US8710776B2 - Method for controlling a motor - Google Patents
Method for controlling a motor Download PDFInfo
- Publication number
- US8710776B2 US8710776B2 US13/376,199 US201013376199A US8710776B2 US 8710776 B2 US8710776 B2 US 8710776B2 US 201013376199 A US201013376199 A US 201013376199A US 8710776 B2 US8710776 B2 US 8710776B2
- Authority
- US
- United States
- Prior art keywords
- motor
- current
- direct current
- value
- torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/18—Estimation of position or speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Definitions
- the present invention generally finds application in the field of electric drives for motors.
- the present invention relates to motor control by electric drives, generally equipped with inverters.
- motors are among the most commonly used elements in various applications. Many types of different motors have been developed and used, according to particular types of applications. For example, motors may be grouped into synchronous and asynchronous motors or DC or AC motors.
- One of the main motor control techniques implemented by said drives is the vectorial technique, one example of which is the field orientation technique.
- direct current is similar to flux current, whereas quadrature current corresponds to armature current.
- Torque generation is controlled by adjusting the quadrature current, once the motor specific direct current has been determined.
- a particular example is the synchronous reluctance motor where, as mentioned above, direct current control may be replaced by direct flux control.
- controllers which also change direct current, by adjusting the voltage at the ends of the motor as a function of load.
- a particular example is that of motors having controllers operating in vectorial mode, with no position or rotation speed sensor, also known as sensorless vectorial control.
- this problem is even more serious. While the rotation speed and position of the rotor may be detected using the back electromotive force at high running speeds, the inherent impedance of the motor prevents the use of this method at low running speeds. Voltage losses cause a non negligible error, when compared with the absolute value of the back electromotive force. For this reason, at low running speeds, an additional zero-mean time-dependent voltage is added to the supply voltage.
- Suitable control algorithms representing the motor-inverter assembly, such as a resolver-to-digital converter, where the motor acts as the resolver and the inverter decodes the resultant to the voltage signal altered by the added noise, provide values approximately proportional to the difference between the actual position and the estimated position, the added signal being generated at the same time as the fundamental component of the inverter.
- the object of the present invention is to at least partially overcome the above drawbacks, by providing a method for controlling a motor that can increase the efficiency thereof even at low torque settings.
- Another object is to provide a method for controlling a motor that can increase efficiency at low running speeds even in sensorless motors, i.e. motors with no sensor for detecting the rotation speed and the position of the rotor during operation.
- the method uses a vectorial technique and an inverter. It generally includes the steps of:
- I d I q tan ⁇ ( k t )
- the direct current I d is not constant, but changes with the quadrature current I q .
- This allows optimization of the power current supplied to the motor according to the torque it is designed to develop. As a result, the efficiency of the motor so controlled is optimized.
- the torque constant of the motor is the maximum torque constant that can be obtained at any load condition and is determined in a particular step, during which the motor is characterized as a function of the direct current I d and the quadrature current I q , to obtain the maximum torque constant curve.
- the variation of the direct current I d as a function of the quadrature current I q is related to the maximum obtainable torque constant, i.e. the optimization of the power current supplied to the motor is related to the maximum torque constant. This provides maximized motor efficiency.
- the device will include at least one inverter, for supplying power to the motor, and processing means operating on said inverter to control power supply to the motor.
- the processing means are designed to calculate the power supply current from a direct current I d and a quadrature current I q , the quadrature current I q being determined based on the mechanical torque value that the motor is designed to control, i.e. to absorb in case of a braking torque or to deliver in case of a motive torque.
- the direct current I d is calculated by the processing means through the equation
- I d I q tan ⁇ ( k t ) wherein k t is the phase of the current vector that defines the torque constant of the motor.
- the method may include a step of conditioning the direct current I d , where the direct current value that is used to obtain the power current is limited by a predetermined minimum threshold value.
- the motor magnetization flux depends on the direct current I d , which prevents demagnetization of the motor under minimal loads.
- the method may include an additional step of conditioning the direct current I d , where the latter is limited by a predetermined maximum limit value. This prevents saturation of the motor with an excessive magnetization flux.
- FIG. 1 is a schematic view of the method of the invention
- FIG. 2 shows a function example, defining the motor torque maximization point as a function of the power current
- FIG. 3 is a further schematized view of the method of the invention.
- FIG. 4 shows an example of a curve representing the percentage of an additional power supply voltage to a motor as a function of the percentage of the running speed of the motor.
- FIG. 1 there is described a method for controlling a motor by a vectorial technique and an inverter.
- the method described herein comprises a first step, designated by numeral 1 , where the value of the quadrature current I q is determined. As is known and mentioned hereinabove, this current is responsible for the mechanical torque delivered by the motor. Once the load and the torque to be delivered by the motor are known, the quadrature current I q is determined.
- I d I q tan ⁇ ( k t ) wherein k t is the phase of the current, which is known to be related to the torque constant of the motor defined thereby.
- the direct current I d will generate the bias flux in the motor.
- I d The direct current I d will generate the bias flux in the motor.
- it was constantly held at a nominal value, or changed in accordance with a rule related to the type of assumed applied load, which caused a loss of motor efficiency. At low running speeds, it might be optimized in response to actual requirements, thereby avoiding undesired wastes.
- the system didn't operate properly, and might even be exposed to a risk of total loss of control, due to the lack of flux to the motor.
- the present method improves the efficiency of the controlled motor, because the direct current I d supplied thereto is not constant and does not change according to a previously estimated rule, but changes with the quadrature current I q , i.e. with the actual torque requirements, by the torque coefficient k t .
- the power current to be supplied to the motor may be determined, as shown in step 3 .
- the inverter is controlled to supply such current to the motor.
- power current calculation is related to the type of motor.
- the power current is determined by vector addition of the direct current I d and the quadrature current I q , which may be assimilated to two vectors having the same modulus as the previously calculated values.
- the two current values are separately supplied to the motor by a converter.
- the direct current I d directly provides the direct magnetization flux, which is the relevant parameter for the implementation of this patent.
- the torque constant K t of the motor has the maximum obtainable value. This affords further optimization of motor efficiency. Since the direct current I d and the quadrature current I q have such values that the resulting vector has a constant angle, corresponding to the maximum obtainable torque constant K t , the efficiency of the motor during operation is necessarily maximized.
- the torque constant K t is a motor specific parameter, which is generally determined in a special calculation step.
- the points at which the highest torque is produced may be found along the circular path of such current vector.
- a function is determined, that defines the current-related torque maximization point. Since the power current vector may be divided into vectors of direct current I d and quadrature current I q , then this determined function may be expressed as a function of these two currents.
- FIG. 2 For instance, in synchronous reluctance motors, this function may be approximated to a line whose inclination changes as a function of the motor specifications.
- Such parameter may be also mathematically determined by the designer of the motor. It shall be understood that this step is carried out to check and/or update this parameter.
- control method includes at least one step of conditioning the direct current I d , which is designated by numeral 4 in FIG. 3 .
- the direct current I d that is used to determine the power current is equal to the direct current I d as determined by the above mentioned equation for values higher than a predetermined threshold value, and is equal to such predetermined threshold when the determined direct current I d is lower than such threshold value.
- the direct current I d has a lower limit value, i.e. a minimum admissible value, beyond which it no longer decreases, which is equal to a predetermined threshold value.
- an optimal threshold value is a value allowing the motor magnetization flux to be about 60% its nominal value.
- the direct current I d that is used to determine the power current is determined by the above mentioned equation for values lower than a predetermined maximum limit value, and is equal to such predetermined maximum limit value for higher values.
- the direct current I d has a higher limit, i.e. a maximum admissible value, beyond which it no longer increases, which is equal to a predetermined threshold value.
- the nominal magnetization flux may be exceeded to further increase the efficiency of the motor as long as a distance from the supply voltage saturation value is ensured.
- control may also be of sensorless type.
- the position and rotation speed of the rotor is determined by the back electromotive force generated thereby. Nevertheless, at low running speeds, where the motor suffers from an efficiency loss, as mentioned in the prior art as a drawback, back electromotive force cannot be used, because its value is comparable to, and hence altered by, the voltage drop on the motor impedance.
- an additional voltage generally a zero-mean sinusoidal voltage
- a zero-mean sinusoidal voltage is generally known to be added to the supply voltage, for performing the desired detection.
- it is no longer negligible at low running speeds with respect to the supply voltage, which is decreased, as mentioned above, to increase motor efficiency.
