methods of manufacture and use
US7524865B2 (en) 1993-03-01 2009-04-28 Celgene Corporation Methods and compositions for treating an ocular neovascular disease
US20090111787A1 (en) 2007-10-31 2009-04-30 Florencia Lim Polymer blends for drug delivery stent matrix with improved thermal stability
US20090110711A1 (en) 2007-10-31 2009-04-30 Trollsas Mikael O Implantable device having a slow dissolving polymer
US7537785B2 (en) 1999-10-29 2009-05-26 Nitromed, Inc. Composition for treating vascular diseases characterized by nitric oxide insufficiency
US7537610B2 (en) 2000-12-27 2009-05-26 Advanced Cardiovascular Systems, Inc. Method and system for creating a textured surface on an implantable medical device
US7553827B2 (en) 2003-08-13 2009-06-30 Depuy Spine, Inc. Transdiscal administration of cycline compounds
US20090202609A1 (en) 2008-01-06 2009-08-13 Keough Steven J Medical device with coating composition
US20090216317A1 (en) 2005-03-23 2009-08-27 Cromack Keith R Delivery of Highly Lipophilic Agents Via Medical Devices
US20090227949A1 (en) 2008-03-06 2009-09-10 Boston Scientific Scimed, Inc. Balloon catheter devices with folded balloons
US20090231578A1 (en) 2007-05-17 2009-09-17 Jian Ling Multi-channel fiber optic spectroscopy systems employing integrated optics modules
US20090263460A1 (en) 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Medical devices and methods including polymers having biologically active agents therein
US20090285974A1 (en) 2008-05-15 2009-11-19 Kerrigan Cameron K Method for electrostatic coating of a medical device
US20090292351A1 (en) 2008-04-17 2009-11-26 Micell Technologies, Inc. Stents having bioabsorbable layers
US20090297578A1 (en) 2008-06-03 2009-12-03 Trollsas Mikael O Biosoluble coating comprising anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US20100015200A1 (en) 2008-07-17 2010-01-21 Micell Technologies, Inc. Drug Delivery Medical Device
US20100042206A1 (en) 2008-03-04 2010-02-18 Icon Medical Corp. Bioabsorbable coatings for medical devices
US20100055294A1 (en) 2008-08-29 2010-03-04 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
US20100055145A1 (en) 2008-08-29 2010-03-04 Biosensors International Group Stent coatings for reducing late stent thrombosis
US20100063570A1 (en) 2008-09-05 2010-03-11 Pacetti Stephen D Coating on a balloon comprising a polymer and a drug
US7713538B2 (en) 2001-01-11 2010-05-11 Abbott Laboratories Drug delivery from stents
EP2197070A1 (en) 2007-09-28 2010-06-16 Mitsubishi Heavy Industries, Ltd. Lithium secondary battery
US20100155496A1 (en) 2007-05-17 2010-06-24 Queen Mary & Westfield College Electrostatic spraying device and a method of electrostatic spraying
US20100166869A1 (en) 2007-05-03 2010-07-01 Desai Neil P Methods and compositions for treating pulmonary hypertension
WO2010075590A2 (en) 2008-12-26 2010-07-01 Battelle Memorial Institute Medical implants and methods of making medical implants
US7763277B1 (en) 1998-04-17 2010-07-27 Psimedica Limited Implants for administering substances and methods of producing implants
US20100198330A1 (en) 2009-02-02 2010-08-05 Hossainy Syed F A Bioabsorbable Stent And Treatment That Elicits Time-Varying Host-Material Response
US20100198331A1 (en) 2009-02-02 2010-08-05 Richard Rapoza Bioabsorbable Stent That Modulates Plaque Geometric Morphology And Chemical Composition
US20100196482A1 (en) 2007-04-04 2010-08-05 Massachusetts Institute Of Technology Polymer-encapsulated reverse micelles
US20100233332A1 (en) 2004-06-14 2010-09-16 Agrium Inc. Process and apparatus for producing a coated product
US20100239635A1 (en) 2009-03-23 2010-09-23 Micell Technologies, Inc. Drug delivery medical device
US20100241220A1 (en) 2009-03-23 2010-09-23 Mcclain James B Peripheral Stents Having Layers
WO2010111238A2 (en) 2009-03-23 2010-09-30 Micell Technologies, Inc. Improved biodegradable polymers
US20100256748A1 (en) 2009-04-01 2010-10-07 Micell Technologies, Inc. Coated stents
WO2010121187A2 (en) 2009-04-17 2010-10-21 Micell Techologies, Inc. Stents having controlled elution
US7837726B2 (en) 2005-03-14 2010-11-23 Abbott Laboratories Visible endoprosthesis
US20110009953A1 (en) 2009-07-09 2011-01-13 Andrew Luk Rapamycin reservoir eluting stent
WO2011009096A1 (en) 2009-07-16 2011-01-20 Micell Technologies, Inc. Drug delivery medical device
US20110034422A1 (en) 2007-10-05 2011-02-10 Wayne State University Dendrimers for sustained release of compounds
EP2293366A1 (en) 2009-08-27 2011-03-09 SB LiMotive Co., Ltd. Rechargeable secondary battery having improved safety against puncture and collapse
EP2293357A1 (en) 2008-05-08 2011-03-09 Nippon Steel Chemical Co., Ltd. Compound for organic electroluminescent elements and organic electroluminescent element
US7919108B2 (en) 2006-03-10 2011-04-05 Cook Incorporated Taxane coatings for implantable medical devices
US7955383B2 (en) 2006-04-25 2011-06-07 Medtronics Vascular, Inc. Laminated implantable medical device having a metallic coating
US20110160751A1 (en) 2006-06-06 2011-06-30 Luiz Gonzaga Granja Filho Extraluminal stent type prosthesis for anastomosis
US20110159069A1 (en) 2008-12-26 2011-06-30 Shaw Wendy J Medical Implants and Methods of Making Medical Implants
US7972661B2 (en) 1997-06-12 2011-07-05 Regents Of The University Of Minnesota Electrospraying method with conductivity control
US20110190864A1 (en) 2010-02-02 2011-08-04 Micell Technologies, Inc. Stent and stent delivery system with improved deliverability
WO2011119762A1 (en) 2010-03-26 2011-09-29 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
US20110257732A1 (en) 2010-04-16 2011-10-20 Micell Technologies, Inc. Stents having controlled elution
WO2011133655A1 (en) 2010-04-22 2011-10-27 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
US20110301697A1 (en) 2009-04-10 2011-12-08 Hemoteq Ag Manufacture, method and use of drug-eluting medical devices for permanently keeping blood vessels open
WO2012009684A2 (en) 2010-07-16 2012-01-19 Micell Technologies, Inc. Drug delivery medical device
US20120064143A1 (en) 2008-11-11 2012-03-15 The Board Of Regents Of The University Of Texas System Inhibition of mammalian target of rapamycin
US20120064124A1 (en) 2010-09-09 2012-03-15 Micell Technologies, Inc. Macrolide dosage forms
US20120065723A1 (en) 1999-05-03 2012-03-15 William Joseph Drasler Intravascular hinge stent
US20120101566A1 (en) 2009-06-22 2012-04-26 Biotronik Vi Patent Ag Stent having improved stent design
US20120150275A1 (en) 2010-12-10 2012-06-14 Micropen Technologies Corporation Stents and methods of making stents
WO2012082502A1 (en) 2010-12-17 2012-06-21 Advanced Technologies And Regenerative Medicine, Llc Tissue engineered blood vessels
WO2012092504A2 (en) 2010-12-30 2012-07-05 Micell Technologies, Inc. Nanoparticle and surface-modified particulate coatings, coated balloons, and methods therefore
WO2012142319A1 (en) 2011-04-13 2012-10-18 Micell Technologies, Inc. Stents having controlled elution
US20120271396A1 (en) 2007-01-19 2012-10-25 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US20120280432A1 (en) 2011-05-06 2012-11-08 Industrial Technology Research Institute Method for manufacturing bioabsorbable stents
WO2012166819A1 (en) 2011-05-31 2012-12-06 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
WO2013012689A1 (en) 2011-07-15 2013-01-24 Micell Technologies, Inc. Drug delivery medical device
WO2013025535A1 (en) 2011-08-12 2013-02-21 Micell Technologies, Inc. Stents having controlled elution
WO2013059509A1 (en) 2011-10-18 2013-04-25 Micell Technologies, Inc. Drug delivery medical device
WO2013173657A1 (en) 2012-05-16 2013-11-21 Micell Technologies, Inc. Low burst sustained release lipophilic and biologic agent compositions
WO2013177211A1 (en) 2012-05-21 2013-11-28 Micell Technologies, Inc. Safe drug eluting stent with absorbable coating
WO2014063111A1 (en) 2012-10-18 2014-04-24 Micell Technologyies, Inc. Drug delivery medical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350909B1 (en) * 1988-07-14 1993-10-20 Union Carbide Corporation Electrostatic liquid spray application of coatings with supercritical fluids as diluents and spraying from an orifice
JPH0698902A (en) * 1991-11-22 1994-04-12 Janome Sewing Mach Co Ltd Production of bone implant
US6868123B2 (en) * 2001-12-07 2005-03-15 Motorola, Inc. Programmable motion estimation module with vector array unit

Patent Citations (450)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523119T5 (en) 2008-10-02
JP2005523332T5 (en) 2008-10-02
US3123077A (en) 1964-03-03 Surgical suture
JP2003533286T5 (en) 2010-12-24
JP2004529674T5 (en) 2005-12-22
US3087860A (en) 1958-12-19 1963-04-30 Abbott Lab Method of prolonging release of drug from a precompressed solid carrier
US3087660A (en) 1962-07-24 1963-04-30 Yankee Plasties Inc Two-step garment hanger
US3457280A (en) 1967-06-12 1969-07-22 American Cyanamid Co Alpha-glycolide and methods for the isolation thereof
US3597449A (en) 1967-11-16 1971-08-03 American Cyanamid Co Stable glycolide and lactide composition
US3929992A (en) 1972-09-29 1975-12-30 Ayerst Mckenna & Harrison Rapamycin and process of preparation
US4000137A (en) 1975-06-10 1976-12-28 American Home Products Corporation Antitumor derivatives of periodate-oxidized nucleosides
US4285987A (en) * 1978-10-23 1981-08-25 Alza Corporation Process for manufacturing device with dispersion zone
US4326532A (en) 1980-10-06 1982-04-27 Minnesota Mining And Manufacturing Company Antithrombogenic articles
US4655771A (en) 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4655771B1 (en) 1982-04-30 1996-09-10 Medinvent Ams Sa Prosthesis comprising an expansible or contractile tubular body
US4734451A (en) 1983-09-01 1988-03-29 Battelle Memorial Institute Supercritical fluid molecular spray thin films and fine powders
US4734227A (en) 1983-09-01 1988-03-29 Battelle Memorial Institute Method of making supercritical fluid molecular spray films, powder and fibers
US4582731A (en) 1983-09-01 1986-04-15 Battelle Memorial Institute Supercritical fluid molecular spray film deposition and powder formation
US6309669B1 (en) 1984-03-16 2001-10-30 The United States Of America As Represented By The Secretary Of The Army Therapeutic treatment and prevention of infections with a bioactive materials encapsulated within a biodegradable-biocompatible polymeric matrix
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
JPH0698902B2 (en) 1986-01-30 1994-12-07 マツダ株式会社 Transmission torque control apparatus for a vehicle
US4985625A (en) 1986-03-06 1991-01-15 Finnigan Corporation Transfer line for mass spectrometer apparatus
US5106650A (en) 1988-07-14 1992-04-21 Union Carbide Chemicals & Plastics Technology Corporation Electrostatic liquid spray application of coating with supercritical fluids as diluents and spraying from an orifice
US4950239A (en) 1988-08-09 1990-08-21 Worldwide Medical Plastics Inc. Angioplasty balloons and balloon catheters
US20020099332A1 (en) 1988-08-24 2002-07-25 Slepian Marvin J. Biodegradable polymeric endoluminal sealing process, apparatus and polymeric products for use therein
US4931037A (en) 1988-10-13 1990-06-05 International Medical, Inc. In-dwelling ureteral stent and injection stent assembly, and method of using same
US5368045A (en) 1989-07-18 1994-11-29 Boston Scientific Corporation Biopsy needle instrument
US5270086A (en) 1989-09-25 1993-12-14 Schneider (Usa) Inc. Multilayer extrusion of angioplasty balloons
US5000519A (en) 1989-11-24 1991-03-19 John Moore Towed vehicle emergency brake control system
US6409716B1 (en) 1989-12-15 2002-06-25 Scimed Life Systems, Inc. Drug delivery
US5096848A (en) 1990-02-23 1992-03-17 Sharp Kabushiki Kaisha Method for forming semiconductor device isolating regions
US5569463A (en) 1990-05-17 1996-10-29 Harbor Medical Devices, Inc. Medical device polymer
US5090419A (en) 1990-08-23 1992-02-25 Aubrey Palestrant Apparatus for acquiring soft tissue biopsy specimens
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US6524698B1 (en) 1990-09-27 2003-02-25 Helmuth Schmoock Fluid impermeable foil
US5470603A (en) 1991-02-22 1995-11-28 Hoechst Uk Limited Electrostatic coating of substrates of medicinal products
US5158986A (en) 1991-04-05 1992-10-27 Massachusetts Institute Of Technology Microcellular thermoplastic foamed with supercritical fluid
US5195969A (en) 1991-04-26 1993-03-23 Boston Scientific Corporation Co-extruded medical balloons and catheter using such balloons
US5372676A (en) * 1991-05-15 1994-12-13 Lowe; Michael Method for producing replicated paving stone
US5356433A (en) 1991-08-13 1994-10-18 Cordis Corporation Biocompatible metal surfaces
US5243023A (en) 1991-08-28 1993-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Polyimides containing amide and perfluoroisopropylidene connecting groups
US7201750B1 (en) 1992-01-07 2007-04-10 Arthrocare Corporation System for treating articular cartilage defects
US5725570A (en) 1992-03-31 1998-03-10 Boston Scientific Corporation Tubular medical endoprostheses
US5288711A (en) 1992-04-28 1994-02-22 American Home Products Corporation Method of treating hyperproliferative vascular disease
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5342621A (en) 1992-09-15 1994-08-30 Advanced Cardiovascular Systems, Inc. Antithrombogenic surface
US5500180A (en) 1992-09-30 1996-03-19 C. R. Bard, Inc. Method of making a distensible dilatation balloon using a block copolymer
US5385776A (en) * 1992-11-16 1995-01-31 Alliedsignal Inc. Nanocomposites of gamma phase polymers containing inorganic particulate material
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5324049A (en) 1992-12-23 1994-06-28 Xerox Corporation Mandrel with flared, dish shaped disk and process for using mandrel
US5800511A (en) 1993-01-19 1998-09-01 Schneider (Usa) Inc Clad composite stent
US5340614A (en) 1993-02-11 1994-08-23 Minnesota Mining And Manufacturing Company Methods of polymer impregnation
US7524865B2 (en) 1993-03-01 2009-04-28 Celgene Corporation Methods and compositions for treating an ocular neovascular disease
US5562922A (en) 1993-03-18 1996-10-08 Cedars-Sinai Medical Center Drug incorporating and release polymeric coating for bioprosthesis
US7419696B2 (en) 1993-04-26 2008-09-02 Medtronic, Inc. Medical devices for delivering a therapeutic agent and method of preparation
US5403347A (en) 1993-05-27 1995-04-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5350627A (en) 1993-06-11 1994-09-27 Camelot Technologies, Inc. Coated webs
WO1995006487A3 (en) 1993-08-30 1995-04-06 Neal E Fearnot Intravascular medical device
US5350361A (en) 1993-11-10 1994-09-27 Medtronic, Inc. Tri-fold balloon for dilatation catheter and related method
US5494620A (en) 1993-11-24 1996-02-27 United States Surgical Corporation Method of manufacturing a monofilament suture
US5626611A (en) 1994-02-10 1997-05-06 United States Surgical Corporation Composite bioabsorbable materials and surgical articles made therefrom
US6146356A (en) 1994-03-02 2000-11-14 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US5556383A (en) 1994-03-02 1996-09-17 Scimed Lifesystems, Inc. Block copolymer elastomer catheter balloons
US6495163B1 (en) * 1994-07-12 2002-12-17 Bpsi Holdings, Inc. Moisture barrier film coating composition, method and coated form
US5626862A (en) 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
WO1996020698A3 (en) 1995-01-05 1998-01-22 Univ Michigan Surface-modified nanoparticles and method of making and using same
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US20060089705A1 (en) 1995-04-19 2006-04-27 Boston Scientific Scimed, Inc. Drug release coated stent
US6358556B1 (en) 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US5948020A (en) 1995-05-01 1999-09-07 Sam Yang Co., Ltd. Implantable bioresorbable membrane and method for the preparation thereof
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US6319541B1 (en) 1995-06-06 2001-11-20 Delsys Pharmaceutical Corporation Method and apparatus for electrostatically depositing a medicament powder upon predefined regions of a substrate
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5873904A (en) 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
US7171255B2 (en) 1995-07-26 2007-01-30 Computerized Medical Systems, Inc. Virtual reality 3D visualization for surgical procedures
JPH0956807A (en) 1995-08-22 1997-03-04 Kanegafuchi Chem Ind Co Ltd Stent adhered and coated with medicine and its production
US5811032A (en) 1995-09-19 1998-09-22 Mitsubishi Gas Chemical Company, Inc. Biodegradable water-soluble polymer
US6461644B1 (en) 1996-03-25 2002-10-08 Richard R. Jackson Anesthetizing plastics, drug delivery plastics, and related medical products, systems and methods
WO1997045502A1 (en) 1996-05-31 1997-12-04 Toto Ltd. Antifouling member and antifouling coating composition
US6143037A (en) 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
US5876426A (en) 1996-06-13 1999-03-02 Scimed Life Systems, Inc. System and method of providing a blood-free interface for intravascular light delivery
JP2005296690A (en) 1996-06-13 2005-10-27 Schneider Usa Inc Stent coating for releasing medicine and method therefor
US5924631A (en) 1996-07-10 1999-07-20 Sames Sa Triboelectric projector, installation for projecting coating product and process for controlling such a projector
US6013855A (en) 1996-08-06 2000-01-11 United States Surgical Grafting of biocompatible hydrophilic polymers onto inorganic and metal surfaces
US6884377B1 (en) 1996-08-27 2005-04-26 Trexel, Inc. Method and apparatus for microcellular polymer extrusion
US7148201B2 (en) 1996-10-17 2006-12-12 The Regents Of The University Of California Use of human plasma hyaluronidase in cancer treatment
US6387121B1 (en) 1996-10-21 2002-05-14 Inflow Dynamics Inc. Vascular and endoluminal stents with improved coatings
US20050003074A1 (en) 1996-11-13 2005-01-06 Phoqus Pharmaceuticals Limited Method and apparatus for the coating of substrates for pharmaceutical use
US6517860B1 (en) 1996-12-31 2003-02-11 Quadrant Holdings Cambridge, Ltd. Methods and compositions for improved bioavailability of bioactive agents for mucosal delivery
US6884823B1 (en) 1997-01-16 2005-04-26 Trexel, Inc. Injection molding of polymeric material
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6414050B1 (en) 1997-05-10 2002-07-02 University Of Nottingham Biofunctional polymers prepared in supercritical fluid
US6670407B2 (en) 1997-05-10 2003-12-30 University Of Nottingham Biofunctional polymers prepared in supercritical fluid
US6416779B1 (en) 1997-06-11 2002-07-09 Umd, Inc. Device and method for intravaginal or transvaginal treatment of fungal, bacterial, viral or parasitic infections
US7972661B2 (en) 1997-06-12 2011-07-05 Regents Of The University Of Minnesota Electrospraying method with conductivity control
US6077880A (en) 1997-08-08 2000-06-20 Cordis Corporation Highly radiopaque polyolefins and method for making the same
US6284758B1 (en) 1997-08-28 2001-09-04 Welfide Corporation Angiogenesis promoters and angiogenesis potentiators
US7378105B2 (en) 1997-09-26 2008-05-27 Abbott Laboratories Drug delivery systems, kits, and methods for administering zotarolimus and paclitaxel to blood vessel lumens
US6736996B1 (en) 1997-10-10 2004-05-18 North Carolina State University Compositions for protecting civil infrastructure
US6336934B1 (en) 1997-11-07 2002-01-08 Salviac Limited Embolic protection device
US20080107702A1 (en) 1997-11-24 2008-05-08 Morphoplant Gmbh Method for the Immobilization of Mediator Molecules on Inorganic and Metallic Implant Materials
US5957975A (en) 1997-12-15 1999-09-28 The Cleveland Clinic Foundation Stent having a programmed pattern of in vivo degradation
US6129755A (en) 1998-01-09 2000-10-10 Nitinol Development Corporation Intravascular stent having an improved strut configuration
US6838089B1 (en) 1998-04-14 2005-01-04 Astrazeneca Ab Antigen delivery system and method of production
US7763277B1 (en) 1998-04-17 2010-07-27 Psimedica Limited Implants for administering substances and methods of producing implants
US6206914B1 (en) 1998-04-30 2001-03-27 Medtronic, Inc. Implantable system with drug-eluting cells for on-demand local drug delivery
US6190699B1 (en) 1998-05-08 2001-02-20 Nzl Corporation Method of incorporating proteins or peptides into a matrix and administration thereof through mucosa
US6649627B1 (en) 1998-06-18 2003-11-18 Sanofi-Synthelabo Phenoxylpropanolamines, method for the production thereof and pharmaceutical compositions containing the same
US6939569B1 (en) 1998-06-19 2005-09-06 Oxibio, Inc. Medical device having anti-infective and contraceptive properties
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6541033B1 (en) 1998-06-30 2003-04-01 Amgen Inc. Thermosensitive biodegradable hydrogels for sustained delivery of leptin
US20010044629A1 (en) 1998-07-27 2001-11-22 Schneider (Usa), Inc. Neuroaneurysm occlusion and delivery device and method of using same
US20070032864A1 (en) 1998-07-27 2007-02-08 Icon Interventional Systems, Inc. Thrombosis inhibiting graft
US20010034336A1 (en) 1998-08-21 2001-10-25 Shah Chirag B. Thromboresistant coating composition
EP0982041A1 (en) 1998-08-21 2000-03-01 Medtronic Ave, Inc. Thromboresistant coating using silanes or siloxanes
US6361819B1 (en) 1998-08-21 2002-03-26 Medtronic Ave, Inc. Thromboresistant coating method
US6248127B1 (en) 1998-08-21 2001-06-19 Medtronic Ave, Inc. Thromboresistant coated medical device
US6342062B1 (en) 1998-09-24 2002-01-29 Scimed Life Systems, Inc. Retrieval devices for vena cava filter
US6143314A (en) 1998-10-28 2000-11-07 Atrix Laboratories, Inc. Controlled release liquid delivery compositions with low initial drug burst
US6355691B1 (en) 1998-11-12 2002-03-12 Tobias M. Goodman Urushiol therapy of transitional cell carcinoma of the bladder
US6497729B1 (en) 1998-11-20 2002-12-24 The University Of Connecticut Implant coating for control of tissue/implant interactions
US6372246B1 (en) 1998-12-16 2002-04-16 Ortho-Mcneil Pharmaceutical, Inc. Polyethylene glycol coating for electrostatic dry deposition of pharmaceuticals
US6916800B2 (en) 1998-12-23 2005-07-12 Pfizer Inc Combination therapy including a matrix metalloproteinase inhibitor and an antineoplastic agent
US6858598B1 (en) 1998-12-23 2005-02-22 G. D. Searle & Co. Method of using a matrix metalloproteinase inhibitor and one or more antineoplastic agents as a combination therapy in the treatment of neoplasia
US6706283B1 (en) 1999-02-10 2004-03-16 Pfizer Inc Controlled release by extrusion of solid amorphous dispersions of drugs
US6448315B1 (en) 1999-02-17 2002-09-10 Bone Support Ab Method for the preparation of UHMWPE doped with an antioxidant and an implant made thereof
US6171327B1 (en) 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6245104B1 (en) 1999-02-28 2001-06-12 Inflow Dynamics Inc. Method of fabricating a biocompatible stent
US20040106982A1 (en) 1999-03-16 2004-06-03 Jalisi Marc M. Multilayer stent
US20010049551A1 (en) 1999-03-19 2001-12-06 David Tseng Polymer coated stent
US6364903B2 (en) 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
US6860123B1 (en) 1999-03-19 2005-03-01 Aktiebolaget Electrolux Apparatus for cleaning textiles with a densified liquid treatment gas
US6368658B1 (en) 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension
US6923979B2 (en) 1999-04-27 2005-08-02 Microdose Technologies, Inc. Method for depositing particles onto a substrate using an alternating electric field
US20120065723A1 (en) 1999-05-03 2012-03-15 William Joseph Drasler Intravascular hinge stent
US6726712B1 (en) 1999-05-14 2004-04-27 Boston Scientific Scimed Prosthesis deployment device with translucent distal end
US6815218B1 (en) 1999-06-09 2004-11-09 Massachusetts Institute Of Technology Methods for manufacturing bioelectronic devices
US6710059B1 (en) 1999-07-06 2004-03-23 Endorecherche, Inc. Methods of treating and/or suppressing weight gain
US6146404A (en) 1999-09-03 2000-11-14 Scimed Life Systems, Inc. Removable thrombus filter
US20020133072A1 (en) 1999-09-10 2002-09-19 Guo-Bin Wang Graft polymerization of substrate surfaces
US6610013B1 (en) 1999-10-01 2003-08-26 Life Imaging Systems, Inc. 3D ultrasound-guided intraoperative prostate brachytherapy
US6755871B2 (en) 1999-10-15 2004-06-29 R.R. Street & Co. Inc. Cleaning system utilizing an organic cleaning solvent and a pressurized fluid solvent
US7537785B2 (en) 1999-10-29 2009-05-26 Nitromed, Inc. Composition for treating vascular diseases characterized by nitric oxide insufficiency
US6537310B1 (en) 1999-11-19 2003-03-25 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable devices and method of making same
US6908624B2 (en) 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6572813B1 (en) 2000-01-13 2003-06-03 Advanced Cardiovascular Systems, Inc. Balloon forming process
US20010026804A1 (en) 2000-01-18 2001-10-04 Francois Boutignon Compressed microparticles for dry injection
WO2001054662A3 (en) 2000-01-27 2002-03-21 Asta Medica Ag Compressed microparticles for dry injection
US20020007209A1 (en) 2000-03-06 2002-01-17 Scheerder Ivan De Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US6767558B2 (en) 2000-03-10 2004-07-27 Pfizer Inc. Inhibiting oxidative degradation of pharmaceutical formulations
US20070123977A1 (en) 2000-03-15 2007-05-31 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
WO2001087372A1 (en) 2000-05-12 2001-11-22 Cordis Corporation Drug combinations useful for prevention of restenosis
WO2001087371A3 (en) 2000-05-12 2002-03-07 Advanced Bio Prosthetic Surfac Self-supporting laminated films, structural materials and medical devices
JP2003533493A (en) 2000-05-12 2003-11-11 コーディス・コーポレイション Combinations of effective agents in preventing restenosis
US6627246B2 (en) 2000-05-16 2003-09-30 Ortho-Mcneil Pharmaceutical, Inc. Process for coating stents and other medical devices using super-critical carbon dioxide
US20020051845A1 (en) 2000-05-16 2002-05-02 Mehta Deepak B. Process for coating stents and other medical devices using super-critical carbon dioxide
JP2003533492A (en) 2000-05-17 2003-11-11 サムヤン コーポレイション Pharmaceutical composition of the stable polymer micelle form and production method thereof
US20020144757A1 (en) 2000-07-07 2002-10-10 Craig Charles Horace Stainless steel alloy with improved radiopaque characteristics
US20030077200A1 (en) 2000-07-07 2003-04-24 Craig Charles H. Enhanced radiopaque alloy stent
US20030170305A1 (en) 2000-09-01 2003-09-11 O'neil Alexander George B. Slow release pharmaceutical preparation and method of administering same
EP1195822A2 (en) 2000-09-01 2002-04-10 Itochu Corporation Lithium based battery with extensible cover
US6506213B1 (en) 2000-09-08 2003-01-14 Ferro Corporation Manufacturing orthopedic parts using supercritical fluid processing techniques
US6521258B1 (en) 2000-09-08 2003-02-18 Ferro Corporation Polymer matrices prepared by supercritical fluid processing techniques
US20070198081A1 (en) 2000-09-28 2007-08-23 Daniel Castro Poly(butylmethacrylate) and rapamycin coated stent
US20060222756A1 (en) 2000-09-29 2006-10-05 Cordis Corporation Medical devices, drug coatings and methods of maintaining the drug coatings thereon
JP2004518458A (en) 2000-09-29 2004-06-24 コーディス・コーポレイションCordis Corporation Coated medical devices
US20020082680A1 (en) 2000-10-16 2002-06-27 Shanley John F. Expandable medical device for delivery of beneficial agent
US20040018228A1 (en) 2000-11-06 2004-01-29 Afmedica, Inc. Compositions and methods for reducing scar tissue formation
WO2002040702A3 (en) 2000-11-09 2004-01-08 Univ Vanderbilt Methods for the treatment of cancer and other diseases and methods of developing the same
US6682757B1 (en) 2000-11-16 2004-01-27 Euro-Celtique, S.A. Titratable dosage transdermal delivery system
WO2002043799A1 (en) 2000-11-30 2002-06-06 Kabushikikaisha Igaki Iryo Sekkei Stent for blood vessel and material for stent for blood vessel
US7537610B2 (en) 2000-12-27 2009-05-26 Advanced Cardiovascular Systems, Inc. Method and system for creating a textured surface on an implantable medical device
US20050004661A1 (en) 2001-01-11 2005-01-06 Lewis Andrew L Stens with drug-containing amphiphilic polymer coating
US7713538B2 (en) 2001-01-11 2010-05-11 Abbott Laboratories Drug delivery from stents
US6838528B2 (en) 2001-01-19 2005-01-04 Nektar Therapeutics Al, Corporation Multi-arm block copolymers as drug delivery vehicles
US6660176B2 (en) 2001-01-24 2003-12-09 Virginia Commonwealth University Molecular imprinting of small particles, and production of small particles from solid state reactants
US6897205B2 (en) 2001-01-31 2005-05-24 Roehm Gmbh & Co. Kg Multi-particulate form of medicament, comprising at least two differently coated forms of pellet
US20040220660A1 (en) 2001-02-05 2004-11-04 Shanley John F. Bioresorbable stent with beneficial agent reservoirs
US20020125860A1 (en) 2001-02-14 2002-09-12 Ernst Schworm Mains-independent power supply unit
US6905555B2 (en) 2001-02-15 2005-06-14 Micell Technologies, Inc. Methods for transferring supercritical fluids in microelectronic and other industrial processes
US6720003B2 (en) 2001-02-16 2004-04-13 Andrx Corporation Serotonin reuptake inhibitor formulations
US20030180376A1 (en) 2001-03-02 2003-09-25 Dalal Paresh S. Porous beta-tricalcium phosphate granules and methods for producing same
US7282020B2 (en) 2001-04-24 2007-10-16 Microspherix Llc Deflectable implantation device and method of use
US20040022853A1 (en) 2001-04-26 2004-02-05 Control Delivery Systems, Inc. Polymer-based, sustained release drug delivery system
WO2002090085A8 (en) 2001-05-04 2002-12-12 Juan C Cardona Injection molding systems and methods
US20030143315A1 (en) 2001-05-16 2003-07-31 Pui David Y H Coating medical devices
US6973718B2 (en) * 2001-05-30 2005-12-13 Microchips, Inc. Methods for conformal coating and sealing microchip reservoir devices
US7163715B1 (en) 2001-06-12 2007-01-16 Advanced Cardiovascular Systems, Inc. Spray processing of porous medical devices
US7201940B1 (en) 2001-06-12 2007-04-10 Advanced Cardiovascular Systems, Inc. Method and apparatus for thermal spray processing of medical devices
JP2005505318A (en) 2001-06-13 2005-02-24 ボストン サイエンティフィック リミテッド The use of supercritical fluids for injecting the drug into the medical device
US7485113B2 (en) 2001-06-22 2009-02-03 Johns Hopkins University Method for drug delivery through the vitreous humor
US20030001830A1 (en) 2001-06-29 2003-01-02 Wampler Scott D. Dynamic device for billboard advertising
US6743505B2 (en) 2001-07-27 2004-06-01 Ethicon, Inc. Bioabsorbable multifilament yarn and methods of manufacture
US6669980B2 (en) 2001-09-18 2003-12-30 Scimed Life Systems, Inc. Method for spray-coating medical devices
US20070123973A1 (en) 2001-10-26 2007-05-31 Roth Noah M Biodegradable device
US20030125800A1 (en) 2001-11-05 2003-07-03 Shulze John E. Drug-delivery endovascular stent and method for treating restenosis
US7727275B2 (en) 2001-11-05 2010-06-01 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method of forming the same
US20030088307A1 (en) 2001-11-05 2003-05-08 Shulze John E. Potent coatings for stents
WO2003039553B1 (en) 2001-11-09 2004-07-08 Pharmacia Corp Compositions for treatment of postmenopausal female sexual dysfunction
US6837611B2 (en) 2001-12-28 2005-01-04 Metal Industries Research & Development Centre Fluid driven agitator used in densified gas cleaning system
JP2003205037A (en) 2002-01-08 2003-07-22 Translumina Gmbh Coating system
US20090043379A1 (en) 2002-01-10 2009-02-12 Margaret Forney Prescott Drug delivery systems for the prevention and treatment of vascular diseases
US20060093771A1 (en) 2002-02-15 2006-05-04 Frantisek Rypacek Polymer coating for medical devices
US7160592B2 (en) 2002-02-15 2007-01-09 Cv Therapeutics, Inc. Polymer coating for medical devices
US20030232014A1 (en) 2002-03-01 2003-12-18 Mds Proteomics Inc. Phosphorylated proteins and uses related thereto
US20050084533A1 (en) 2002-03-13 2005-04-21 Howdle Steven M. Polymer composite with internally distributed deposition matter
US20060121089A1 (en) 2002-03-20 2006-06-08 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US20030185964A1 (en) * 2002-03-28 2003-10-02 Jan Weber Method for spray-coating a medical device having a tubular wall such as a stent
CN1649551B (en) 2002-04-24 2010-08-11 生物传感器国际集团有限公司 Drug-delivery endovascular stent and method for treating restenosis
US20030204238A1 (en) 2002-04-26 2003-10-30 Eugene Tedeschi Coated stent with crimpable coating
US6669785B2 (en) 2002-05-15 2003-12-30 Micell Technologies, Inc. Methods and compositions for etch cleaning microelectronic substrates in carbon dioxide
US20030222017A1 (en) 2002-05-28 2003-12-04 Battelle Memorial Institute Electrostatic deposition of particles generated from rapid expansion of supercritical fluid solutions
US6749902B2 (en) 2002-05-28 2004-06-15 Battelle Memorial Institute Methods for producing films using supercritical fluid
US6756084B2 (en) 2002-05-28 2004-06-29 Battelle Memorial Institute Electrostatic deposition of particles generated from rapid expansion of supercritical fluid solutions
US6780475B2 (en) * 2002-05-28 2004-08-24 Battelle Memorial Institute Electrostatic deposition of particles generated from rapid expansion of supercritical fluid solutions
US20030222018A1 (en) 2002-05-28 2003-12-04 Battelle Memorial Institute Methods for producing films using supercritical fluid
WO2003101624A1 (en) 2002-05-28 2003-12-11 Battelle Memorial Institute Electrostatic deposition of particles generated from rapid expansion of supercritical fluid solutions
US7229837B2 (en) 2002-05-30 2007-06-12 Uchicago Argonne, Llc Enhanced photophysics of conjugated polymers
US20060147698A1 (en) * 2002-06-13 2006-07-06 Kappler, Inc. Garments preventing transmission of human body odor
US6794902B2 (en) 2002-06-14 2004-09-21 Sun Microsystems, Inc. Virtual ground circuit
CN1465410A (en) 2002-06-27 2004-01-07 微创医疗器械(上海)有限公司 Drug-eluting stent (DES) with multicoating
US20040013792A1 (en) 2002-07-19 2004-01-22 Samuel Epstein Stent coating holders
US20040126542A1 (en) 2002-07-29 2004-07-01 Nitto Denko Corporation Pressure-sensitive adhesive tape or sheet
US20050019747A1 (en) 2002-08-07 2005-01-27 Anderson Daniel G. Nanoliter-scale synthesis of arrayed biomaterials and screening thereof
US20040044397A1 (en) 2002-08-28 2004-03-04 Stinson Jonathan S. Medical devices and methods of making the same
US20060116755A1 (en) 2002-08-28 2006-06-01 Stinson Jonathan S Medical devices and methods of making the same
US20040059290A1 (en) 2002-09-24 2004-03-25 Maria Palasis Multi-balloon catheter with hydrogel coating
WO2004028589A3 (en) 2002-09-26 2004-08-26 Endovascular Devices Inc Apparatus and method for delivery of mitomycin through an eluting biocompatible implantable medical device
US20030031699A1 (en) 2002-09-30 2003-02-13 Medtronic Minimed, Inc. Polymer compositions containing bioactive agents and methods for their use
US20050010275A1 (en) 2002-10-11 2005-01-13 Sahatjian Ronald A. Implantable medical devices
US6800663B2 (en) 2002-10-18 2004-10-05 Alkermes Controlled Therapeutics Inc. Ii, Crosslinked hydrogel copolymers
KR20040034064A (en) 2002-10-21 2004-04-28 한국과학기술연구원 Blood compatible metallic materials and preparation thereof
US7462593B2 (en) 2002-11-07 2008-12-09 Us Gov Health & Human Serv Compositions and methods for promoting angiogenesis
US20060276877A1 (en) 2002-11-13 2006-12-07 Gary Owens Dealloyed nanoporous stents
US20060193886A1 (en) 2002-11-13 2006-08-31 Owens Gary K Medical devices with nanoporous layers and topcoats
US20060193890A1 (en) 2002-11-13 2006-08-31 Owens Gary K Method for loading nanoporous layers with therapeutic agent
WO2004043506A1 (en) 2002-11-14 2004-05-27 Synecor, Llc. Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
WO2004045450A3 (en) 2002-11-15 2004-10-07 Synecor Llc Improved endoprostheses and methods of manufacture
JP2004173770A (en) 2002-11-25 2004-06-24 Terumo Corp In vivo implanting medical appliance
EP1454677A2 (en) 2002-12-06 2004-09-08 Eastman Kodak Company Method for producing patterned deposition from compressed fluid
US20040122205A1 (en) 2002-12-18 2004-06-24 Aruna Nathan Alkyd-lactone copolymers for medical applications
US20040157789A1 (en) 2002-12-23 2004-08-12 Vical Incorporated. Method for freeze-drying nucleic acid/block copolymer/cationic surfactant complexes
US7152452B2 (en) 2002-12-26 2006-12-26 Advanced Cardiovascular Systems, Inc. Assembly for crimping an intraluminal device and method of use
US7308748B2 (en) 2002-12-26 2007-12-18 Advanced Cardiovascular Systems, Inc. Method for compressing an intraluminal device
US20040143317A1 (en) 2003-01-17 2004-07-22 Stinson Jonathan S. Medical devices
US20050079199A1 (en) 2003-02-18 2005-04-14 Medtronic, Inc. Porous coatings for drug release from medical devices
US20040170685A1 (en) 2003-02-26 2004-09-02 Medivas, Llc Bioactive stents and methods for use thereof
US20080051866A1 (en) 2003-02-26 2008-02-28 Chao Chin Chen Drug delivery devices and methods
US20050260186A1 (en) 2003-03-05 2005-11-24 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
US20040193262A1 (en) 2003-03-29 2004-09-30 Shadduck John H. Implants for treating ocular hypertension, methods of use and methods of fabrication
US20040193177A1 (en) 2003-03-31 2004-09-30 Houghton Michael J. Modified delivery device for coated medical devices
US7326734B2 (en) 2003-04-01 2008-02-05 The Regents Of The University Of California Treatment of bladder and urinary tract cancers
US20050191491A1 (en) 2003-04-08 2005-09-01 Yulu Wang Polymer coating/encapsulation of nanoparticles using a supercritical antisolvent process
US20050216075A1 (en) 2003-04-08 2005-09-29 Xingwu Wang Materials and devices of enhanced electromagnetic transparency
US20050208102A1 (en) 2003-04-09 2005-09-22 Schultz Clyde L Hydrogels used to deliver medicaments to the eye for the treatment of posterior segment diseases
US20050038498A1 (en) 2003-04-17 2005-02-17 Nanosys, Inc. Medical device applications of nanostructured surfaces
US20050196424A1 (en) 2003-05-02 2005-09-08 Chappa Ralph A. Medical devices and methods for producing the same
WO2004098574A1 (en) 2003-05-06 2004-11-18 The Queen's University Of Belfast Nanocomposite drug delivery composition
US20040224001A1 (en) 2003-05-08 2004-11-11 Pacetti Stephen D. Stent coatings comprising hydrophilic additives
US7279174B2 (en) 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
US20080118543A1 (en) 2003-05-08 2008-05-22 Advanced Cardiovascular Systems, Inc. Stent Coatings comprising hydrophilic additives
US7429378B2 (en) 2003-05-13 2008-09-30 Depuy Spine, Inc. Transdiscal administration of high affinity anti-MMP inhibitors
US20040236416A1 (en) 2003-05-20 2004-11-25 Robert Falotico Increased biocompatibility of implantable medical devices
US20050048121A1 (en) 2003-06-04 2005-03-03 Polymerix Corporation High molecular wegiht polymers, devices and method for making and using same
US20060160455A1 (en) 2003-06-06 2006-07-20 Mitsubishi Chemical Corporation Water-absorbent article and method for producing the same
US20040260000A1 (en) * 2003-06-23 2004-12-23 Chaiko David J. Polyolefin nanocomposites
US20080071359A1 (en) 2003-07-09 2008-03-20 Medtronic Vascular, Inc. Laminated Drug-Polymer Coated Stent Having Dipped Layers
US20050015046A1 (en) 2003-07-18 2005-01-20 Scimed Life Systems, Inc. Medical devices and processes for preparing same
US7169404B2 (en) 2003-07-30 2007-01-30 Advanced Cardiovasular Systems, Inc. Biologically absorbable coatings for implantable devices and methods for fabricating the same
US20090082855A1 (en) 2003-07-31 2009-03-26 John Borges Coating for controlled release of a therapeutic agent
US20050049694A1 (en) 2003-08-07 2005-03-03 Medtronic Ave. Extrusion process for coating stents
US20060228415A1 (en) * 2003-08-08 2006-10-12 Biovail Laboratories International S.R.L. Modified release tablet of bupropion hydrochloride
US7553827B2 (en) 2003-08-13 2009-06-30 Depuy Spine, Inc. Transdiscal administration of cycline compounds
US20050177223A1 (en) 2003-09-18 2005-08-11 Palmaz Julio C. Medical devices having MEMs functionality and methods of making same
US20050075714A1 (en) 2003-09-24 2005-04-07 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US20050070990A1 (en) 2003-09-26 2005-03-31 Stinson Jonathan S. Medical devices and methods of making same
US20050069630A1 (en) 2003-09-30 2005-03-31 Advanced Cardiovascular Systems, Inc. Stent mandrel fixture and method for selectively coating surfaces of a stent
US20050079274A1 (en) 2003-10-14 2005-04-14 Maria Palasis Method for coating multiple stents
WO2005042623A1 (en) 2003-10-23 2005-05-12 University Of Nottingham Preparing active polymer extrudates
US20050131513A1 (en) 2003-12-16 2005-06-16 Cook Incorporated Stent catheter with a permanently affixed conductor
WO2005063319A8 (en) 2003-12-24 2005-09-09 Michael Ausborn Parmaceutical compositions
US20050147734A1 (en) 2004-01-07 2005-07-07 Jan Seppala Method and system for coating tubular medical devices
WO2005069889A3 (en) 2004-01-15 2006-05-26 Accelr8 Technology Corp Hydroxyl functional surface coating
US20050268573A1 (en) * 2004-01-20 2005-12-08 Avantec Vascular Corporation Package of sensitive articles
US20050166841A1 (en) 2004-01-30 2005-08-04 Todd Robida Clamping fixture for coating stents, system using the fixture, and method of using the fixture
US20050175772A1 (en) 2004-02-10 2005-08-11 Robert Worsham Apparatus and method for electrostatic spray coating of medical devices
US7444162B2 (en) 2004-02-10 2008-10-28 Samsung Electronics Co., Ltd Apparatus and a method for distributing a transmission power in a cellular communications network
US20060216324A1 (en) 2004-03-26 2006-09-28 Stucke Sean M Composition and method for preparing biocompatible surfaces
US20050238829A1 (en) 2004-04-22 2005-10-27 John Motherwell Differentially coated medical devices, system for differentially coating medical devices, and coating method
US20050288481A1 (en) 2004-04-30 2005-12-29 Desnoyer Jessica R Design of poly(ester amides) for the control of agent-release from polymeric compositions
US20050255327A1 (en) 2004-05-14 2005-11-17 Bryce Chaney Articles having bioactive surfaces and solvent-free methods of preparation thereof
WO2005117942A2 (en) 2004-05-14 2005-12-15 The Regents Of The University Of Michigan Methods for encapsulation of biomacromolecules in polymers
US20100233332A1 (en) 2004-06-14 2010-09-16 Agrium Inc. Process and apparatus for producing a coated product
US20060001011A1 (en) 2004-07-02 2006-01-05 Wilson Neil R Surface conditioner for powder coating systems
WO2006014534A3 (en) 2004-07-08 2006-07-20 Afmedica Inc Combination drug therapy for reducing scar tissue formation
US7456151B2 (en) 2004-07-14 2008-11-25 University Of Utah Research Foundation Promoting angiogenesis with netrin1 polypeptides
US20060020325A1 (en) 2004-07-26 2006-01-26 Robert Burgermeister Material for high strength, controlled recoil stent
US20060030652A1 (en) * 2004-08-06 2006-02-09 Paul Adams Fuel supplies for fuel cells
US20060045901A1 (en) 2004-08-26 2006-03-02 Jan Weber Stents with drug eluting coatings
US20080077232A1 (en) 2004-09-08 2008-03-27 Kaneka Corporation Stent for Placement in Body
US20060094744A1 (en) 2004-09-29 2006-05-04 Maryanoff Cynthia A Pharmaceutical dosage forms of stable amorphous rapamycin like compounds
US20070280992A1 (en) 2004-10-04 2007-12-06 Qlt Usa, Inc. Sustained delivery formulations of rapamycin compounds
WO2006052575A3 (en) 2004-11-04 2006-10-05 Boston Scient Scimed Inc Medical device for delivering therapeutic agents over different time periods
US7455688B2 (en) 2004-11-12 2008-11-25 Con Interventional Systems, Inc. Ostial stent
CA2589761A1 (en) 2004-12-07 2006-06-15 Surmodics, Inc. Coatings with crystallized active agent(s) and methods
US20070059350A1 (en) 2004-12-13 2007-03-15 Kennedy John P Agents for controlling biological fluids and methods of use thereof
WO2006065685A3 (en) 2004-12-16 2006-08-24 Advanced Cardiovascular System Abluminal, multilayer coating constructs for drug-delivery stents
US20060134211A1 (en) 2004-12-16 2006-06-22 Miv Therapeutics Inc. Multi-layer drug delivery device and method of manufacturing same
US20060136041A1 (en) 2004-12-17 2006-06-22 Schmid Eric V Slide-and-lock stent
US20060198868A1 (en) 2005-01-05 2006-09-07 Dewitt David M Biodegradable coating compositions comprising blends
US20060153729A1 (en) 2005-01-13 2006-07-13 Stinson Jonathan S Medical devices and methods of making the same
US20060188547A1 (en) 2005-01-28 2006-08-24 Bezwada Biomedical, Llc Bioabsorbable and biocompatible polyurethanes and polyamides for medical devices
WO2006083796A2 (en) 2005-01-31 2006-08-10 Nanoset, Llc Novel composition with magnetic nanoparticles
US7837726B2 (en) 2005-03-14 2010-11-23 Abbott Laboratories Visible endoprosthesis
WO2006099276A2 (en) 2005-03-14 2006-09-21 3M Innovative Properties Company Biocompatible polymer compounds for medicinal formulations
US20060210638A1 (en) 2005-03-17 2006-09-21 Elan Pharma International Limited Injectable compositions of nanoparticulate immunosuppressive compounds
US20090216317A1 (en) 2005-03-23 2009-08-27 Cromack Keith R Delivery of Highly Lipophilic Agents Via Medical Devices
US20070009564A1 (en) 2005-06-22 2007-01-11 Mcclain James B Drug/polymer composite materials and methods of making the same
WO2007002238A2 (en) 2005-06-22 2007-01-04 Micell Technologies Inc. Drug/polymer composite materials and methods of making the same
JP2009501566A (en) 2005-07-15 2009-01-22 ミセル テクノロジーズ、インコーポレイテッド Polymeric coating containing the drug powder of controlled morphology
WO2007011708A3 (en) 2005-07-15 2007-06-28 James Dayoung Stent with polymer coating containing amorphous rapamycin
WO2007011707A3 (en) 2005-07-15 2007-12-27 Micell Technologies Inc Polymer coatings containing drug powder of controlled morphology
WO2007011708A2 (en) 2005-07-15 2007-01-25 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
WO2007011707A2 (en) 2005-07-15 2007-01-25 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US20090123515A1 (en) * 2005-07-15 2009-05-14 Doug Taylor Polymer coatings containing drug powder of controlled morphology
US20090062909A1 (en) 2005-07-15 2009-03-05 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
US20070128274A1 (en) * 2005-08-03 2007-06-07 Jingxu Zhu Direct coating solid dosage forms using powdered materials
US20070038227A1 (en) 2005-08-12 2007-02-15 Massicotte J M Method and device for extracting objects from the body
US20090098178A1 (en) 2005-09-16 2009-04-16 Heinrich Hofmann Porous Coating Loaded with a Liquid or a Solid Substance
US20070110888A1 (en) 2005-11-14 2007-05-17 Rajesh Radhakrishnan Coated and imprinted medical devices and methods of making the same
US20070196423A1 (en) 2005-11-21 2007-08-23 Med Institute, Inc. Implantable medical device coatings with biodegradable elastomer and releasable therapeutic agent
US20080292776A1 (en) 2005-12-09 2008-11-27 Aylvin Jorge Angelo Athanasius Dias Hydrophilic Coating
US20070148251A1 (en) 2005-12-22 2007-06-28 Hossainy Syed F A Nanoparticle releasing medical devices
WO2007092179A2 (en) 2006-01-27 2007-08-16 Med Institute, Inc. Device with nanocomposite coating for controlled drug release
US20070203569A1 (en) 2006-02-24 2007-08-30 Robert Burgermeister Implantable device formed from polymer blends having modified molecular structures
US7919108B2 (en) 2006-03-10 2011-04-05 Cook Incorporated Taxane coatings for implantable medical devices
US7955383B2 (en) 2006-04-25 2011-06-07 Medtronics Vascular, Inc. Laminated implantable medical device having a metallic coating
WO2007127363A2 (en) 2006-04-26 2007-11-08 Micell Technologies, Inc. Coatings containing multiple drugs
US20090186069A1 (en) 2006-04-26 2009-07-23 Micell Technologies, Inc. Coatings Containing Multiple Drugs
US20070259017A1 (en) 2006-05-05 2007-11-08 Medtronic Vascular, Inc. Medical Device Having Coating With Zeolite Drug Reservoirs
WO2007143609A2 (en) 2006-06-02 2007-12-13 Xtent, Inc. Use of plasma in formation of biodegradable stent coating
US20080124372A1 (en) 2006-06-06 2008-05-29 Hossainy Syed F A Morphology profiles for control of agent release rates from polymer matrices
US20110160751A1 (en) 2006-06-06 2011-06-30 Luiz Gonzaga Granja Filho Extraluminal stent type prosthesis for anastomosis
US20080138375A1 (en) 2006-09-13 2008-06-12 Elixir Medical Corporation Macrocyclic lactone compounds and methods for their use
US20080075753A1 (en) 2006-09-25 2008-03-27 Chappa Ralph A Multi-layered coatings and methods for controlling elution of active agents
US20100030261A1 (en) 2006-10-02 2010-02-04 Micell Technologies, Inc. Surgical Sutures Having Increased Strength
WO2008042909A3 (en) 2006-10-02 2008-08-07 Jim Mcclain Surgical sutures having increased strength
WO2008046642A2 (en) 2006-10-19 2008-04-24 Schoemig Albert Coated implant
WO2008046641A2 (en) 2006-10-19 2008-04-24 Schoemig Albert Coated implant
US20080097591A1 (en) * 2006-10-20 2008-04-24 Biosensors International Group Drug-delivery endovascular stent and method of use
US20080097575A1 (en) 2006-10-20 2008-04-24 Orbusneich Medical, Inc. Bioabsorbable Medical Device with Coating
US20080095919A1 (en) 2006-10-23 2008-04-24 Mcclain James B Holder For Electrically Charging A Substrate During Coating
WO2008052000A2 (en) 2006-10-23 2008-05-02 Micell Technologies, Inc. Holder for electrically charging a substrate during coating
US20080255510A1 (en) 2006-11-20 2008-10-16 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
WO2008070996A1 (en) 2006-12-13 2008-06-19 Angiotech Pharmaceuticals Inc. Medical implants with a combination of compounds
US20100074934A1 (en) 2006-12-13 2010-03-25 Hunter William L Medical implants with a combination of compounds
US20080213464A1 (en) 2007-01-03 2008-09-04 Boston Scientific Scimed, Inc. Methods of applying coating to the inside surface of a stent
WO2008086369A1 (en) 2007-01-08 2008-07-17 Micell Technologies, Inc. Stents having biodegradable layers
US20100063580A1 (en) 2007-01-08 2010-03-11 Mcclain James B Stents having biodegradable layers
US20120271396A1 (en) 2007-01-19 2012-10-25 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US20080269449A1 (en) 2007-01-23 2008-10-30 Ferro Pfanstiehl Laboratories, Inc. Methods for the purification of polymers
US20080206304A1 (en) 2007-02-27 2008-08-28 Boston Scientific Scimed, Inc. Medical devices having polymeric regions based on styrene-isobutylene copolymers
US20100196482A1 (en) 2007-04-04 2010-08-05 Massachusetts Institute Of Technology Polymer-encapsulated reverse micelles
WO2008131131A1 (en) 2007-04-17 2008-10-30 Micell Technologies, Inc. Stents having biodegradable layers
US20100211164A1 (en) 2007-04-17 2010-08-19 Mcclain James B Stents having biodegradable layers
US20100272778A1 (en) 2007-04-17 2010-10-28 Micell Technologies, Inc. Stents having controlled elution
US20100166869A1 (en) 2007-05-03 2010-07-01 Desai Neil P Methods and compositions for treating pulmonary hypertension
US20100155496A1 (en) 2007-05-17 2010-06-24 Queen Mary & Westfield College Electrostatic spraying device and a method of electrostatic spraying
US20090231578A1 (en) 2007-05-17 2009-09-17 Jian Ling Multi-channel fiber optic spectroscopy systems employing integrated optics modules
US20100228348A1 (en) 2007-05-25 2010-09-09 Micell Technologies, Inc. Polymer Films for Medical Device Coating
WO2008148013A1 (en) 2007-05-25 2008-12-04 Micell Technologies, Inc. Polymer films for medical device coating
US20080300669A1 (en) 2007-05-29 2008-12-04 Hossainy Syed F A In situ trapping and delivery of agent by a stent having trans-strut depots
US20090068266A1 (en) 2007-09-11 2009-03-12 Raheja Praveen Sirolimus having specific particle size and pharmaceutical compositions thereof
US20090076446A1 (en) 2007-09-14 2009-03-19 Quest Medical, Inc. Adjustable catheter for dilation in the ear, nose or throat
EP2197070A1 (en) 2007-09-28 2010-06-16 Mitsubishi Heavy Industries, Ltd. Lithium secondary battery
US20110034422A1 (en) 2007-10-05 2011-02-10 Wayne State University Dendrimers for sustained release of compounds
WO2009051780A1 (en) 2007-10-19 2009-04-23 Micell Technologies, Inc. Drug coated stents
US20100298928A1 (en) 2007-10-19 2010-11-25 Micell Technologies, Inc. Drug Coated Stents
US20090105809A1 (en) 2007-10-19 2009-04-23 Lee Michael J Implantable and lumen-supporting stents and related methods of manufacture and use
US20090111787A1 (en) 2007-10-31 2009-04-30 Florencia Lim Polymer blends for drug delivery stent matrix with improved thermal stability
US20090110711A1 (en) 2007-10-31 2009-04-30 Trollsas Mikael O Implantable device having a slow dissolving polymer
US20090202609A1 (en) 2008-01-06 2009-08-13 Keough Steven J Medical device with coating composition
US20100042206A1 (en) 2008-03-04 2010-02-18 Icon Medical Corp. Bioabsorbable coatings for medical devices
US20090227949A1 (en) 2008-03-06 2009-09-10 Boston Scientific Scimed, Inc. Balloon catheter devices with folded balloons
US20090292351A1 (en) 2008-04-17 2009-11-26 Micell Technologies, Inc. Stents having bioabsorbable layers
WO2009146209A1 (en) 2008-04-17 2009-12-03 Micell Technologies, Inc. Stents having bioabsorbable layers
US20090263460A1 (en) 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Medical devices and methods including polymers having biologically active agents therein
EP2293357A1 (en) 2008-05-08 2011-03-09 Nippon Steel Chemical Co., Ltd. Compound for organic electroluminescent elements and organic electroluminescent element
US20090285974A1 (en) 2008-05-15 2009-11-19 Kerrigan Cameron K Method for electrostatic coating of a medical device
US20090297578A1 (en) 2008-06-03 2009-12-03 Trollsas Mikael O Biosoluble coating comprising anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
WO2010009335A1 (en) 2008-07-17 2010-01-21 Micell Technologies, Inc. Drug delivery medical device
US20120172787A1 (en) 2008-07-17 2012-07-05 Micell Technologies, Inc. Drug delivery medical device
US20100015200A1 (en) 2008-07-17 2010-01-21 Micell Technologies, Inc. Drug Delivery Medical Device
US20100055294A1 (en) 2008-08-29 2010-03-04 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
US20100055145A1 (en) 2008-08-29 2010-03-04 Biosensors International Group Stent coatings for reducing late stent thrombosis
US20100063570A1 (en) 2008-09-05 2010-03-11 Pacetti Stephen D Coating on a balloon comprising a polymer and a drug
US20120064143A1 (en) 2008-11-11 2012-03-15 The Board Of Regents Of The University Of Texas System Inhibition of mammalian target of rapamycin
WO2010075590A2 (en) 2008-12-26 2010-07-01 Battelle Memorial Institute Medical implants and methods of making medical implants
US20110159069A1 (en) 2008-12-26 2011-06-30 Shaw Wendy J Medical Implants and Methods of Making Medical Implants
US20100198331A1 (en) 2009-02-02 2010-08-05 Richard Rapoza Bioabsorbable Stent That Modulates Plaque Geometric Morphology And Chemical Composition
US20100198330A1 (en) 2009-02-02 2010-08-05 Hossainy Syed F A Bioabsorbable Stent And Treatment That Elicits Time-Varying Host-Material Response
WO2010111238A2 (en) 2009-03-23 2010-09-30 Micell Technologies, Inc. Improved biodegradable polymers
WO2010111232A9 (en) 2009-03-23 2011-03-03 Micell Technologies, Inc. Drug delivery medical device
WO2010111238A3 (en) 2009-03-23 2011-02-03 Micell Technologies, Inc. Improved biodegradable polymers
US20100239635A1 (en) 2009-03-23 2010-09-23 Micell Technologies, Inc. Drug delivery medical device
WO2010111196A3 (en) 2009-03-23 2011-03-31 Micell Technologies, Inc. Peripheral stents having layers
US20100241220A1 (en) 2009-03-23 2010-09-23 Mcclain James B Peripheral Stents Having Layers
WO2010111196A2 (en) 2009-03-23 2010-09-30 Micell Technologies, Inc. Peripheral stents having layers
US20100256746A1 (en) 2009-03-23 2010-10-07 Micell Technologies, Inc. Biodegradable polymers
WO2010111232A3 (en) 2009-03-23 2011-04-21 Micell Technologies, Inc. Drug delivery medical device
US20100256748A1 (en) 2009-04-01 2010-10-07 Micell Technologies, Inc. Coated stents
WO2010120552A2 (en) 2009-04-01 2010-10-21 Micell Technologies, Inc. Coated stents
WO2010120552A3 (en) 2009-04-01 2011-03-31 Micell Technologies, Inc. Coated stents
US20110301697A1 (en) 2009-04-10 2011-12-08 Hemoteq Ag Manufacture, method and use of drug-eluting medical devices for permanently keeping blood vessels open
WO2010121187A3 (en) 2009-04-17 2011-03-31 Micell Techologies, Inc. Stents having controlled elution
WO2010121187A2 (en) 2009-04-17 2010-10-21 Micell Techologies, Inc. Stents having controlled elution
US20120101566A1 (en) 2009-06-22 2012-04-26 Biotronik Vi Patent Ag Stent having improved stent design
US20110009953A1 (en) 2009-07-09 2011-01-13 Andrew Luk Rapamycin reservoir eluting stent
WO2011009096A1 (en) 2009-07-16 2011-01-20 Micell Technologies, Inc. Drug delivery medical device
EP2293366A1 (en) 2009-08-27 2011-03-09 SB LiMotive Co., Ltd. Rechargeable secondary battery having improved safety against puncture and collapse
US20110190864A1 (en) 2010-02-02 2011-08-04 Micell Technologies, Inc. Stent and stent delivery system with improved deliverability
WO2011097103A1 (en) 2010-02-02 2011-08-11 Micell Technologies, Inc. Stent and stent delivery system with improved deliverability
US20110238161A1 (en) 2010-03-26 2011-09-29 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
WO2011119762A1 (en) 2010-03-26 2011-09-29 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
US20110257732A1 (en) 2010-04-16 2011-10-20 Micell Technologies, Inc. Stents having controlled elution
WO2011130448A1 (en) 2010-04-16 2011-10-20 Micell Technologies, Inc. Stents having controlled elution
WO2011133655A1 (en) 2010-04-22 2011-10-27 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
US20110264190A1 (en) 2010-04-22 2011-10-27 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
WO2012009684A2 (en) 2010-07-16 2012-01-19 Micell Technologies, Inc. Drug delivery medical device
WO2012034079A3 (en) 2010-09-09 2012-05-18 Micell Technologies, Inc. Macrolide dosage forms
US20120064124A1 (en) 2010-09-09 2012-03-15 Micell Technologies, Inc. Macrolide dosage forms
US20120150275A1 (en) 2010-12-10 2012-06-14 Micropen Technologies Corporation Stents and methods of making stents
WO2012082502A1 (en) 2010-12-17 2012-06-21 Advanced Technologies And Regenerative Medicine, Llc Tissue engineered blood vessels
WO2012092504A2 (en) 2010-12-30 2012-07-05 Micell Technologies, Inc. Nanoparticle and surface-modified particulate coatings, coated balloons, and methods therefore
US20120177742A1 (en) 2010-12-30 2012-07-12 Micell Technologies, Inc. Nanoparticle and surface-modified particulate coatings, coated balloons, and methods therefore
US20120323311A1 (en) 2011-04-13 2012-12-20 Micell Technologies, Inc. Stents having controlled elution
WO2012142319A1 (en) 2011-04-13 2012-10-18 Micell Technologies, Inc. Stents having controlled elution
US20120280432A1 (en) 2011-05-06 2012-11-08 Industrial Technology Research Institute Method for manufacturing bioabsorbable stents
WO2012166819A1 (en) 2011-05-31 2012-12-06 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
WO2013012689A1 (en) 2011-07-15 2013-01-24 Micell Technologies, Inc. Drug delivery medical device
WO2013025535A1 (en) 2011-08-12 2013-02-21 Micell Technologies, Inc. Stents having controlled elution
WO2013059509A1 (en) 2011-10-18 2013-04-25 Micell Technologies, Inc. Drug delivery medical device
WO2013173657A1 (en) 2012-05-16 2013-11-21 Micell Technologies, Inc. Low burst sustained release lipophilic and biologic agent compositions
WO2013177211A1 (en) 2012-05-21 2013-11-28 Micell Technologies, Inc. Safe drug eluting stent with absorbable coating
WO2014063111A1 (en) 2012-10-18 2014-04-24 Micell Technologyies, Inc. Drug delivery medical device

Non-Patent Citations (369)

* Cited by examiner, † Cited by third party
Title
Abreu Filho et al., "Influence of metal alloy and the profile of coronary stents in patients with multivessel coronary disease," Clinics 2011;66(6):985-989.
Akoh et al, "One-Stage Synthesis of Raffinose Fatty Acid Polyesters."Journal Food Science (1987) 52:1570.
Albert et al., "Antibiotics for preventing recurrent urinary tract infection in non-pregnant women,"Cochrane Database System Rev. 3, CD001209 (2004).
Au et al., "Methods to improve efficacy of intravesical mitomycin C: Results of a randomized phase III trial," Journal of the National Cancer Institute, 93(8), 597-604 (2001).
AU2006270221 Exam Report dated Apr. 6, 2010.
AU2007243268 Exam Report dated Aug. 31, 2011.
AU2007243268 Exam Report dated May 15, 2013.
AU2009251504 Exam Report dated Dec. 8, 2011.
AU2009270849 Exam Report dated Feb. 14, 2012.
AU2011232760 Exam Report dated Apr. 10, 2013.
AU2011256902 Exam Report dated Jun. 13, 2013.
AU2012203203 Exam Report dated Apr. 12, 2013.
AU2012203577 Exam Report dated Jun. 7, 2013.
Balss et al., "Quantitative spatial distribution of sirolumus and polymers in drug-eluting stents using confocal Raman microscopy," J. of Biomedical Materials Research Part A, 258-270 (2007).
Belu et al., "Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary loan Mass Spectroscopy," Anal. Chem. 80:624-632 (2008).
Belu, et al., "Chemical imaging of drug eluting coatings: Combining surface analysis and confocal Rama microscopy" J. Controlled Release 126: 111-121 (2008).
Boneff, "Topical Treatment of Chronic Prostatitis and Premature Ejaculation," International Urology and Nephrology 4(2):183-186 (1971).
Bookbinder et al., "A recombinant human enzyme for enhanced interstitial transport of therapeutics," Journal of Controlled Release 114:230-241 (2006).
Borchert et al., "Prevention and treatement of urinary tract infection with probiotics: Review and research perspective," Indian Journal Urol. 24(2):139-144 (2008).
Brunstein et al., "Histamine, a vasoactive agent with vascular disrupting potential improves tumour response by enhancing local drug delivery," British Journal of Cancer 95:1663-1669 (2006).
Bugay et al., "Raman Analysis of Pharmaceuticals," in "Applications of Vibrational Spectroscopy in Pharmaceutical Research and Development," Ed. Pivonka, D.E., Chalmers, J.M., Griffiths, P.R. (2007) Wiley and Sons.
CA 2613280 Office action dated Dec. 10, 2013.
CA 2613280 Office Action dated Oct. 2, 2012.
CA 2615452 Office Action dated Dec. 19, 2012.
CA 2615452 Office Action dated Oct. 8, 2013.
CA 2650590 Office action dated Jul. 23, 2013.
CA 2667228 Office action dated Jan. 22, 2014.
CA 2667228 office action dated May 7, 2013.
CA 2679712 Office action dated Feb. 24, 2014.
CA 2684482 Office Action dated Nov. 10, 2011.
CA 2684482 Office Action Jul. 11, 2012.
CA 2688314 Office Action dated Jun. 6, 2012.
CA 2730995 Office Action dated Feb. 20, 2014.
CA 2730995 Office action dated May 29, 2013.
CA 2730995 Office Action dated Sep. 26, 2012.
CA 2756307 Office action dated Feb. 18, 2013.
CA 2756307 Office action dated Mar. 24, 2014.
CA 2756386 Office action dated Mar. 15, 2013.
CA 2756386 Office action dated May 16, 2014.
CA 2756386 Office action dated Oct. 24, 2013.
CA 2756388 Office Action dated Apr. 11, 2013.
CA 2756388 Office Action dated Apr. 14, 2014.
CA 2757276 Office Action dated Feb. 15, 2013.
CA 2757276 Office Action dated Feb. 5, 2014.
CA 2759015 Office action dated Apr. 8, 2013.
CA 2794704 Office action dated Feb. 7, 2014.
CA 2805631 Office Action dated Jan. 17, 2014.
CA 2823355 Office action dated Apr. 14, 2014.
Cadieux et al., "Use of triclosan-eluting ureteral stents in patients with long-term stents," J. Endourol (Epub) (Jun. 19, 2009).
Channon et al., "Nitric Oxide Synthase in Atherosclerosis and Vascular Injury: Insights from Experimental Gene Therapy," Arteriosclerosis, Thrombosis and Vascular Biology, 20(8):1873-1881 (2000).
Chen et al. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials. Dec. 2005;26(35):7418-24.
Chlopek et al. "The influence of carbon fibres on the resorption time and mechanical properties of the lactide-glycolide co-polymer." J. Biomater. Sci. Polymer Edn, vol. 18, No. 11, pp. 1355-1368 (2007).
Chlopek et al. "The influence of carbon fibres on the resorption time and mechanical properties of the lactide—glycolide co-polymer." J. Biomater. Sci. Polymer Edn, vol. 18, No. 11, pp. 1355-1368 (2007).
Clair and Burks, "Thermoplastic/Melt-Processable Polyimides," NASA Conf. Pub. #2334 (1984), pp. 337-355.
CN 2006800258093 Office Action dated May 30, 2012.
CN 200780047425.6 Office action dated Aug. 3, 2012.
CN 200780047425.6 Office action dated Feb. 28, 2013.
CN 200880007308.1 Office Action dated Jan. 2, 2014.
CN 200880007308.1 Office Action dated Jul. 3, 2013.
CN 200880007308.1 Office Action dated Nov. 23, 2011.
CN 200880007308.1 Office Action dated Oct. 18, 2012.
CN 200880020515 Office Action dated Apr. 15, 2014.
CN 200880020515 Office Action dated Jul. 22, 2013.
CN 200880020515 Office Action dated Oct. 9, 2012.
CN 200880100102.3 Office Action dated Apr. 11, 2013.
CN 200880100102.3 Office Action dated Dec. 11, 2013.
CN 200880100102.3 Office Action dated Jun. 1, 2012.
CN 200980122691 Office Action dated Oct. 10, 2012.
CN 200980136432.2 Office action dated Jan. 14, 2013.
CN 200980136432.2 Office action dated Jul. 3, 2014.
CN 200980136432.2 Office action dated Nov. 4, 2013.
CN 201080024973.9 Office action dated Aug. 7, 2014.
CN 201080024973.9 Office action dated Dec. 20, 2013.
Cohen, et al. "Sintering Technique for the Preparation of Polymer Matrices fro the Controlled Release of Macromolecules." Journal of Pharamceutical Sciences, vol. 73, No. 8, 1984, p. 1034-1037.
Colombo et al. "Selection of Coronary Stents," Journal of the American College of Cardiology, vol. 40, No. 6, 2002, p. 1021-1033.
CRC Handbook of chemistry and physics. 71st ed. David R. Lide, Editor-in-Chief. Boca Raton, FL, CRC Press; 1990; 6-140.
Cyrus et al., "Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury," Arterioscler Thromb Vasc Biol 2008;28:820-826.
Derwent-Acc-No. 2004-108578 Abstracting 2004003077; Jan. 8, 2004; 3 pages.
DiStasi et al., "Percutaneous sequential Bacillus Calmette-Guerin and mitomycin C for panurothelial carcinomatosis," Can. J. Urol. 12(6):2895-2898 (2005).
Domb and Langer, "Polyanhydrides. I. Preparation of High Molecular Weight Polyanhydrides. "J. Polym Sci. 25:3373-3386 (1987).
Domingo, C. et al., "Precipication of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle," J. Supercritical Fluids 10:39-55 (1997).
Dzik-Jurasz, "Molecular imaging in vivo: an introduction," The British Journal of Radiology, 76:S98-S109 (2003).
EA 200901254 Office Action dated Jul. 29, 2013.
EA 200901254/28 Office Action dated Jul. 18, 2012.
EA 201001497 Office Action dated Feb. 11, 2013.
EA 201001497 Office Action dated Jul. 29, 2013.
Electrostatic Process, Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc. 1999; 7:15-39.
Eltze et al., "Imidazoquinolinon, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly (ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors," Mol. Pharmacol 74(6):1587-1598 (2008).
EP06773731.2 Search Report dated Oct. 2, 2012.
EP06787258.0 Office Action dated Mar. 15, 2013.
EP06787258.0 Search Report dated Feb. 6, 2012.
EP07756094.4 Office Action dated Jan. 21, 2014.
EP07756094.4 Office action dated May 29, 2013.
EP07756094.4 Search Report dated Aug. 31, 2012.
EP08705772.5 Office Action dated Oct. 30, 2013.
EP08705772.5 Search Report dated Feb. 20, 2013.
EP08733210.2 Office action dated Jul. 16, 2013.
EP08733210.2 Search Report dated Oct. 23, 2012.
EP08756215.3 Search Report dated Jan. 28, 2013.
EP08756215.3 Search Report dated Oct. 5, 2011.
EP09755571.8 Office Action dated Dec. 13, 2013.
EP09755571.8 Search Report dated Apr. 9, 2013.
EP09798764.8 Office action dated Jun. 30, 2014.
EP09798764.8 Search Report dated Sep. 30, 2013.
EP09805981.9 Office Action dated Feb. 13, 2013.
EP10756676.2 Search Report dated Jan. 31, 2014.
EP10756696.0 Search Report dated Oct. 10, 2013.
EP10764884.2 Search Report dated Oct. 28, 2013.
EP10765295.0 Search Report dated Oct. 17, 2013.
EP10800642.0 Search Report dated Mar. 19, 2014.
EP11769546.0 Search Report dated Sep. 19, 2013.
EP11772624.0 Search Report dated Jun. 5, 2014.
Ettmayer et al. Lessons learned from marketed and investigational prodrugs. J Med Chem. May 6, 2004;47(10):2393-404.
Fibbi et al., "Chronic inflammation in the pathogenesis of benign prostatic hyperplasia," Int J Androl. Jun. 1, 2010;33(3):475-88.
Fleischmann et al., "High Expression of Gastrin-Releasing Peptide Receptors in the Vascular bed of Urinary Tract Cancers: Promising Candidates for Vascular Targeting Applications." Jun. 2009, Endocr. Relat. Cancer 16(2):623-33.
Froehlich et al., "Conscious sedation for gastroscopy: patient tolerance and cardiorespiratory parameters," Gastroenterology 108(3):697-704 (1995).
Fujiwara et al., "Insulin-like growth factor 1 treatment via hydrogels rescues cochlear hair cells from ischemic injury," Oct. 29, 2008, NeuroReport 19(16):1585-1588.
Fulton et al. Thin Fluoropolymer films and nanoparticle coatings from the rapid expansion of supercritical carbon dioxide solutions with electrostatic collection, Polymer Communication. 2003; 2627-3632.
Griebenow et al., "On Protein Denaturation in Aqueous-Organic Mixtures but not in Pure Organic Solvents," J. Am Chem Soc., vol. 118. No. 47, 11695-11700 (1996).
Hamilos et al., "Differential effects of Drug-Eluting Stents on Local Endothelium-Dependent Coronary Vasomotion." JACC vol. 51, No. 22, 2008, Endothelium and DES Jun. 3, 2008:2123-9.
Han, et al., "Studies of a Novel Human Thrombomodulin Immobilized Substrate: Surface Characterization and Anticoagulation Activity Evaluation." J. Biomater. Sci. Polymer Edn, 2001, 12 (10), 1075-1089.
Hartmann et al., "Tubo-ovarian abscess in virginal adolescents: exposure oldie underlying etiology," J. Pediatr Adolesc Gynecol, 22(3):313-16 (2009).
Hasegawa et al. Nylon 6/Na-montmorillonite nanocomposites prepared by compounding Nylon 6 with Na-montmorillonite slurry. Polymer. Volume 44. (2003). pp. 2933-2937. *
Hasegawa et al. Nylon 6/Na—montmorillonite nanocomposites prepared by compounding Nylon 6 with Na—montmorillonite slurry. Polymer. Volume 44. (2003). pp. 2933-2937. *
Hasegawa et al., "Nylong 6/Na-montmorillonite nanocomposites prepared by compounding Nylon 6 with Na-montmorillonite slurry," Polymer 44 (2003) 2933-2937.
Hinds, WC. Aerosol Technology, Properties, Behavior and Measurement of Airborne Particles, Department of Environmental Health Sciences, Harvard University School of Public Health, Boston, Massachusetts. 1982; 283-314.
Hladik et al., "Can a topical microbicide prevent rectal HIV transmission?" PLoS Med. 5(8):e167 (2008).
Iconomidou et al., "Secondary Structure of Chorion Proteins of the Teleosatan Fish Dentex dentex by ATR FR-IR and FT-Raman Spectroscopy," J. of Structural Biology, 132, 112-122 (2000).
ID—W00201003529 Office action dated Apr. 28, 2014.
IL-201550 Official Notification dated Dec. 8, 2013.
IL-208648 Official Notification dated Feb. 9, 2012.
IN-368/DELNP/2008 Exam Report dated Oct. 17, 2011.
IN-6884DEFNP2009 Office Action dated Oct. 31, 2013.
IN-7740/DELNP/2009 Office Action dated Jul. 29, 2014.
Jackson et al., "Characterization of perivascular poly(lactic-co-glycolic acid) films containing paclitaxel" Int. J of Pharmaceutics, 283:97-109 (2004), incorporated in its entirety herein by reference.
Jensen et al., Neointimal hyperplasia after sirollmus-eluting and paclitaxel-eluting stend implantation in diabetic patients: the randomized diabetes and drug eluting stent (DiabeDES) intravascular ultrasound trial. European heart journal (29), pp. 2733-2741. Oct. 2, 2008. Retrieved from the Internet. Retrieved on [Jul. 17, 2012]. URL:<http://eurheartj.oxfordjournals.org/content/29/22/2733.full.pdf> entire document.
Jewell, et al., "Release of Plasmid DNA from Intravascular Stents Coated with Ultrathin Multilayered Polyelectrolyte Films" Biomacromolecules. 7: 2483-2491 (2006).
Johns, H.E, J.R.Cunningham, Thomas, Charles C., Publisher, "The Physics of Radiology,"1983, Springfield, IL, pp. 133-143.
Joner et al. "Site-specific targeting of nanoparticle prednisolone reduces in-stent restenosis in a rabbit model of established atheroma," Arterioscler Thromb Vasc Biol. 2008;28:1960-1966.
Jovanovic et al. "Stabilization of Proteins in Dry Powder Formulations Using Supercritical Fluid Technology," Pharm. Res. 2004; 21(11).
JP 2008-521633 Office Action dated Oct. 12, 2012.
JP2008-521633 Office Action dated Dec. 28, 2011.
JP-2009-534823 Office Action dated Apr. 23, 2013.
JP-2009-534823 Office Action dated Feb. 21, 2012.
JP-2009-534823 Office Action dated Sep. 20, 2012.
JP-2009-545647 Office Action dated Apr. 22, 2014.
JP-2009-545647 Office Action dated Jun. 5, 2012.
JP-2009-545647 Office Action dated May 14, 2013.
JP-2010-504253 Office Action dated Dec. 12, 2011.
JP-2010-504253 Office Action dated Dec. 7, 2012.
JP-2010-510441 Office action dated May 7, 2013.
JP-2011-505248 Office action dated Jun. 4, 2013.
JP-2011-518920 Office action dated Dec. 17, 2012.
JP-2011-518920 Office action dated Oct. 23, 2013.
JP-2012-151964 Office Action dated Dec. 10, 2013.
JP-2012-503677 Office action dated Jan. 18, 2013.
JP-2012-503677 Office action dated Nov. 1, 2013.
JP-2013-024508 Office Action dated Apr. 24, 2014.
Kazemi et al., "The effect of betamethasone gel in reducing sore throat, cough, and hoarseness after laryngo-tracheal intubation," Middle East J. Anesthesiol. 19(1):197-204 (2007).
Kehinde et al., "Bacteriology of urinary tract infection associated with indwelling J ureteral stents," J. Endourol. 18(9):891-896 (2004).
Khan et al., "Chemistry and the new uses of Sucrose: How Important?" Pur and Appl. Chem (1984) 56:833-844.
Khan et al., "Cyclic Acetals of 4,1′,6′-Trichloro-4,1′,6′,-Trideoxy-Trideoxy-galacto-Sucrose and their Conversion into Methyl Ether Derivatives." . Carb. Res. (1990) 198:275-283.
Khan et al., "Enzymic Regioselective Hydrolysis of Peracetylated Reducing Disaccharides, Specifically at the Anomeric Centre: Intermediates for the Synthesis of Oligosaccharides." Tetrahedron Letters (1933) 34:7767.
Khayankarn et al. Adhesion and permeability of polyimide-clay nanocomposite films for protective coatings Journal of Polymer Science. 2003. vol. 89 Issue 11 pp. 2875-2881. *
Khayankarn et al. Adhesion and permeability of polyimide—clay nanocomposite films for protective coatings Journal of Polymer Science. 2003. vol. 89 Issue 11 pp. 2875-2881. *
Khayankarn et al., "Adhesion and Permeability of Polyimide-Clay Nanocomposite Films for Protective Coatings," Journal of Applied Polymer Science, vol. 89, 2875-2881 (2003).
Koh et al. "A novel nanostructured poly(lactic-co-glycolic-acid)-multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies.".
Koh et al. "A novel nanostructured poly(lactic-co-glycolic-acid)—multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies.".
KR10-2008-7003756 Office Action dated Sep. 23, 2013.
KR10-2013-7031237 Office action dated Mar. 17, 2014.
Kurt et al., "Tandem oral, rectal and nasal administrations of Ankaferd Blood Stopper to control profuse bleeding leading to hemodynamic instability," Am J. Emerg. Med. 27(5):631, e1-2 (2009).
Labhasetwar et al., "Arterial uptake of biodegradable nanoparticles: effect of surface modifications," Journal of Pharmaceutical Sciences, vol. 87, No. 10, Oct. 1998; 1229-1234.
Lamm et al., "Bladder Cancer: Current Optimal Intravesical Treatment: Pharmacologic Treatment," Urologic Nursing 25(5):323-6, 331-2 (Oct. 26, 2005).
Latella et al., "Nanoindentation hardness. Young's modulus, and creep behavior of organic-inorganic silica-based sol-gel thin films on copper," J Mater Res 23(9): 2357-2365 (2008).
Lehmann et al, "Drug treatment of nonviral sexually transmitted diseases: specific issues in adolescents," Pediatr Drugs 3(7):481-494 (2001.
Mahoney et al., "Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary Ion mass Spectrometry," Anal. Chem. , 80, 624-632 (2008).
Mario, C.D. et al., "Drug-Eluting Bioabsorbable Magnesium Stent," J. Interventional Cardiology 16(6):391-395 (2004).
Matsumoto, D, et al. Neointimal Coverage of Sirolimus-Eluting Stents at 6-month Follow-up: Evaluated by Optical Coherence Tomography, European Heart Journal, Nov. 29, 2006; 28:961-967.
McAlpine, J.B. et al., "Revised NMR Assignments for Rapamycin," J. Antibiotics 44:688-690 (1991).
McAlpine, J.B. et al., "Revised NMR Assignments for Rapamycine," J. Antibiotics 44:688-690 (1991).
Mehik et al., "Alfuzosin treatment for chronic prostatitis/chronic pelvic pain syndrome: a prospecitve, randomized, double-blind, placebo-controlled, pilot study," Urology 62(3):425-429 (2003).
Mei et al., "Local Delivery of Modified Paclitaxel-Loaded Poly( ε-caprolactone)/Pluronic F68 Nanoparticles for Long-Term Inhibition of Hyperplasia," Journal of Pharmaceutical Sciences, vol. 98, No. 6, Jun. 2009.
Melonakos et al., Treatment of low-grade bulbar transitional cell carcinoma with urethral instillation of mitomycin C, Oct. 28, 2008, Adv. Urol., 173694 Epub.
Merrett et al., "Interaction of corneal cells with transforming growth factor beta2-modified poly dimethyl siloxane surfaces," Journal of Biomedical Materials Research, Part A, vol. 67A, No. 3, pp. 981-993 (2003).
Merriam-Webster Online Dictionary, obtained onlie at: http://www.merriam-webster.com/dictionary/derivative, downloaded 07 Jul. 5, 2008.
Middleton and Tipton, Synthetic biodegradable polymers as orthopedic devises. Biomaterials 2000; 21 :2335-46.
Minchin, "Nanomedicine: sizing up targets with nanoparticles," Nature Nanotechnology, vol. 33, Jan. 2008, 12-13.
Minoque et al., "Laryngotracheal topicalization with lidocaine before intubation decreases the incidence of coughing on emergence from general anesthesia," Anesth. Analg. 99(4):1253-1257 (2004).
Mishima et al. "Microencapsulation of Proteins by Rapid Expansion of Supercritical Solution with a Nonsolvent," AIChE J. 2000;46(4):857-65.
Mocco et al., "Pharos neurovascular intracranail stent: Elective use for a symptomatic stenosis refractory to medical therapy," Catheter Cardiovasc. Interv. (epub) (Mar. 2009).
Mollen et al., "Prevalence of tubo-ovarian abcess in adolescents diagnosed with pelvice inflammatory disease in a pediatric emergency department," Pediatr. Emerg. Care, 22(9): 621-625 (2006).
Moroni et al., "Post-ischemic brain damage:targeting PARP-1 within the ischemic neurovaschular units as a realistic avenue to stroke treatment," FEBS J. 276(1):36-45 (2009).
Muhlen et al., "Magnetic Resonance Imaging Contrast Agent Targeted Toward Activated Platelets Allows in Vivo Detection of Thrombosis and Monitoring of Thrombolysis Circulation," 118:258-267 (2008).
Murphy et al., "Chronic prostatitis: management strategies," Drugs 69(1): 71-84 (2009).
MX/a/2010/01148 Office action dated Feb. 11, 2014.
NZ 588549 Examination Report dated Mar. 28, 2011.
Ong and Serruys, "Technology Insight: an overview of research in drug-eluting stents," Nat. Clin. Parct. Cardiovas. Med. 2(12):647-658 (2005).
PCT/US06/24221 International Preliminary Report on Patentability dated Dec. 24, 2007.
PCT/US06/24221 Search Report mailed Jan. 29, 2007.
PCT/US06/27321 International Preliminary Report on Patentability dated Jan. 16, 2008.
PCT/US06/27321 International Search Report mailed Oct. 16, 2007.
PCT/US06/27321 Search Report mailed Oct. 16, 2007.
PCT/US06/27322 International Preliminary Report on Patentability dated Jan. 16, 2008.
PCT/US06/27322 Search Report mailed Apr. 25, 2007.
PCT/US07/10227 International Preliminary Report on Patentability dated Oct. 28, 2008.
PCT/US07/10227 Search Report mailed Aug. 8, 2008.
PCT/US07/80213 International Preliminary Report on Patentability dated Apr. 7, 2009.
PCT/US07/80213 Search Report dated Apr. 16, 1008.
PCT/US07/82275 Search Report mailed Apr. 18, 2008.
PCT/US08/11852 International Preliminary Report on Patentability dated Apr. 20, 2010.
PCT/US08/11852 Search Report dated Dec. 19, 2008.
PCT/US08/50536 International Preliminary Report on Patentability dated Jul. 14, 2009.
PCT/US08/50536 Search Report dated Jun. 2, 2008.
PCT/US08/60671 International Preliminary Report on Patentability dated Oct. 20, 2009.
PCT/US08/60671 International Search Report mailed Sep. 5, 2008.
PCT/US08/60671 Search Report dated Sep. 5, 2008.
PCT/US08/64732 International Preliminary Report on Patentability dated Dec. 1, 2009.
PCT/US08/64732 international Search Report mailed Sep. 4, 2008.
PCT/US08/64732 Search Report dated Sep. 4, 2008.
PCT/US09/41045 International Preliminary Report on Patentability dated Oct. 19, 2010.
PCT/US09/41045 International Search Report mailed Aug. 11, 2009.
PCT/US09/41045 Search Report dated Aug. 11, 2009.
PCT/US09/50883 International Preliminary Report on Patentability dated Jan. 18, 2011.
PCT/US09/50883 International Search Report mailed Nov. 17, 2009.
PCT/US09/50883 Search Report dated Nov. 17, 2009.
PCT/US09/69603 International Preliminary Report on Patentability dated Jun. 29, 2011.
PCT/US09/69603 International Search Report mailed Nov. 5, 2010.
PCT/US10/28195 International Preliminary Report on Patentability dated Oct. 6, 2011.
PCT/US10/28195 Search Report and Written Opinion mailed Jan. 21, 2011.
PCT/US10/28253 International Preliminary Report on Patentability dated Sep. 27, 2011.
PCT/US10/28253 Search Report and Written Opinion mailed Dec. 6, 2010.
PCT/US10/28265 International Report on Patentability dated Sep. 27, 2011.
PCT/US10/28265 Search Report and Written Opinion mailed Dec. 13, 2010.
PCT/US10/29494 International Preliminary Report on Patentability dated Oct. 4, 2011.
PCT/US10/29494 Search Report and Written Opinion mailed Feb. 7, 2011.
PCT/US10/31470 International Preliminary Report on Patentability dated Oct. 18, 2011.
PCT/US10/31470 Search Report and Written Opinion mailed Jan. 28, 2011.
PCT/US10/42355 International Preliminary Report on Patentability dated Jan. 17, 2012.
PCT/US10/42355 Search Report mailed Sep. 2, 2010.
PCT/US11/032371 International Report on Patentability dated Oct. 16, 2012.
PCT/US11/051092 International Search Report dated Apr. 2, 2012.
PCT/US11/051092 Written Opinion dated Mar. 9, 2013.
PCT/US11/22623 International Preliminary Report on Patentability dated Aug. 7, 2012.
PCT/US11/22623 Search Report and Written Opinion mailed Mar. 28, 2011.
PCT/US11/29667 International Search Report and Written Opinion mailed Jun. 1, 2011.
PCT/US11/67921 International Preliminary Report on Patentability dated Jul. 11, 2013.
PCT/US12/33367 International Preliminary Report on Patentability dated Oct. 15, 2013.
PCT/US12/33367 International Search Report mailed Aug. 1, 2012.
PCT/US12/46545 international Search Report mailed Nov. 20, 2012.
PCT/US12/50408 International Search Report mailed Oct. 19, 2012.
PCT/US13/41466 International Search Report and Written Opinion dated Oct. 17, 2013.
PCT/US13/42093 International Search Report and Written Opinion dated Oct. 24, 2013.
PCT/US2007/82775 International Preliminary Report on Patentablity dated Apr. 28, 2009.
PCT/US2011/032371, International Search Report dated Jul. 7, 2011.
PCT/US2011/033225 International Search Report and Written Opinion dated Jul. 7, 2011.
PCT/US2011/044263 International Search Report, International Preliminary Report on Patentability and Written Opinion dated Feb. 9, 2012.
PCT/US2011/051092 International Preliminary Report on Patentability dated Mar. 21, 2013.
PCT/US2011/29667 International Search Report and Written Opinion mailed Jun. 1, 2011.
PCT/US2011/67921 International Preliminary Report on Patentability dated Jul. 11, 2013.
PCT/US2011/67921 Search Report and Written Opinion mailed Jun. 22, 2012.
PCT/US2012/040040 International Search Report mailed Sep. 7, 2012.
PCT/US2012/60896 International Search Report and Written Opinion dated Dec. 28, 2012.
PCT/US2013/065777 International Search Report and Written Opinion dated Jan. 29, 2014.
PCT/US2014/025017 International Search Report and Written Opinion dated Jul. 7, 2014.
Perry et al., Chemical Engineer's Handbook, 5th Edition, McGraw-Hill, New York, 1973; 20-106.
Plas et al., "Tubers and tumors: rapamycin therapy for benign and malignant tumors", Curr Opin Cell Bio 21: 230-236, (2009).
Poling et al., The Properties of Gases and Liquids. McGraw-Hill. 2001; 9:1-9.97.
Pontari, "Chronic prostatitis/chronic pelvic pain syndrome in elderly men: toward better understanding and treatment," Drugs Aging 20(15):1111-1115 (2003).
Pontari, "Inflammation and anti-inflammatory therapy in chronic prostatits," Urology 60(6Suppl):29-33 (2002).
Putkisto, K. et al. "Polymer Coating of Paper Using Dry Surface Treatment—Coating Structure and Performance", ePlace newsletter, Apr. 12, 2004, vol. 1, No. 8, pp. 1-20.
Raganath et al., "Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour," Pharm Res (Epub) Jun. 20, 2009).
Ranade et al., "Physical characterization of controlled release of paclitaxel from the TAXUS Express2 drug-eluting stent," J. Biomed Mater. Res. 71(4):625-634 (2004).
Reddy et al , "Inhibition of apoptosis through localized delivery of rapamycin-loaded nanoparticles prevented neointimal hyperplasia and reendothelialized injured artery," Circ Cardiovasc Interv 2008;1;209-216.
Ristikankare et al., "Sedation, topical pharnygeal anesthesia and cardiorespiratory safety during gastroscopy," J. Clin Gastorenterol. 40(1):899-905 (2006).
Sahajanand Medical Technologies (Supralimus Core; Jul. 6, 2008).
Schmidt et al., "A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems," Catheterization and Cardiovascular Interventions 73:350-360 (2009).
Schmidt et al., "In vitro measurement of quality parameters of stent-catheter systems," Biomed Techn 50(S1):1505-1506 (2005).
Schmidt et al., "New aspects of in vitro testing of arterial stents based on the new European standard," EN 14299, [online] (2009), [retrieved on Mar. 10, 2001] http://www.lib0ev.de/pl/pdf/EN14299.pdf (2009).
Schmidt et al., "Trackability, Crossability, and Pushability of Coronary Stent Systems—An Experimental Approach," Biomed Techn 47 (2002), Erg. 1, S. 124-126.
Schreiber, S.L. et al., "Atomic Structure of the Rapamycin Human Immunophilin FKBP-12 Complex," J. Am. Chem. Soc. 113:7433-7435 (1991).
Schrieber, S.L. et al., J. Am. Chem. Soc. 113:7433 (1991).
Sen et al., "Topical heparin: A promising agent for the prevention of tracheal stenosis in airway surgery," J. Surg. Res (Epub ahead of print) Feb. 21, 2009.
Serruys, Patrick et al., Comparison of Coronary-Artery Bypass Surgery and Stenting for the Treatment of Multivessel Disease, N. Engl. J. Med., 2001, vol. 344, No. 15, pp. 1117-1124.
SG201007602-4 Written Opinion dated May 25, 2012.
Shekunov et al. "Crystallization Processes in Pharmaceutical Technology and Drug Delivery Design." Journal of Crystal Growth 211 (2000), pp. 122-136.
Simpson et al., "Hyaluronan and hyaluronidase in genitourinary tumors."Front Biosci. 13:5664-5680.
Smith et al., "Mitomycin C and the endoscopic treatment of laryngotracheal stenosis: are two applications better than one?" Laryngoscope 119(2):272-283 (2009).
Sumathi et al., "Controlled comparison between betamethasone gel and lidocaine jelly applied over tracheal tube to reduce postoperative sore throat, cough, and hoarseness of voice," Br. J. Anaesth. 100(2):215-218 (2008.
Szabadits et al., "Flexibility and trackability of laser cut coronary stent systems," Acta of Bioengineering and Biomechanics 11(3):11-18 (2009).
Testa, B. Prodrug research: futile or fertile? Biochem Pharmacol. Dec. 1, 2004;68(11):2097-106.
Torchlin, "Micellar Nanocarriers: Pharmaecutial Perspectives," Pharmaceutical Research, vol. 24, No. 1, Jan. 2007.
U.S. Appl. No. 11/158,724 Office action Mailed Dec. 31, 2013.
U.S. Appl. No. 11/158,724 Office Action Mailed Jun. 25, 2014.
U.S. Appl. No. 11/158,724 Office action Mailed May 23, 2013.
U.S. Appl. No. 11/158,724 Office Action Mailed Sep. 17, 2009.
U.S. Appl. No. 11/158,724 Office Action Mailed Sep. 8, 2008.
U.S. Appl. No. 11/877,591 Final Action dated Nov. 4, 2013.
U.S. Appl. No. 11/877,591 Office Action Mailed Feb. 29, 2012.
U.S. Appl. No. 11/877,591 Office Action Mailed Jul. 1, 2013.
U.S. Appl. No. 11/877,591 Office Action Mailed May 7, 2014.
U.S. Appl. No. 11/877,591 Office Action Mailed Sep. 21, 2012.
U.S. Appl. No. 11/995,685 Office Action Mailed Aug. 20, 2010.
U.S. Appl. No. 11/995,685 Office Action Mailed Jun. 18, 2014.
U.S. Appl. No. 11/995,685 Office Action Mailed Nov. 24, 2009.
U.S. Appl. No. 11/995,687 Office Action Mailed Apr. 6, 2012.
U.S. Appl. No. 12/298,459 Office Action mailed Apr. 6, 2012.
U.S. Appl. No. 12/298,459 Office Action Mailed Aug. 10, 2011.
U.S. Appl. No. 12/298,459 Office Action Mailed May 31, 2013.
U.S. Appl. No. 12/426,198 Office Action Mailed Feb. 6, 2012.
U.S. Appl. No. 12/426,198 Office Action mailed Feb. 7, 2014.
U.S. Appl. No. 12/426,198 Office Action Mailed Mar. 23, 2011.
U.S. Appl. No. 12/443,959 Office Action Mailed Dec. 13, 2012.
U.S. Appl. No. 12/443,959 Office Action mailed Feb. 15, 2012.
U.S. Appl. No. 12/504,597 Final Office Action Mailed Oct. 3, 2012.
U.S. Appl. No. 12/504,597 Office Action Mailed Apr. 1, 2014.
U.S. Appl. No. 12/504,597 Office Action Mailed Dec. 5, 2011.
U.S. Appl. No. 12/522,379 Final Office Action Mailed Aug. 28, 2013.
U.S. Appl. No. 12/522,379 Office Action Mailed Apr. 8, 2014.
U.S. Appl. No. 12/522,379 Office Action Mailed Dec. 26, 2012.
U.S. Appl. No. 12/595,848 Office Action Mailed Jan. 13, 2012.
U.S. Appl. No. 12/595,848 Office Action Mailed Mar. 15, 2013.
U.S. Appl. No. 12/595,848 Office Action Mailed Oct. 22, 2013.
U.S. Appl. No. 12/648,106 Final Office Action Mailed Sep. 25, 2012.
U.S. Appl. No. 12/648,106 Office Action Mailed Jan. 30, 2012.
U.S. Appl. No. 12/648,106 Office Action Mailed Sep. 18, 2013.
U.S. Appl. No. 12/729,156 Final Office Action Mailed Oct. 16, 2012.
U.S. Appl. No. 12/729,156 Office Action Mailed Feb. 1, 2012.
U.S. Appl. No. 12/729,156 Office Action Mailed Feb. 13, 2014.
U.S. Appl. No. 12/729,156 Office action Mailed May 8, 2013.
U.S. Appl. No. 12/729,580 Final Action dated Nov. 14, 2013.
U.S. Appl. No. 12/729,580 Office Action Mailed Apr. 10, 2012.
U.S. Appl. No. 12/729,580 Office Action Mailed Jan. 22, 2013.
U.S. Appl. No. 12/729,603 Final Office Action Mailed Oct. 10, 2012.
U.S. Appl. No. 12/729,603 Office Action Mailed Jun. 25, 2014.
U.S. Appl. No. 12/729,603 Office Action Mailed Mar. 27, 2012.
U.S. Appl. No. 12/738,411 Final Office action Mailed Apr. 11, 2013.
U.S. Appl. No. 12/738,411 Office action Mailed Aug. 21, 2013.
U.S. Appl. No. 12/738,411 Office Action mailed Feb. 6, 2014.
U.S. Appl. No. 12/738,411 Office Action mailed May 30, 2014.
U.S. Appl. No. 12/748,134 Office Action Mailed Jul. 18, 2013.
U.S. Appl. No. 12/751,902 Office Action Mailed Dec. 19, 2013.
U.S. Appl. No. 12/751,902 Office Action Mailed Jul. 13, 2012.
U.S. Appl. No. 12/762,007 Final Office action Mailed Apr. 30, 2014.
U.S. Appl. No. 12/762,007 Final Office action Mailed Oct. 22, 2013.
U.S. Appl. No. 12/762,007 Office action Mailed Feb. 11, 2013.
U.S. Appl. No. 13/014,632 Office action Mailed Jan. 10, 2014.
U.S. Appl. No. 13/014,632 Office action Mailed May 8, 2013.
U.S. Appl. No. 13/086,335 Office action Mailed Apr. 4, 2014.
U.S. Appl. No. 13/086,335 Office action Mailed May 22, 2013.
U.S. Appl. No. 13/090,525 Office action mailed Apr. 11, 2014.
U.S. Appl. No. 13/229,473 Office Action Mailed Jun. 17, 2013.
U.S. Appl. No. 13/340,472 Office action Mailed Apr. 26, 2013.
U.S. Appl. No. 13/340,472 Office action Mailed Jan. 15, 2014.
U.S. Appl. No. 13/384,216 Final Action dated Nov. 6, 2013.
U.S. Appl. No. 13/384,216 Office action Mailed Apr. 24, 2013.
U.S. Appl. No. 13/445,723 Office action mailed Mar. 14, 2014.
U.S. Appl. No. 13/605,904 Office Action Mailed Jun. 28, 2013.
U.S. Appl. No. 13/605,904 Office Action Mailed Nov. 27, 2012.
Unger et al., "Poly(ethylene carbonate): A thermoelastic and biodegradable biomaterial for drug eluting stent coatings?" Journal fo Controlled Release, vol. 117, Issue 3, 312-321 (2007).
Verma et al., "Effect of surface properties on nanoparticle-cell interactions," Small 2010, 6, No. 1, 12-21.
Wagenlehner et al., "A pollen extract (Cernilton) in patients with inflammatory chronic prostatitis/chronic pelvic pain syndrome: a multicentre, randomized, prospective, double-blind, placebo-controlled phase 3 study," Eur Urol 9 (Epub) (Jun. 3, 2009).
Wang et al. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials 2000; 27:5588-95.
Wang et al., "Treatment with melagatran alone or in combination with thrombolytic therapy reduced ischemic brain injury," Exp. Neurol 213(1):171-175 (2008).
Warner et al., "Mitomycin C and airway surgery: how well does it work?" Ontolaryngol Head Neck Surg. 138(6):700-709 (2008).
Wermuth, CG Similarity in drugs: reflections on analogue design. Drug Discov Today. Apr. 2006;11(7-8):348-54.
Witjes et al., "Intravesical pharmacotherapy for non-muscle-invasive bladder cancer: a critical analysis of currently available drugs, treatment schedules, and long-term results," Eur. Urol. 53(1):45-52.
Wu et al., "Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites." Polymer 48 (2007) 4449-4458.
Xu et al., "Biodegradation of poly(l-lactide-co-glycolide tube stents in bile" Polymer Degradation and Stability. 93:811-817 (2008).
Zilberman et al., Drug-Eluting bioresorbable stents for various applications, Annu Rev Biomed Eng., 2006;8:158-180.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US9415142B2 (en) 2006-04-26 2016-08-16 Micell Technologies, Inc. Coatings containing multiple drugs
US9737645B2 (en) 2006-04-26 2017-08-22 Micell Technologies, Inc. Coatings containing multiple drugs
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US9775729B2 (en) 2007-04-17 2017-10-03 Micell Technologies, Inc. Stents having controlled elution
US9486338B2 (en) 2007-04-17 2016-11-08 Micell Technologies, Inc. Stents having controlled elution
US9433516B2 (en) 2007-04-17 2016-09-06 Micell Technologies, Inc. Stents having controlled elution
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US9486431B2 (en) 2008-07-17 2016-11-08 Micell Technologies, Inc. Drug delivery medical device
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
WO2017044789A1 (en) 2015-09-09 2017-03-16 Micell Technologies, Inc. Biopharma application of micell technology

Also Published As

Publication number Publication date Type
EP2170418A4 (en) 2011-11-09 application
JP2010527746A (en) 2010-08-19 application
US20100228348A1 (en) 2010-09-09 application
EP2170418B1 (en) 2016-03-16 grant
CN101815540B (en) 2015-08-19 grant
EP2170418A1 (en) 2010-04-07 application
WO2008148013A1 (en) 2008-12-04 application
CA2688314C (en) 2013-12-03 grant
CN101815540A (en) 2010-08-25 application
CA2688314A1 (en) 2008-12-04 application

Similar Documents

Publication Publication Date Title
US20060045901A1 (en) Stents with drug eluting coatings
US20040091603A1 (en) Process for the preparation of a medical implant
US20040115241A1 (en) Apparatus and method for preventing adhesions between an implant and surrounding tissues
US6599448B1 (en) Radio-opaque polymeric compositions
US20070128343A1 (en) Apparatus And Methods for Applying Coatings
US20050112172A1 (en) Biobeneficial coating compostions and methods of making and using thereof
US7335391B1 (en) Method for coating implantable devices
US20040098106A1 (en) Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
US6368658B1 (en) Coating medical devices using air suspension
US20040086569A1 (en) Active agent delivery systems, medical devices, and methods
US20010022988A1 (en) Device and method for protecting medical devices during a coating process
US20020091433A1 (en) Drug release coated stent
US20070141112A1 (en) Drug-eluting articles with improved drug release profiles
US20040117008A1 (en) Medical implants containing FK506 (tacrolimus), methods of making and methods of use thereof
Vasudev et al. Development of chitosan/polyethylene vinyl acetate co-matrix: controlled release of aspirin-heparin for preventing cardiovascular thrombosis
US20080008739A1 (en) Phase-separated block copolymer coatings for implantable medical devices
US20030099682A1 (en) Apparatus and method for control of tissue/implant interactions
US20070134288A1 (en) Anti-adhesion agents for drug coatings
US20060134168A1 (en) Coatings with crystallized active agent(s) and methods
US20040115273A1 (en) Active agent delivery system including a hydrophobic cellulose derivative, medical device, and method
US20090082856A1 (en) Medical devices having nanofiber-textured surfaces
US20050238686A1 (en) Coating for implantable devices and a method of forming the same
US20130045266A1 (en) Method for preparing polymeric biomaterials having immobilized drug delivery system comprising bioactive molecules loaded particle carrier
US20080075753A1 (en) Multi-layered coatings and methods for controlling elution of active agents
US20060121076A1 (en) Orienting polymer domains for controlled drug delivery

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICELL TECHNOLOGIES, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCCLAIN, JAMES;TAYLOR, DOUGLAS;SIGNING DATES FROM 20090814 TO 20090828;REEL/FRAME:023198/0451

AS Assignment

Owner name: MICELL TECHNOLOGIES, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCCLAIN, JAMES;TAYLOR, DOUGLAS;SIGNING DATES FROM 20100126 TO 20100129;REEL/FRAME:024086/0870

CC Certificate of correction
FEPP

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL)