JPH0698902A - Production of bone implant - Google Patents

Production of bone implant

Info

Publication number
JPH0698902A
JPH0698902A JP3334164A JP33416491A JPH0698902A JP H0698902 A JPH0698902 A JP H0698902A JP 3334164 A JP3334164 A JP 3334164A JP 33416491 A JP33416491 A JP 33416491A JP H0698902 A JPH0698902 A JP H0698902A
Authority
JP
Japan
Prior art keywords
core
resin
resin powder
film
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3334164A
Other languages
Japanese (ja)
Inventor
Noboru Matsunaga
昇 松永
Kazuyoshi Azeyanagi
和好 畔柳
Ichiro Sogaishi
一郎 曽我石
Takeo Katakura
健男 片倉
Takaaki Osawa
孝明 大澤
Yoshihisa Ueda
義久 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Janome Corp
Original Assignee
Terumo Corp
Janome Sewing Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, Janome Sewing Machine Co Ltd filed Critical Terumo Corp
Priority to JP3334164A priority Critical patent/JPH0698902A/en
Publication of JPH0698902A publication Critical patent/JPH0698902A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Abstract

PURPOSE:To provide the bone implant having high rigidity and wear resistance by applying the surface of a metallic core with resin powder, then covering the coating with a heat resistant film and heating a resin powder layer to partially dissolve the powder layer under vacuum suction from the aperture of the film, thereby bringing the film into tight contact with the core. CONSTITUTION:The core 4 of the stem part 2 of the artificial bone head 1 is formed to, for example, a prescribed shape from a proper metallic material in the case of production of the artificial bone head of the artificial thigh joint to be implanted into the marrow hole of the femur. The resin powder layer 5 of high-performance engineering plastics, etc., is then stuck and formed on the surface of the metallic core 4 and thereafter, the circumference thereof is coated with the heat resistant glass fibers 5 having air permeability and further, the circumference thereof is coated with the polyimide film 7 which is formed to a cylindrical shape sealed on one side and has excellent heat resistant. The surface of the metallic core 4 is then heated to melt the boundary part of the resin powder layer 5 and the core 4 and the pressure in the film 7 is reduced by suction from the suction port 8, by which the film 7 is brought into tight contact with the surface of the core 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は整形外科治療において人
体内に埋め込まれる骨インプラントの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a bone implant to be implanted in the human body in orthopedic treatment.

【0002】[0002]

【従来の技術】人体の関節に変形、欠損、壊死等が生じ
た場合に関節を補綴して関節機能を再建するための人工
関節(特にその人工骨頭側のステム部)や、骨幹部の骨
折の場合の骨髄内釘治療に用いる髄内釘等、整形外科治
療において人体内に埋め込まれる骨インプラントは、ス
テンレスSUS316L、Co−Cr、Co−Cr−N
i、Ti−6%Al−4%V等の金属インプラント材を
利用して、鋳造、鍛造、焼結等の適宜手段によって形成
されるのが主流であった。
2. Description of the Related Art Artificial joints (particularly, the stem portion on the side of the artificial femur) and fractures of the diaphysis for repairing the joint function by prosthesing the joint when the human body is deformed, missing, or necrotic. Bone implants to be implanted in the human body during orthopedic treatment, such as intramedullary nails used for intramedullary nail treatment in the case of, are made of stainless steel SUS316L, Co-Cr, Co-Cr-N.
i, Ti-6% Al-4% V, etc. were mainly used, and formed by appropriate means such as casting, forging, and sintering.

【0003】[0003]

【発明が解決しようとする課題】ところが、金属インプ
ラント材を利用した骨インプラントには様々な問題があ
り、例えば、人の皮質骨の曲げ弾性率はおよそ16GP
aであるのに対し、ステンレスSUS316L、Co−
Cr、Ti−6%Al−4%Vの曲げ弾性率はそれぞれ
200、213、124GPaであって、骨の約8〜1
3倍もあるため、人工関節がたわんだり、ねじれたりす
ることによって局所的に応力が集中し、その応力集中部
分で骨を破壊してしまう虞れがある。
However, bone implants using metal implant materials have various problems. For example, the bending elastic modulus of human cortical bone is about 16 GP.
a, stainless steel SUS316L, Co-
The bending elastic moduli of Cr and Ti-6% Al-4% V are 200, 213 and 124 GPa, respectively, which is about 8 to 1 of bone.
Since it is three times as large, stress may be locally concentrated due to bending or twisting of the artificial joint, and the bone may be destroyed at the stress concentrated portion.

【0004】また、アクリルベースのセメントを用いず
に直接インプラントと骨を固着するセメントレス人工股
関節の臨床において、骨髄腔と良く嵌合して体重や歩行
等の運動による応力の作用を繰り返し受けるステム先端
部では骨の増勢がみられるが、応力が作用しない部分で
は骨への刺激がなくなるために逆に骨組織の吸収が起こ
って骨量が減少するという結果が報告されている。即
ち、応力が作用しない部分においては、骨と人工関節と
の嵌合にズレや緩みが増長され、人工関節を安定して保
持することができなくなる虞れがある。
Further, in the clinical practice of a cementless artificial hip joint in which an implant and bone are directly fixed to each other without using an acrylic-based cement, a stem that is well fitted with a bone marrow cavity and is repeatedly subjected to stress due to exercise such as weight and walking. It has been reported that the bone mass is reduced in the tip part, but bone is resorbed in the part where stress is not applied and the bone is not stimulated in the part where the stress is not applied, so that the bone mass is decreased. That is, in a portion where no stress is applied, displacement or looseness is increased in fitting of the bone and the artificial joint, and there is a possibility that the artificial joint cannot be stably held.

【0005】また、比重の大きな金属インプラント材に
よる人工関節は、患者にとって挿入中の負担が大きいと
いう問題がある。
Further, the artificial joint made of a metal implant material having a large specific gravity has a problem that the burden on the patient during insertion is large.

【0006】更に、骨インプラントは、髄内釘の場合で
も数カ月、人工関節では10年以上もの間埋入されてい
るものであるから、生体環境内での腐食が生じ、ステン
レスSUS316LやCo−Cr−Ni等からはニッケ
ル、Ti−6%Al−4%Vからはバナジウムといった
毒性物質が溶出し、炎症を起こすことがあった。また、
これら毒性物質の発癌性も指摘されている。
Further, since bone implants have been implanted for several months even in the case of intramedullary nails and for more than 10 years in artificial joints, they are corroded in the living environment, resulting in stainless steel SUS316L and Co-Cr. In some cases, toxic substances such as nickel were eluted from -Ni and vanadium from Ti-6% Al-4% V to cause inflammation. Also,
The carcinogenicity of these toxic substances has also been pointed out.

【0007】このような問題点に鑑みて、合成樹脂成形
体による骨インプラントも提案されている。例えば米国
特許第4902297号には、マトリックス樹脂とし
て、ポリエーテルエーテルケトン(PEEK)、ポリエ
ーテルケトン(PEK)、ポリアリルエーテルケトン
(PAEK)、ポリフェニレンサルファイド(PP
S)、ポリサルフォン(PS)等の高機能のエンジニア
リングプラスチックを利用し、カーボンファイバー(C
F)、ガラスファイバー(GF)、アラミッドファイバ
ー(ArF)等の補強繊維材をステム長さ方向に配しつ
つ、プレス成形や引き抜き成形によって成形して得られ
る、繊維強化合成樹脂成形体による骨インプラントが示
されている。
In view of these problems, a bone implant made of a synthetic resin molding has been proposed. For example, in US Pat. No. 4,902,297, polyether ether ketone (PEEK), polyether ketone (PEK), polyallyl ether ketone (PAEK), polyphenylene sulfide (PP) is used as a matrix resin.
S), polysulfone (PS) and other high-performance engineering plastics are used, and carbon fiber (C
F), glass fiber (GF), aramid fiber (ArF) and other reinforcing fiber materials are arranged in the stem length direction, and are obtained by molding by press molding or pultrusion molding The implant is shown.

【0008】しかしながら、骨インプラントには様々な
方向から極めて複雑な応力が加わるため、このような繊
維強化合成樹脂により骨インプラントを形成するために
は、強度面からのより慎重な検討が必要であり、また長
期間に亙る人体内埋入によるプラスチックの劣化につい
ても十分なデータの蓄積がなく、実用に供するには未解
決の問題が多いものであった。
However, since extremely complicated stress is applied to the bone implant from various directions, in order to form the bone implant from such a fiber-reinforced synthetic resin, more careful study in terms of strength is required. In addition, there was not enough data on the deterioration of plastic due to implantation in the human body for a long time, and there were many unsolved problems for practical use.

【0009】本発明は、上記従来技術の問題点に鑑み
て、高強度、高剛性、耐摩耗性、耐食性、耐薬品性、安
全性、身体相容性等の諸特性に優れた新規な構成の骨イ
ンプラントの製造方法を提供することを目的とする。
In view of the above-mentioned problems of the prior art, the present invention is a novel structure excellent in various characteristics such as high strength, high rigidity, wear resistance, corrosion resistance, chemical resistance, safety and body compatibility. It is an object of the present invention to provide a method for manufacturing the bone implant.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に創案された本発明による骨インプラントの製造方法
は、金属材料から所望のインプラント形状のコアを成形
し、このコアの表面に樹脂粉体を塗布し、この樹脂粉体
塗布物を開口を有する耐熱性フィルムで被覆し、耐熱性
フィルムの開口から真空吸引しつつこの樹脂粉体塗布物
を加熱して樹脂を少なくとも部分的に溶解させ、しかる
後に樹脂を硬化させてコア表面に樹脂被覆層を形成する
ことを特徴とする。
The method for producing a bone implant according to the present invention, which was devised to achieve the above object, comprises molding a core having a desired implant shape from a metal material, and forming a resin powder on the surface of the core. And coating the resin powder coating with a heat-resistant film having an opening, heating the resin powder coating while vacuum-sucking from the opening of the heat-resistant film to dissolve the resin at least partially, After that, the resin is cured to form a resin coating layer on the surface of the core.

【0011】前記樹脂粉体塗布物の加熱は、好ましく
は、高周波加熱法による内部加熱にて行い、前記コアと
の界面部分の樹脂のみを溶解させる。
The resin powder coating material is preferably heated by internal heating by a high frequency heating method to dissolve only the resin at the interface with the core.

【0012】コア金属材料としては、従来の金属製イン
プラントの材料として用いられていたものと同様の、ス
テンレス、Co−Cr合金、Ti及びTi合金等を用い
ることができる。
As the core metal material, stainless steel, Co--Cr alloys, Ti and Ti alloys, which are the same as those used as materials for conventional metal implants, can be used.

【0013】金属コアと樹脂被覆層との密着性を高める
ために、金属コアの表面は微細凹凸を有する粗面とする
ことが好ましい。このために、金属コアを成形するため
に用いられる型のキャビティー内面に微細凹凸を形成し
ておいたり、成形後の金属コア表面に研磨加工、ショッ
トブラスト、酸洗等の薬品処理、電解処理等を施すこと
が行われる。
In order to enhance the adhesion between the metal core and the resin coating layer, the surface of the metal core is preferably a rough surface having fine irregularities. For this reason, fine irregularities are formed on the inner surface of the cavity of the mold used to mold the metal core, and the metal core surface after molding is subjected to chemical treatment such as polishing, shot blasting, pickling, and electrolytic treatment. Etc. are performed.

【0014】組成の異なる複数種の樹脂複数塗布物を順
次塗布した後に加熱することにより、樹脂被覆層を組成
の異なる複数層を積層させたものとすることができる。
これにより、各樹脂粉末の特性を生かした様々な樹脂被
覆層を形成することができる。例えば、金属コアに接す
る内側層は金属コアとの密着性に優れた樹脂粉末で形成
し、外側層は生体適合性や骨組織との親和性に優れた樹
脂粉末で形成することができる。その他、コアからの有
害物質の溶出を効果的に防止したり、外側の樹脂被覆層
を内側の樹脂被覆層の保護層として機能させたり、弾性
率や強度の調節をしたり、というように所望の特性機能
を樹脂被覆層に与えることができる。
The resin coating layer can be formed by laminating a plurality of layers having different compositions by sequentially applying a plurality of kinds of resin multi-coated products having different compositions and then heating.
This makes it possible to form various resin coating layers that take advantage of the characteristics of each resin powder. For example, the inner layer in contact with the metal core can be formed of resin powder having excellent adhesion to the metal core, and the outer layer can be formed of resin powder having excellent biocompatibility and affinity with bone tissue. In addition, it is desirable to effectively prevent elution of harmful substances from the core, to make the outer resin coating layer function as a protective layer for the inner resin coating layer, and to adjust the elastic modulus and strength. It is possible to provide the resin coating layer with the characteristic function of.

【0015】樹脂被覆層を組成の異なる複数層として構
成する場合、樹脂の種類自体を異なるものとすることが
できるが、同一樹脂を主材としながら添加化合物を変え
ることによっても良い。例えば、内側層を無添加の樹脂
粉末にて形成し、外側層をリン酸カルシウム、CaO、
含有ガラス、ヒドロキシアパタイト等、骨組織
との親和性が良好な化合物粉末を配合した樹脂粉末にて
形成することができる。
When the resin coating layer is formed as a plurality of layers having different compositions, the types of resins themselves can be different, but it is also possible to use the same resin as the main material and change the additive compound. For example, the inner layer is formed of additive-free resin powder, and the outer layer is formed of calcium phosphate, CaO,
It can be formed of a resin powder containing a compound powder having a good affinity for bone tissue, such as P 2 O 5 -containing glass and hydroxyapatite.

【0016】[0016]

【実施例】以下図1を参照して本発明の一実施例につい
て説明する。この実施例は、大腿骨の骨髄孔内に埋入さ
れる人工股関節の人工骨頭を製造することを意図してい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. This example is intended to produce an artificial hip prosthesis head that is implanted within the femoral bone marrow hole.

【0017】人工骨頭1のステム部2(この実施例で
は、腰骨に取り付けられるカップの凹部内に回動自在に
嵌合されるボール部3をも一体的に含むものとして示さ
れている)は、先に例示したような所望の金属材料によ
って所定形状に成形された金属コア4を主体とする。
The stem portion 2 of the artificial bone head 1 (in this embodiment, it is shown as integrally including the ball portion 3 rotatably fitted in the recess of the cup attached to the hip bone). The metal core 4 formed into a predetermined shape by a desired metal material as exemplified above is mainly used.

【0018】この金属コア4の表面に、先に例示したよ
うな高機能エンジニアリングプラスチックの粉体を均一
にまぶして樹脂粉体層5を付着形成する。特に、PEE
KやPAEK等のケトン系樹脂、またはPPS、PI等
の樹脂が、身体相容性および耐薬品性に極めて優れてい
るので、これらの樹脂粉体を用いて樹脂粉体層5を形成
することが好ましい。
On the surface of the metal core 4, a powder of high-performance engineering plastic as exemplified above is uniformly sprinkled, and a resin powder layer 5 is adhered and formed. Especially PEE
Since a ketone resin such as K or PAEK or a resin such as PPS or PI is extremely excellent in body compatibility and chemical resistance, the resin powder layer 5 should be formed using these resin powders. Is preferred.

【0019】例えば、樹脂粉体層5の材料としてPEE
Kを用いる場合、その溶融温度(343℃)以上である
360〜380℃程度に加熱された金属コア4を流動床
中のPEEK粉体に接触させ、あるいはPEEK粉体を
静電塗布することによって、均一な樹脂粉体層5を形成
することができる。
For example, as the material for the resin powder layer 5, PEE
When K is used, the metal core 4 heated to about 360 to 380 ° C., which is the melting temperature (343 ° C.) or higher, is brought into contact with the PEEK powder in the fluidized bed, or the PEEK powder is electrostatically applied. Therefore, the uniform resin powder layer 5 can be formed.

【0020】樹脂粉体層5の厚さは一般に0.1〜1m
m程度であるが、樹脂粉体の粒度や加熱温度によって、
層厚調整を行うことができる。例えば、0.5〜5μm
の粒度分布を有するPEEK粉体の場合には0.1〜
0.3mmの層厚が、また5〜50μmの粒度分布を有
するPEEK粉体の場合には0.3〜0.6mmの層厚
が得られる。樹脂粉体層5の層厚は、標準寸法の骨髄孔
成形器による骨髄孔寸法と金属コア4の寸法とのクリア
ランスを吸収すべく決定される。
The resin powder layer 5 generally has a thickness of 0.1 to 1 m.
Although it is about m, depending on the particle size of the resin powder and the heating temperature,
The layer thickness can be adjusted. For example, 0.5 to 5 μm
In the case of PEEK powder having a particle size distribution of 0.1 to 0.1
Layer thicknesses of 0.3 mm and, in the case of PEEK powder with a particle size distribution of 5 to 50 μm, layer thicknesses of 0.3 to 0.6 mm are obtained. The layer thickness of the resin powder layer 5 is determined so as to absorb the clearance between the size of the bone marrow hole and the size of the metal core 4 by the standard size bone marrow hole forming machine.

【0021】このようにして金属コア4の表面に樹脂粉
体層5を塗布形成した後、その周囲を、2〜3mm厚の
通気性を有する耐熱グラスファイバー(ブリーザー)6
で被覆し、更にその周囲を、片側(ステム先端側)がシ
ールされた筒状の肉厚0.05〜0.1mm程度の耐熱
性に優れたポリイミドフィルム7で被覆する。この状態
のものを、高周波発生装置のコイル(図示せず)の中央
に配置し、高周波電流を適当量流すことにより、金属コ
ア4の表面部分を360〜400℃に均一に加熱して、
樹脂粉体層5における金属コア4との界面部分の樹脂粉
体のみを溶解する。
After the resin powder layer 5 is formed by coating on the surface of the metal core 4 in this manner, the periphery thereof is a heat-resistant glass fiber (breather) 6 having a thickness of 2 to 3 mm and having air permeability.
Then, the periphery thereof is further covered with a polyimide film 7 having a heat resistance and having a cylindrical wall thickness of about 0.05 to 0.1 mm with one side (the tip side of the stem) sealed. The thing of this state is arrange | positioned at the center of the coil (not shown) of a high frequency generator, and the high frequency current is made to flow through, and the surface part of the metal core 4 is uniformly heated to 360-400 degreeC,
Only the resin powder in the interface portion with the metal core 4 in the resin powder layer 5 is dissolved.

【0022】加熱の際に、吸引口8より吸気してポリイ
ミドフィルム7内を減圧することにより、ポリイミドフ
ィルム7を金属コア4表面に密着させることができる。
また、通気性を有する耐熱グラスファイバー6を介し
て、金属コア4に対する樹脂粉体層5の密着性も良好と
なる。
During heating, the polyimide film 7 can be brought into close contact with the surface of the metal core 4 by sucking air through the suction port 8 to reduce the pressure inside the polyimide film 7.
Further, the adhesion of the resin powder layer 5 to the metal core 4 is also improved through the heat resistant glass fiber 6 having air permeability.

【0023】このようにして得られた人工骨頭1の断面
は図2に示される通りであり、金属コア4の外周面に樹
脂被覆層9が密着形成されている。この樹脂被覆層9に
おける金属コア4との界面部分9aは、先の加熱の際に
溶解された樹脂がその後硬化されてなるものであるた
め、完全に無気孔状態の樹脂からなる緻密な層として形
成されている。一方、その外側の外層部分9bは、先の
加熱の際に溶解されなかった樹脂よりなる粉末焼結状を
なしており、多数の気孔が存在している。
The cross section of the artificial bone head 1 thus obtained is as shown in FIG. 2, and the resin coating layer 9 is closely formed on the outer peripheral surface of the metal core 4. The interface portion 9a of the resin coating layer 9 with the metal core 4 is a dense layer made of a completely non-porous resin because the resin melted in the previous heating is cured thereafter. Has been formed. On the other hand, the outer layer portion 9b on the outer side is in the form of powder sinter made of a resin that has not been melted during the previous heating, and has a large number of pores.

【0024】この人工骨頭1を、80℃の乳酸リンゲル
液に10日間浸漬した後、ICP発光スペクトル分析を
行ったところ、金属コア4の金属成分の溶出は全く認め
られず、完全無気孔状態の界面部分樹脂被覆層9aによ
って金属コアと生体とを完全に遮断できることが実証さ
れた。
This artificial head 1 was immersed in a lactated Ringer's solution at 80 ° C. for 10 days and then subjected to ICP emission spectrum analysis. No elution of the metal component of the metal core 4 was observed, and the interface in a completely non-porous state was observed. It was demonstrated that the partial resin coating layer 9a can completely shield the metal core from the living body.

【0025】比較例として、樹脂被覆層を設けない金属
ステム部からなる従来の人工骨頭についても同様の条件
にて試験したところ、若干の金属成分の溶出が認めら
れ、生体に対する安全性において問題のあるものであっ
た。
As a comparative example, a conventional artificial bone head consisting of a metal stem portion not provided with a resin coating layer was tested under the same conditions. As a result, some metal components were found to be eluted, which was a problem in terms of safety to living bodies. It was something.

【0026】[0026]

【発明の効果】本発明方法によって得られる骨インプラ
ントは、金属製のステムコアを、金属材料よりも硬度が
小さく生体骨の曲げ弾性率に比較的近い材料である樹脂
で被覆した構造であり、則ち、生体骨と直接接触する部
分は樹脂被覆層であるため、従来の金属製ステムのみか
らなる骨インプラントにおいて懸念されたような集中応
力による骨髄部の欠損を生じさせることがない。
The bone implant obtained by the method of the present invention has a structure in which a metal stem core is coated with a resin which is a material having a hardness smaller than that of a metal material and relatively close to the bending elastic modulus of a living bone. Since the portion directly contacting the living bone is the resin coating layer, the bone marrow defect due to the concentrated stress, which has been a concern in the conventional bone implant consisting only of the metal stem, does not occur.

【0027】ステム部のコアは金属製であるので、金属
材料の有する高強度、高剛性、耐食性等の諸特性を発揮
することができる。
Since the core of the stem portion is made of metal, it is possible to exhibit various characteristics of the metal material such as high strength, high rigidity and corrosion resistance.

【0028】樹脂被覆層のうち、金属コアとの界面部分
は、無気孔状態でピンホールのない緻密な層となってい
るので、金属コアの金属材料が生体内に溶出することが
防止される。
Since the interface portion with the metal core of the resin coating layer is a dense layer with no pinholes in the state of no pores, the metal material of the metal core is prevented from eluting into the living body. .

【0029】樹脂被覆層の外層部分は、多孔質の粉末焼
結状であるため、身体相容性に優れている。
Since the outer layer portion of the resin coating layer is in the form of a porous powder sinter, it has excellent body compatibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一実施例を示す縦断面図である。FIG. 1 is a vertical sectional view showing an embodiment of the method of the present invention.

【図2】図1の方法によって製造される人工骨頭の構成
を示す横断面図である。
FIG. 2 is a cross-sectional view showing the structure of an artificial head prepared by the method of FIG.

【符号の説明】[Explanation of symbols]

1 人工骨頭 2 ステム部 3 ボール部 4 金属コア 5 樹脂粉体層 6 耐熱グラスファイバー 7 ポリイミドフィルム 8 吸引口 9 樹脂被覆層 9a 内層部分(界面部分) 9b 外層部分 1 Artificial bone head 2 Stem part 3 Ball part 4 Metal core 5 Resin powder layer 6 Heat-resistant glass fiber 7 Polyimide film 8 Suction port 9 Resin coating layer 9a Inner layer part (interface part) 9b Outer layer part

フロントページの続き (72)発明者 曽我石 一郎 東京都中央区京橋3丁目1番1号 蛇の目 ミシン工業株式会社内 (72)発明者 片倉 健男 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 (72)発明者 大澤 孝明 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 (72)発明者 上田 義久 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内Front page continuation (72) Inventor Ichiro Soga 3-1-1, Kyobashi, Chuo-ku, Tokyo Inside Jamome Sewing Industry Co., Ltd. ) Inventor Takaaki Osawa 1500 Inoguchi, Nakai-cho, Ashigarashami-gun, Kanagawa Terumo Corporation (72) Inventor Yoshihisa Ueda 1500 Inoguchi, Nakai-cho, Ashigarakami-gun, Kanagawa Terumo Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属材料から所望のインプラント形状
のコアを成形し、このコアの表面に樹脂粉体を塗布し、
この樹脂粉体塗布物を開口を有する耐熱性フィルムで被
覆し、耐熱性フィルムの開口から真空吸引しつつこの樹
脂粉体塗布物を加熱して樹脂を少なくとも部分的に溶解
させ、しかる後に樹脂を硬化させてコア表面に樹脂被覆
層を形成することを特徴とする骨インプラントの製造方
法。
1. A core having a desired implant shape is molded from a metal material, and a resin powder is applied to the surface of the core,
This resin powder coating material is coated with a heat resistant film having an opening, and while vacuum suction is applied from the opening of the heat resistant film, the resin powder coating material is heated to at least partially dissolve the resin, and then the resin is A method for producing a bone implant, which comprises curing to form a resin coating layer on the core surface.
【請求項2】 前記樹脂粉体塗布物の加熱を高周波加
熱法による内部加熱にて行い、前記コアとの界面部分の
樹脂のみを溶解させることを特徴とする請求項1の骨イ
ンプラントの製造方法。
2. The method for producing a bone implant according to claim 1, wherein the resin powder coating material is heated by internal heating by a high frequency heating method to dissolve only the resin at the interface with the core. .
【請求項3】 前記コアの表面が粗面となるように成
形し、または、前記コアの成形後であって前記樹脂粉体
を塗布する前に前記コアの表面を粗面とすべく処理する
ことを特徴とする請求項1または2の骨インプラントの
製造方法。
3. The core is molded so as to have a rough surface, or the core is treated so as to have a rough surface after molding the core and before applying the resin powder. The method for manufacturing a bone implant according to claim 1 or 2, characterized in that:
【請求項4】 組成の異なる複数の前記樹脂粉体塗布
物を順次塗布することにより、前記樹脂被覆層を組成の
異なる複数層にて構成することを特徴とする請求項1な
いし3のいずれかに記載の骨インプラントの製造方法。
4. The resin coating layer is constituted by a plurality of layers having different compositions by sequentially applying a plurality of resin powder coating materials having different compositions. A method for producing a bone implant according to claim 1.
JP3334164A 1991-11-22 1991-11-22 Production of bone implant Pending JPH0698902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3334164A JPH0698902A (en) 1991-11-22 1991-11-22 Production of bone implant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3334164A JPH0698902A (en) 1991-11-22 1991-11-22 Production of bone implant

Publications (1)

Publication Number Publication Date
JPH0698902A true JPH0698902A (en) 1994-04-12

Family

ID=18274259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3334164A Pending JPH0698902A (en) 1991-11-22 1991-11-22 Production of bone implant

Country Status (1)

Country Link
JP (1) JPH0698902A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034892A3 (en) * 2001-10-23 2003-09-25 M M A Tech Ltd Medical implants made of wear-resistant, high performance polymides, process of making same and medical use of same
JP2010508901A (en) * 2006-11-03 2010-03-25 ボストン サイエンティフィック リミテッド Stent coated with eluting drug
JP2010527746A (en) * 2007-05-25 2010-08-19 ミセル テクノロジーズ、インコーポレイテッド Polymer film for medical device coating
JP2013150802A (en) * 2012-01-17 2013-08-08 Heraeus Medical Gmbh Method for producing spacer and hollow mould for producing spacer
JP2014111198A (en) * 2014-03-04 2014-06-19 Bi Tec:Kk Resin composite having composite layer containing calcium phosphate, and method of manufacturing the same
US9687864B2 (en) 2010-03-26 2017-06-27 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
US9737645B2 (en) 2006-04-26 2017-08-22 Micell Technologies, Inc. Coatings containing multiple drugs
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US9775729B2 (en) 2007-04-17 2017-10-03 Micell Technologies, Inc. Stents having controlled elution
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US9981071B2 (en) 2008-07-17 2018-05-29 Micell Technologies, Inc. Drug delivery medical device
US9981072B2 (en) 2009-04-01 2018-05-29 Micell Technologies, Inc. Coated stents
US10117972B2 (en) 2011-07-15 2018-11-06 Micell Technologies, Inc. Drug delivery medical device
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
US10232092B2 (en) 2010-04-22 2019-03-19 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
US10272606B2 (en) 2013-05-15 2019-04-30 Micell Technologies, Inc. Bioabsorbable biomedical implants
US10464100B2 (en) 2011-05-31 2019-11-05 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
US11039943B2 (en) 2013-03-12 2021-06-22 Micell Technologies, Inc. Bioabsorbable biomedical implants
US11369498B2 (en) 2010-02-02 2022-06-28 MT Acquisition Holdings LLC Stent and stent delivery system with improved deliverability

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686437B2 (en) 2001-10-23 2004-02-03 M.M.A. Tech Ltd. Medical implants made of wear-resistant, high-performance polyimides, process of making same and medical use of same
WO2003034892A3 (en) * 2001-10-23 2003-09-25 M M A Tech Ltd Medical implants made of wear-resistant, high performance polymides, process of making same and medical use of same
US11911301B2 (en) 2005-07-15 2024-02-27 Micell Medtech Inc. Polymer coatings containing drug powder of controlled morphology
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US9737645B2 (en) 2006-04-26 2017-08-22 Micell Technologies, Inc. Coatings containing multiple drugs
JP2010508901A (en) * 2006-11-03 2010-03-25 ボストン サイエンティフィック リミテッド Stent coated with eluting drug
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US9775729B2 (en) 2007-04-17 2017-10-03 Micell Technologies, Inc. Stents having controlled elution
JP2010527746A (en) * 2007-05-25 2010-08-19 ミセル テクノロジーズ、インコーポレイテッド Polymer film for medical device coating
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US9981071B2 (en) 2008-07-17 2018-05-29 Micell Technologies, Inc. Drug delivery medical device
US9981072B2 (en) 2009-04-01 2018-05-29 Micell Technologies, Inc. Coated stents
US11369498B2 (en) 2010-02-02 2022-06-28 MT Acquisition Holdings LLC Stent and stent delivery system with improved deliverability
US9687864B2 (en) 2010-03-26 2017-06-27 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
US10232092B2 (en) 2010-04-22 2019-03-19 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
US10464100B2 (en) 2011-05-31 2019-11-05 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
US10117972B2 (en) 2011-07-15 2018-11-06 Micell Technologies, Inc. Drug delivery medical device
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
JP2013150802A (en) * 2012-01-17 2013-08-08 Heraeus Medical Gmbh Method for producing spacer and hollow mould for producing spacer
US11039943B2 (en) 2013-03-12 2021-06-22 Micell Technologies, Inc. Bioabsorbable biomedical implants
US10272606B2 (en) 2013-05-15 2019-04-30 Micell Technologies, Inc. Bioabsorbable biomedical implants
JP2014111198A (en) * 2014-03-04 2014-06-19 Bi Tec:Kk Resin composite having composite layer containing calcium phosphate, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0698902A (en) Production of bone implant
Aufa et al. Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants: Prospect development
Tamayo et al. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry
Pałka et al. Porous titanium implants: a review
US5336465A (en) Method of making bone-implants
US4892552A (en) Orthopedic device
US4978358A (en) Orthopaedic prosthetic device possessing improved composite stem design
US4351069A (en) Prosthetic devices having sintered thermoplastic coatings with a porosity gradient
US5522904A (en) Composite femoral implant having increased neck strength
JPH11341A (en) Orthopedic implant
US20090177282A1 (en) Implantable biomimetic prosthetic bone
Jindal et al. 3D printed composite materials for craniofacial implants: current concepts, challenges and future directions
JPS5913211B2 (en) Porous biotechnological thermoplastic prosthesis and manufacturing method
EP0205333B1 (en) Implant material
CN109276760A (en) The preparation method of PEEK Polysulfone Composite Hip Prosthesis suitable for 3D printing
Shen et al. Mechanical failure of hydroxyapatite-and polysulfone-coated titanium rods in a weight-bearing canine model
Fabi et al. Porous coatings on metallic implant materials
JPH05137739A (en) Artificial joint
Robotti et al. Thermal plasma spray deposition of titanium and hydroxyapatite on PEEK implants
JPH0592019A (en) Artificial joint
DE3609184A1 (en) USE OF AN ALLOY FOR THE PRODUCTION OF CASTING PARTS FOR DENTAL TECHNOLOGY
GB2060489A (en) Material for medical technology
Watanabe et al. Novel nano‐hydroxyapatite coating of additively manufactured three‐dimensional porous implants improves bone ingrowth and initial fixation
EP0679096B1 (en) Load bearing implantable prosthesis
Zuchuat et al. CoCrMo alloy as biomaterial for bone reconstruction in oral and maxillofacial surgery: a scoping review