- the additional voltage has a zero mean value, it still induces a non negligible additional work in the motor, and affects efficiency thereof.
- the present method also includes a step of insertion of such additional voltage, during which its generation involves a variable modulus.
- the amplitude of the additional voltage shall ensure proper estimation of the rotor position.
- Experimental tests have confirmed that a high-amplitude additional voltage is desired at low running speeds, whereas the influence of amplitude is reduced ad higher running speeds.
- a high-amplitude additional voltage was found to be even detrimental at particularly high running speeds, with the torque being higher with low values.
- This behavior is explained in that the additional voltage causes a flux variation, although with a zero mean value, at medium-to-high running speeds. In this case, the voltage change adds to the electromotive force and causes saturation of the motor.
- the amount of added voltage has to be reduced and limited as a function of the running speed of the motor. A limiting example is shown in FIG.
- the method of the invention may include a step of calculating and conditioning the additional voltage in which the latter is determined as a function of the quadrature current I q , i.e. as a function of the torque to be delivered.
- the modulus of the added voltage is reduced as a function of the quadrature current, no high voltage value being required when the quadrature current has small values.
- the additional voltage causes the motor to emit noise.
- the above described step also advantageously allows reduction of such noise.
- both techniques may be used at the same time, with priority being assigned to the results obtained with the back electromotive force at high running speeds and to the results obtained with the additional voltage technique at low running speeds. At intermediate running speeds the results are mixed. It will be appreciated that this allows further reduction of the amplitude of the additional voltage and hence of the efficiency loss caused thereby in the motor. The noise emitted by the motor is also reduced.
- the additional voltage causes further efficiency losses because, since the inverter modulates such voltage on the fundamental voltage of the motor, it necessarily consumes electric energy. Such consumption is a function of the additional voltage frequency, the higher the frequency the higher the consumption. Since frequency is increased to reduce the noise generated by the motor as such voltage is added, any reduction of the noise obtained as described above will apparently allow reduction of the additional voltage frequency and thus of the energy consumption of the inverter. In other words, this affords further maximization of motor efficiency by such control.
- the frequency of the additional voltage may be also continuously changed, thereby optimizing motor efficiency by the control and minimizing the perception of the noise caused thereby.
- the frequency of the substantially sinusoidal additional voltage is caused to be variable using a random or pseudo-random calculation technique.
- the invention also relates to a device for controlling a motor that implements the method as described hereinbefore.
- the device includes at least one inverter, for supplying power to the motor, and processing means operating on the inverter to control power supply to the motor.
- Such processing means are adapted to calculate the power current to be supplied from a direct current I d and a quadrature current I g .
- the quadrature current I q will be determined from the mechanical torque value to be generated by the motor, whereas the direct current I d will be calculated by the processing means through the equation
- I d I q tan ⁇ ( k t ) where k t is the phase of the current vector that defines the torque constant of the motor.
- the method of the invention is designed to be implemented through an appropriate IT product, which also falls within the present inventive concept.
- the IT product is designed to be loaded in the memory of a computer, to be executed thereby.
- This computer may constitute or be part of the processing means of the device of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Electrical Control Of Ignition Timing (AREA)
Abstract
Description
-
- determining the value of a quadrature current Iq necessary for the motor to generate the desired torque;
- calculating the value of a direct current Id to be supplied to the motor by the equation:
-
- wherein kt is the phase of the current vector on which the torque constant of said motor is known to depend;
- calculating the power current of said motor by means of said direct current Id and said quadrature current Iq;
- supplying said power current to said motor by said inverter.
wherein kt is the phase of the current vector that defines the torque constant of the motor.
wherein kt is the phase of the current, which is known to be related to the torque constant of the motor defined thereby.
where kt is the phase of the current vector that defines the torque constant of the motor.
Claims (14)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITPD2009A000165A IT1394426B1 (en) | 2009-06-05 | 2009-06-05 | METHOD OF CONTROL OF AN ENGINE |
ITPD2009A000165 | 2009-06-05 | ||
ITPD2009A0165 | 2009-06-05 | ||
PCT/IB2010/052493 WO2010140137A2 (en) | 2009-06-05 | 2010-06-04 | Method for controlling a motor |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120119686A1 US20120119686A1 (en) | 2012-05-17 |
US8710776B2 true US8710776B2 (en) | 2014-04-29 |
Family
ID=41786430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/376,199 Active US8710776B2 (en) | 2009-06-05 | 2010-06-04 | Method for controlling a motor |
Country Status (9)
Country | Link |
---|---|
US (1) | US8710776B2 (en) |
EP (1) | EP2438677B1 (en) |
JP (1) | JP2012529262A (en) |
CN (1) | CN102577090B (en) |
BR (1) | BRPI1009618A2 (en) |
DK (1) | DK2438677T3 (en) |
IT (1) | IT1394426B1 (en) |
RU (1) | RU2566301C2 (en) |
WO (1) | WO2010140137A2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102481576B (en) | 2009-09-17 | 2014-12-24 | 霍夫曼-拉罗奇有限公司 | Sample input device for inputting liquid samples (clot catcher) |
GB2503039B (en) | 2012-06-15 | 2020-05-27 | Danfoss Drives As | Method for controlling a synchronous reluctance electric motor |
GB2503040B (en) | 2012-06-15 | 2020-05-06 | Danfoss Drives As | Variable torque angle for electric motor |
GB2503670B (en) | 2012-07-03 | 2014-12-10 | Dyson Technology Ltd | Method of preheating a brushless motor |
GB2503671B (en) * | 2012-07-03 | 2014-12-17 | Dyson Technology Ltd | Control of a brushless motor |
JP5983567B2 (en) * | 2013-09-10 | 2016-08-31 | トヨタ自動車株式会社 | Electric motor control device |
JP6237100B2 (en) * | 2013-10-17 | 2017-11-29 | 日本精工株式会社 | Manufacturing method of wheel bearing rolling bearing unit |
JP6197831B2 (en) * | 2015-06-05 | 2017-09-20 | 日本精工株式会社 | Method for manufacturing wheel-supporting rolling bearing unit and method for manufacturing automobile |
CN106452266B (en) * | 2016-10-27 | 2019-03-12 | 北京新能源汽车股份有限公司 | Automatic calibration method and device for vehicle-mounted motor |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6388417B1 (en) * | 1999-12-06 | 2002-05-14 | Macrosonix Corporation | High stability dynamic force motor |
FR2825853A1 (en) | 2001-06-12 | 2002-12-13 | Siemens Automotive Sa | Method of control of synchronous electric motor, uses control of quadrature and direct axis current components to produce linear torque output till current threshold is released, then limits current |
US20040100222A1 (en) | 2002-07-31 | 2004-05-27 | Nissan Motor Co., Ltd. | Control device for electric motor |
US20050283324A1 (en) * | 2004-06-17 | 2005-12-22 | Swanson David F | Method and system for determining a rotor position in a wound field DC motor |
US20070132415A1 (en) | 2005-12-14 | 2007-06-14 | Patel Nitinkumar R | Method and apparatus for sensorless position control of a permanent magnet synchronous motor (PMSM) drive system |
US7282878B1 (en) * | 2006-04-28 | 2007-10-16 | Rakov Mikhail A | Systems for brushless DC electrical drive control |
US20090184678A1 (en) * | 2008-01-22 | 2009-07-23 | Gm Global Technology Operations, Inc. | Permanent magnet ac motor systems and control algorithm restart methods |
US20090212564A1 (en) * | 2008-02-26 | 2009-08-27 | General Electric Company | Method and apparatus for assembling electrical machines |
US20090237014A1 (en) * | 2007-05-24 | 2009-09-24 | Aisin Seiki Kabushiki Kaisha | Synchronous motor control device and method for optimizing synchronous motor control |
US20090261770A1 (en) * | 2008-04-22 | 2009-10-22 | Honda Motor Co., Ltd. | Controller for motor |
US20100066283A1 (en) * | 2006-10-19 | 2010-03-18 | Hidetoshi Kitanaka | Vector controller for permanent-magnet synchronous electric motor |
US20110043149A1 (en) * | 2007-09-25 | 2011-02-24 | Mitsubishi Electric Corporation | Motor controlling device |
US20110062908A1 (en) * | 2007-10-29 | 2011-03-17 | Mitsubishi Electric Corporation | Controller of motor |
US20110148335A1 (en) * | 2008-10-29 | 2011-06-23 | Mitsubishi Electric Corporation | Control apparatus for permanent magnet synchronous motor |
US8350507B2 (en) * | 2007-09-27 | 2013-01-08 | Mitsubishi Electric Corporation | Controller of rotary electric machine |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59213291A (en) * | 1983-05-14 | 1984-12-03 | Shinko Electric Co Ltd | Current type inverter |
RU2132110C1 (en) * | 1998-03-25 | 1999-06-20 | Мищенко Владислав Алексеевич | Method for optimal vector control of induction electric motor and electric drive which implements said method |
JP4154798B2 (en) * | 1999-04-23 | 2008-09-24 | 株式会社日立製作所 | AC motor control method |
JP3933348B2 (en) * | 1999-05-31 | 2007-06-20 | 山洋電気株式会社 | Control device for embedded magnet type synchronous motor |
KR20020007050A (en) * | 2000-07-14 | 2002-01-26 | 설승기 | Method and System for Sensorless Field Orientation Control of AC Motor |
CN1193497C (en) * | 2001-12-05 | 2005-03-16 | 艾默生网络能源有限公司 | Non-synchronous motor rotary inertia identification method |
JP4281376B2 (en) * | 2003-02-20 | 2009-06-17 | 三菱電機株式会社 | Electric motor drive |
JP2004274841A (en) * | 2003-03-06 | 2004-09-30 | Sharp Corp | Motor controller, and air conditioner and refrigerator using the same |
JP2004282873A (en) * | 2003-03-14 | 2004-10-07 | Meidensha Corp | Sensorless measurement method for synchronous motor, and sensorless speed-variable device for synchronous motor |
JP4527596B2 (en) * | 2005-05-12 | 2010-08-18 | シャープ株式会社 | MOTOR CONTROL DEVICE AND ELECTRIC DEVICE USING THE SAME |
JP4566100B2 (en) * | 2005-09-20 | 2010-10-20 | 三洋電機株式会社 | Electric motor drive |
JP4895703B2 (en) * | 2006-06-28 | 2012-03-14 | 三洋電機株式会社 | Motor control device |
JP2009017676A (en) * | 2007-07-04 | 2009-01-22 | Aisin Seiki Co Ltd | Controller and control method for magnet type synchronous motor |
JP2008220169A (en) * | 2008-06-13 | 2008-09-18 | Sanyo Electric Co Ltd | Motor controller |
KR101775588B1 (en) * | 2012-03-13 | 2017-09-06 | 마이크로 모우션, 인코포레이티드 | Indirect mass flow sensor |
-
2009
- 2009-06-05 IT ITPD2009A000165A patent/IT1394426B1/en active
-
2010
- 2010-06-04 WO PCT/IB2010/052493 patent/WO2010140137A2/en active Application Filing
- 2010-06-04 DK DK10740276.0T patent/DK2438677T3/en active
- 2010-06-04 RU RU2011152792/07A patent/RU2566301C2/en active
- 2010-06-04 CN CN201080034748.3A patent/CN102577090B/en active Active
- 2010-06-04 JP JP2012513728A patent/JP2012529262A/en active Pending
- 2010-06-04 US US13/376,199 patent/US8710776B2/en active Active
- 2010-06-04 EP EP10740276.0A patent/EP2438677B1/en active Active
- 2010-06-04 BR BRPI1009618A patent/BRPI1009618A2/en not_active Application Discontinuation
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6388417B1 (en) * | 1999-12-06 | 2002-05-14 | Macrosonix Corporation | High stability dynamic force motor |
FR2825853A1 (en) | 2001-06-12 | 2002-12-13 | Siemens Automotive Sa | Method of control of synchronous electric motor, uses control of quadrature and direct axis current components to produce linear torque output till current threshold is released, then limits current |
US20040100222A1 (en) | 2002-07-31 | 2004-05-27 | Nissan Motor Co., Ltd. | Control device for electric motor |
US20050283324A1 (en) * | 2004-06-17 | 2005-12-22 | Swanson David F | Method and system for determining a rotor position in a wound field DC motor |
US20070132415A1 (en) | 2005-12-14 | 2007-06-14 | Patel Nitinkumar R | Method and apparatus for sensorless position control of a permanent magnet synchronous motor (PMSM) drive system |
US7282878B1 (en) * | 2006-04-28 | 2007-10-16 | Rakov Mikhail A | Systems for brushless DC electrical drive control |
US20100066283A1 (en) * | 2006-10-19 | 2010-03-18 | Hidetoshi Kitanaka | Vector controller for permanent-magnet synchronous electric motor |
US20090237014A1 (en) * | 2007-05-24 | 2009-09-24 | Aisin Seiki Kabushiki Kaisha | Synchronous motor control device and method for optimizing synchronous motor control |
US20110043149A1 (en) * | 2007-09-25 | 2011-02-24 | Mitsubishi Electric Corporation | Motor controlling device |
US8350507B2 (en) * | 2007-09-27 | 2013-01-08 | Mitsubishi Electric Corporation | Controller of rotary electric machine |
US20110062908A1 (en) * | 2007-10-29 | 2011-03-17 | Mitsubishi Electric Corporation | Controller of motor |
US20090184678A1 (en) * | 2008-01-22 | 2009-07-23 | Gm Global Technology Operations, Inc. | Permanent magnet ac motor systems and control algorithm restart methods |
US20090212564A1 (en) * | 2008-02-26 | 2009-08-27 | General Electric Company | Method and apparatus for assembling electrical machines |
US7745949B2 (en) * | 2008-02-26 | 2010-06-29 | General Electric Company | Method and apparatus for assembling electrical machines |
US20090261770A1 (en) * | 2008-04-22 | 2009-10-22 | Honda Motor Co., Ltd. | Controller for motor |
US20110148335A1 (en) * | 2008-10-29 | 2011-06-23 | Mitsubishi Electric Corporation | Control apparatus for permanent magnet synchronous motor |
Also Published As
Publication number | Publication date |
---|---|
IT1394426B1 (en) | 2012-06-15 |
RU2011152792A (en) | 2013-06-27 |
DK2438677T3 (en) | 2014-11-10 |
US20120119686A1 (en) | 2012-05-17 |
RU2566301C2 (en) | 2015-10-20 |
CN102577090A (en) | 2012-07-11 |
EP2438677A2 (en) | 2012-04-11 |
BRPI1009618A2 (en) | 2016-08-23 |
EP2438677B1 (en) | 2014-08-06 |
WO2010140137A3 (en) | 2011-08-25 |
WO2010140137A2 (en) | 2010-12-09 |
CN102577090B (en) | 2015-09-09 |
ITPD20090165A1 (en) | 2010-12-06 |
JP2012529262A (en) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8710776B2 (en) | Method for controlling a motor | |
JP6868772B2 (en) | Motor control device and motor control method | |
US10063177B2 (en) | Method and apparatus for optimizing efficiency of induction motor in electric vehicle | |
US9160262B2 (en) | Sensorless motor control | |
US9231500B2 (en) | Sensorless motor braking system | |
US20090021194A1 (en) | Control device | |
US20100117568A1 (en) | Controller for calculating electric power consumption of industrial machine | |
US7852040B2 (en) | Motor driver system and method for controlling motor driver | |
US10992241B2 (en) | Control device of motor and storage medium | |
US10432126B2 (en) | Control device for an asynchronous machine and method for operating an asynchronous machine | |
CN109687793B (en) | Motor control device | |
EP1771939A1 (en) | Motor controller | |
KR101535727B1 (en) | Apparatus for controlling induction machine | |
US11843342B2 (en) | Motor drive control device and motor drive control method | |
CN108540039B (en) | Inverter control apparatus | |
JP2012249459A (en) | Motor control device | |
US9806652B2 (en) | System of controlling induction electric motor | |
JP2018121437A (en) | Control device of induction motor | |
JP2012016166A (en) | Motor controller | |
US11177747B2 (en) | Power conversion device and power conversion method | |
CN117546401A (en) | Electromechanical system | |
JP2008054467A (en) | Power converter system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REEL S.R.L., ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERTOTTO, EZIO;DI SANTO, FEDERICO;MARODIN, ENRICO;REEL/FRAME:027636/0737 Effective date: 20120129 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
AS | Assignment |
Owner name: KSB AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REEL S.R.L.;REEL/FRAME:044588/0423 Effective date: 20180109 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |