JPH0698902A - Production of bone implant - Google Patents

Production of bone implant

Info

Publication number
JPH0698902A
JPH0698902A JP33416491A JP33416491A JPH0698902A JP H0698902 A JPH0698902 A JP H0698902A JP 33416491 A JP33416491 A JP 33416491A JP 33416491 A JP33416491 A JP 33416491A JP H0698902 A JPH0698902 A JP H0698902A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
core
resin
resin powder
surface
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33416491A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Azeyanagi
Takeo Katakura
Noboru Matsunaga
Takaaki Osawa
Ichiro Sogaishi
Yoshihisa Ueda
義久 上田
孝明 大澤
一郎 曽我石
昇 松永
健男 片倉
和好 畔柳
Original Assignee
Janome Sewing Mach Co Ltd
Terumo Corp
テルモ株式会社
蛇の目ミシン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external and/or bone-contacting surfaces, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Abstract

PURPOSE:To provide the bone implant having high rigidity and wear resistance by applying the surface of a metallic core with resin powder, then covering the coating with a heat resistant film and heating a resin powder layer to partially dissolve the powder layer under vacuum suction from the aperture of the film, thereby bringing the film into tight contact with the core. CONSTITUTION:The core 4 of the stem part 2 of the artificial bone head 1 is formed to, for example, a prescribed shape from a proper metallic material in the case of production of the artificial bone head of the artificial thigh joint to be implanted into the marrow hole of the femur. The resin powder layer 5 of high-performance engineering plastics, etc., is then stuck and formed on the surface of the metallic core 4 and thereafter, the circumference thereof is coated with the heat resistant glass fibers 5 having air permeability and further, the circumference thereof is coated with the polyimide film 7 which is formed to a cylindrical shape sealed on one side and has excellent heat resistant. The surface of the metallic core 4 is then heated to melt the boundary part of the resin powder layer 5 and the core 4 and the pressure in the film 7 is reduced by suction from the suction port 8, by which the film 7 is brought into tight contact with the surface of the core 4.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は整形外科治療において人体内に埋め込まれる骨インプラントの製造方法に関する。 The present invention relates to a process for preparing a bone implant to be implanted into the human body in orthopedic treatment.

【0002】 [0002]

【従来の技術】人体の関節に変形、欠損、壊死等が生じた場合に関節を補綴して関節機能を再建するための人工関節(特にその人工骨頭側のステム部)や、骨幹部の骨折の場合の骨髄内釘治療に用いる髄内釘等、整形外科治療において人体内に埋め込まれる骨インプラントは、ステンレスSUS316L、Co−Cr、Co−Cr−N BACKGROUND ART variant of the human body joints, defects, artificial joints (especially stem portion of the artificial bone cephalad) for by prosthetic joint rebuilding joint function when the necrosis or the like occurs and fractures of the diaphysis intramedullary nail or the like used in the intramedullary nail treatment cases, the bone implant to be implanted into the human body in orthopedic treatment, stainless SUS316L, Co-Cr, Co-Cr-N
i、Ti−6%Al−4%V等の金属インプラント材を利用して、鋳造、鍛造、焼結等の適宜手段によって形成されるのが主流であった。 i, by using the metallic implant materials, such as Ti-6% Al-4% V, casting, forging, being formed by a suitable means such as sintering has been mainly used.

【0003】 [0003]

【発明が解決しようとする課題】ところが、金属インプラント材を利用した骨インプラントには様々な問題があり、例えば、人の皮質骨の曲げ弾性率はおよそ16GP The object of the invention is to be Solved However, there are various problems with the bone implant using a metal implant material, for example, the flexural modulus of the cortical bone of the people is about 16GP
aであるのに対し、ステンレスSUS316L、Co− While it is a, stainless steel SUS316L, Co-
Cr、Ti−6%Al−4%Vの曲げ弾性率はそれぞれ200、213、124GPaであって、骨の約8〜1 Cr, flexural modulus of Ti-6% Al-4% V is an each 200,213,124GPa, about bone 8 to 1
3倍もあるため、人工関節がたわんだり、ねじれたりすることによって局所的に応力が集中し、その応力集中部分で骨を破壊してしまう虞れがある。 Because of three times, locally concentrated stress Dari arthroplasty bent by twisting, there is a possibility that destroy the bone at the stress concentration portion.

【0004】また、アクリルベースのセメントを用いずに直接インプラントと骨を固着するセメントレス人工股関節の臨床において、骨髄腔と良く嵌合して体重や歩行等の運動による応力の作用を繰り返し受けるステム先端部では骨の増勢がみられるが、応力が作用しない部分では骨への刺激がなくなるために逆に骨組織の吸収が起こって骨量が減少するという結果が報告されている。 [0004] In addition, in clinical cementless hip prosthesis to secure the direct implant and the bone without using an acrylic-based cement, receive well-fitted to the bone marrow cavity repeat the action of the stress caused by movement such as body weight and walking stem Although momentum of bone is observed at the tip, it has been reported results that in the portion where the stress does not act to reduce the amount of bone resorption occurred in the bone tissue reversed to eliminate irritation to the bone. 即ち、応力が作用しない部分においては、骨と人工関節との嵌合にズレや緩みが増長され、人工関節を安定して保持することができなくなる虞れがある。 That is, in the portion where stress is not applied, displacement or looseness is length increasing the engagement between the bone and the artificial joint, it is stable can not be held by fear the prosthesis.

【0005】また、比重の大きな金属インプラント材による人工関節は、患者にとって挿入中の負担が大きいという問題がある。 [0005] In addition, artificial joints due to the large metal implant material of specific gravity, there is a problem that the large burden during insertion for the patient.

【0006】更に、骨インプラントは、髄内釘の場合でも数カ月、人工関節では10年以上もの間埋入されているものであるから、生体環境内での腐食が生じ、ステンレスSUS316LやCo−Cr−Ni等からはニッケル、Ti−6%Al−4%Vからはバナジウムといった毒性物質が溶出し、炎症を起こすことがあった。 Furthermore, the bone implant, several months even for an intramedullary nail, because the artificial joint are those incoming embedded for more than 10 years, cause corrosion in vivo environment, stainless SUS316L and Co-Cr from such -Ni nickel, toxic substance is eluted such vanadium from Ti-6% Al-4% V, there may cause inflammation. また、 Also,
これら毒性物質の発癌性も指摘されている。 Carcinogenicity of these toxic substances have also been pointed out.

【0007】このような問題点に鑑みて、合成樹脂成形体による骨インプラントも提案されている。 [0007] In view of such problems, there has been proposed a bone implant according to the molded synthetic resin. 例えば米国特許第4902297号には、マトリックス樹脂として、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリアリルエーテルケトン(PAEK)、ポリフェニレンサルファイド(PP For example, US Patent No. 4902297, as the matrix resin, polyether ether ketone (PEEK), polyetherketone (PEK), polyaryl ether ketone (PAEK), polyphenylene sulfide (PP
S)、ポリサルフォン(PS)等の高機能のエンジニアリングプラスチックを利用し、カーボンファイバー(C S), using engineering plastic of a high function, such as polysulfone (PS), carbon fiber (C
F)、ガラスファイバー(GF)、アラミッドファイバー(ArF)等の補強繊維材をステム長さ方向に配しつつ、プレス成形や引き抜き成形によって成形して得られる、繊維強化合成樹脂成形体による骨インプラントが示されている。 F), glass fiber (GF), while arranged reinforcing fiber materials such as aramid fiber (ArF) to the stem longitudinal direction, obtained by molding by press molding or pultrusion molding, bone by a fiber-reinforced synthetic resin molding implant is shown.

【0008】しかしながら、骨インプラントには様々な方向から極めて複雑な応力が加わるため、このような繊維強化合成樹脂により骨インプラントを形成するためには、強度面からのより慎重な検討が必要であり、また長期間に亙る人体内埋入によるプラスチックの劣化についても十分なデータの蓄積がなく、実用に供するには未解決の問題が多いものであった。 However, since a very complicated stress is applied from various directions to the bone implant, in order to form a bone implant by such fiber-reinforced synthetic resin, it requires more careful consideration of the strength plane and no accumulation of sufficient data also degradation of the plastic by the human body in embedded over a long period of time, the practical use were those many unsolved problems.

【0009】本発明は、上記従来技術の問題点に鑑みて、高強度、高剛性、耐摩耗性、耐食性、耐薬品性、安全性、身体相容性等の諸特性に優れた新規な構成の骨インプラントの製造方法を提供することを目的とする。 [0009] The present invention, said in view of the prior art problems, high strength, high rigidity, wear resistance, corrosion resistance, chemical resistance, safety, novel structure which is excellent in various properties such as body-compatible an object of the present invention is to provide a method for producing a bone implant.

【0010】 [0010]

【課題を解決するための手段】上記目的を達成するために創案された本発明による骨インプラントの製造方法は、金属材料から所望のインプラント形状のコアを成形し、このコアの表面に樹脂粉体を塗布し、この樹脂粉体塗布物を開口を有する耐熱性フィルムで被覆し、耐熱性フィルムの開口から真空吸引しつつこの樹脂粉体塗布物を加熱して樹脂を少なくとも部分的に溶解させ、しかる後に樹脂を硬化させてコア表面に樹脂被覆層を形成することを特徴とする。 Method for producing a bone implant according to the present invention was invented in order to achieve the above object, according to an aspect of the molded core of the desired implant shape from a metal material, resin powder on the surface of the core was applied, the resin powder coating was coated with a heat-resistant film having an opening, the resin powder coating was heated to at least partially dissolve the resin while vacuum suction from the opening of the heat-resistant film, Thereafter the curing the resin and forming a resin coating layer on the core surface.

【0011】前記樹脂粉体塗布物の加熱は、好ましくは、高周波加熱法による内部加熱にて行い、前記コアとの界面部分の樹脂のみを溶解させる。 [0011] heating of the resin powder coating material is preferably conducted at an internal heating by high frequency heating method, to dissolve only the resin of the interface between the core.

【0012】コア金属材料としては、従来の金属製インプラントの材料として用いられていたものと同様の、ステンレス、Co−Cr合金、Ti及びTi合金等を用いることができる。 [0012] As the core metal material, can be used similar to those which have been used as the material of conventional metallic implant, stainless, Co-Cr alloys, Ti and Ti alloys.

【0013】金属コアと樹脂被覆層との密着性を高めるために、金属コアの表面は微細凹凸を有する粗面とすることが好ましい。 [0013] To increase the adhesion between the metal core and the resin coating layer, the surface of the metal core is preferably set to rough surface having fine irregularities. このために、金属コアを成形するために用いられる型のキャビティー内面に微細凹凸を形成しておいたり、成形後の金属コア表面に研磨加工、ショットブラスト、酸洗等の薬品処理、電解処理等を施すことが行われる。 For this, or allowed to form fine irregularities on the cavity inner surface type used to form the metal core, polishing the metal core surface after molding, shot blasting, chemical treatment such as pickling, electrolytic treatment it is performed to apply and the like.

【0014】組成の異なる複数種の樹脂複数塗布物を順次塗布した後に加熱することにより、樹脂被覆層を組成の異なる複数層を積層させたものとすることができる。 [0014] By heating after applying a plurality of kinds of resin plural coated material having different compositions sequentially, can be made as a laminate of plural layers having different compositions the resin coating layer.
これにより、各樹脂粉末の特性を生かした様々な樹脂被覆層を形成することができる。 Thus, it is possible to form various resin coating layer which utilizes the properties of each resin powder. 例えば、金属コアに接する内側層は金属コアとの密着性に優れた樹脂粉末で形成し、外側層は生体適合性や骨組織との親和性に優れた樹脂粉末で形成することができる。 For example, the inner layer in contact with the metallic core is formed of a resin excellent powder adhesion to the metal core, may be the outer layer formed of a resin excellent powder affinity with biocompatibility and bone tissue. その他、コアからの有害物質の溶出を効果的に防止したり、外側の樹脂被覆層を内側の樹脂被覆層の保護層として機能させたり、弾性率や強度の調節をしたり、というように所望の特性機能を樹脂被覆層に与えることができる。 Other, or to prevent the elution of harmful substances from the core effectively, desired as or to serve the outside of the resin coating layer as the protective layer of the inner resin coating layer, or the regulation of elasticity and strength, that the characteristic features can be given to the resin coating layer.

【0015】樹脂被覆層を組成の異なる複数層として構成する場合、樹脂の種類自体を異なるものとすることができるが、同一樹脂を主材としながら添加化合物を変えることによっても良い。 [0015] When configuring the resin coating layer as a plurality of layers having different compositions, which may be a resin type itself different, may be by varying the additive compound with the same resin as the main material. 例えば、内側層を無添加の樹脂粉末にて形成し、外側層をリン酸カルシウム、CaO、 For example, the inner layer was formed by the additive-free resin powder, calcium phosphate outer layer, CaO,
含有ガラス、ヒドロキシアパタイト等、骨組織との親和性が良好な化合物粉末を配合した樹脂粉末にて形成することができる。 P 2 O 5 containing glass, hydroxyapatite, can be affinity for bone tissue to form a resin powder obtained by blending a good compound powder.

【0016】 [0016]

【実施例】以下図1を参照して本発明の一実施例について説明する。 EXAMPLES Referring to FIG. 1 will be described below an embodiment of the present invention. この実施例は、大腿骨の骨髄孔内に埋入される人工股関節の人工骨頭を製造することを意図している。 This embodiment is intended to produce an artificial bone head of an artificial hip joint that is embedded in the bone marrow bore of the femur.

【0017】人工骨頭1のステム部2(この実施例では、腰骨に取り付けられるカップの凹部内に回動自在に嵌合されるボール部3をも一体的に含むものとして示されている)は、先に例示したような所望の金属材料によって所定形状に成形された金属コア4を主体とする。 The stem portion 2 of the endoprosthesis 1 (in this example, is shown as including integrally be a ball portion 3 which is rotatably fitted in the recess of the cup attached to the hip bone) of , mainly the metal core 4 which is molded into a predetermined shape by the desired metal material, as exemplified above.

【0018】この金属コア4の表面に、先に例示したような高機能エンジニアリングプラスチックの粉体を均一にまぶして樹脂粉体層5を付着形成する。 [0018] surface of the metallic core 4, is deposited a resin powder layer 5 sprinkled powder highly functional engineering plastics as exemplified above uniformly. 特に、PEE In particular, PEE
KやPAEK等のケトン系樹脂、またはPPS、PI等の樹脂が、身体相容性および耐薬品性に極めて優れているので、これらの樹脂粉体を用いて樹脂粉体層5を形成することが好ましい。 Ketone resins such as K or PAEK or PPS, a resin such as PI is, since very good body compatibility and chemical resistance, to form a resin powder layer 5 by using these resin powder It is preferred.

【0019】例えば、樹脂粉体層5の材料としてPEE [0019] For example, as the material of the resin powder layer 5 PEE
Kを用いる場合、その溶融温度(343℃)以上である360〜380℃程度に加熱された金属コア4を流動床中のPEEK粉体に接触させ、あるいはPEEK粉体を静電塗布することによって、均一な樹脂粉体層5を形成することができる。 When using the K, by its melting temperature (343 ° C.) or higher in a 360 to 380 metal core 4 which is heated to about ° C. in contact with the PEEK powder in the fluidized bed, or electrostatically applying a PEEK powder , it is possible to form a uniform resin powder layer 5.

【0020】樹脂粉体層5の厚さは一般に0.1〜1m [0020] The thickness of the resin powder layer 5 is generally 0.1~1m
m程度であるが、樹脂粉体の粒度や加熱温度によって、 Although the order of m, the particle size and the heating temperature of the resin powder,
層厚調整を行うことができる。 It is possible to perform the layer thickness adjustment. 例えば、0.5〜5μm For example, 0.5~5μm
の粒度分布を有するPEEK粉体の場合には0.1〜 0.1 in the case of PEEK powder having a particle size distribution
0.3mmの層厚が、また5〜50μmの粒度分布を有するPEEK粉体の場合には0.3〜0.6mmの層厚が得られる。 Layer thickness of 0.3mm, but also the layer thickness of 0.3~0.6mm is obtained when the PEEK powder having a particle size distribution of 5 to 50 [mu] m. 樹脂粉体層5の層厚は、標準寸法の骨髄孔成形器による骨髄孔寸法と金属コア4の寸法とのクリアランスを吸収すべく決定される。 The thickness of the resin powder layer 5 is determined to absorb the clearance between the dimensions of the bone marrow pore size and the metal core 4 by bone marrow hole shaper of standard dimensions.

【0021】このようにして金属コア4の表面に樹脂粉体層5を塗布形成した後、その周囲を、2〜3mm厚の通気性を有する耐熱グラスファイバー(ブリーザー)6 [0021] After such a resin powder layer 5 is formed by coating on the surface of the metallic core 4, the ambient heat glass fibers having a breathable 2~3mm thickness (breather) 6
で被覆し、更にその周囲を、片側(ステム先端側)がシールされた筒状の肉厚0.05〜0.1mm程度の耐熱性に優れたポリイミドフィルム7で被覆する。 In coating and further the periphery is coated on one side a polyimide film 7 (stem tip side) and excellent sealed tubular wall thickness 0.05~0.1mm about heat resistance. この状態のものを、高周波発生装置のコイル(図示せず)の中央に配置し、高周波電流を適当量流すことにより、金属コア4の表面部分を360〜400℃に均一に加熱して、 Those in this state, was placed in the center of the coil of the high-frequency generator (not shown), by flowing a high frequency current appropriate amount, the surface portion of the metal core 4 was uniformly heated to three hundred and sixty to four hundred ° C.,
樹脂粉体層5における金属コア4との界面部分の樹脂粉体のみを溶解する。 Dissolving only the resin powder interface between the metal core 4 in the resin powder layer 5.

【0022】加熱の際に、吸引口8より吸気してポリイミドフィルム7内を減圧することにより、ポリイミドフィルム7を金属コア4表面に密着させることができる。 [0022] During heating, by reducing the pressure in the polyimide film 7 with air from the suction port 8, it can be brought into close contact with the polyimide film 7 to the metal core 4 surface.
また、通気性を有する耐熱グラスファイバー6を介して、金属コア4に対する樹脂粉体層5の密着性も良好となる。 Moreover, through the heat fiberglass 6 having air permeability, adhesion of the resin powder layer 5 to the metal core 4 also becomes good.

【0023】このようにして得られた人工骨頭1の断面は図2に示される通りであり、金属コア4の外周面に樹脂被覆層9が密着形成されている。 [0023] Thus the cross section of the endoprosthesis 1 obtained are as shown in FIG. 2, the resin coating layer 9 is formed in close contact with an outer periphery surface of the metal core 4. この樹脂被覆層9における金属コア4との界面部分9aは、先の加熱の際に溶解された樹脂がその後硬化されてなるものであるため、完全に無気孔状態の樹脂からなる緻密な層として形成されている。 Interface portion 9a of the metallic core 4 in the resin coating layer 9, since those resins dissolved during the previous heating, which are then cured, as dense layer consisting entirely of nonporous state resin It is formed. 一方、その外側の外層部分9bは、先の加熱の際に溶解されなかった樹脂よりなる粉末焼結状をなしており、多数の気孔が存在している。 On the other hand, the outer layer portion 9b of the outer is formed in a powder sintering shape made of a resin that has not been dissolved during the previous heating, a large number of pores are present.

【0024】この人工骨頭1を、80℃の乳酸リンゲル液に10日間浸漬した後、ICP発光スペクトル分析を行ったところ、金属コア4の金属成分の溶出は全く認められず、完全無気孔状態の界面部分樹脂被覆層9aによって金属コアと生体とを完全に遮断できることが実証された。 [0024] The endoprosthesis 1, was immersed for 10 days in lactated Ringer's solution of 80 ° C., was subjected to ICP emission spectral analysis, the elution of the metal component of the metal core 4 was not observed at all, full of nonporous state interface It can be completely shut off the metal core and the biological part by resin coating layer 9a has been demonstrated.

【0025】比較例として、樹脂被覆層を設けない金属ステム部からなる従来の人工骨頭についても同様の条件にて試験したところ、若干の金属成分の溶出が認められ、生体に対する安全性において問題のあるものであった。 [0025] As a comparative example, was tested at the same conditions for a conventional endoprosthesis comprising a metal stem portion without the resin coating layer, observed elution of some of the metal component, the problem in safety to living body It was a certain thing.

【0026】 [0026]

【発明の効果】本発明方法によって得られる骨インプラントは、金属製のステムコアを、金属材料よりも硬度が小さく生体骨の曲げ弾性率に比較的近い材料である樹脂で被覆した構造であり、則ち、生体骨と直接接触する部分は樹脂被覆層であるため、従来の金属製ステムのみからなる骨インプラントにおいて懸念されたような集中応力による骨髄部の欠損を生じさせることがない。 Bone implants obtained by the present invention a method according to the present invention is a metal Sutemukoa a structure in which the hardness is coated with a resin which is relatively close material living bone flexural modulus smaller than that of the metal material, law Chi, since the portion in direct contact with living bone is a resin-coated layer, is not to cause loss of bone marrow part by stress concentration, such as a concern in bone implants comprising only conventional metal stem.

【0027】ステム部のコアは金属製であるので、金属材料の有する高強度、高剛性、耐食性等の諸特性を発揮することができる。 [0027] Since the core of the stem portion is made of metal, it is possible to exhibit high strength with a metal material, high rigidity, various properties such as corrosion resistance.

【0028】樹脂被覆層のうち、金属コアとの界面部分は、無気孔状態でピンホールのない緻密な層となっているので、金属コアの金属材料が生体内に溶出することが防止される。 [0028] Among the resin coating layer, interface between the metal core, since a pinhole dense layer with no pores state, it is possible to prevent the metal material of the metal core is eluted into the living body .

【0029】樹脂被覆層の外層部分は、多孔質の粉末焼結状であるため、身体相容性に優れている。 The outer layer portion of the resin coating layer are the porous sintered powder form, has excellent physical compatibility.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明方法の一実施例を示す縦断面図である。 1 is a longitudinal sectional view showing an embodiment of the present invention method.

【図2】図1の方法によって製造される人工骨頭の構成を示す横断面図である。 2 is a cross-sectional view showing the configuration of an artificial caput produced by the process of FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 人工骨頭 2 ステム部 3 ボール部 4 金属コア 5 樹脂粉体層 6 耐熱グラスファイバー 7 ポリイミドフィルム 8 吸引口 9 樹脂被覆層 9a 内層部分(界面部分) 9b 外層部分 1 endoprosthesis 2 stem 3 ball portion 4 metal core 5 resin powder layer 6 heat fiberglass 7 polyimide film 8 suction port 9 resin coating layer 9a inner portion (interface portion) 9b outer portion

フロントページの続き (72)発明者 曽我石 一郎 東京都中央区京橋3丁目1番1号 蛇の目 ミシン工業株式会社内 (72)発明者 片倉 健男 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 (72)発明者 大澤 孝明 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 (72)発明者 上田 義久 神奈川県足柄上郡中井町井ノ口1500番地 テルモ株式会社内 Of the front page Continued (72) inventor Soga stone Ichiro, Chuo-ku, Tokyo Kyobashi 3-chome No. 1 No. 1 Janome Sewing Machine Industry Co., Ltd. in the (72) inventor Takeo KATAKURA Kanagawa Prefecture ashigarakami district Nakai-cho, Inokuchi 1500 address Terumo within Co., Ltd. (72 ) inventor Takaaki Osawa Kanagawa Prefecture ashigarakami district Nakai-cho, Inokuchi 1500 address Terumo within Co., Ltd. (72) inventor Yoshihisa Ueda Kanagawa Prefecture ashigarakami district Nakai-cho, Inokuchi 1500 address Terumo within the Corporation

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 金属材料から所望のインプラント形状のコアを成形し、このコアの表面に樹脂粉体を塗布し、 1. A molding the core of the desired implant shape from a metal material, a resin powder is applied to the surface of the core,
    この樹脂粉体塗布物を開口を有する耐熱性フィルムで被覆し、耐熱性フィルムの開口から真空吸引しつつこの樹脂粉体塗布物を加熱して樹脂を少なくとも部分的に溶解させ、しかる後に樹脂を硬化させてコア表面に樹脂被覆層を形成することを特徴とする骨インプラントの製造方法。 The resin powder coating was coated with a heat-resistant film having an opening, while vacuum suction from the opening of the heat-resistant film The resin powder coating was heated to at least partially dissolve the resin, the resin thereafter method for producing a bone implant, characterized in that cured to form a resin coating layer on the core surface.
  2. 【請求項2】 前記樹脂粉体塗布物の加熱を高周波加熱法による内部加熱にて行い、前記コアとの界面部分の樹脂のみを溶解させることを特徴とする請求項1の骨インプラントの製造方法。 2. A performs heating of the resin powder coating material by the internal heating by high-frequency heating method, a manufacturing method of the bone implant of claim 1, wherein the dissolving only the resin of the interface between the core .
  3. 【請求項3】 前記コアの表面が粗面となるように成形し、または、前記コアの成形後であって前記樹脂粉体を塗布する前に前記コアの表面を粗面とすべく処理することを特徴とする請求項1または2の骨インプラントの製造方法。 3. A molded such that the surface of the core is roughened, or be processed to a surface of the core and roughened prior to applying the resin powder even after molding of the core the process according to claim 1 or 2 bone implant, characterized in that.
  4. 【請求項4】 組成の異なる複数の前記樹脂粉体塗布物を順次塗布することにより、前記樹脂被覆層を組成の異なる複数層にて構成することを特徴とする請求項1ないし3のいずれかに記載の骨インプラントの製造方法。 By wherein applying a plurality of different resin powder coating material compositions sequentially, any one of claims 1 to 3, characterized in that configured in different layers of the composition of the resin coating layer method for producing a bone implant according to.
JP33416491A 1991-11-22 1991-11-22 Production of bone implant Pending JPH0698902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33416491A JPH0698902A (en) 1991-11-22 1991-11-22 Production of bone implant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33416491A JPH0698902A (en) 1991-11-22 1991-11-22 Production of bone implant

Publications (1)

Publication Number Publication Date
JPH0698902A true true JPH0698902A (en) 1994-04-12

Family

ID=18274259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33416491A Pending JPH0698902A (en) 1991-11-22 1991-11-22 Production of bone implant

Country Status (1)

Country Link
JP (1) JPH0698902A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034892A3 (en) * 2001-10-23 2003-09-25 Robert G Bryant Medical implants made of wear-resistant, high performance polymides, process of making same and medical use of same
JP2010508901A (en) * 2006-11-03 2010-03-25 ボストン サイエンティフィック リミテッド Coated with eluting drug stents
JP2010527746A (en) * 2007-05-25 2010-08-19 ミセル テクノロジーズ、インコーポレイテッド Polymer films for medical devices coated
JP2013150802A (en) * 2012-01-17 2013-08-08 Heraeus Medical Gmbh Method for producing spacer and hollow mould for producing spacer
JP2014111198A (en) * 2014-03-04 2014-06-19 Bi Tec:Kk Resin composite having composite layer containing calcium phosphate, and method of manufacturing the same
US9687864B2 (en) 2010-03-26 2017-06-27 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
US9737645B2 (en) 2006-04-26 2017-08-22 Micell Technologies, Inc. Coatings containing multiple drugs
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US9775729B2 (en) 2007-04-17 2017-10-03 Micell Technologies, Inc. Stents having controlled elution
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US9981072B2 (en) 2009-04-01 2018-05-29 Micell Technologies, Inc. Coated stents
US9981071B2 (en) 2008-07-17 2018-05-29 Micell Technologies, Inc. Drug delivery medical device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034892A3 (en) * 2001-10-23 2003-09-25 Robert G Bryant Medical implants made of wear-resistant, high performance polymides, process of making same and medical use of same
US6686437B2 (en) 2001-10-23 2004-02-03 M.M.A. Tech Ltd. Medical implants made of wear-resistant, high-performance polyimides, process of making same and medical use of same
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US9737645B2 (en) 2006-04-26 2017-08-22 Micell Technologies, Inc. Coatings containing multiple drugs
JP2010508901A (en) * 2006-11-03 2010-03-25 ボストン サイエンティフィック リミテッド Coated with eluting drug stents
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US9775729B2 (en) 2007-04-17 2017-10-03 Micell Technologies, Inc. Stents having controlled elution
JP2010527746A (en) * 2007-05-25 2010-08-19 ミセル テクノロジーズ、インコーポレイテッド Polymer films for medical devices coated
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US9981071B2 (en) 2008-07-17 2018-05-29 Micell Technologies, Inc. Drug delivery medical device
US9981072B2 (en) 2009-04-01 2018-05-29 Micell Technologies, Inc. Coated stents
US9687864B2 (en) 2010-03-26 2017-06-27 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
JP2013150802A (en) * 2012-01-17 2013-08-08 Heraeus Medical Gmbh Method for producing spacer and hollow mould for producing spacer
JP2014111198A (en) * 2014-03-04 2014-06-19 Bi Tec:Kk Resin composite having composite layer containing calcium phosphate, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Cao et al. Bioactive materials
Cook et al. Interface mechanics and histology of titanium and hydroxylapatite-coated titanium for dental implant applications.
Shabalovskaya On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys
Alvarez et al. Metallic scaffolds for bone regeneration
Bonfield Composites for bone replacement
US6312467B1 (en) Method of restructuring bone
Friedman et al. Current concepts in orthopaedic biomaterials and implant fixation.
US5282861A (en) Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
US5343877A (en) Orthopedic implant and method
US5522904A (en) Composite femoral implant having increased neck strength
Nishiguchi et al. Biology of alkali‐and heat‐treated titanium implants
US6312473B1 (en) Orthopedic implant system
US6726725B2 (en) Prosthetic devices employing contacting oxidized zirconium surfaces
US4351069A (en) Prosthetic devices having sintered thermoplastic coatings with a porosity gradient
US7270679B2 (en) Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance
US5725595A (en) Cannulated cementless hip stem prosthesis
US5993716A (en) Material and process for its preparation
Klein et al. Plasma‐sprayed coatings of tetracalciumphosphate, hydroxyl‐apatite, and α‐TCP on titanium alloy: An interface study
Bobyn et al. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial
Patel et al. A review on biomaterials: scope, applications & human anatomy significance
US20030220696A1 (en) Implantable porous metal
US20030074081A1 (en) Non-uniform porosity tissue implant
Jaffe et al. Total hip arthroplasty with hydroxyapatite-coated prostheses
US5522896A (en) Biocompatible composite material
US4878914A (en) Ceramic prosthesis for living body & method of making the same