US8598932B2 - Integer and half clock step division digital variable clock divider - Google Patents
Integer and half clock step division digital variable clock divider Download PDFInfo
- Publication number
- US8598932B2 US8598932B2 US13/888,050 US201313888050A US8598932B2 US 8598932 B2 US8598932 B2 US 8598932B2 US 201313888050 A US201313888050 A US 201313888050A US 8598932 B2 US8598932 B2 US 8598932B2
- Authority
- US
- United States
- Prior art keywords
- clock
- divide
- alignment
- register
- divide factor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004044 response Effects 0.000 claims abstract description 24
- 238000012545 processing Methods 0.000 claims description 13
- 239000003550 marker Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 230000000737 periodic effect Effects 0.000 claims description 2
- 230000015654 memory Effects 0.000 description 57
- 230000002093 peripheral effect Effects 0.000 description 24
- 230000006870 function Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 16
- 239000004744 fabric Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/10—Address translation
- G06F12/1081—Address translation for peripheral access to main memory, e.g. direct memory access [DMA]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0008—Arrangements for reducing power consumption
- H03K19/0016—Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/3296—Power saving characterised by the action undertaken by lowering the supply or operating voltage
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
- G06F11/1008—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
- G06F11/1064—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices in cache or content addressable memories
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
- G06F12/0238—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
- G06F12/0246—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
- G06F12/0811—Multiuser, multiprocessor or multiprocessing cache systems with multilevel cache hierarchies
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
- G06F12/0815—Cache consistency protocols
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/12—Replacement control
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1605—Handling requests for interconnection or transfer for access to memory bus based on arbitration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/18—Handling requests for interconnection or transfer for access to memory bus based on priority control
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/483—Computations with numbers represented by a non-linear combination of denominational numbers, e.g. rational numbers, logarithmic number system or floating-point numbers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30098—Register arrangements
- G06F9/3012—Organisation of register space, e.g. banked or distributed register file
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K21/00—Details of pulse counters or frequency dividers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/29—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
- H03M13/2903—Methods and arrangements specifically for encoding, e.g. parallel encoding of a plurality of constituent codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/35—Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
- H03M13/353—Adaptation to the channel
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1605—Handling requests for interconnection or transfer for access to memory bus based on arbitration
- G06F13/1652—Handling requests for interconnection or transfer for access to memory bus based on arbitration in a multiprocessor architecture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1605—Handling requests for interconnection or transfer for access to memory bus based on arbitration
- G06F13/1652—Handling requests for interconnection or transfer for access to memory bus based on arbitration in a multiprocessor architecture
- G06F13/1657—Access to multiple memories
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1605—Handling requests for interconnection or transfer for access to memory bus based on arbitration
- G06F13/1652—Handling requests for interconnection or transfer for access to memory bus based on arbitration in a multiprocessor architecture
- G06F13/1663—Access to shared memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/36—Handling requests for interconnection or transfer for access to common bus or bus system
- G06F13/362—Handling requests for interconnection or transfer for access to common bus or bus system with centralised access control
- G06F13/364—Handling requests for interconnection or transfer for access to common bus or bus system with centralised access control using independent requests or grants, e.g. using separated request and grant lines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1016—Performance improvement
- G06F2212/1021—Hit rate improvement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1032—Reliability improvement, data loss prevention, degraded operation etc
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/22—Employing cache memory using specific memory technology
- G06F2212/221—Static RAM
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/25—Using a specific main memory architecture
- G06F2212/253—Centralized memory
- G06F2212/2532—Centralized memory comprising a plurality of modules
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/28—Using a specific disk cache architecture
- G06F2212/283—Plural cache memories
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/60—Details of cache memory
- G06F2212/608—Details relating to cache mapping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/50—Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
Definitions
- This invention generally relates to management of clock generation in a digital system, and in particular to providing a clock divider for operation at 1 GHz or higher that performs odd, even and fractional division.
- SoC System on Chip
- DSP digital signal processor
- RISC reduced instruction set computing
- Complex SoCs require a scalable and convenient method of connecting a variety of peripheral blocks such as processors, accelerators, shared memory and IO devices while addressing the power, performance and cost requirements of the end application. Due to the complexity and high performance requirements of these devices, the chip interconnect tends to be hierarchical and partitioned depending on the latency tolerance and bandwidth requirements of the endpoints. The connectivity among the endpoints tends to be more flexible to allow for future devices that may be derived from a current device. In this scenario, management of clock signals that are provided to the various modules and components of the complex SoC may require dynamic changes in frequency. In many cases, different clock frequencies are required for different modules and components.
- FIG. 1 is a functional block diagram of a system on chip (SoC) that includes an embodiment of the invention
- FIG. 2 is a more detailed block diagram of one processing module used in the SoC of FIG. 1 ;
- FIGS. 3 and 4 illustrate configuration of the L1 and L2 caches
- FIG. 5 includes FIGS. 5A and 5B that together are a block diagram for a clock divider configured to provide integer and half integer clock division;
- FIGS. 6-8 illustrate clock division by 6, 7 and 6.5 by the clock divider of FIG. 5 ;
- FIG. 9 illustrates multiple clock dividers that may be included within each core module of FIG. 2 ;
- FIG. 10 is a block diagram of an exemplary clock divider illustrating a mechanism to allow changing of a clock divider factor on the fly;
- FIG. 11 is a timing diagram illustrating operation of the mechanism of FIG. 10 ;
- FIG. 12 is a flow diagram illustrating dynamic updating of divider factors while maintaining clock alignment
- FIG. 13 is a flow diagram illustrating dynamic clock divide factor updating
- FIG. 14 is a block diagram of a system that includes the SoC of FIG. 1 .
- a multi-core architecture that embodies an aspect of the present invention will be described herein.
- a multi-core system is implemented as a single system on chip (SoC).
- SoC system on chip
- the term “core” refers to a processing module that may contain an instruction processor, such as a digital signal processor (DSP) or other type of microprocessor, along with one or more levels of cache that are tightly coupled to the processor.
- DSP digital signal processor
- Half step clock division is a desired divide ratio in a high speed SoC.
- the operating frequency of a peripheral is chosen to be an integer divide value of the highest frequency in the system.
- a one half step division may also be desirable as it allows certain peripherals to operate at an optimal frequency, thereby maximizing the throughput of the system.
- a half step division may also allow for better debugging capabilities and may therefore be useful in an SoC's design for testability (DFT) mode.
- DFT testability
- Alignment of the divided clocks is another important requirement in the system to ensure proper functioning of the SoC.
- An embodiment of the invention provides a high-speed clock divider that is capable of integer and half step increment, and that guarantees alignment of the output clocks will be described in more detail below.
- Some embodiments of the invention also provide divided clocks that have a 50% duty cycle and have the ability to switch divide ratios on the fly.
- the clock divider described herein is architected for high speed and may be used in a core running at 1.0 GHz, or higher, for example.
- the divider output clock has a duty cycle of 50% when the divide ratio is N and duty cycle of [1/(N+1 ⁇ 2)] when the divide ratio is N.5.
- Embodiments of the invention achieve half step division with very minimal increase in logic gate count over a divider that does only integer division.
- multiple cores are interconnected via a packet based switch fabric that provides point to point interconnect between several devices on each cycle.
- Each core may receive requests from another core or from other external devices within the SoC to access various shared resources within the core, such as static random access memory (SRAM).
- SRAM static random access memory
- a set of clock generation modules that are each capable of integer and half step increment, and that guarantee alignment of the output clocks at a particular edge with respect to the input clock is included in each core module of the SoC to provide various clock signals to the various logic blocks and components within each core module.
- FIG. 1 is a functional block diagram of a system on chip (SoC) 100 that includes an embodiment of the invention.
- System 100 is a multi-core SoC that includes a set of processor modules 110 that each include a processor core, level one (L1) data and instruction caches, and a level two (L2) cache.
- processor modules 110 there are eight processor modules 110 ; however other embodiments may have fewer or greater number of processor modules.
- each processor core is a digital signal processor (DSP); however, in other embodiments other types of processor cores may be used.
- DSP digital signal processor
- a packet-based fabric 120 provides high-speed non-blocking channels that deliver as much as 2 terabits per second of on-chip throughput.
- Fabric 120 interconnects with memory subsystem 130 to provide an extensive two-layer memory structure in which data flows freely and effectively between processor modules 110 , as will be described in more detail below.
- SoC 100 is embodied in an SoC from Texas Instruments, and is described in more detail in “TMS320C6678—Multi-core Fixed and Floating-Point Signal Processor Data Manual”, SPRS691, November 2010, which is incorporated by reference herein.
- External link 122 provides direct chip-to-chip connectivity for local devices, and is also integral to the internal processing architecture of SoC 100 .
- External link 122 is a fast and efficient interface with low protocol overhead and high throughput, running at an aggregate speed of 50 Gbps (four lanes at 12.5 Gbps each).
- Link 122 transparently dispatches tasks to other local devices where they are executed as if they were being processed on local resources.
- Each processor module 110 has its own level-1 program (L1P) and level-1 data (L1D) memory. Additionally, each module 110 has a local level-2 unified memory (L2). Each of the local memories can be independently configured as memory-mapped SRAM (static random access memory), cache or a combination of the two.
- L1P level-1 program
- L1D level-1 data
- L2 level-2 unified memory
- Each of the local memories can be independently configured as memory-mapped SRAM (static random access memory), cache or a combination of the two.
- SoC 100 includes shared memory 130 , comprising internal and external memory connected through the multi-core shared memory controller (MSMC) 132 .
- MSMC 132 allows processor modules 110 to dynamically share the internal and external memories for both program and data.
- the MSMC internal RAM offers flexibility to programmers by allowing portions to be configured as shared level-2 RAM (SL2) or shared level-3 RAM (SL3).
- SL2 RAM is cacheable only within the local L1P and L1D caches, while SL3 is additionally cacheable in the local L2 caches.
- External memory may be connected through the same memory controller 132 as the internal shared memory via external memory interface 134 , rather than to chip system interconnect as has traditionally been done on embedded processor architectures, providing a fast path for software execution.
- external memory may be treated as SL3 memory and therefore cacheable in L1 and L2.
- SoC 100 may also include several co-processing accelerators that offload processing tasks from the processor cores in processor modules 110 , thereby enabling sustained high application processing rates.
- SoC 100 may also contain an Ethernet media access controller (EMAC) network coprocessor block 150 that may include a packet accelerator 152 and a security accelerator 154 that work in tandem.
- EMAC Ethernet media access controller
- the packet accelerator speeds the data flow throughout the core by transferring data to peripheral interfaces such as the Ethernet ports or Serial RapidIO (SRIO) without the involvement of any module 110 's DSP processor.
- the security accelerator provides security processing for a number of popular encryption modes and algorithms, including: IPSec, SCTP, SRTP, 3GPP, SSL/TLS and several others.
- Multi-core manager 140 provides single-core simplicity to multi-core device SoC 100 .
- Multi-core manager 140 provides hardware-assisted functional acceleration that utilizes a packet-based hardware subsystem. With an extensive series of more than 8,000 queues managed by queue manager 144 and a packet-aware DMA controller 142 , it optimizes the packet-based communications of the on-chip cores by practically eliminating all copy operations.
- multi-core manager 140 provides “fire and forget” software tasking that may allow repetitive tasks to be defined only once, and thereafter be accessed automatically without additional coding efforts.
- Two types of buses exist in SoC 100 as part of packet based switch fabric 120 are two types of buses and configuration buses. Some peripherals have both a data bus and a configuration bus interface, while others only have one type of interface. Furthermore, the bus interface width and speed varies from peripheral to peripheral. Configuration buses are mainly used to access the register space of a peripheral and the data buses are used mainly for data transfers. However, in some cases, the configuration bus is also used to transfer data. Similarly, the data bus can also be used to access the register space of a peripheral. For example, DDR3 memory controller 134 registers are accessed through their data bus interface.
- Processor modules 110 can be classified into two categories: masters and slaves.
- Masters are capable of initiating read and write transfers in the system and do not rely on the EDMA for their data transfers. Slaves on the other hand rely on the EDMA to perform transfers to and from them.
- masters include the EDMA traffic controllers, serial rapid I/O (SRIO), and Ethernet media access controller 150 .
- slaves include the serial peripheral interface (SPI), universal asynchronous receiver/transmitter (UART), and inter-integrated circuit (I2C) interface.
- SPI serial peripheral interface
- UART universal asynchronous receiver/transmitter
- I2C inter-integrated circuit
- FIG. 2 is a more detailed block diagram of one processing module 110 used in the SoC of FIG. 1 .
- SoC 100 contains two switch fabrics that form the packet based fabric 120 through which masters and slaves communicate.
- a data switch fabric 224 known as the data switched central resource (SCR) is a high-throughput interconnect mainly used to move data across the system.
- the data SCR is further divided into two smaller SCRs. One connects very high speed masters to slaves via 256-bit data buses running at a DSP/2 frequency. The other connects masters to slaves via 128-bit data buses running at a DSP/3 frequency. Peripherals that match the native bus width of the SCR it is coupled to can connect directly to the data SCR; other peripherals require a bridge.
- a configuration switch fabric 225 also known as the configuration switch central resource (SCR) is mainly used to access peripheral registers.
- the configuration SCR connects the each processor module 110 and masters on the data switch fabric to slaves via 32-bit configuration buses running at a DSP/3 frequency.
- some peripherals require the use of a bridge to interface to the configuration SCR.
- the priority level of all master peripheral traffic is defined at the boundary of switch fabric 120 .
- User programmable priority registers are present to allow software configuration of the data traffic through the switch fabric.
- All other masters provide their priority directly and do not need a default priority setting. Examples include the processor module 110 , whose priorities are set through software in a unified memory controller (UMC) 216 control registers. All the Packet DMA based peripherals also have internal registers to define the priority level of their initiated transactions.
- UMC unified memory controller
- DSP processor core 112 includes eight functional units (not shown), two register files 213 , and two data paths.
- the two general-purpose register files 213 (A and B) each contain 32 32-bit registers for a total of 64 registers.
- the general-purpose registers can be used for data or can be data address pointers.
- the data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data.
- Multiplies also support 128-bit data. 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register).
- 128-bit data values are stored in register quadruplets, with the 32 LSBs of data placed in a register that is a multiple of 4 and the remaining 96 MSBs in the next 3 upper registers.
- the eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) (not shown) are each capable of executing one instruction every clock cycle.
- the .M functional units perform all multiply operations.
- the .S and .L units perform a general set of arithmetic, logical, and branch functions.
- the .D units primarily load data from memory to the register file and store results from the register file into memory.
- Each .M unit can perform one of the following fixed-point operations each clock cycle: four 32 ⁇ 32 bit multiplies, sixteen 16 ⁇ 16 bit multiplies, four 16 ⁇ 32 bit multiplies, four 8 ⁇ 8 bit multiplies, four 8 ⁇ 8 bit multiplies with add operations, and four 16 ⁇ 16 multiplies with add/subtract capabilities.
- Many communications algorithms such as FFTs and modems require complex multiplication.
- Each .M unit can perform one 16 ⁇ 16 bit complex multiply with or without rounding capabilities, two 16 ⁇ 16 bit complex multiplies with rounding capability, and a 32 ⁇ 32 bit complex multiply with rounding capability.
- the .M unit can also perform two 16 ⁇ 16 bit and one 32 ⁇ 32 bit complex multiply instructions that multiply a complex number with a complex conjugate of another number with rounding capability.
- Each .M unit is capable of multiplying a [1 ⁇ 2] complex vector by a [2 ⁇ 2] complex matrix per cycle with or without rounding capability. Another embodiment may allow multiplication of the conjugate of a [1 ⁇ 2] vector with a [2 ⁇ 2] complex matrix.
- Each .M unit may also include IEEE floating-point multiplication operations, which includes one single-precision multiply each cycle and one double-precision multiply every 4 cycles. There is also a mixed-precision multiply that allows multiplication of a single-precision value by a double-precision value and an operation allowing multiplication of two single-precision numbers resulting in a double-precision number.
- Each .M unit can also perform one the following floating-point operations each clock cycle: one, two, or four single-precision multiplies or a complex single-precision multiply.
- the .L and .S units support up to 64-bit operands. This allows for arithmetic, logical, and data packing instructions to allow parallel operations per cycle.
- An MFENCE instruction is provided that will create a processor stall until the completion of all the processor-triggered memory transactions, including:
- the MFENCE instruction is useful as a simple mechanism for programs to wait for these requests to reach their endpoint. It also provides ordering guarantees for writes arriving at a single endpoint via multiple paths, multiprocessor algorithms that depend on ordering, and manual coherence operations.
- Each processor module 110 in this embodiment contains a 1024 KB level-2 cache/memory (L2) 216 , a 32 KB level-1 program cache/memory (L1P) 217 , and a 32 KB level-1 data cache/memory (L1D) 218 .
- the device also contains a 4096 KB multi-core shared memory (MSM) 132 . All memory in SoC 100 has a unique location in the memory map
- the L1P and L1D cache can be reconfigured via software through the L1PMODE field of the L1P Configuration Register (L1PCFG) and the L1DMODE field of the L1D Configuration Register (L1DCFG) of each processor module 110 to be all SRAM, all cache memory, or various combinations as illustrated in FIG. 3 , which illustrates an L1D configuration; L1P configuration is similar.
- L1D is a two-way set-associative cache, while L1P is a direct-mapped cache.
- L2 memory can be configured as all SRAM, all 4-way set-associative cache, or a mix of the two, as illustrated in FIG. 4 .
- the amount of L2 memory that is configured as cache is controlled through the L2MODE field of the L2 Configuration Register (L2CFG) of each processor module 110 .
- L2CFG L2 Configuration Register
- Global addresses are accessible to all masters in the system.
- local memory can be accessed directly by the associated processor through aliased addresses, where the eight MSBs are masked to zero.
- the aliasing is handled within each processor module 110 and allows for common code to be run unmodified on multiple cores.
- address location 0x10800000 is the global base address for processor module 0's L2 memory. DSP Core 0 can access this location by either using 0x10800000 or 0x00800000.
- 0x10800000 any other master in SoC 100 must use 0x10800000 only.
- 0x00800000 can by used by any of the cores as their own L2 base addresses.
- Level 1 program (L1P) memory controller (PMC) 217 controls program cache memory 267 and includes memory protection and bandwidth management.
- Level 1 data (L1D) memory controller (DMC) 218 controls data cache memory 268 and includes memory protection and bandwidth management.
- Level 2 (L2) memory controller, unified memory controller (UMC) 216 controls L2 cache memory 266 and includes memory protection and bandwidth management.
- External memory controller (EMC) 219 includes Internal DMA (IDMA) and a slave DMA (SDMA) interface that is coupled to data switch fabric 224 .
- the EMC is coupled to configuration switch fabric 225 .
- Extended memory controller (XMC) 215 includes a master DMA (MDMA) interface that is coupled to MSMC 132 and to dual data rate 3 (DDR3) external memory controller 134 .
- MDMA master DMA
- DDR3 dual data rate 3
- MSMC 132 is coupled to on-chip shared memory 133 .
- External memory controller 134 may be coupled to off-chip DDR3 memory 235 that is external to SoC 100 .
- a master DMA controller (MDMA) within XMC 215 may be used to initiate transaction requests to on-chip shared memory 133 and to off-chip shared memory 235 .
- the priority level for operations initiated within the processor module 110 are declared through registers within each processor module 110 . These operations are:
- PRI_ALLOC Priority Allocation Register
- FIG. 5 includes FIGS. 5A and 5B that together are a block diagram for a clock divider 500 configured to provide integer and half integer clock division.
- a divide factor register 510 is configured to store a divide factor value 503 representative of a divide ratio N.
- a fractional indicator register 513 is included with the divide factor register that is configured to store a fractional indicator value 514 . The fractional indicator indicates whether the divide ratio is an integer or a fractional value.
- a fractional indicator value of logical “0” indicates the divide ratio is N, and when the fractional indicator value is logical “1” the divide ratio is N.S.
- the divide factor value 503 may have a different range in different embodiments. In core module 110 , divide factor 503 may be sixteen bits, for example. A least significant bit 511 of divide factor register 510 provides signal 512 that indicates if the divide factor value is even or odd. Table 1 provides several examples of divide ratios and resulting divide factor and fractional indicator values. In this embodiment, divide factor register 510 is clocked by input clock 501 , but is loaded from a shadow register only when load alignment signal 504 is asserted, as will be described in more detail with regard to FIG. 10 . In another embodiment, divide factor register 510 may be a memory mapped register that is accessible by CPU 112 within core module 110 , for example.
- Counter 520 is coupled to divide factor register 510 .
- the counter is operable to receive an input clock signal 501 having a clock cycle frequency and to repeatedly count F/2 input clock cycles and assert a count indicator when N is even, and to alternately count F/2 input clock cycles and assert the count indicator and then count 1+F/2 input clock cycles and assert the count indicator when N is odd.
- Count register 524 is clocked by input clock 501 and loads the output of selector 525 under control of finite state machine 526 . Selector 525 may select the count register plus one signal 527 to produce an incremental count. Selector 525 may initialize the count register with the divide factor divided by two signal 515 that is simply all of the divide factor bits from divide factor register except for the least significant bit. Selector 525 may also initialize count register 524 with a value of zero or a value of one.
- Compare function 522 compares the value of count register 524 and divide factor register 510 and asserts count match signal 523 when a match occurs.
- Finite state machine 526 receives count match signal 523 , divide factor bit( 0 ) signal 512 , fractional indicator enable signal 514 and controls selector 525 in order to provide the correct operation of counter, as will described in more detail with regard to FIGS. 6-8 . Additional test mode operations may be performed in response to test mode signals 506 . For example, a single clock cycle, or a controlled burst of clock cycles may be performed.
- Clock synthesizer module 530 is coupled to receive count indicator 523 and the input clock signal 501 .
- Clock synthesizer module 530 is configured to synthesize one period of an output clock signal 531 in response to each assertion of the count indicator when the fractional indicator is logic 1 indicating an N.5 divide ratio.
- Clock synthesizer module 530 is also configured to synthesize one period of the output clock signal 531 in response to two assertions of the count indicator when the fractional indicator is logic 0 indicating an integer divide ratio, such that the output clock signal can have a period that is N and N.5 times a period of the input clock signal depending on the fractional indicator value.
- Counter 520 and clock synthesizer 530 are designed to have minimal logic between register stages so that input clock 501 can operate at a frequency of 1.0 Ghz or higher.
- Register 546 is configured to be clocked by the input clock signal and to latch an output from an exclusive OR (XOR) function 544 .
- XOR function 544 is coupled to receive the count indicator 523 and an output signal CLONEQ from the Q output of register 546 .
- Register 549 is configured to be clocked by input clock signal 502 and is coupled to latch an output from AND function 548 .
- AND function 548 is coupled to receive the count indicator 523 and a negative value of the output from XOR function 544 .
- input clock 502 is the same as input clock 501 , except it is gated off for two cycles after an asynchronous clock divider align signal 505 is asserted.
- Signal 505 may be used to initialize and align several clock dividers 500 that are operating in parallel.
- Register 550 is configured to clock on positive edges of the input clock signal 502 .
- Register 550 is configured to latch the output from XOR function 544 when the divide ratio is N, and to latch an output from AND function 547 when the divide ratio is N.5 in response to selector 545 .
- Selector 545 is controlled by fractional indicator 514 .
- AND function 547 is coupled to receive the count indicator 523 and the output from the XOR function 544 .
- Register 553 is configured to clock on negative edges of the input clock signal. Register 553 is configured to latch an output from the register 550 when the divide ratio is N and odd in response to AND gate 551 that is controlled by divide factor bit( 0 ) signal 512 , and to latch a low logic value when the divide ratio is N and even in response to AND gate 551 when divide factor bit( 0 ) is logic 0.
- selector 552 causes register 553 to latch an output from register 549 .
- OR function 540 is coupled to receive an output from register 550 and an output from register 553 .
- An output from OR function 540 provides output clock signal 531 .
- OR function 540 includes a NAND function 543 coupled to receive an output from inverter 541 coupled to the output register 550 and to receive an output from inverter 542 coupled to the output of register 553 , such that a rise time and a fall time of output clock signal 531 are thereby balanced.
- XOR function 544 may be eliminated by clocking register 546 with count indicator signal 523 and configuring register 546 to produce a toggled signal each time count indicator 523 is asserted.
- FIGS. 6-8 illustrate clock division by 6, 7 and 6.5 by clock divider 500 of FIG. 5 .
- the divide ratio N is six. Therefore, a divide factor value F of three is loaded into divide factor register 510 .
- Divide factor bit( 0 ) is set to zero to indicate the divide ratio N is even.
- Fractional indicator 513 is set to logical 0 to indicate divide ratio N is an integer.
- Counter 520 is initialized with 1. After three cycles, count indicator 523 is asserted as indicated at 601 . At this point, counter 520 is again reloaded with 1 and after three cycles count indicator 523 is asserted as indicated at 602 .
- Register 550 operates as described above, while register 553 remains low in response to AND gate 551 as described above since N is even. OR function 530 therefore produces output clock signal 531 that is divided by six from input clock 501 .
- the divide ratio N is seven. Therefore, a divide factor value F of three is loaded into divide factor register 510 . However, divide factor bit( 0 ) is set to one to indicate the divide ratio N is odd. Fractional indicator 513 is set to logical 0 to indicate divide ratio N is an integer.
- Counter 520 is initialized with 1. After three cycles, count indicator 523 is asserted as indicated at 701 . At this point, counter 520 is reloaded with 0 in response to N being odd and after four cycles count indicator 523 is asserted as indicated at 702 .
- Register 550 operates as described above, while register 553 toggles as described above on a negative edge 712 of input clock 501 since N is odd in response to AND gate 551 . OR function 530 therefore produces output clock signal 531 that is divided by seven from input clock 501 .
- Divide factor bit( 0 ) is set to one to indicate the adjusted divide ratio 2(N.5) is odd.
- Fractional indicator 513 is set to logical 1 to indicate divide ratio is N.5.
- Counter 520 is initialized with 1. After six cycles, count indicator 523 is asserted as indicated at 801 . At this point, counter 520 is reloaded with 0 in response to adjusted divide ratio 2(N.5) being odd. After seven cycles, count indicator 523 is asserted as indicated at 802 .
- OR function 530 therefore produces output clock signal 531 that is divided by 6.5 from input clock 501 .
- FIG. 9 illustrates multiple clock dividers 500 ( 1 )- 500 ( n ) that may be included within each core module 110 of FIG. 2 .
- Each clock divider 500 ( n ) may be similar to the clock divider 500 described in FIG. 5 . All of these clock dividers are driven by a clock signal CLK_IN that is generated by a phase locked loop 170 , referring back to FIG. 1 .
- CLK_IN is a 1.0 GHz clock signal.
- Each clock divider 500 ( n ) may be loaded with a divide factor to produce a divided clock signal for a portion of core module 110 .
- CPU 112 may operate on an undivided 1.0 GHz clock signal CLKA from divider 500 ( 1 ), while RAM/Cache 266 may operate on a divided by two clock signal CLKB from divider 500 ( 2 ), the power down logic operates on a divided by three clock signal CLKC from divider 500 ( 3 ), etc.
- the clock signals from several different clock dividers may be aligned. This may be accomplished by resetting all of the dividers with the async_clk_divalign signal 505 , as described with regard to FIG. 5 . This causes all of the dividers to initially start operating in alignment. Thereafter, the clock signals will become aligned periodically depending on the divide factors. For example, if the divide factors are one, two, and three, as discussed above, all three clock signals will be aligned on every sixth clock pulse of the input clock CLK_IN.
- FIG. 10 is a block diagram of an exemplary clock divider illustrating a mechanism to allow changing of a clock divider factor on the fly. While core 110 is operating, it may by useful to change one or more of the clock divide factors. For example, a program may determine that the current task does not require high performance and may request the clock be slowed down. A later task may require full performance and request the clock be speeded up. In this manner, an application program being executed on core 110 may reduce power consumption during periods of time that do not require maximum performance.
- Shadow register 1020 is provided in each clock divider 500 ( n ) that may be loaded with a new clock divide factor at any time when enabled by the LOAD_DIV signal 1002 .
- Each shadow register may be a memory mapped register and the LOAD_DIV may be asserted in response to decoding the address of shadow register 1020 during a memory write transaction, for example.
- LOAD_DIV may be asserted in response to command from a configuration register, for example.
- an alignment signal 1031 is asserted to cause divide factor register 510 to be loaded at a required point in time to maintain clock alignment among the several clock dividers that need to be maintained in alignment.
- Alignment signal 1031 is generated by an “AND” function 1030 that monitors alignment pulses 1032 generated by each of the several clock dividers.
- alignment logic 1022 monitors the operation of clock synthesizer 530 and generates a pulse on alignment signal 1023 at the start of each clock period of clock signal CLKN 1024 that is output by clock divider 500 ( n ).
- FIG. 11 is a timing diagram illustrating operation of the mechanism of FIG. 10 .
- three alignment signals are shown: CLKA ALIGN, CLKB_ALIGN, and CLKN_ALIGN; however, various embodiments may include more or fewer clock dividers in this alignment process.
- CLKN 1024 is shown to illustrate the relationship between each divided clock signal and the alignment signal generated by the respective clock divider module.
- CLKN_ALIGN signal 1031 has a pulse, such as alignment pulse 1131 asserted at the beginning of each period of clock signal CLKN 1024 , as discussed above.
- CLKA is divided by one
- CLKB is divided by two
- CLKN is initially divided by three.
- an alignment pulse 1102 , 1103 is asserted on alignment signal 1031 every six clock cycles of CLKIN.
- a new divide factor 1112 may be presented to divide shadow register 1020 in clock divider 500 ( n ) and latched therein in response to enable signal LOAD_DIV, as described above.
- the divide factor register currently contains a divide factor for divide by three and the new divide factor 1112 specifies a divide by 2.5.
- alignment pulse 1103 triggers loading the new divide factor into divide factor register 502 and clock divider 500 ( n ) immediately begins to generate a divide by 2.5 clock signal CLKN that is in proper alignment with clock signals CLKA and CLKB.
- the three clock signals now have periods of one, two and 2.5 times the CLKIN period and will therefore be in alignment every ten cycles of CLKIN, as indicated at 1104 .
- two or more clock dividers may be changed at the same time by loading a new divide factor in the shadow register of each one. When the next alignment pulse occurs, all of the dividers will be updated at the same time.
- FIG. 12 is a flow diagram illustrating dynamic updating of divider factors while maintaining clock alignment.
- a set of clock signals is produced 1202 from an input clock signal by a plurality of clock dividers responsive to respective divide factor values as described in more detail above.
- the set of clock signals are initialized 1200 to be in alignment by starting all of the clock dividers in response to an initialization signal, such as the async_clk_divalign signal described above.
- a periodic alignment marker is produced 1204 when all of the plurality of clock signals are in alignment.
- This marker may be a pulse on an alignment signal, such as pulses 1102 - 1104 on alignment signal 1031 , for example.
- the divide factor value is updated 1206 in a first one of the clock dividers in response to an occurrence of the alignment marker. As described in more detail above, the updated clock divider continues to generate a clock signal responsive to the updated divide factor value in such a manner that the set of clock signals remains in alignment.
- a new divide factor may be stored in a shadow register of the first clock divider without regard to the alignment marker prior to updating 1206 the divide factor in the first clock divider, as illustrated at 1110 , 1112 in FIG. 11 .
- More than one divide factor may be updated 1206 on the same alignment marker.
- several divide factors may be stored in shadow registers in several different clock dividers during the time period between alignment marker 1102 and alignment marker 1103 , for example. Then, when alignment marker 1103 occurs, all of the new divide factors will update the respective clock dividers.
- FIG. 13 is a flow diagram illustrating dynamic clock divide factor updating.
- a program is being executed 1302 on a CPU that is operated at a first clock frequency in response to a clock signal that is generated by a clock divider in response to a first divide factor.
- a decision may be made to change the clock speed of the processor. This may be done to speed up the processor to increase performance, or to slow down the processor when performance is not needed in order to conserve power, for example.
- instructions may be executed that direct uploading 1304 of a second divide factor, such that the CPU continues to execute 1306 the program in response to the clock signal generated by the second divide factor.
- FIG. 14 is a block diagram of a base station for use in a radio network, such as a cell phone network.
- SoC 1402 is similar to the SoC of FIG. 1 and is coupled to external memory 1404 that may be used, in addition to the internal memory within SoC 1402 , to store application programs and data being processed by SoC 1402 .
- Transmitter logic 1410 performs digital to analog conversion of digital data streams transferred by the external DMA (EDMA3) controller and then performs modulation of a carrier signal from a phase locked loop generator (PLL). The modulated carrier is then coupled to multiple output antenna array 1420 .
- EDMA3 external DMA
- PLL phase locked loop generator
- Receiver logic 1412 receives radio signals from multiple input antenna array 1421 , amplifies them in a low noise amplifier and then converts them to digital a stream of data that is transferred to SoC 1402 under control of external DMA EDMA3. There may be multiple copies of transmitter logic 1410 and receiver logic 1412 to support multiple antennas.
- Ethernet media access controller (EMAC) module in SoC 1402 is coupled to a local area network port 1406 which supplies data for transmission and transports received data to other systems that may be coupled to the internet.
- EMAC Ethernet media access controller
- An application program executed on one or more of the processor modules within SoC 1402 encodes data received from the internet, interleaves it, modulates it and then filters and pre-distorts it to match the characteristics of the transmitter logic 1410 .
- Another application program executed on one or more of the processor modules within SoC 1402 demodulates the digitized radio signal received from receiver logic 1412 , deciphers burst formats, and decodes the resulting digital data stream and then directs the recovered digital data stream to the internet via the EMAC internet interface. The details of digital transmission and reception are well known.
- a program task module being executed on a CPU in SoC 1402 may dynamically change the divide factors in the clock dividers that generate the clock signals for the core modules of SoC 14 .
- the task module may detect that maximum performance is needed and then direct all of the clock dividers to be updated with divide factors for maximum system performance.
- the task module may detect that transmission is not needed and then direct the clock dividers in a core that performs transmission encoding to be updated with divide factors for reduced performance in order to reduce power consumption.
- the task module may detect that processing performance may be further reduced and then direct the clock dividers in various cores to be updated with divide factors for reduced performance in order to further reduce power consumption.
- Input/output logic 1430 may be coupled to SoC 1402 via the inter-integrated circuit (I2C) interface to provide control, status, and display outputs to a user interface and to receive control inputs from the user interface.
- the user interface may include a human readable media such as a display screen, indicator lights, etc. It may include input devices such as a keyboard, pointing device, etc.
- DSPs Digital Signal Processors
- SoC System on a Chip
- a SoC may contain one or more megacells or modules which each include custom designed functional circuits combined with pre-designed functional circuits provided by a design library.
- a clock generation circuit as described herein may be implemented on an integrated circuit that is much simpler than the SoCs described herein.
- a simple integrated circuit may still benefit from a clock circuit that provides a high-speed clock divider that is capable of integer and half step increment, and that guarantees alignment of the output clocks.
- dynamic changing of the divide ratios may be performed under control of a test bed that is being used to test an integrated circuit that contains one or more clock dividers as described herein. Dynamic changing of clock divide ratios during testing allows testing to proceed without stopping the clock to perform alignment.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Software Systems (AREA)
- Probability & Statistics with Applications (AREA)
- Computer Hardware Design (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Memory System Of A Hierarchy Structure (AREA)
- Storage Device Security (AREA)
- Semiconductor Integrated Circuits (AREA)
- Advance Control (AREA)
- Bus Control (AREA)
- Executing Machine-Instructions (AREA)
- Complex Calculations (AREA)
- Multi Processors (AREA)
- Detection And Correction Of Errors (AREA)
Abstract
A clock divider is provided that is configured to divide a high speed input clock signal by an odd, even or fractional divide ratio. The input clock may have a clock cycle frequency of 1 GHz or higher, for example. The input clock signal is divided to produce an output clock signal by first receiving a divide factor value F representative of a divide ratio N, wherein the N may be an odd or an even integer. A fractional indicator indicates the divide ratio is N.5 when the fractional indicator is one and indicates the divide ratio is N when the fractional indicator is zero. F is set to 2(N.5)/2 for a fractional divide ratio and F is set to N/2 for an integer divide ratio. A count indicator is asserted every N/2 input clock cycles when N is even. The count indicator is asserted alternately N/2 input clock cycles and then 1+N/2 input clock cycles when N is odd. One period of an output clock signal is synthesized in response to each assertion of the count indicator when the fractional indicator indicates the divide ratio is N.5. One period of the output clock signal is synthesized in response to two assertions of the count indicator when the fractional indicator indicates the divide ratio is an integer.
Description
This application is a divisional application of U.S. patent application Ser. No. 13/247,265 filed Sep. 28, 2011.
The present application claims priority to and incorporates by reference U.S. Provisional Application No. 61/387,283, filed Sep. 28, 2010, entitled “Cache Controller Architecture.”
This invention generally relates to management of clock generation in a digital system, and in particular to providing a clock divider for operation at 1 GHz or higher that performs odd, even and fractional division.
System on Chip (SoC) is a concept that strives to integrate more and more functionality into a given device. This integration can take the form of either hardware or solution software. Performance gains are traditionally achieved by increased clock rates and more advanced process nodes. Many SoC designs pair a digital signal processor (DSP) with a reduced instruction set computing (RISC) processor to target specific applications. A more recent approach to increasing performance has been to create multi-core devices.
Complex SoCs require a scalable and convenient method of connecting a variety of peripheral blocks such as processors, accelerators, shared memory and IO devices while addressing the power, performance and cost requirements of the end application. Due to the complexity and high performance requirements of these devices, the chip interconnect tends to be hierarchical and partitioned depending on the latency tolerance and bandwidth requirements of the endpoints. The connectivity among the endpoints tends to be more flexible to allow for future devices that may be derived from a current device. In this scenario, management of clock signals that are provided to the various modules and components of the complex SoC may require dynamic changes in frequency. In many cases, different clock frequencies are required for different modules and components.
Different clock frequency signals are typically generated using a divider to divide down a higher frequency to a specified operating clock frequency. High speed integer clock dividers that guarantee 50% duty cycle for the output clock have been well understood and used widely in system-on-chip implementations. For example, U.S. Pat. No. 5,442,670, “Circuit for Dividing Clock Frequency by N.5, Where N is an Integer,” describes an implementation that only supports N.5 division and is not easily scalable to support integer division. Further, this implementation may not be appropriate for use in high speed designs (>600 MHz).
U.S. Pat. No. 6,469,549, “Apparatus and Method for Odd Integer Signal Division,” describes an implementation for an integer divider guaranteeing 50% duty cycle when the division ratio is odd.
U.S. Pat. No. 6,617,893, “Digital Variable Clock Divider,” describes an implementation that performs integral and non-integral clock division; however, it may not be practical for high speed implementation (>600 MHz). Also the implementation requires a significant amount of area overhead.
Particular embodiments in accordance with the invention will now be described, by way of example only, and with reference to the accompanying drawings:
Other features of the present embodiments will be apparent from the accompanying drawings and from the detailed description that follows.
Specific embodiments of the invention will now be described in detail with reference to the accompanying figures. Like elements in the various figures are denoted by like reference numerals for consistency. In the following detailed description of embodiments of the invention, numerous specific details are set forth in order to provide a more thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
High performance computing has taken on even greater importance with the advent of the Internet and cloud computing. To ensure the responsiveness of networks, online processing nodes and storage systems must have extremely robust processing capabilities and exceedingly fast data-throughput rates. Robotics, medical imaging systems, visual inspection systems, electronic test equipment, and high-performance wireless and communication systems, for example, must be able to process an extremely large volume of data with a high degree of precision. A multi-core architecture that embodies an aspect of the present invention will be described herein. In a typically embodiment, a multi-core system is implemented as a single system on chip (SoC). As used herein, the term “core” refers to a processing module that may contain an instruction processor, such as a digital signal processor (DSP) or other type of microprocessor, along with one or more levels of cache that are tightly coupled to the processor.
Half step clock division is a desired divide ratio in a high speed SoC. Typically the operating frequency of a peripheral is chosen to be an integer divide value of the highest frequency in the system. But a one half step division may also be desirable as it allows certain peripherals to operate at an optimal frequency, thereby maximizing the throughput of the system. For example, in a system that uses a 1.0 GHz system clock, there may be a peripheral that is designed to operate at a maximum clock frequency of only 400 MHz. Dividing the main clock by 2× yields 500 MHZ, which is too fast; while dividing the main clock signal by 3 yields 333.3 MHz, which would mean the peripheral would be operating at a lower performance level. However, dividing the main clock by 2.5 yields 400 MHz, which is the ideal clock frequency for this peripheral.
A half step division may also allow for better debugging capabilities and may therefore be useful in an SoC's design for testability (DFT) mode.
Alignment of the divided clocks is another important requirement in the system to ensure proper functioning of the SoC.
An embodiment of the invention provides a high-speed clock divider that is capable of integer and half step increment, and that guarantees alignment of the output clocks will be described in more detail below. Some embodiments of the invention also provide divided clocks that have a 50% duty cycle and have the ability to switch divide ratios on the fly. The clock divider described herein is architected for high speed and may be used in a core running at 1.0 GHz, or higher, for example. In one embodiment, the divider output clock has a duty cycle of 50% when the divide ratio is N and duty cycle of [1/(N+½)] when the divide ratio is N.5. Embodiments of the invention achieve half step division with very minimal increase in logic gate count over a divider that does only integer division.
In an embodiment that will be described in more detail below, multiple cores are interconnected via a packet based switch fabric that provides point to point interconnect between several devices on each cycle. Each core may receive requests from another core or from other external devices within the SoC to access various shared resources within the core, such as static random access memory (SRAM). A set of clock generation modules that are each capable of integer and half step increment, and that guarantee alignment of the output clocks at a particular edge with respect to the input clock is included in each core module of the SoC to provide various clock signals to the various logic blocks and components within each core module.
There are three levels of memory in the SoC 100. Each processor module 110 has its own level-1 program (L1P) and level-1 data (L1D) memory. Additionally, each module 110 has a local level-2 unified memory (L2). Each of the local memories can be independently configured as memory-mapped SRAM (static random access memory), cache or a combination of the two.
In addition, SoC 100 includes shared memory 130, comprising internal and external memory connected through the multi-core shared memory controller (MSMC) 132. MSMC 132 allows processor modules 110 to dynamically share the internal and external memories for both program and data. The MSMC internal RAM offers flexibility to programmers by allowing portions to be configured as shared level-2 RAM (SL2) or shared level-3 RAM (SL3). SL2 RAM is cacheable only within the local L1P and L1D caches, while SL3 is additionally cacheable in the local L2 caches.
External memory may be connected through the same memory controller 132 as the internal shared memory via external memory interface 134, rather than to chip system interconnect as has traditionally been done on embedded processor architectures, providing a fast path for software execution. In this embodiment, external memory may be treated as SL3 memory and therefore cacheable in L1 and L2.
The low latencies and zero interrupts ensured by multi-core manager 140, as well as its transparent operations, enable new and more effective programming models such as task dispatchers. Moreover, software development cycles may be shortened significantly by several features included in multi-core manager 140, such as dynamic software partitioning. Multi-core manager 140 provides “fire and forget” software tasking that may allow repetitive tasks to be defined only once, and thereafter be accessed automatically without additional coding efforts.
Two types of buses exist in SoC 100 as part of packet based switch fabric 120: data buses and configuration buses. Some peripherals have both a data bus and a configuration bus interface, while others only have one type of interface. Furthermore, the bus interface width and speed varies from peripheral to peripheral. Configuration buses are mainly used to access the register space of a peripheral and the data buses are used mainly for data transfers. However, in some cases, the configuration bus is also used to transfer data. Similarly, the data bus can also be used to access the register space of a peripheral. For example, DDR3 memory controller 134 registers are accessed through their data bus interface.
A configuration switch fabric 225, also known as the configuration switch central resource (SCR), is mainly used to access peripheral registers. The configuration SCR connects the each processor module 110 and masters on the data switch fabric to slaves via 32-bit configuration buses running at a DSP/3 frequency. As with the data SCR, some peripherals require the use of a bridge to interface to the configuration SCR.
Bridges perform a variety of functions:
-
- Conversion between configuration bus and data bus.
- Width conversion between peripheral bus width and SCR bus width.
- Frequency conversion between peripheral bus frequency and SCR bus frequency.
The priority level of all master peripheral traffic is defined at the boundary of switch fabric 120. User programmable priority registers are present to allow software configuration of the data traffic through the switch fabric. In this embodiment, a lower number means higher priority. For example: PRI=000b=urgent, PRI=111b=low.
All other masters provide their priority directly and do not need a default priority setting. Examples include the processor module 110, whose priorities are set through software in a unified memory controller (UMC) 216 control registers. All the Packet DMA based peripherals also have internal registers to define the priority level of their initiated transactions.
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) (not shown) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory. Each .M unit can perform one of the following fixed-point operations each clock cycle: four 32×32 bit multiplies, sixteen 16×16 bit multiplies, four 16×32 bit multiplies, four 8×8 bit multiplies, four 8×8 bit multiplies with add operations, and four 16×16 multiplies with add/subtract capabilities. There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. Each .M unit can perform one 16×16 bit complex multiply with or without rounding capabilities, two 16×16 bit complex multiplies with rounding capability, and a 32×32 bit complex multiply with rounding capability. The .M unit can also perform two 16×16 bit and one 32×32 bit complex multiply instructions that multiply a complex number with a complex conjugate of another number with rounding capability.
Communication signal processing also requires an extensive use of matrix operations. Each .M unit is capable of multiplying a [1×2] complex vector by a [2×2] complex matrix per cycle with or without rounding capability. Another embodiment may allow multiplication of the conjugate of a [1×2] vector with a [2×2] complex matrix. Each .M unit may also include IEEE floating-point multiplication operations, which includes one single-precision multiply each cycle and one double-precision multiply every 4 cycles. There is also a mixed-precision multiply that allows multiplication of a single-precision value by a double-precision value and an operation allowing multiplication of two single-precision numbers resulting in a double-precision number. Each .M unit can also perform one the following floating-point operations each clock cycle: one, two, or four single-precision multiplies or a complex single-precision multiply.
The .L and .S units support up to 64-bit operands. This allows for arithmetic, logical, and data packing instructions to allow parallel operations per cycle.
An MFENCE instruction is provided that will create a processor stall until the completion of all the processor-triggered memory transactions, including:
-
- Cache line fills
- Writes from L1D to L2 or from the processor module to MSMC and/or other system endpoints
- Victim write backs
- Block or global coherence operation
- Cache mode changes
- Outstanding XMC prefetch requests.
The MFENCE instruction is useful as a simple mechanism for programs to wait for these requests to reach their endpoint. It also provides ordering guarantees for writes arriving at a single endpoint via multiple paths, multiprocessor algorithms that depend on ordering, and manual coherence operations.
Each processor module 110 in this embodiment contains a 1024 KB level-2 cache/memory (L2) 216, a 32 KB level-1 program cache/memory (L1P) 217, and a 32 KB level-1 data cache/memory (L1D) 218. The device also contains a 4096 KB multi-core shared memory (MSM) 132. All memory in SoC 100 has a unique location in the memory map
The L1P and L1D cache can be reconfigured via software through the L1PMODE field of the L1P Configuration Register (L1PCFG) and the L1DMODE field of the L1D Configuration Register (L1DCFG) of each processor module 110 to be all SRAM, all cache memory, or various combinations as illustrated in FIG. 3 , which illustrates an L1D configuration; L1P configuration is similar. L1D is a two-way set-associative cache, while L1P is a direct-mapped cache.
L2 memory can be configured as all SRAM, all 4-way set-associative cache, or a mix of the two, as illustrated in FIG. 4 . The amount of L2 memory that is configured as cache is controlled through the L2MODE field of the L2 Configuration Register (L2CFG) of each processor module 110.
Global addresses are accessible to all masters in the system. In addition, local memory can be accessed directly by the associated processor through aliased addresses, where the eight MSBs are masked to zero. The aliasing is handled within each processor module 110 and allows for common code to be run unmodified on multiple cores. For example, address location 0x10800000 is the global base address for processor module 0's L2 memory. DSP Core 0 can access this location by either using 0x10800000 or 0x00800000.
Any other master in SoC 100 must use 0x10800000 only. Conversely, 0x00800000 can by used by any of the cores as their own L2 base addresses.
Referring again to FIG. 2 , when multiple requestors contend for a single resource within processor module 110, the conflict is resolved by granting access to the highest priority requestor. The following four resources are managed by the bandwidth management control hardware 276-279:
-
-
Level 1 Program (L1P) SRAM/Cache 217 -
Level 1 Data (L1D) SRAM/Cache 218 - Level 2 (L2) SRAM/
Cache 216 -
EMC 219
-
The priority level for operations initiated within the processor module 110 are declared through registers within each processor module 110. These operations are:
DSP-initiated transfers
User-programmed cache coherency operations
IDMA-initiated transfers
The priority level for operations initiated outside the processor modules 110 by system peripherals is declared through the Priority Allocation Register (PRI_ALLOC). System peripherals that are not associated with a field in PRI_ALLOC may have their own registers to program their priorities.
Integer and Half Step Clock Division
In an embodiment included within each core module 110, a fractional indicator value of logical “0” indicates the divide ratio is N, and when the fractional indicator value is logical “1” the divide ratio is N.S. The divide factor value 503 may have a different range in different embodiments. In core module 110, divide factor 503 may be sixteen bits, for example. A least significant bit 511 of divide factor register 510 provides signal 512 that indicates if the divide factor value is even or odd. Table 1 provides several examples of divide ratios and resulting divide factor and fractional indicator values. In this embodiment, divide factor register 510 is clocked by input clock 501, but is loaded from a shadow register only when load alignment signal 504 is asserted, as will be described in more detail with regard to FIG. 10 . In another embodiment, divide factor register 510 may be a memory mapped register that is accessible by CPU 112 within core module 110, for example.
TABLE 1 |
divide ratio examples |
Desired | |||||
divide ratio | divfactor | Bit(0) | divfactor_frac | ||
1.0 | 0 | 1 | 0 | ||
1.5 | 0 | 1 | 1 | ||
2.0 | 1 | 0 | 0 | ||
2.5 | 1 | 1 | 1 | ||
3.0 | 1 | 1 | 0 | ||
3.5 | 1 | 1 | 1 | ||
4.0 | 2 | 0 | 0 | ||
4.5 | 2 | 1 | 1 | ||
Compare function 522 compares the value of count register 524 and divide factor register 510 and asserts count match signal 523 when a match occurs.
OR function 540 is coupled to receive an output from register 550 and an output from register 553. An output from OR function 540 provides output clock signal 531. OR function 540 includes a NAND function 543 coupled to receive an output from inverter 541 coupled to the output register 550 and to receive an output from inverter 542 coupled to the output of register 553, such that a rise time and a fall time of output clock signal 531 are thereby balanced.
In another embodiment, XOR function 544 may be eliminated by clocking register 546 with count indicator signal 523 and configuring register 546 to produce a toggled signal each time count indicator 523 is asserted.
In FIG. 7 , the divide ratio N is seven. Therefore, a divide factor value F of three is loaded into divide factor register 510. However, divide factor bit(0) is set to one to indicate the divide ratio N is odd. Fractional indicator 513 is set to logical 0 to indicate divide ratio N is an integer. Counter 520 is initialized with 1. After three cycles, count indicator 523 is asserted as indicated at 701. At this point, counter 520 is reloaded with 0 in response to N being odd and after four cycles count indicator 523 is asserted as indicated at 702. Register 550 operates as described above, while register 553 toggles as described above on a negative edge 712 of input clock 501 since N is odd in response to AND gate 551. OR function 530 therefore produces output clock signal 531 that is divided by seven from input clock 501.
In FIG. 8 , the divide ratio N is 6.5. Therefore, a divide factor value F of (6.5 *2)/2=6 is loaded into divide factor register 510. Divide factor bit(0) is set to one to indicate the adjusted divide ratio 2(N.5) is odd. Fractional indicator 513 is set to logical 1 to indicate divide ratio is N.5. Counter 520 is initialized with 1. After six cycles, count indicator 523 is asserted as indicated at 801. At this point, counter 520 is reloaded with 0 in response to adjusted divide ratio 2(N.5) being odd. After seven cycles, count indicator 523 is asserted as indicated at 802. The output of AND function 547 is fed to register 550 as described above, while register 548 is fed to register 553 as described above on a negative edge 812 of input clock 501 since the fractional indicator is asserted. OR function 530 therefore produces output clock signal 531 that is divided by 6.5 from input clock 501.
As mentioned earlier, it may be a requirement for the clock signals from several different clock dividers to be aligned. This may be accomplished by resetting all of the dividers with the async_clk_divalign signal 505, as described with regard to FIG. 5 . This causes all of the dividers to initially start operating in alignment. Thereafter, the clock signals will become aligned periodically depending on the divide factors. For example, if the divide factors are one, two, and three, as discussed above, all three clock signals will be aligned on every sixth clock pulse of the input clock CLK_IN.
In order to maintain clock alignment between several clock dividers, the divide factor may only be changed at a specific point in time; otherwise the dividers may need to be stopped and restarted using the async_clk_divalign signal, as described above. Shadow register 1020 is provided in each clock divider 500(n) that may be loaded with a new clock divide factor at any time when enabled by the LOAD_DIV signal 1002. Each shadow register may be a memory mapped register and the LOAD_DIV may be asserted in response to decoding the address of shadow register 1020 during a memory write transaction, for example. In another embodiment, LOAD_DIV may be asserted in response to command from a configuration register, for example.
At a particular point in time, an alignment signal 1031 is asserted to cause divide factor register 510 to be loaded at a required point in time to maintain clock alignment among the several clock dividers that need to be maintained in alignment. Alignment signal 1031 is generated by an “AND” function 1030 that monitors alignment pulses 1032 generated by each of the several clock dividers. Within clock divider 500(n), alignment logic 1022 monitors the operation of clock synthesizer 530 and generates a pulse on alignment signal 1023 at the start of each clock period of clock signal CLKN 1024 that is output by clock divider 500(n).
In this example, CLKA is divided by one, CLKB is divided by two, and CLKN is initially divided by three. Thus, an alignment pulse 1102, 1103 is asserted on alignment signal 1031 every six clock cycles of CLKIN. At some random point in time, a new divide factor 1112 may be presented to divide shadow register 1020 in clock divider 500(n) and latched therein in response to enable signal LOAD_DIV, as described above. In this illustration, the divide factor register currently contains a divide factor for divide by three and the new divide factor 1112 specifies a divide by 2.5.
After the new divide factor 1112 for divider 500(n) is loaded into shadow register 1030, the next occurrence of an alignment pulse on alignment signal 1031 will trigger the new divide factor to be loaded into divide factor register 502. Thus, alignment pulse 1103 triggers loading the new divide factor into divide factor register 502 and clock divider 500(n) immediately begins to generate a divide by 2.5 clock signal CLKN that is in proper alignment with clock signals CLKA and CLKB.
The three clock signals now have periods of one, two and 2.5 times the CLKIN period and will therefore be in alignment every ten cycles of CLKIN, as indicated at 1104.
While this example illustrated changing the divide factor for one clock divider, two or more clock dividers may be changed at the same time by loading a new divide factor in the shadow register of each one. When the next alignment pulse occurs, all of the dividers will be updated at the same time.
A periodic alignment marker is produced 1204 when all of the plurality of clock signals are in alignment. This marker may be a pulse on an alignment signal, such as pulses 1102-1104 on alignment signal 1031, for example.
The divide factor value is updated 1206 in a first one of the clock dividers in response to an occurrence of the alignment marker. As described in more detail above, the updated clock divider continues to generate a clock signal responsive to the updated divide factor value in such a manner that the set of clock signals remains in alignment.
A new divide factor may be stored in a shadow register of the first clock divider without regard to the alignment marker prior to updating 1206 the divide factor in the first clock divider, as illustrated at 1110, 1112 in FIG. 11 .
More than one divide factor may be updated 1206 on the same alignment marker. Referring back to FIG. 11 , several divide factors may be stored in shadow registers in several different clock dividers during the time period between alignment marker 1102 and alignment marker 1103, for example. Then, when alignment marker 1103 occurs, all of the new divide factors will update the respective clock dividers.
During execution of the program, a decision may be made to change the clock speed of the processor. This may be done to speed up the processor to increase performance, or to slow down the processor when performance is not needed in order to conserve power, for example. Under control of the program, instructions may be executed that direct uploading 1304 of a second divide factor, such that the CPU continues to execute 1306 the program in response to the clock signal generated by the second divide factor.
System Example
The Ethernet media access controller (EMAC) module in SoC 1402 is coupled to a local area network port 1406 which supplies data for transmission and transports received data to other systems that may be coupled to the internet.
An application program executed on one or more of the processor modules within SoC 1402 encodes data received from the internet, interleaves it, modulates it and then filters and pre-distorts it to match the characteristics of the transmitter logic 1410. Another application program executed on one or more of the processor modules within SoC 1402 demodulates the digitized radio signal received from receiver logic 1412, deciphers burst formats, and decodes the resulting digital data stream and then directs the recovered digital data stream to the internet via the EMAC internet interface. The details of digital transmission and reception are well known.
A program task module being executed on a CPU in SoC 1402 may dynamically change the divide factors in the clock dividers that generate the clock signals for the core modules of SoC 14. During periods of transmission or reception, the task module may detect that maximum performance is needed and then direct all of the clock dividers to be updated with divide factors for maximum system performance. During periods of reception only, the task module may detect that transmission is not needed and then direct the clock dividers in a core that performs transmission encoding to be updated with divide factors for reduced performance in order to reduce power consumption. During periods of limited or no reception only, the task module may detect that processing performance may be further reduced and then direct the clock dividers in various cores to be updated with divide factors for reduced performance in order to further reduce power consumption.
Input/output logic 1430 may be coupled to SoC 1402 via the inter-integrated circuit (I2C) interface to provide control, status, and display outputs to a user interface and to receive control inputs from the user interface. The user interface may include a human readable media such as a display screen, indicator lights, etc. It may include input devices such as a keyboard, pointing device, etc.
Other Embodiments
Although the invention finds particular application to Digital Signal Processors (DSPs), implemented, for example, in a System on a Chip (SoC), it also finds application to other forms of processors. A SoC may contain one or more megacells or modules which each include custom designed functional circuits combined with pre-designed functional circuits provided by a design library.
While the invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various other embodiments of the invention will be apparent to persons skilled in the art upon reference to this description. For example, in another embodiment, a different modules and components may be included in an SoC that require different sets of clock signals.
In another embodiment, a clock generation circuit as described herein may be implemented on an integrated circuit that is much simpler than the SoCs described herein. A simple integrated circuit may still benefit from a clock circuit that provides a high-speed clock divider that is capable of integer and half step increment, and that guarantees alignment of the output clocks.
In another embodiment, dynamic changing of the divide ratios may be performed under control of a test bed that is being used to test an integrated circuit that contains one or more clock dividers as described herein. Dynamic changing of clock divide ratios during testing allows testing to proceed without stopping the clock to perform alignment.
Certain terms are used throughout the description and the claims to refer to particular system components. As one skilled in the art will appreciate, components in digital systems may be referred to by different names and/or may be combined in ways not shown herein without departing from the described functionality. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ” Also, the term “couple” and derivatives thereof are intended to mean an indirect, direct, optical, and/or wireless electrical connection. Thus, if a first device couples to a second device, that connection may be through a direct electrical connection, through an indirect electrical connection via other devices and connections, through an optical electrical connection, and/or through a wireless electrical connection.
Although method steps may be presented and described herein in a sequential fashion, one or more of the steps shown and described may be omitted, repeated, performed concurrently, and/or performed in a different order than the order shown in the figures and/or described herein. Accordingly, embodiments of the invention should not be considered limited to the specific ordering of steps shown in the figures and/or described herein.
It is therefore contemplated that the appended claims will cover any such modifications of the embodiments as fall within the true scope and spirit of the invention.
Claims (4)
1. A method for dynamically loading a division ratio in a clock divider without losing clock alignment, the method comprising:
producing a plurality of clock signals from an input clock signal by a plurality of clock dividers responsive to respective divide factor values, such that the plurality of clock signals are in alignment;
producing a periodic alignment marker when all of the plurality of clock signals are in alignment; and
updating the divide factor value in a first one of the clock dividers in response to an occurrence of the alignment marker, wherein the updated clock divider continues to generate a clock signal responsive to the updated divide factor value, such that the plurality of clock signals remain in alignment.
2. The method of claim 1 , further comprising storing a new divide factor in a shadow register of the first clock divider without regard to the alignment marker prior to updating the divide factor in the first clock divider.
3. The method of claim 1 , wherein updated divide factors are loaded into two or more of the plurality of clock dividers in response to an occurrence of the alignment marker, wherein the two or more updated clock dividers continue to generate clock signals responsive to the respective updated divide factor values, such that the plurality of clock signals remain in alignment.
4. The method of claim 1 , further comprising:
operating an instruction processing unit (CPU) in response to the clock signal generated by a first divide factor; and
executing a program on the CPU that directs updating of the divide factor with a second divide factor, such that the CPU continues to execute the program in response to the clock signal generated by the second divide factor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/888,050 US8598932B2 (en) | 2010-09-28 | 2013-05-06 | Integer and half clock step division digital variable clock divider |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38728310P | 2010-09-28 | 2010-09-28 | |
US13/247,265 US8532247B2 (en) | 2010-09-28 | 2011-09-28 | Integer and half clock step division digital variable clock divider |
US13/888,050 US8598932B2 (en) | 2010-09-28 | 2013-05-06 | Integer and half clock step division digital variable clock divider |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/247,265 Division US8532247B2 (en) | 2010-09-28 | 2011-09-28 | Integer and half clock step division digital variable clock divider |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130243148A1 US20130243148A1 (en) | 2013-09-19 |
US8598932B2 true US8598932B2 (en) | 2013-12-03 |
Family
ID=45870030
Family Applications (34)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/212,895 Active 2032-12-21 US8904115B2 (en) | 2010-09-28 | 2011-08-18 | Cache with multiple access pipelines |
US13/218,131 Active 2031-12-29 US8547164B2 (en) | 2010-09-28 | 2011-08-25 | Closed loop adaptive voltage scaling |
US13/230,131 Abandoned US20120290755A1 (en) | 2010-09-28 | 2011-09-12 | Lookahead Priority Collection to Support Priority Elevation |
US13/233,025 Active 2032-06-11 US8880855B2 (en) | 2010-09-28 | 2011-09-15 | Dual register data path architecture with registers in a data file divided into groups and sub-groups |
US13/237,749 Active 2032-10-20 US9075743B2 (en) | 2010-09-28 | 2011-09-20 | Managing bandwidth allocation in a processing node using distributed arbitration |
US13/239,027 Active 2031-10-24 US8683115B2 (en) | 2010-09-28 | 2011-09-21 | Programmable mapping of external requestors to privilege classes for access protection |
US13/239,065 Abandoned US20120079155A1 (en) | 2010-09-28 | 2011-09-21 | Interleaved Memory Access from Multiple Requesters |
US13/239,045 Active 2032-06-14 US8732416B2 (en) | 2010-09-28 | 2011-09-21 | Requester based transaction status reporting in a system with multi-level memory |
US13/241,175 Active 2034-09-24 US9195610B2 (en) | 2010-09-28 | 2011-09-22 | Transaction info bypass for nodes coupled to an interconnect fabric |
US13/240,479 Active 2033-05-02 US8904110B2 (en) | 2010-09-28 | 2011-09-22 | Distributed user controlled multilevel block and global cache coherence with accurate completion status |
US13/243,370 Active 2033-02-18 US8904260B2 (en) | 2010-09-28 | 2011-09-23 | Robust hamming code implementation for soft error detection, correction, and reporting in a multi-level cache system using dual banking memory scheme |
US13/243,411 Active 2032-01-23 US8607000B2 (en) | 2010-09-28 | 2011-09-23 | Efficient cache allocation by optimizing size and order of allocate commands based on bytes required by CPU |
US13/243,335 Active 2032-01-22 US8707127B2 (en) | 2010-09-28 | 2011-09-23 | Configurable source based/requestor based error detection and correction for soft errors in multi-level cache memory to minimize CPU interrupt service routines |
US13/245,183 Active 2033-12-02 US9075744B2 (en) | 2010-09-28 | 2011-09-26 | Performance and power improvement on DMA writes to level two combined cache/SRAM that is caused in level one data cache and line is valid and dirty |
US13/245,206 Active 2031-12-11 US8656105B2 (en) | 2010-09-28 | 2011-09-26 | Optimizing tag forwarding in a two level cache system from level one to lever two controllers for cache coherence protocol for direct memory access transfers |
US13/245,211 Active 2032-04-04 US8732398B2 (en) | 2010-09-28 | 2011-09-26 | Enhanced pipelining and multi-buffer architecture for level two cache controller to minimize hazard stalls and optimize performance |
US13/245,195 Active 2031-12-01 US8661199B2 (en) | 2010-09-28 | 2011-09-26 | Efficient level two memory banking to improve performance for multiple source traffic and enable deeper pipelining of accesses by reducing bank stalls |
US13/245,164 Active US8560896B2 (en) | 2010-09-28 | 2011-09-26 | Priority based exception mechanism for multi-level cache controller |
US13/245,178 Active 2033-06-30 US9009408B2 (en) | 2010-09-28 | 2011-09-26 | Non-blocking, pipelined write allocates with allocate data merging in a multi-level cache system |
US13/247,195 Active 2032-12-27 US8856446B2 (en) | 2010-09-28 | 2011-09-28 | Hazard prevention for data conflicts between level one data cache line allocates and snoop writes |
US13/247,222 Active 2031-12-19 US8683137B2 (en) | 2010-09-28 | 2011-09-28 | Cache pre-allocation of ways for pipelined allocate requests |
US13/247,260 Active 2031-12-12 US9183084B2 (en) | 2010-09-28 | 2011-09-28 | Memory attribute sharing between differing cache levels of multilevel cache |
US13/247,963 Active 2032-06-15 US8832166B2 (en) | 2010-09-28 | 2011-09-28 | Floating point multiplier circuit with optimized rounding calculation |
US13/247,234 Active 2032-02-13 US9189331B2 (en) | 2010-09-28 | 2011-09-28 | Programmable address-based write-through cache control |
US13/247,209 Active 2033-08-08 US9003122B2 (en) | 2010-09-28 | 2011-09-28 | Level one data cache line lock and enhanced snoop protocol during cache victims and writebacks to maintain level one data cache and level two cache coherence |
US13/247,265 Active 2031-12-21 US8532247B2 (en) | 2010-09-28 | 2011-09-28 | Integer and half clock step division digital variable clock divider |
US13/247,247 Abandoned US20120198165A1 (en) | 2010-09-28 | 2011-09-28 | Mechanism to Update the Status of In-Flight Cache Coherence In a Multi-Level Cache Hierarchy |
US13/888,050 Active US8598932B2 (en) | 2010-09-28 | 2013-05-06 | Integer and half clock step division digital variable clock divider |
US14/637,580 Active US9268708B2 (en) | 2010-09-28 | 2015-03-04 | Level one data cache line lock and enhanced snoop protocol during cache victims and writebacks to maintain level one data cache and level two cache coherence |
US14/728,541 Active US9298643B2 (en) | 2010-09-28 | 2015-06-02 | Performance and power improvement on DMA writes to level two combined cache/SRAM that is cached in level one data cache and line is valid and dirty |
US14/884,138 Active US9575901B2 (en) | 2010-09-28 | 2015-10-15 | Programmable address-based write-through cache control |
US15/991,241 Active 2031-09-13 US10713180B2 (en) | 2010-09-28 | 2018-05-29 | Lookahead priority collection to support priority elevation |
US16/916,239 Active 2032-01-20 US11537532B2 (en) | 2010-09-28 | 2020-06-30 | Lookahead priority collection to support priority elevation |
US18/083,703 Pending US20230244611A1 (en) | 2010-09-28 | 2022-12-19 | Lookahead priority collection to support priority elevation |
Family Applications Before (27)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/212,895 Active 2032-12-21 US8904115B2 (en) | 2010-09-28 | 2011-08-18 | Cache with multiple access pipelines |
US13/218,131 Active 2031-12-29 US8547164B2 (en) | 2010-09-28 | 2011-08-25 | Closed loop adaptive voltage scaling |
US13/230,131 Abandoned US20120290755A1 (en) | 2010-09-28 | 2011-09-12 | Lookahead Priority Collection to Support Priority Elevation |
US13/233,025 Active 2032-06-11 US8880855B2 (en) | 2010-09-28 | 2011-09-15 | Dual register data path architecture with registers in a data file divided into groups and sub-groups |
US13/237,749 Active 2032-10-20 US9075743B2 (en) | 2010-09-28 | 2011-09-20 | Managing bandwidth allocation in a processing node using distributed arbitration |
US13/239,027 Active 2031-10-24 US8683115B2 (en) | 2010-09-28 | 2011-09-21 | Programmable mapping of external requestors to privilege classes for access protection |
US13/239,065 Abandoned US20120079155A1 (en) | 2010-09-28 | 2011-09-21 | Interleaved Memory Access from Multiple Requesters |
US13/239,045 Active 2032-06-14 US8732416B2 (en) | 2010-09-28 | 2011-09-21 | Requester based transaction status reporting in a system with multi-level memory |
US13/241,175 Active 2034-09-24 US9195610B2 (en) | 2010-09-28 | 2011-09-22 | Transaction info bypass for nodes coupled to an interconnect fabric |
US13/240,479 Active 2033-05-02 US8904110B2 (en) | 2010-09-28 | 2011-09-22 | Distributed user controlled multilevel block and global cache coherence with accurate completion status |
US13/243,370 Active 2033-02-18 US8904260B2 (en) | 2010-09-28 | 2011-09-23 | Robust hamming code implementation for soft error detection, correction, and reporting in a multi-level cache system using dual banking memory scheme |
US13/243,411 Active 2032-01-23 US8607000B2 (en) | 2010-09-28 | 2011-09-23 | Efficient cache allocation by optimizing size and order of allocate commands based on bytes required by CPU |
US13/243,335 Active 2032-01-22 US8707127B2 (en) | 2010-09-28 | 2011-09-23 | Configurable source based/requestor based error detection and correction for soft errors in multi-level cache memory to minimize CPU interrupt service routines |
US13/245,183 Active 2033-12-02 US9075744B2 (en) | 2010-09-28 | 2011-09-26 | Performance and power improvement on DMA writes to level two combined cache/SRAM that is caused in level one data cache and line is valid and dirty |
US13/245,206 Active 2031-12-11 US8656105B2 (en) | 2010-09-28 | 2011-09-26 | Optimizing tag forwarding in a two level cache system from level one to lever two controllers for cache coherence protocol for direct memory access transfers |
US13/245,211 Active 2032-04-04 US8732398B2 (en) | 2010-09-28 | 2011-09-26 | Enhanced pipelining and multi-buffer architecture for level two cache controller to minimize hazard stalls and optimize performance |
US13/245,195 Active 2031-12-01 US8661199B2 (en) | 2010-09-28 | 2011-09-26 | Efficient level two memory banking to improve performance for multiple source traffic and enable deeper pipelining of accesses by reducing bank stalls |
US13/245,164 Active US8560896B2 (en) | 2010-09-28 | 2011-09-26 | Priority based exception mechanism for multi-level cache controller |
US13/245,178 Active 2033-06-30 US9009408B2 (en) | 2010-09-28 | 2011-09-26 | Non-blocking, pipelined write allocates with allocate data merging in a multi-level cache system |
US13/247,195 Active 2032-12-27 US8856446B2 (en) | 2010-09-28 | 2011-09-28 | Hazard prevention for data conflicts between level one data cache line allocates and snoop writes |
US13/247,222 Active 2031-12-19 US8683137B2 (en) | 2010-09-28 | 2011-09-28 | Cache pre-allocation of ways for pipelined allocate requests |
US13/247,260 Active 2031-12-12 US9183084B2 (en) | 2010-09-28 | 2011-09-28 | Memory attribute sharing between differing cache levels of multilevel cache |
US13/247,963 Active 2032-06-15 US8832166B2 (en) | 2010-09-28 | 2011-09-28 | Floating point multiplier circuit with optimized rounding calculation |
US13/247,234 Active 2032-02-13 US9189331B2 (en) | 2010-09-28 | 2011-09-28 | Programmable address-based write-through cache control |
US13/247,209 Active 2033-08-08 US9003122B2 (en) | 2010-09-28 | 2011-09-28 | Level one data cache line lock and enhanced snoop protocol during cache victims and writebacks to maintain level one data cache and level two cache coherence |
US13/247,265 Active 2031-12-21 US8532247B2 (en) | 2010-09-28 | 2011-09-28 | Integer and half clock step division digital variable clock divider |
US13/247,247 Abandoned US20120198165A1 (en) | 2010-09-28 | 2011-09-28 | Mechanism to Update the Status of In-Flight Cache Coherence In a Multi-Level Cache Hierarchy |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/637,580 Active US9268708B2 (en) | 2010-09-28 | 2015-03-04 | Level one data cache line lock and enhanced snoop protocol during cache victims and writebacks to maintain level one data cache and level two cache coherence |
US14/728,541 Active US9298643B2 (en) | 2010-09-28 | 2015-06-02 | Performance and power improvement on DMA writes to level two combined cache/SRAM that is cached in level one data cache and line is valid and dirty |
US14/884,138 Active US9575901B2 (en) | 2010-09-28 | 2015-10-15 | Programmable address-based write-through cache control |
US15/991,241 Active 2031-09-13 US10713180B2 (en) | 2010-09-28 | 2018-05-29 | Lookahead priority collection to support priority elevation |
US16/916,239 Active 2032-01-20 US11537532B2 (en) | 2010-09-28 | 2020-06-30 | Lookahead priority collection to support priority elevation |
US18/083,703 Pending US20230244611A1 (en) | 2010-09-28 | 2022-12-19 | Lookahead priority collection to support priority elevation |
Country Status (1)
Country | Link |
---|---|
US (34) | US8904115B2 (en) |
Families Citing this family (378)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8849940B1 (en) * | 2007-12-14 | 2014-09-30 | Blue Coat Systems, Inc. | Wide area network file system with low latency write command processing |
US11251608B2 (en) | 2010-07-13 | 2022-02-15 | Raycap S.A. | Overvoltage protection system for wireless communication systems |
US8682639B2 (en) * | 2010-09-21 | 2014-03-25 | Texas Instruments Incorporated | Dedicated memory window for emulation address |
US8904115B2 (en) * | 2010-09-28 | 2014-12-02 | Texas Instruments Incorporated | Cache with multiple access pipelines |
KR20120037785A (en) * | 2010-10-12 | 2012-04-20 | 삼성전자주식회사 | System on chip keeping load balance and load balancing method thereof |
US8738993B2 (en) * | 2010-12-06 | 2014-05-27 | Intel Corporation | Memory device on the fly CRC mode |
US20120166511A1 (en) * | 2010-12-22 | 2012-06-28 | Hiremath Chetan D | System, apparatus, and method for improved efficiency of execution in signal processing algorithms |
US8373482B2 (en) * | 2011-01-13 | 2013-02-12 | Texas Instruments Incorporated | Temperature sensor programmable ring oscillator, processor, and pulse width modulator |
KR20120105197A (en) * | 2011-03-15 | 2012-09-25 | 삼성전자주식회사 | Reset method and apparatus for portable device |
US8621113B2 (en) * | 2011-05-31 | 2013-12-31 | Micron Technology, Inc. | Apparatus including host bus adapter and serial attachment programming compliant device and related methods |
US8694545B2 (en) * | 2011-07-06 | 2014-04-08 | Cleversafe, Inc. | Storing data and metadata in a distributed storage network |
US8949547B2 (en) * | 2011-08-08 | 2015-02-03 | Arm Limited | Coherency controller and method for data hazard handling for copending data access requests |
US10169500B2 (en) * | 2011-08-08 | 2019-01-01 | International Business Machines Corporation | Critical path delay prediction |
US9721319B2 (en) * | 2011-10-14 | 2017-08-01 | Mastercard International Incorporated | Tap and wireless payment methods and devices |
US9292025B2 (en) | 2011-12-19 | 2016-03-22 | Mediatek Singapore Pte. Ltd. | Performance, thermal and power management system associated with an integrated circuit and related method |
WO2013096870A1 (en) | 2011-12-22 | 2013-06-27 | Knopp Neurosciences Inc | Compositions and methods for treating amyotrophic lateral sclerosis |
US8953334B2 (en) | 2012-01-30 | 2015-02-10 | Mediatek Inc. | Apparatus for performing communication control |
US8930601B2 (en) * | 2012-02-27 | 2015-01-06 | Arm Limited | Transaction routing device and method for routing transactions in an integrated circuit |
US8558575B1 (en) * | 2012-03-23 | 2013-10-15 | Applied Micro Circuits Corporation | Clock generation for N.5 modulus divider |
JP2013206247A (en) * | 2012-03-29 | 2013-10-07 | Fujitsu Ltd | System controller, information processor, and control method of system controller |
US9430391B2 (en) * | 2012-03-29 | 2016-08-30 | Advanced Micro Devices, Inc. | Managing coherent memory between an accelerated processing device and a central processing unit |
CN102646073B (en) * | 2012-04-28 | 2015-01-07 | 华为技术有限公司 | Data processing method and device |
CN103389788B (en) * | 2012-05-07 | 2016-03-02 | 华为技术有限公司 | Intelligent terminal chip |
US9323320B2 (en) * | 2012-05-18 | 2016-04-26 | Mediatek Singapore Pte. Ltd. | Weighted control in a voltage scaling system |
US20130326131A1 (en) * | 2012-05-29 | 2013-12-05 | Texas Instruments Incorporated | Method for Security Context Switching and Management in a High Performance Security Accelerator System |
US20130339935A1 (en) * | 2012-06-14 | 2013-12-19 | Microsoft Corporation | Adjusting Programs Online and On-Premise Execution |
CN104508645B (en) * | 2012-07-31 | 2017-08-18 | 慧与发展有限责任合伙企业 | System and method for locking the access to control the shared data structure to being locked with reader write device using many height |
US9389794B2 (en) * | 2012-08-03 | 2016-07-12 | Intel Corporation | Managing consistent data objects |
US9323679B2 (en) * | 2012-08-14 | 2016-04-26 | Nvidia Corporation | System, method, and computer program product for managing cache miss requests |
US9043565B2 (en) * | 2012-09-07 | 2015-05-26 | Kabushiki Kaisha Toshiba | Storage device and method for controlling data invalidation |
US9229895B2 (en) * | 2012-09-13 | 2016-01-05 | Intel Corporation | Multi-core integrated circuit configurable to provide multiple logical domains |
JP5965076B2 (en) * | 2012-09-25 | 2016-08-03 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | Uncorrectable memory error processing method and its readable medium |
US8832530B2 (en) * | 2012-09-26 | 2014-09-09 | Intel Corporation | Techniques associated with a read and write window budget for a two level memory system |
US9218040B2 (en) | 2012-09-27 | 2015-12-22 | Apple Inc. | System cache with coarse grain power management |
US9582287B2 (en) | 2012-09-27 | 2017-02-28 | Intel Corporation | Processor having multiple cores, shared core extension logic, and shared core extension utilization instructions |
US20140085320A1 (en) * | 2012-09-27 | 2014-03-27 | Apple Inc. | Efficient processing of access requests for a shared resource |
US9213656B2 (en) * | 2012-10-24 | 2015-12-15 | Texas Instruments Incorporated | Flexible arbitration scheme for multi endpoint atomic accesses in multicore systems |
US9129071B2 (en) * | 2012-10-24 | 2015-09-08 | Texas Instruments Incorporated | Coherence controller slot architecture allowing zero latency write commit |
US20140136177A1 (en) * | 2012-11-09 | 2014-05-15 | Mediatek Inc. | Critical path emulating apparatus using hybrid architecture |
KR20140060137A (en) * | 2012-11-09 | 2014-05-19 | 삼성전자주식회사 | Semiconductor integrated circuit and operating method thereof, timing verifying method for semiconductor integrated circuit and test method of semiconductor integrated circuit |
US8949544B2 (en) * | 2012-11-19 | 2015-02-03 | Advanced Micro Devices, Inc. | Bypassing a cache when handling memory requests |
US8984308B2 (en) | 2012-12-03 | 2015-03-17 | Qualcomm Incorporated | System and method of adaptive voltage scaling |
US9526285B2 (en) | 2012-12-18 | 2016-12-27 | Intel Corporation | Flexible computing fabric |
US8975954B2 (en) | 2013-01-08 | 2015-03-10 | Qualcomm Incorporated | Method for performing adaptive voltage scaling (AVS) and integrated circuit configured to perform AVS |
KR20160037827A (en) * | 2013-01-17 | 2016-04-06 | 엑소케츠 인코포레이티드 | Offload processor modules for connection to system memory |
US9158667B2 (en) | 2013-03-04 | 2015-10-13 | Micron Technology, Inc. | Apparatuses and methods for performing logical operations using sensing circuitry |
US8959576B2 (en) * | 2013-03-14 | 2015-02-17 | Intel Corporation | Method, apparatus, system for qualifying CPU transactions with security attributes |
US8984227B2 (en) | 2013-04-02 | 2015-03-17 | Apple Inc. | Advanced coarse-grained cache power management |
US9400544B2 (en) | 2013-04-02 | 2016-07-26 | Apple Inc. | Advanced fine-grained cache power management |
US9396122B2 (en) | 2013-04-19 | 2016-07-19 | Apple Inc. | Cache allocation scheme optimized for browsing applications |
US8964496B2 (en) | 2013-07-26 | 2015-02-24 | Micron Technology, Inc. | Apparatuses and methods for performing compare operations using sensing circuitry |
WO2015016880A1 (en) * | 2013-07-31 | 2015-02-05 | Hewlett-Packard Development Company, L.P. | Global error correction |
US8971124B1 (en) | 2013-08-08 | 2015-03-03 | Micron Technology, Inc. | Apparatuses and methods for performing logical operations using sensing circuitry |
US8970287B1 (en) * | 2013-08-15 | 2015-03-03 | Silicon Laboratories Inc. | Apparatus and method of adjusting analog parameters for extended temperature operation |
US9153305B2 (en) | 2013-08-30 | 2015-10-06 | Micron Technology, Inc. | Independently addressable memory array address spaces |
US9759880B2 (en) | 2013-09-17 | 2017-09-12 | Commscope Technologies Llc | Capacitive-loaded jumper cables, shunt capacitance units and related methods for enhanced power delivery to remote radio heads |
US10712515B2 (en) | 2013-09-17 | 2020-07-14 | Commscope Technologies Llc | Capacitive-loaded jumper cables, shunt capacitance units and related methods for enhanced power delivery to remote radio heads |
US9019785B2 (en) | 2013-09-19 | 2015-04-28 | Micron Technology, Inc. | Data shifting via a number of isolation devices |
JP6129702B2 (en) * | 2013-09-24 | 2017-05-17 | 株式会社東芝 | Information processing apparatus, information processing system, and program |
US11257271B2 (en) | 2013-09-26 | 2022-02-22 | Imagination Technologies Limited | Atomic memory update unit and methods |
WO2015047348A1 (en) * | 2013-09-27 | 2015-04-02 | Intel Corporation | Cache operations for memory management |
KR101785301B1 (en) | 2013-09-27 | 2017-11-15 | 인텔 코포레이션 | Techniques to compose memory resources across devices |
US9449675B2 (en) | 2013-10-31 | 2016-09-20 | Micron Technology, Inc. | Apparatuses and methods for identifying an extremum value stored in an array of memory cells |
US9430191B2 (en) | 2013-11-08 | 2016-08-30 | Micron Technology, Inc. | Division operations for memory |
US20150134765A1 (en) * | 2013-11-11 | 2015-05-14 | Qualcomm Innovation Center, Inc. | Point-to-point shared memory protocol with feature negotiation |
US9411600B2 (en) * | 2013-12-08 | 2016-08-09 | Intel Corporation | Instructions and logic to provide memory access key protection functionality |
US10169256B2 (en) * | 2014-01-31 | 2019-01-01 | Silicon Laboratories Inc. | Arbitrating direct memory access channel requests |
JP2015149516A (en) * | 2014-02-04 | 2015-08-20 | ソニー株式会社 | Frequency divider circuit and phase synchronization circuit |
US11333695B2 (en) | 2014-02-17 | 2022-05-17 | Commscope Technologies Llc | Methods and equipment for reducing power loss in cellular systems |
US9448576B2 (en) | 2014-02-17 | 2016-09-20 | Commscope Technologies Llc | Programmable power supplies for cellular base stations and related methods of reducing power loss in cellular systems |
US10281939B2 (en) | 2014-02-17 | 2019-05-07 | Commscope Technologies Llc | Methods and equipment for reducing power loss in cellular systems |
US10830803B2 (en) | 2014-02-17 | 2020-11-10 | Commscope Technologies Llc | Methods and equipment for reducing power loss in cellular systems |
US9671857B2 (en) | 2014-03-25 | 2017-06-06 | Qualcomm Incorporated | Apparatus, system and method for dynamic power management across heterogeneous processors in a shared power domain |
KR101944378B1 (en) | 2014-03-29 | 2019-04-17 | 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 | A method of dynamic cache sizing in a memeory device and a processor comprising the method thereof |
US9934856B2 (en) | 2014-03-31 | 2018-04-03 | Micron Technology, Inc. | Apparatuses and methods for comparing data patterns in memory |
US9552034B2 (en) | 2014-04-29 | 2017-01-24 | Qualcomm Incorporated | Systems and methods for providing local hardware limit management and enforcement |
US9734066B1 (en) * | 2014-05-22 | 2017-08-15 | Sk Hynix Memory Solutions Inc. | Workload-based adjustable cache size |
US9496023B2 (en) | 2014-06-05 | 2016-11-15 | Micron Technology, Inc. | Comparison operations on logical representations of values in memory |
US9704540B2 (en) | 2014-06-05 | 2017-07-11 | Micron Technology, Inc. | Apparatuses and methods for parity determination using sensing circuitry |
US9449674B2 (en) | 2014-06-05 | 2016-09-20 | Micron Technology, Inc. | Performing logical operations using sensing circuitry |
US9786335B2 (en) | 2014-06-05 | 2017-10-10 | Micron Technology, Inc. | Apparatuses and methods for performing logical operations using sensing circuitry |
US10074407B2 (en) | 2014-06-05 | 2018-09-11 | Micron Technology, Inc. | Apparatuses and methods for performing invert operations using sensing circuitry |
US9455020B2 (en) | 2014-06-05 | 2016-09-27 | Micron Technology, Inc. | Apparatuses and methods for performing an exclusive or operation using sensing circuitry |
US9910787B2 (en) | 2014-06-05 | 2018-03-06 | Micron Technology, Inc. | Virtual address table |
US9711207B2 (en) | 2014-06-05 | 2017-07-18 | Micron Technology, Inc. | Performing logical operations using sensing circuitry |
US9830999B2 (en) | 2014-06-05 | 2017-11-28 | Micron Technology, Inc. | Comparison operations in memory |
US9779019B2 (en) | 2014-06-05 | 2017-10-03 | Micron Technology, Inc. | Data storage layout |
US9711206B2 (en) | 2014-06-05 | 2017-07-18 | Micron Technology, Inc. | Performing logical operations using sensing circuitry |
CN104035018B (en) | 2014-06-12 | 2017-04-19 | 华为技术有限公司 | Voltage self-adaptive adjustment circuit and chip |
US10073784B2 (en) | 2014-06-27 | 2018-09-11 | International Business Machines Corporation | Memory performance when speculation control is enabled, and instruction therefor |
US10013351B2 (en) | 2014-06-27 | 2018-07-03 | International Business Machines Corporation | Transactional execution processor having a co-processor accelerator, both sharing a higher level cache |
US9740614B2 (en) | 2014-06-27 | 2017-08-22 | International Business Machines Corporation | Processor directly storing address range of co-processor memory accesses in a transactional memory where co-processor supplements functions of the processor |
US9658961B2 (en) | 2014-06-27 | 2017-05-23 | International Business Machines Corporation | Speculation control for improving transaction success rate, and instruction therefor |
US9477481B2 (en) | 2014-06-27 | 2016-10-25 | International Business Machines Corporation | Accurate tracking of transactional read and write sets with speculation |
US10114752B2 (en) | 2014-06-27 | 2018-10-30 | International Business Machines Corporation | Detecting cache conflicts by utilizing logical address comparisons in a transactional memory |
US9720837B2 (en) | 2014-06-27 | 2017-08-01 | International Business Machines Corporation | Allowing non-cacheable loads within a transaction |
US10025715B2 (en) | 2014-06-27 | 2018-07-17 | International Business Machines Corporation | Conditional inclusion of data in a transactional memory read set |
US9772944B2 (en) | 2014-06-27 | 2017-09-26 | International Business Machines Corporation | Transactional execution in a multi-processor environment that monitors memory conflicts in a shared cache |
US9703718B2 (en) | 2014-06-27 | 2017-07-11 | International Business Machines Corporation | Managing read tags in a transactional memory |
US9652418B2 (en) | 2014-06-30 | 2017-05-16 | Intel Corporation | High throughput register file memory with pipeline of combinational logic |
US10296469B1 (en) * | 2014-07-24 | 2019-05-21 | Pure Storage, Inc. | Access control in a flash storage system |
US9990293B2 (en) * | 2014-08-12 | 2018-06-05 | Empire Technology Development Llc | Energy-efficient dynamic dram cache sizing via selective refresh of a cache in a dram |
US9904515B2 (en) | 2014-09-03 | 2018-02-27 | Micron Technology, Inc. | Multiplication operations in memory |
US9847110B2 (en) | 2014-09-03 | 2017-12-19 | Micron Technology, Inc. | Apparatuses and methods for storing a data value in multiple columns of an array corresponding to digits of a vector |
US10068652B2 (en) | 2014-09-03 | 2018-09-04 | Micron Technology, Inc. | Apparatuses and methods for determining population count |
US9898252B2 (en) | 2014-09-03 | 2018-02-20 | Micron Technology, Inc. | Multiplication operations in memory |
US9589602B2 (en) | 2014-09-03 | 2017-03-07 | Micron Technology, Inc. | Comparison operations in memory |
US9740607B2 (en) | 2014-09-03 | 2017-08-22 | Micron Technology, Inc. | Swap operations in memory |
US9747961B2 (en) | 2014-09-03 | 2017-08-29 | Micron Technology, Inc. | Division operations in memory |
US9811142B2 (en) * | 2014-09-29 | 2017-11-07 | Apple Inc. | Low energy processor for controlling operating states of a computer system |
US9940026B2 (en) | 2014-10-03 | 2018-04-10 | Micron Technology, Inc. | Multidimensional contiguous memory allocation |
US9836218B2 (en) | 2014-10-03 | 2017-12-05 | Micron Technology, Inc. | Computing reduction and prefix sum operations in memory |
US10163467B2 (en) | 2014-10-16 | 2018-12-25 | Micron Technology, Inc. | Multiple endianness compatibility |
US10147480B2 (en) | 2014-10-24 | 2018-12-04 | Micron Technology, Inc. | Sort operation in memory |
US9779784B2 (en) | 2014-10-29 | 2017-10-03 | Micron Technology, Inc. | Apparatuses and methods for performing logical operations using sensing circuitry |
CN105700965A (en) * | 2014-11-26 | 2016-06-22 | 英业达科技有限公司 | System error exclusion method |
US9747960B2 (en) | 2014-12-01 | 2017-08-29 | Micron Technology, Inc. | Apparatuses and methods for converting a mask to an index |
US10073635B2 (en) | 2014-12-01 | 2018-09-11 | Micron Technology, Inc. | Multiple endianness compatibility |
KR102346629B1 (en) * | 2014-12-05 | 2022-01-03 | 삼성전자주식회사 | Method and apparatus for controlling access for memory |
US9231591B1 (en) * | 2014-12-12 | 2016-01-05 | Xilinx, Inc. | Dynamic voltage scaling in programmable integrated circuits |
US9768690B2 (en) | 2014-12-17 | 2017-09-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Switched mode power supply output stage configuration |
US10394731B2 (en) | 2014-12-19 | 2019-08-27 | Amazon Technologies, Inc. | System on a chip comprising reconfigurable resources for multiple compute sub-systems |
CN107003857B (en) * | 2014-12-19 | 2019-06-18 | 美光科技公司 | There is the method for the storage operation of error-correcting decoding for pipeline processes |
US10523585B2 (en) | 2014-12-19 | 2019-12-31 | Amazon Technologies, Inc. | System on a chip comprising multiple compute sub-systems |
US9514059B2 (en) * | 2014-12-22 | 2016-12-06 | Texas Instruments Incorporated | Hiding page translation miss latency in program memory controller by selective page miss translation prefetch |
US9514058B2 (en) | 2014-12-22 | 2016-12-06 | Texas Instruments Incorporated | Local page translation and permissions storage for the page window in program memory controller |
US9971711B2 (en) * | 2014-12-25 | 2018-05-15 | Intel Corporation | Tightly-coupled distributed uncore coherent fabric |
US10032493B2 (en) | 2015-01-07 | 2018-07-24 | Micron Technology, Inc. | Longest element length determination in memory |
US10061590B2 (en) | 2015-01-07 | 2018-08-28 | Micron Technology, Inc. | Generating and executing a control flow |
US9583163B2 (en) | 2015-02-03 | 2017-02-28 | Micron Technology, Inc. | Loop structure for operations in memory |
CN107408405B (en) | 2015-02-06 | 2021-03-05 | 美光科技公司 | Apparatus and method for parallel writing to multiple memory device locations |
WO2016126472A1 (en) | 2015-02-06 | 2016-08-11 | Micron Technology, Inc. | Apparatuses and methods for scatter and gather |
CN107408404B (en) | 2015-02-06 | 2021-02-12 | 美光科技公司 | Apparatus and methods for memory devices as storage of program instructions |
US11200192B2 (en) * | 2015-02-13 | 2021-12-14 | Amazon Technologies. lac. | Multi-mode system on a chip |
US9588921B2 (en) | 2015-02-17 | 2017-03-07 | Amazon Technologies, Inc. | System on a chip comprising an I/O steering engine |
CN107408408B (en) | 2015-03-10 | 2021-03-05 | 美光科技公司 | Apparatus and method for shift determination |
US9898253B2 (en) | 2015-03-11 | 2018-02-20 | Micron Technology, Inc. | Division operations on variable length elements in memory |
US9741399B2 (en) | 2015-03-11 | 2017-08-22 | Micron Technology, Inc. | Data shift by elements of a vector in memory |
CN107430874B (en) | 2015-03-12 | 2021-02-02 | 美光科技公司 | Apparatus and method for data movement |
US10146537B2 (en) | 2015-03-13 | 2018-12-04 | Micron Technology, Inc. | Vector population count determination in memory |
US10049054B2 (en) | 2015-04-01 | 2018-08-14 | Micron Technology, Inc. | Virtual register file |
US10140104B2 (en) | 2015-04-14 | 2018-11-27 | Micron Technology, Inc. | Target architecture determination |
US9959923B2 (en) | 2015-04-16 | 2018-05-01 | Micron Technology, Inc. | Apparatuses and methods to reverse data stored in memory |
US11403173B2 (en) * | 2015-04-30 | 2022-08-02 | Marvell Israel (M.I.S.L) Ltd. | Multiple read and write port memory |
US9846648B2 (en) | 2015-05-11 | 2017-12-19 | Intel Corporation | Create page locality in cache controller cache allocation |
US10073786B2 (en) | 2015-05-28 | 2018-09-11 | Micron Technology, Inc. | Apparatuses and methods for compute enabled cache |
US9704541B2 (en) | 2015-06-12 | 2017-07-11 | Micron Technology, Inc. | Simulating access lines |
US9875189B2 (en) | 2015-06-12 | 2018-01-23 | Intel Corporation | Supporting secure memory intent |
US10452508B2 (en) * | 2015-06-15 | 2019-10-22 | International Business Machines Corporation | Managing a set of tests based on other test failures |
US9921777B2 (en) | 2015-06-22 | 2018-03-20 | Micron Technology, Inc. | Apparatuses and methods for data transfer from sensing circuitry to a controller |
US9952867B2 (en) | 2015-06-26 | 2018-04-24 | Microsoft Technology Licensing, Llc | Mapping instruction blocks based on block size |
US10409606B2 (en) | 2015-06-26 | 2019-09-10 | Microsoft Technology Licensing, Llc | Verifying branch targets |
US10175988B2 (en) | 2015-06-26 | 2019-01-08 | Microsoft Technology Licensing, Llc | Explicit instruction scheduler state information for a processor |
US9940136B2 (en) * | 2015-06-26 | 2018-04-10 | Microsoft Technology Licensing, Llc | Reuse of decoded instructions |
US10191747B2 (en) | 2015-06-26 | 2019-01-29 | Microsoft Technology Licensing, Llc | Locking operand values for groups of instructions executed atomically |
US9946548B2 (en) | 2015-06-26 | 2018-04-17 | Microsoft Technology Licensing, Llc | Age-based management of instruction blocks in a processor instruction window |
US10409599B2 (en) | 2015-06-26 | 2019-09-10 | Microsoft Technology Licensing, Llc | Decoding information about a group of instructions including a size of the group of instructions |
US10169044B2 (en) | 2015-06-26 | 2019-01-01 | Microsoft Technology Licensing, Llc | Processing an encoding format field to interpret header information regarding a group of instructions |
US11755484B2 (en) | 2015-06-26 | 2023-09-12 | Microsoft Technology Licensing, Llc | Instruction block allocation |
US10346168B2 (en) | 2015-06-26 | 2019-07-09 | Microsoft Technology Licensing, Llc | Decoupled processor instruction window and operand buffer |
US10657274B2 (en) * | 2015-06-29 | 2020-05-19 | Samsng Electronics Co., Ltd. | Semiconductor device including memory protector |
GB2540206B (en) * | 2015-07-10 | 2018-02-07 | Advanced Risc Mach Ltd | Apparatus and method for executing instruction using range information associated with a pointer |
US10353747B2 (en) * | 2015-07-13 | 2019-07-16 | Futurewei Technologies, Inc. | Shared memory controller and method of using same |
US9651969B2 (en) * | 2015-07-30 | 2017-05-16 | Qualcomm Incorporated | Adaptive voltage scaling using analytical models for interconnect delay |
US10079916B2 (en) * | 2015-08-13 | 2018-09-18 | Advanced Micro Devices, Inc. | Register files for I/O packet compression |
US9996479B2 (en) | 2015-08-17 | 2018-06-12 | Micron Technology, Inc. | Encryption of executables in computational memory |
US10095519B2 (en) | 2015-09-19 | 2018-10-09 | Microsoft Technology Licensing, Llc | Instruction block address register |
US9997233B1 (en) | 2015-10-08 | 2018-06-12 | Rambus Inc. | Memory module with dynamic stripe width |
US10261827B2 (en) | 2015-10-29 | 2019-04-16 | International Business Machines Corporation | Interprocessor memory status communication |
US9916179B2 (en) | 2015-10-29 | 2018-03-13 | International Business Machines Corporation | Interprocessor memory status communication |
US9760397B2 (en) | 2015-10-29 | 2017-09-12 | International Business Machines Corporation | Interprocessor memory status communication |
US9563467B1 (en) | 2015-10-29 | 2017-02-07 | International Business Machines Corporation | Interprocessor memory status communication |
US9971119B2 (en) | 2015-11-03 | 2018-05-15 | Raycap Intellectual Property Ltd. | Modular fiber optic cable splitter |
US10802237B2 (en) | 2015-11-03 | 2020-10-13 | Raycap S.A. | Fiber optic cable management system |
CN106710627B (en) * | 2015-11-18 | 2019-11-26 | 凌阳科技股份有限公司 | Polycrystalline born of the same parents chip and its memory device |
US9697118B1 (en) | 2015-12-09 | 2017-07-04 | Nxp Usa, Inc. | Memory controller with interleaving and arbitration scheme |
US9928924B2 (en) * | 2015-12-15 | 2018-03-27 | Qualcomm Incorporated | Systems, methods, and computer programs for resolving dram defects |
US9905276B2 (en) | 2015-12-21 | 2018-02-27 | Micron Technology, Inc. | Control of sensing components in association with performing operations |
US10437748B1 (en) * | 2015-12-29 | 2019-10-08 | Amazon Technologies, Inc. | Core-to-core communication |
US9952925B2 (en) | 2016-01-06 | 2018-04-24 | Micron Technology, Inc. | Error code calculation on sensing circuitry |
US10048888B2 (en) | 2016-02-10 | 2018-08-14 | Micron Technology, Inc. | Apparatuses and methods for partitioned parallel data movement |
US9892767B2 (en) | 2016-02-12 | 2018-02-13 | Micron Technology, Inc. | Data gathering in memory |
US9971541B2 (en) | 2016-02-17 | 2018-05-15 | Micron Technology, Inc. | Apparatuses and methods for data movement |
US9899070B2 (en) | 2016-02-19 | 2018-02-20 | Micron Technology, Inc. | Modified decode for corner turn |
US10956439B2 (en) | 2016-02-19 | 2021-03-23 | Micron Technology, Inc. | Data transfer with a bit vector operation device |
US9697876B1 (en) | 2016-03-01 | 2017-07-04 | Micron Technology, Inc. | Vertical bit vector shift in memory |
GB2547912B (en) * | 2016-03-02 | 2019-01-30 | Advanced Risc Mach Ltd | Register access control |
US9898020B2 (en) * | 2016-03-02 | 2018-02-20 | Qualcomm Incorporated | Power supply voltage priority based auto de-rating for power concurrency management |
US10262721B2 (en) | 2016-03-10 | 2019-04-16 | Micron Technology, Inc. | Apparatuses and methods for cache invalidate |
US9997232B2 (en) | 2016-03-10 | 2018-06-12 | Micron Technology, Inc. | Processing in memory (PIM) capable memory device having sensing circuitry performing logic operations |
US10379772B2 (en) | 2016-03-16 | 2019-08-13 | Micron Technology, Inc. | Apparatuses and methods for operations using compressed and decompressed data |
US9910637B2 (en) | 2016-03-17 | 2018-03-06 | Micron Technology, Inc. | Signed division in memory |
US20170272073A1 (en) * | 2016-03-18 | 2017-09-21 | Altera Corporation | Dynamic parameter operation of an fpga |
US11074988B2 (en) | 2016-03-22 | 2021-07-27 | Micron Technology, Inc. | Apparatus and methods for debugging on a host and memory device |
US10120740B2 (en) | 2016-03-22 | 2018-11-06 | Micron Technology, Inc. | Apparatus and methods for debugging on a memory device |
US10388393B2 (en) | 2016-03-22 | 2019-08-20 | Micron Technology, Inc. | Apparatus and methods for debugging on a host and memory device |
US10977033B2 (en) | 2016-03-25 | 2021-04-13 | Micron Technology, Inc. | Mask patterns generated in memory from seed vectors |
US10474581B2 (en) | 2016-03-25 | 2019-11-12 | Micron Technology, Inc. | Apparatuses and methods for cache operations |
US10074416B2 (en) | 2016-03-28 | 2018-09-11 | Micron Technology, Inc. | Apparatuses and methods for data movement |
US10430244B2 (en) | 2016-03-28 | 2019-10-01 | Micron Technology, Inc. | Apparatuses and methods to determine timing of operations |
US10453502B2 (en) | 2016-04-04 | 2019-10-22 | Micron Technology, Inc. | Memory bank power coordination including concurrently performing a memory operation in a selected number of memory regions |
US10607665B2 (en) | 2016-04-07 | 2020-03-31 | Micron Technology, Inc. | Span mask generation |
CN107291629B (en) * | 2016-04-12 | 2020-12-25 | 华为技术有限公司 | Method and device for accessing memory |
US9818459B2 (en) | 2016-04-19 | 2017-11-14 | Micron Technology, Inc. | Invert operations using sensing circuitry |
US10153008B2 (en) | 2016-04-20 | 2018-12-11 | Micron Technology, Inc. | Apparatuses and methods for performing corner turn operations using sensing circuitry |
US9659605B1 (en) | 2016-04-20 | 2017-05-23 | Micron Technology, Inc. | Apparatuses and methods for performing corner turn operations using sensing circuitry |
US10042608B2 (en) | 2016-05-11 | 2018-08-07 | Micron Technology, Inc. | Signed division in memory |
US9659610B1 (en) | 2016-05-18 | 2017-05-23 | Micron Technology, Inc. | Apparatuses and methods for shifting data |
US10049707B2 (en) | 2016-06-03 | 2018-08-14 | Micron Technology, Inc. | Shifting data |
US10387046B2 (en) | 2016-06-22 | 2019-08-20 | Micron Technology, Inc. | Bank to bank data transfer |
US10073776B2 (en) | 2016-06-23 | 2018-09-11 | Advanced Micro Device, Inc. | Shadow tag memory to monitor state of cachelines at different cache level |
EP3260986B1 (en) * | 2016-06-23 | 2019-08-14 | Advanced Micro Devices, Inc. | Shadow tag memory to monitor state of cachelines at different cache level |
US10108487B2 (en) | 2016-06-24 | 2018-10-23 | Qualcomm Incorporated | Parity for instruction packets |
US10037785B2 (en) | 2016-07-08 | 2018-07-31 | Micron Technology, Inc. | Scan chain operation in sensing circuitry |
US9996414B2 (en) | 2016-07-12 | 2018-06-12 | International Business Machines Corporation | Auto-disabling DRAM error checking on threshold |
US10388360B2 (en) | 2016-07-19 | 2019-08-20 | Micron Technology, Inc. | Utilization of data stored in an edge section of an array |
US10387299B2 (en) | 2016-07-20 | 2019-08-20 | Micron Technology, Inc. | Apparatuses and methods for transferring data |
US10733089B2 (en) | 2016-07-20 | 2020-08-04 | Micron Technology, Inc. | Apparatuses and methods for write address tracking |
US9767864B1 (en) | 2016-07-21 | 2017-09-19 | Micron Technology, Inc. | Apparatuses and methods for storing a data value in a sensing circuitry element |
US9972367B2 (en) | 2016-07-21 | 2018-05-15 | Micron Technology, Inc. | Shifting data in sensing circuitry |
US10664183B1 (en) | 2016-07-25 | 2020-05-26 | Oracle International Corporation | Method and apparatus for storing memory attributes |
US10303632B2 (en) | 2016-07-26 | 2019-05-28 | Micron Technology, Inc. | Accessing status information |
US10468087B2 (en) | 2016-07-28 | 2019-11-05 | Micron Technology, Inc. | Apparatuses and methods for operations in a self-refresh state |
US9990181B2 (en) | 2016-08-03 | 2018-06-05 | Micron Technology, Inc. | Apparatuses and methods for random number generation |
US11029951B2 (en) | 2016-08-15 | 2021-06-08 | Micron Technology, Inc. | Smallest or largest value element determination |
TWI627525B (en) * | 2016-08-18 | 2018-06-21 | 瑞昱半導體股份有限公司 | Voltage and frequency scaling apparatus, system on chip and voltage and frequency scaling method |
US10606587B2 (en) | 2016-08-24 | 2020-03-31 | Micron Technology, Inc. | Apparatus and methods related to microcode instructions indicating instruction types |
JP6697101B2 (en) * | 2016-09-05 | 2020-05-20 | 株式会社日立製作所 | Information processing system |
US10466928B2 (en) | 2016-09-15 | 2019-11-05 | Micron Technology, Inc. | Updating a register in memory |
JP2018049387A (en) * | 2016-09-20 | 2018-03-29 | 東芝メモリ株式会社 | Memory system and processor system |
US10387058B2 (en) | 2016-09-29 | 2019-08-20 | Micron Technology, Inc. | Apparatuses and methods to change data category values |
JP6770230B2 (en) * | 2016-09-30 | 2020-10-14 | 富士通株式会社 | Arithmetic processing unit, information processing unit, control method of arithmetic processing unit |
US10379768B2 (en) * | 2016-09-30 | 2019-08-13 | Intel Corporation | Selective memory mode authorization enforcement |
KR102629585B1 (en) * | 2016-10-04 | 2024-01-25 | 삼성전자주식회사 | Photoelectric conversion device and imaging device including the same |
US10014034B2 (en) | 2016-10-06 | 2018-07-03 | Micron Technology, Inc. | Shifting data in sensing circuitry |
US10222850B2 (en) | 2016-10-06 | 2019-03-05 | International Business Machines Corporation | Voltage and frequency balancing at nominal point |
US10529409B2 (en) | 2016-10-13 | 2020-01-07 | Micron Technology, Inc. | Apparatuses and methods to perform logical operations using sensing circuitry |
DE102016220639A1 (en) * | 2016-10-20 | 2018-04-26 | Infineon Technologies Ag | Memory protection unit and method for protecting a memory address space |
US9805772B1 (en) | 2016-10-20 | 2017-10-31 | Micron Technology, Inc. | Apparatuses and methods to selectively perform logical operations |
CN207637499U (en) | 2016-11-08 | 2018-07-20 | 美光科技公司 | The equipment for being used to form the computation module above memory cell array |
US10423353B2 (en) | 2016-11-11 | 2019-09-24 | Micron Technology, Inc. | Apparatuses and methods for memory alignment |
US10067875B2 (en) * | 2016-11-14 | 2018-09-04 | Via Alliance Semiconductor Co., Ltd. | Processor with instruction cache that performs zero clock retires |
US9761300B1 (en) | 2016-11-22 | 2017-09-12 | Micron Technology, Inc. | Data shift apparatuses and methods |
CN108228078A (en) * | 2016-12-21 | 2018-06-29 | 伊姆西Ip控股有限责任公司 | For the data access method and device in storage system |
US20180191066A1 (en) * | 2016-12-30 | 2018-07-05 | Andrey Orlov | Base station on system-on-chip |
US10419063B2 (en) | 2016-12-30 | 2019-09-17 | Waviot Integrated Systems, Llc | Method and system for receiving telemetry messages over RF channel |
US10812664B2 (en) | 2017-01-20 | 2020-10-20 | Raycap S.A. | Power transmission system for wireless communication systems |
US10430343B2 (en) | 2017-02-21 | 2019-10-01 | Advanced Micro Devices, Inc. | Acceleration of cache-to-cache data transfers for producer-consumer communication |
US10402340B2 (en) | 2017-02-21 | 2019-09-03 | Micron Technology, Inc. | Memory array page table walk |
US10403352B2 (en) | 2017-02-22 | 2019-09-03 | Micron Technology, Inc. | Apparatuses and methods for compute in data path |
US10268389B2 (en) | 2017-02-22 | 2019-04-23 | Micron Technology, Inc. | Apparatuses and methods for in-memory operations |
US20200050783A1 (en) * | 2017-03-02 | 2020-02-13 | Mitsubishi Electric Corporation | Information processing device and computer readable medium |
US10838899B2 (en) | 2017-03-21 | 2020-11-17 | Micron Technology, Inc. | Apparatuses and methods for in-memory data switching networks |
US10185674B2 (en) | 2017-03-22 | 2019-01-22 | Micron Technology, Inc. | Apparatus and methods for in data path compute operations |
US11222260B2 (en) | 2017-03-22 | 2022-01-11 | Micron Technology, Inc. | Apparatuses and methods for operating neural networks |
US10049721B1 (en) | 2017-03-27 | 2018-08-14 | Micron Technology, Inc. | Apparatuses and methods for in-memory operations |
US10552153B2 (en) * | 2017-03-31 | 2020-02-04 | Intel Corporation | Efficient range-based memory writeback to improve host to device communication for optimal power and performance |
US10147467B2 (en) | 2017-04-17 | 2018-12-04 | Micron Technology, Inc. | Element value comparison in memory |
US10043570B1 (en) | 2017-04-17 | 2018-08-07 | Micron Technology, Inc. | Signed element compare in memory |
US9997212B1 (en) | 2017-04-24 | 2018-06-12 | Micron Technology, Inc. | Accessing data in memory |
US10942843B2 (en) | 2017-04-25 | 2021-03-09 | Micron Technology, Inc. | Storing data elements of different lengths in respective adjacent rows or columns according to memory shapes |
US10236038B2 (en) | 2017-05-15 | 2019-03-19 | Micron Technology, Inc. | Bank to bank data transfer |
US10068664B1 (en) | 2017-05-19 | 2018-09-04 | Micron Technology, Inc. | Column repair in memory |
US10338925B2 (en) * | 2017-05-24 | 2019-07-02 | Microsoft Technology Licensing, Llc | Tensor register files |
US10013197B1 (en) | 2017-06-01 | 2018-07-03 | Micron Technology, Inc. | Shift skip |
US10152271B1 (en) | 2017-06-07 | 2018-12-11 | Micron Technology, Inc. | Data replication |
US10262701B2 (en) | 2017-06-07 | 2019-04-16 | Micron Technology, Inc. | Data transfer between subarrays in memory |
US10318168B2 (en) | 2017-06-19 | 2019-06-11 | Micron Technology, Inc. | Apparatuses and methods for simultaneous in data path compute operations |
CN109213691B (en) | 2017-06-30 | 2023-09-01 | 伊姆西Ip控股有限责任公司 | Method and apparatus for cache management |
US10585797B2 (en) | 2017-07-14 | 2020-03-10 | International Business Machines Corporation | Operating different processor cache levels |
US10691609B2 (en) * | 2017-07-24 | 2020-06-23 | International Business Machines Corporation | Concurrent data erasure and replacement of processors |
US10353455B2 (en) | 2017-07-27 | 2019-07-16 | International Business Machines Corporation | Power management in multi-channel 3D stacked DRAM |
US10162005B1 (en) | 2017-08-09 | 2018-12-25 | Micron Technology, Inc. | Scan chain operations |
US10534553B2 (en) | 2017-08-30 | 2020-01-14 | Micron Technology, Inc. | Memory array accessibility |
TWI661353B (en) * | 2017-08-30 | 2019-06-01 | 慧榮科技股份有限公司 | Method for performing data processing for error handling in memory device, associated memory device and controller thereof, and associated electronic device |
US10741239B2 (en) | 2017-08-31 | 2020-08-11 | Micron Technology, Inc. | Processing in memory device including a row address strobe manager |
US10346092B2 (en) | 2017-08-31 | 2019-07-09 | Micron Technology, Inc. | Apparatuses and methods for in-memory operations using timing circuitry |
US10416927B2 (en) | 2017-08-31 | 2019-09-17 | Micron Technology, Inc. | Processing in memory |
US10929296B2 (en) * | 2017-10-12 | 2021-02-23 | Texas Instruments Incorporated | Zero latency prefetching in caches |
US10409739B2 (en) | 2017-10-24 | 2019-09-10 | Micron Technology, Inc. | Command selection policy |
US10580730B2 (en) | 2017-11-16 | 2020-03-03 | International Business Machines Corporation | Managed integrated circuit power supply distribution |
US11106588B2 (en) * | 2017-11-28 | 2021-08-31 | International Business Machines Corporation | Deferred method of allocating disk space for lightning segments |
US10705590B2 (en) * | 2017-11-28 | 2020-07-07 | Google Llc | Power-conserving cache memory usage |
US10522210B2 (en) | 2017-12-14 | 2019-12-31 | Micron Technology, Inc. | Apparatuses and methods for subarray addressing |
US10332586B1 (en) | 2017-12-19 | 2019-06-25 | Micron Technology, Inc. | Apparatuses and methods for subrow addressing |
US11010233B1 (en) | 2018-01-18 | 2021-05-18 | Pure Storage, Inc | Hardware-based system monitoring |
US10614875B2 (en) | 2018-01-30 | 2020-04-07 | Micron Technology, Inc. | Logical operations using memory cells |
US11194477B2 (en) | 2018-01-31 | 2021-12-07 | Micron Technology, Inc. | Determination of a match between data values stored by three or more arrays |
US10437557B2 (en) | 2018-01-31 | 2019-10-08 | Micron Technology, Inc. | Determination of a match between data values stored by several arrays |
US11102665B2 (en) | 2018-02-23 | 2021-08-24 | T-Mobile Usa, Inc. | Supplemental voltage controller for radio frequency (RF) antennas |
US10868471B2 (en) | 2018-02-23 | 2020-12-15 | T-Mobile Usa, Inc. | Adaptive voltage modification (AVM) controller for mitigating power interruptions at radio frequency (RF) antennas |
US10470120B2 (en) * | 2018-03-14 | 2019-11-05 | T-Mobile Usa, Inc. | Power compensator for cellular communication base station |
IL315283A (en) * | 2018-03-30 | 2024-10-01 | Google Llc | Arbitrating portions of transactions over virtual channels associated with an interconnect |
US20190302861A1 (en) | 2018-03-30 | 2019-10-03 | Provino Technologies, Inc. | Protocol level control for system on a chip (soc) agent reset and power management |
US10725696B2 (en) | 2018-04-12 | 2020-07-28 | Micron Technology, Inc. | Command selection policy with read priority |
US10635494B2 (en) * | 2018-05-08 | 2020-04-28 | Microchip Technology Incorporated | Memory pool allocation for a multi-core system |
US11048552B2 (en) * | 2018-05-30 | 2021-06-29 | Texas Instruments Incorporated | High-speed broadside communications and control system |
US10440341B1 (en) | 2018-06-07 | 2019-10-08 | Micron Technology, Inc. | Image processor formed in an array of memory cells |
US11086526B2 (en) * | 2018-06-07 | 2021-08-10 | Micron Technology, Inc. | Adaptive line width cache systems and methods |
US10909046B2 (en) | 2018-06-15 | 2021-02-02 | Micron Technology, Inc. | Memory access determination |
CN110688331B (en) * | 2018-07-05 | 2021-08-17 | 珠海全志科技股份有限公司 | SoC chip and data reading method |
US10971928B2 (en) | 2018-08-28 | 2021-04-06 | Raycap Ip Assets Ltd | Integrated overvoltage protection and monitoring system |
CN109343943B (en) * | 2018-09-07 | 2021-08-03 | 华中科技大学 | I/O management method based on multiple external memory devices and multiple queues |
US11831565B2 (en) | 2018-10-03 | 2023-11-28 | Advanced Micro Devices, Inc. | Method for maintaining cache consistency during reordering |
CN111026324B (en) * | 2018-10-09 | 2021-11-19 | 华为技术有限公司 | Updating method and device of forwarding table entry |
US10769071B2 (en) | 2018-10-10 | 2020-09-08 | Micron Technology, Inc. | Coherent memory access |
US11175915B2 (en) | 2018-10-10 | 2021-11-16 | Micron Technology, Inc. | Vector registers implemented in memory |
US11086778B2 (en) * | 2018-10-15 | 2021-08-10 | Texas Instruments Incorporated | Multicore shared cache operation engine |
US10483978B1 (en) | 2018-10-16 | 2019-11-19 | Micron Technology, Inc. | Memory device processing |
US11184446B2 (en) | 2018-12-05 | 2021-11-23 | Micron Technology, Inc. | Methods and apparatus for incentivizing participation in fog networks |
US10725958B1 (en) * | 2019-02-08 | 2020-07-28 | Arm Limited | System, method and apparatus for enabling partial data transfers with indicators |
US11288199B2 (en) | 2019-02-28 | 2022-03-29 | Micron Technology, Inc. | Separate read-only cache and write-read cache in a memory sub-system |
US10908821B2 (en) | 2019-02-28 | 2021-02-02 | Micron Technology, Inc. | Use of outstanding command queues for separate read-only cache and write-read cache in a memory sub-system |
US11106609B2 (en) * | 2019-02-28 | 2021-08-31 | Micron Technology, Inc. | Priority scheduling in queues to access cache data in a memory sub-system |
US10970222B2 (en) | 2019-02-28 | 2021-04-06 | Micron Technology, Inc. | Eviction of a cache line based on a modification of a sector of the cache line |
US10922236B2 (en) * | 2019-04-04 | 2021-02-16 | Advanced New Technologies Co., Ltd. | Cascade cache refreshing |
CN113796003A (en) | 2019-05-01 | 2021-12-14 | 康普技术有限责任公司 | Method and apparatus for reducing power loss in a cellular system |
US12118056B2 (en) | 2019-05-03 | 2024-10-15 | Micron Technology, Inc. | Methods and apparatus for performing matrix transformations within a memory array |
US11921637B2 (en) * | 2019-05-24 | 2024-03-05 | Texas Instruments Incorporated | Write streaming with cache write acknowledgment in a processor |
US11243883B2 (en) | 2019-05-24 | 2022-02-08 | Texas Instruments Incorporated | Cache coherence shared state suppression |
US11940929B2 (en) * | 2019-05-24 | 2024-03-26 | Texas Instruments Incorporated | Methods and apparatus to reduce read-modify-write cycles for non-aligned writes |
US11720495B2 (en) * | 2019-05-24 | 2023-08-08 | Texas Instmments Incorporated | Multi-level cache security |
US10802973B1 (en) | 2019-07-01 | 2020-10-13 | Bank Of America Corporation | Data access tool |
US10867655B1 (en) | 2019-07-08 | 2020-12-15 | Micron Technology, Inc. | Methods and apparatus for dynamically adjusting performance of partitioned memory |
KR20210012439A (en) * | 2019-07-25 | 2021-02-03 | 삼성전자주식회사 | Master device and method of controlling the same |
US11226908B2 (en) * | 2019-07-31 | 2022-01-18 | Hewlett Packard Enterprise Development Lp | Securing transactions involving protected memory regions having different permission levels |
US11360768B2 (en) | 2019-08-14 | 2022-06-14 | Micron Technolgy, Inc. | Bit string operations in memory |
DE102019213998A1 (en) | 2019-09-13 | 2021-03-18 | Airbus Defence and Space GmbH | PROCESSOR SYSTEM WITH MEMORY INTERLOCATION AND ACCESS METHODS TO MEMORY-INTERLOCATED MEMORY BANKS |
US11677164B2 (en) | 2019-09-25 | 2023-06-13 | Raycap Ip Assets Ltd | Hybrid antenna distribution unit |
US11204877B2 (en) * | 2019-10-18 | 2021-12-21 | Dell Products L.P. | Minimizing data written to disk and enabling directory change notifications in multi-volume filter environments |
US11403110B2 (en) * | 2019-10-23 | 2022-08-02 | Texas Instruments Incorporated | Storing a result of a first instruction of an execute packet in a holding register prior to completion of a second instruction of the execute packet |
KR20210060253A (en) | 2019-11-18 | 2021-05-26 | 삼성전자주식회사 | Memory controller, memory system and operationg method of the same |
US11449577B2 (en) | 2019-11-20 | 2022-09-20 | Micron Technology, Inc. | Methods and apparatus for performing video processing matrix operations within a memory array |
US11755751B2 (en) | 2019-11-22 | 2023-09-12 | Pure Storage, Inc. | Modify access restrictions in response to a possible attack against data stored by a storage system |
US11341236B2 (en) | 2019-11-22 | 2022-05-24 | Pure Storage, Inc. | Traffic-based detection of a security threat to a storage system |
US12079356B2 (en) | 2019-11-22 | 2024-09-03 | Pure Storage, Inc. | Measurement interval anomaly detection-based generation of snapshots |
US12067118B2 (en) | 2019-11-22 | 2024-08-20 | Pure Storage, Inc. | Detection of writing to a non-header portion of a file as an indicator of a possible ransomware attack against a storage system |
US12050683B2 (en) | 2019-11-22 | 2024-07-30 | Pure Storage, Inc. | Selective control of a data synchronization setting of a storage system based on a possible ransomware attack against the storage system |
US11520907B1 (en) | 2019-11-22 | 2022-12-06 | Pure Storage, Inc. | Storage system snapshot retention based on encrypted data |
US11941116B2 (en) | 2019-11-22 | 2024-03-26 | Pure Storage, Inc. | Ransomware-based data protection parameter modification |
US12079333B2 (en) | 2019-11-22 | 2024-09-03 | Pure Storage, Inc. | Independent security threat detection and remediation by storage systems in a synchronous replication arrangement |
US11675898B2 (en) | 2019-11-22 | 2023-06-13 | Pure Storage, Inc. | Recovery dataset management for security threat monitoring |
US11720692B2 (en) | 2019-11-22 | 2023-08-08 | Pure Storage, Inc. | Hardware token based management of recovery datasets for a storage system |
US11625481B2 (en) | 2019-11-22 | 2023-04-11 | Pure Storage, Inc. | Selective throttling of operations potentially related to a security threat to a storage system |
US11651075B2 (en) | 2019-11-22 | 2023-05-16 | Pure Storage, Inc. | Extensible attack monitoring by a storage system |
US11687418B2 (en) | 2019-11-22 | 2023-06-27 | Pure Storage, Inc. | Automatic generation of recovery plans specific to individual storage elements |
US11720714B2 (en) | 2019-11-22 | 2023-08-08 | Pure Storage, Inc. | Inter-I/O relationship based detection of a security threat to a storage system |
US11615185B2 (en) | 2019-11-22 | 2023-03-28 | Pure Storage, Inc. | Multi-layer security threat detection for a storage system |
US11500788B2 (en) * | 2019-11-22 | 2022-11-15 | Pure Storage, Inc. | Logical address based authorization of operations with respect to a storage system |
US20220327208A1 (en) * | 2019-11-22 | 2022-10-13 | Pure Storage, Inc. | Snapshot Deletion Pattern-Based Determination of Ransomware Attack against Data Maintained by a Storage System |
US11657155B2 (en) | 2019-11-22 | 2023-05-23 | Pure Storage, Inc | Snapshot delta metric based determination of a possible ransomware attack against data maintained by a storage system |
US12079502B2 (en) | 2019-11-22 | 2024-09-03 | Pure Storage, Inc. | Storage element attribute-based determination of a data protection policy for use within a storage system |
US12050689B2 (en) | 2019-11-22 | 2024-07-30 | Pure Storage, Inc. | Host anomaly-based generation of snapshots |
US20210382992A1 (en) * | 2019-11-22 | 2021-12-09 | Pure Storage, Inc. | Remote Analysis of Potentially Corrupt Data Written to a Storage System |
US11645162B2 (en) | 2019-11-22 | 2023-05-09 | Pure Storage, Inc. | Recovery point determination for data restoration in a storage system |
WO2021103020A1 (en) * | 2019-11-29 | 2021-06-03 | 华为技术有限公司 | Cache memory and method for allocating write operation |
US11853385B2 (en) | 2019-12-05 | 2023-12-26 | Micron Technology, Inc. | Methods and apparatus for performing diversity matrix operations within a memory array |
KR20210079637A (en) * | 2019-12-20 | 2021-06-30 | 에스케이하이닉스 주식회사 | Data Storage Apparatus and Operation Method Thereof |
CN111030676A (en) * | 2019-12-27 | 2020-04-17 | 天津芯海创科技有限公司 | Frequency division method and realization circuit for any integer clock with dynamically configurable coefficient |
KR20210105117A (en) * | 2020-02-18 | 2021-08-26 | 에스케이하이닉스 주식회사 | Memory device and test method thereof |
US11258447B2 (en) * | 2020-02-20 | 2022-02-22 | Apple Inc. | Integration of analog circuits inside digital blocks |
US12066476B2 (en) * | 2020-02-27 | 2024-08-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Systems and methods for duty cycle measurement |
US10833582B1 (en) | 2020-03-02 | 2020-11-10 | Semiconductor Components Industries, Llc | Methods and systems of power management for an integrated circuit |
US11086802B1 (en) * | 2020-03-16 | 2021-08-10 | Arm Limited | Apparatus and method for routing access requests in an interconnect |
WO2021232266A1 (en) * | 2020-05-20 | 2021-11-25 | 华为技术有限公司 | Control method and control device for chip |
US11227641B1 (en) | 2020-07-21 | 2022-01-18 | Micron Technology, Inc. | Arithmetic operations in memory |
CN112034918B (en) * | 2020-08-27 | 2022-08-05 | 烽火通信科技股份有限公司 | AVS voltage regulating circuit and device |
US12033238B2 (en) | 2020-09-24 | 2024-07-09 | Advanced Micro Devices, Inc. | Register compaction with early release |
US11803470B2 (en) * | 2020-09-25 | 2023-10-31 | Advanced Micro Devices, Inc. | Multi-level cache coherency protocol for cache line evictions |
US11520718B2 (en) * | 2020-10-20 | 2022-12-06 | Micron Technology, Inc. | Managing hazards in a memory controller |
EP4092556A1 (en) * | 2021-05-20 | 2022-11-23 | Nordic Semiconductor ASA | Bus decoder |
US11782874B2 (en) * | 2021-07-23 | 2023-10-10 | EMC IP Holding Company LLC | Bottom-up pre-emptive cache update in a multi-level redundant cache system |
US12112040B2 (en) * | 2021-08-16 | 2024-10-08 | International Business Machines Corporation | Data movement intimation using input/output (I/O) queue management |
US20230315643A1 (en) * | 2022-03-29 | 2023-10-05 | Microsoft Technology Licensing, Llc | Cache Data Provided Based on Data Availability |
US11983538B2 (en) * | 2022-04-18 | 2024-05-14 | Cadence Design Systems, Inc. | Load-store unit dual tags and replays |
US11955982B2 (en) * | 2022-06-29 | 2024-04-09 | Ati Technologies Ulc | Granular clock frequency division using dithering mechanism |
CN115328402A (en) * | 2022-08-18 | 2022-11-11 | 三星(中国)半导体有限公司 | Data caching method and device |
US20240072828A1 (en) * | 2022-08-29 | 2024-02-29 | Cisco Technology, Inc. | Improving radio frequency (rf) performance by optimizing temperature in an access point (ap) ecosystem |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6617893B1 (en) * | 1998-03-31 | 2003-09-09 | Lsi Logic Corporation | Digital variable clock divider |
US20110193596A1 (en) * | 2008-10-29 | 2011-08-11 | Atsufumi Shibayama | Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method |
US8422619B2 (en) * | 2008-10-29 | 2013-04-16 | Nec Corporation | Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method |
US20130176060A1 (en) * | 2010-09-02 | 2013-07-11 | Texas Instruments Incorporated | Asynchronous Clock Dividers to Reduce On-Chip Variations of Clock Timing |
Family Cites Families (205)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2939411C2 (en) * | 1979-09-28 | 1982-09-02 | Siemens AG, 1000 Berlin und 8000 München | Data processing system with virtual memory addressing |
US4646233A (en) * | 1984-06-20 | 1987-02-24 | Weatherford James R | Physical cache unit for computer |
US4648029A (en) * | 1984-08-27 | 1987-03-03 | International Business Machines Corporation | Multiplexed interrupt/DMA request arbitration apparatus and method |
US4785452A (en) * | 1986-04-25 | 1988-11-15 | International Business Machines Corporation | Error detection using variable field parity checking |
JP2558669B2 (en) * | 1986-12-29 | 1996-11-27 | 松下電器産業株式会社 | Floating point arithmetic unit |
US5113514A (en) * | 1989-08-22 | 1992-05-12 | Prime Computer, Inc. | System bus for multiprocessor computer system |
US5128889A (en) * | 1990-02-22 | 1992-07-07 | Matsushita Electric Industrial Co., Ltd. | Floating-point arithmetic apparatus with compensation for mantissa truncation |
US5220653A (en) * | 1990-10-26 | 1993-06-15 | International Business Machines Corporation | Scheduling input/output operations in multitasking systems |
JP2703418B2 (en) * | 1991-04-24 | 1998-01-26 | 株式会社東芝 | Central processing unit |
US5353431A (en) * | 1991-04-29 | 1994-10-04 | Intel Corporation | Memory address decoder with storage for memory attribute information |
US5553266A (en) * | 1992-04-24 | 1996-09-03 | Digital Equipment Corporation | Update vs. invalidate policy for a snoopy bus protocol |
US5319766A (en) * | 1992-04-24 | 1994-06-07 | Digital Equipment Corporation | Duplicate tag store for a processor having primary and backup cache memories in a multiprocessor computer system |
KR100294105B1 (en) * | 1992-04-29 | 2001-09-17 | 썬 마이크로시스템즈, 인코포레이티드 | Method and apparatus for coherent copy-back buffer in multiprocessor computer systems |
EP0597729A1 (en) * | 1992-11-13 | 1994-05-18 | Cyrix Corporation | Method of allowing write-back caching in a write-through environment |
US5581727A (en) * | 1993-03-22 | 1996-12-03 | Compaq Computer Corporation | Hierarchical cache system flushing scheme based on monitoring and decoding processor bus cycles for flush/clear sequence control |
US5729702A (en) * | 1993-06-21 | 1998-03-17 | Digital Equipment Corporation | Multi-level round robin arbitration system |
US5371772A (en) * | 1993-09-14 | 1994-12-06 | Intel Corporation | Programmable divider exhibiting a 50/50 duty cycle |
US5465260A (en) * | 1993-11-04 | 1995-11-07 | Cirrus Logic, Inc. | Dual purpose cyclic redundancy check |
US5442670A (en) | 1994-02-16 | 1995-08-15 | National Semiconductor Corporation | Circuit for dividing clock frequency by N.5 where N is an integer |
US5526510A (en) * | 1994-02-28 | 1996-06-11 | Intel Corporation | Method and apparatus for implementing a single clock cycle line replacement in a data cache unit |
US5564035A (en) * | 1994-03-23 | 1996-10-08 | Intel Corporation | Exclusive and/or partially inclusive extension cache system and method to minimize swapping therein |
JP2715900B2 (en) * | 1994-03-30 | 1998-02-18 | 日本電気株式会社 | Parallel data transmission equipment |
US5542088A (en) * | 1994-04-29 | 1996-07-30 | Intergraph Corporation | Method and apparatus for enabling control of task execution |
US5826052A (en) * | 1994-04-29 | 1998-10-20 | Advanced Micro Devices, Inc. | Method and apparatus for concurrent access to multiple physical caches |
US6021471A (en) * | 1994-11-15 | 2000-02-01 | Advanced Micro Devices, Inc. | Multiple level cache control system with address and data pipelines |
US5561779A (en) * | 1994-05-04 | 1996-10-01 | Compaq Computer Corporation | Processor board having a second level writeback cache system and a third level writethrough cache system which stores exclusive state information for use in a multiprocessor computer system |
US5692152A (en) * | 1994-06-29 | 1997-11-25 | Exponential Technology, Inc. | Master-slave cache system with de-coupled data and tag pipelines and loop-back |
US5537575A (en) * | 1994-06-30 | 1996-07-16 | Foley; Denis | System for handling cache memory victim data which transfers data from cache to the interface while CPU performs a cache lookup using cache status information |
US5684729A (en) * | 1994-09-19 | 1997-11-04 | Hitachi, Ltd. | Floating-point addition/substraction processing apparatus and method thereof |
JP2671821B2 (en) * | 1994-09-28 | 1997-11-05 | 日本電気株式会社 | Data transmission equipment |
US5619726A (en) * | 1994-10-11 | 1997-04-08 | Intel Corporation | Apparatus and method for performing arbitration and data transfer over multiple buses |
US5652915A (en) * | 1995-02-21 | 1997-07-29 | Northern Telecom Limited | System for controlling mode of operation of a data cache based on storing the DMA state of blocks by setting the DMA state to stall |
JP2768297B2 (en) * | 1995-03-23 | 1998-06-25 | 日本電気株式会社 | Data transfer method and device |
US5606662A (en) * | 1995-03-24 | 1997-02-25 | Advanced Micro Devices, Inc. | Auto DRAM parity enable/disable mechanism |
EP0735480B1 (en) * | 1995-03-31 | 2003-06-04 | Sun Microsystems, Inc. | Cache coherent computer system that minimizes invalidation and copyback operations |
US5752264A (en) * | 1995-03-31 | 1998-05-12 | International Business Machines Corporation | Computer architecture incorporating processor clusters and hierarchical cache memories |
US5742840A (en) * | 1995-08-16 | 1998-04-21 | Microunity Systems Engineering, Inc. | General purpose, multiple precision parallel operation, programmable media processor |
US7301541B2 (en) * | 1995-08-16 | 2007-11-27 | Microunity Systems Engineering, Inc. | Programmable processor and method with wide operations |
US5987544A (en) * | 1995-09-08 | 1999-11-16 | Digital Equipment Corporation | System interface protocol with optional module cache |
DE69631002T2 (en) * | 1995-09-28 | 2004-09-16 | Sanyo Electric Co., Ltd., Moriguchi | Adjustable frequency divider |
US5757686A (en) * | 1995-11-30 | 1998-05-26 | Hewlett-Packard Company | Method of decoupling the high order portion of the addend from the multiply result in an FMAC |
US5875462A (en) * | 1995-12-28 | 1999-02-23 | Unisys Corporation | Multi-processor data processing system with multiple second level caches mapable to all of addressable memory |
US5765196A (en) * | 1996-02-27 | 1998-06-09 | Sun Microsystems, Inc. | System and method for servicing copyback requests in a multiprocessor system with a shared memory |
US5956493A (en) * | 1996-03-08 | 1999-09-21 | Advanced Micro Devices, Inc. | Bus arbiter including programmable request latency counters for varying arbitration priority |
US5860117A (en) * | 1996-05-31 | 1999-01-12 | Sun Microsystems, Inc. | Apparatus and method to improve primary memory latencies using an eviction buffer to store write requests |
US5928316A (en) * | 1996-11-18 | 1999-07-27 | Samsung Electronics Co., Ltd. | Fused floating-point multiply-and-accumulate unit with carry correction |
US6122711A (en) * | 1997-01-07 | 2000-09-19 | Unisys Corporation | Method of and apparatus for store-in second level cache flush |
US5964871A (en) * | 1997-03-10 | 1999-10-12 | Compaq Computer Corporation | Resolution of resource conflicts by reduction of systems to solve |
US6073209A (en) * | 1997-03-31 | 2000-06-06 | Ark Research Corporation | Data storage controller providing multiple hosts with access to multiple storage subsystems |
US6105119A (en) * | 1997-04-04 | 2000-08-15 | Texas Instruments Incorporated | Data transfer circuitry, DSP wrapper circuitry and improved processor devices, methods and systems |
US6018763A (en) * | 1997-05-28 | 2000-01-25 | 3Com Corporation | High performance shared memory for a bridge router supporting cache coherency |
US6119196A (en) * | 1997-06-30 | 2000-09-12 | Sun Microsystems, Inc. | System having multiple arbitrating levels for arbitrating access to a shared memory by network ports operating at different data rates |
US6260137B1 (en) * | 1997-09-12 | 2001-07-10 | Siemens Aktiengesellschaft | Data processing unit with digital signal processing capabilities |
US6058447A (en) * | 1997-09-26 | 2000-05-02 | Advanced Micro Devices, Inc. | Handshake circuit and operating method for self-resetting circuits |
US6073212A (en) * | 1997-09-30 | 2000-06-06 | Sun Microsystems, Inc. | Reducing bandwidth and areas needed for non-inclusive memory hierarchy by using dual tags |
US6134633A (en) * | 1997-10-31 | 2000-10-17 | U.S. Philips Corporation | Prefetch management in cache memory |
US20020042861A1 (en) * | 1997-11-07 | 2002-04-11 | Kavipurapu Gautam Nag | Apparatus and method for implementing a variable block size cache |
US6052375A (en) * | 1997-11-26 | 2000-04-18 | International Business Machines Corporation | High speed internetworking traffic scaler and shaper |
US6092137A (en) * | 1997-11-26 | 2000-07-18 | Industrial Technology Research Institute | Fair data bus arbitration system which assigns adjustable priority values to competing sources |
US6119205A (en) * | 1997-12-22 | 2000-09-12 | Sun Microsystems, Inc. | Speculative cache line write backs to avoid hotspots |
US6148372A (en) * | 1998-01-21 | 2000-11-14 | Sun Microsystems, Inc. | Apparatus and method for detection and recovery from structural stalls in a multi-level non-blocking cache system |
US6226713B1 (en) * | 1998-01-21 | 2001-05-01 | Sun Microsystems, Inc. | Apparatus and method for queueing structures in a multi-level non-blocking cache subsystem |
JPH11250005A (en) * | 1998-03-05 | 1999-09-17 | Nec Corp | Bus controlling method, its device and storage medium storing bus control program |
US6356996B1 (en) * | 1998-03-24 | 2002-03-12 | Novell, Inc. | Cache fencing for interpretive environments |
US6490654B2 (en) * | 1998-07-31 | 2002-12-03 | Hewlett-Packard Company | Method and apparatus for replacing cache lines in a cache memory |
US6728839B1 (en) * | 1998-10-28 | 2004-04-27 | Cisco Technology, Inc. | Attribute based memory pre-fetching technique |
US6718457B2 (en) * | 1998-12-03 | 2004-04-06 | Sun Microsystems, Inc. | Multiple-thread processor for threaded software applications |
US7114056B2 (en) * | 1998-12-03 | 2006-09-26 | Sun Microsystems, Inc. | Local and global register partitioning in a VLIW processor |
US6519682B2 (en) * | 1998-12-04 | 2003-02-11 | Stmicroelectronics, Inc. | Pipelined non-blocking level two cache system with inherent transaction collision-avoidance |
US6272597B1 (en) * | 1998-12-31 | 2001-08-07 | Intel Corporation | Dual-ported, pipelined, two level cache system |
US6314500B1 (en) * | 1999-01-11 | 2001-11-06 | International Business Machines Corporation | Selective routing of data in a multi-level memory architecture based on source identification information |
US6389527B1 (en) * | 1999-02-08 | 2002-05-14 | Kabushiki Kaisha Toshiba | Microprocessor allowing simultaneous instruction execution and DMA transfer |
US6647468B1 (en) * | 1999-02-26 | 2003-11-11 | Hewlett-Packard Development Company, L.P. | Method and system for optimizing translation buffer recovery after a miss operation within a multi-processor environment |
GB9909196D0 (en) * | 1999-04-21 | 1999-06-16 | Texas Instruments Ltd | Transfer controller with hub and ports architecture |
US6542991B1 (en) * | 1999-05-11 | 2003-04-01 | Sun Microsystems, Inc. | Multiple-thread processor with single-thread interface shared among threads |
JP3699863B2 (en) * | 1999-07-12 | 2005-09-28 | 株式会社日立コミュニケーションテクノロジー | Error correction code apparatus, error correction code decoding apparatus, and transmission apparatus |
US6606686B1 (en) * | 1999-07-15 | 2003-08-12 | Texas Instruments Incorporated | Unified memory system architecture including cache and directly addressable static random access memory |
US6408345B1 (en) * | 1999-07-15 | 2002-06-18 | Texas Instruments Incorporated | Superscalar memory transfer controller in multilevel memory organization |
US6321305B1 (en) * | 1999-08-04 | 2001-11-20 | International Business Machines Corporation | Multiprocessor system bus with combined snoop responses explicitly cancelling master allocation of read data |
US6275909B1 (en) * | 1999-08-04 | 2001-08-14 | International Business Machines Corporation | Multiprocessor system bus with system controller explicitly updating snooper cache state information |
JP3922844B2 (en) * | 1999-09-02 | 2007-05-30 | 富士通株式会社 | Cache TAG control method and information processing apparatus using the control method |
US6888843B2 (en) * | 1999-09-17 | 2005-05-03 | Advanced Micro Devices, Inc. | Response virtual channel for handling all responses |
US6412043B1 (en) * | 1999-10-01 | 2002-06-25 | Hitachi, Ltd. | Microprocessor having improved memory management unit and cache memory |
US6484238B1 (en) * | 1999-12-20 | 2002-11-19 | Hewlett-Packard Company | Apparatus and method for detecting snoop hits on victim lines issued to a higher level cache |
US6629187B1 (en) * | 2000-02-18 | 2003-09-30 | Texas Instruments Incorporated | Cache memory controlled by system address properties |
US6834338B1 (en) * | 2000-02-18 | 2004-12-21 | Texas Instruments Incorporated | Microprocessor with branch-decrement instruction that provides a target and conditionally modifies a test register if the register meets a condition |
US6725334B2 (en) * | 2000-06-09 | 2004-04-20 | Hewlett-Packard Development Company, L.P. | Method and system for exclusive two-level caching in a chip-multiprocessor |
US6636949B2 (en) * | 2000-06-10 | 2003-10-21 | Hewlett-Packard Development Company, L.P. | System for handling coherence protocol races in a scalable shared memory system based on chip multiprocessing |
US6751720B2 (en) * | 2000-06-10 | 2004-06-15 | Hewlett-Packard Development Company, L.P. | Method and system for detecting and resolving virtual address synonyms in a two-level cache hierarchy |
US6697919B2 (en) * | 2000-06-10 | 2004-02-24 | Hewlett-Packard Development Company, L.P. | System and method for limited fanout daisy chaining of cache invalidation requests in a shared-memory multiprocessor system |
EP1182561B1 (en) * | 2000-08-21 | 2011-10-05 | Texas Instruments France | Cache with block prefetch and DMA |
US6738864B2 (en) * | 2000-08-21 | 2004-05-18 | Texas Instruments Incorporated | Level 2 cache architecture for multiprocessor with task—ID and resource—ID |
DE60041444D1 (en) * | 2000-08-21 | 2009-03-12 | Texas Instruments Inc | microprocessor |
US6681293B1 (en) * | 2000-08-25 | 2004-01-20 | Silicon Graphics, Inc. | Method and cache-coherence system allowing purging of mid-level cache entries without purging lower-level cache entries |
US6477622B1 (en) * | 2000-09-26 | 2002-11-05 | Sun Microsystems, Inc. | Simplified writeback handling |
US6704843B1 (en) * | 2000-10-26 | 2004-03-09 | International Business Machines Corporation | Enhanced multiprocessor response bus protocol enabling intra-cache line reference exchange |
US6469549B2 (en) | 2000-11-30 | 2002-10-22 | Infineon Technologies Ag | Apparatus and method for odd integer signal division |
US6499085B2 (en) * | 2000-12-29 | 2002-12-24 | Intel Corporation | Method and system for servicing cache line in response to partial cache line request |
US6810501B1 (en) * | 2001-01-03 | 2004-10-26 | Juniper Networks, Inc. | Single cycle cyclic redundancy checker/generator |
CN1268062C (en) * | 2001-02-13 | 2006-08-02 | 三星电子株式会社 | Apparatus and method for generating codes in communication system |
US7856543B2 (en) * | 2001-02-14 | 2010-12-21 | Rambus Inc. | Data processing architectures for packet handling wherein batches of data packets of unpredictable size are distributed across processing elements arranged in a SIMD array operable to process different respective packet protocols at once while executing a single common instruction stream |
WO2002069157A1 (en) * | 2001-02-28 | 2002-09-06 | Brecis Communications Corporation | A subsystem boot and peripheral data transfer architecture for a subsystem of a system-on-chip |
US6701417B2 (en) * | 2001-04-11 | 2004-03-02 | Sun Microsystems, Inc. | Method and apparatus for supporting multiple cache line invalidations per cycle |
US20020169935A1 (en) * | 2001-05-10 | 2002-11-14 | Krick Robert F. | System of and method for memory arbitration using multiple queues |
US6820228B1 (en) * | 2001-06-18 | 2004-11-16 | Network Elements, Inc. | Fast cyclic redundancy check (CRC) generation |
US7543100B2 (en) * | 2001-06-18 | 2009-06-02 | 3Par, Inc. | Node controller for a data storage system |
US20040172631A1 (en) * | 2001-06-20 | 2004-09-02 | Howard James E | Concurrent-multitasking processor |
US6832280B2 (en) * | 2001-08-10 | 2004-12-14 | Freescale Semiconductor, Inc. | Data processing system having an adaptive priority controller |
US7472230B2 (en) * | 2001-09-14 | 2008-12-30 | Hewlett-Packard Development Company, L.P. | Preemptive write back controller |
US6938127B2 (en) * | 2001-09-25 | 2005-08-30 | Intel Corporation | Reconfiguring memory to reduce boot time |
EP1304804A3 (en) * | 2001-10-10 | 2006-07-12 | STMicroelectronics Pvt. Ltd | Fractional divider |
US6810465B2 (en) * | 2001-10-31 | 2004-10-26 | Hewlett-Packard Development Company, L.P. | Limiting the number of dirty entries in a computer cache |
US6718444B1 (en) * | 2001-12-20 | 2004-04-06 | Advanced Micro Devices, Inc. | Read-modify-write for partial writes in a memory controller |
US7089362B2 (en) * | 2001-12-27 | 2006-08-08 | Intel Corporation | Cache memory eviction policy for combining write transactions |
US6868503B1 (en) | 2002-01-19 | 2005-03-15 | National Semiconductor Corporation | Adaptive voltage scaling digital processing component and method of operating the same |
US6954812B2 (en) * | 2002-03-05 | 2005-10-11 | Hewlett-Packard Development Company, L.P. | Two-stage round robin arbitration system |
AU2003220683A1 (en) * | 2002-04-08 | 2003-10-27 | University Of Texas System | Non-uniform cache apparatus, systems, and methods |
US7146468B2 (en) * | 2002-04-24 | 2006-12-05 | Ip-First, Llc. | Cache memory and method for handling effects of external snoops colliding with in-flight operations internally to the cache |
US7114043B2 (en) * | 2002-05-15 | 2006-09-26 | Broadcom Corporation | Ambiguous virtual channels |
US7149227B2 (en) * | 2002-05-31 | 2006-12-12 | Mellanox Technologies Ltd. | Round-robin arbiter with low jitter |
US20030236963A1 (en) * | 2002-06-25 | 2003-12-25 | Mike Ryken | Method for fetching word instruction in a word-based processor and circuit to perform the same |
US6986023B2 (en) * | 2002-08-09 | 2006-01-10 | Intel Corporation | Conditional execution of coprocessor instruction based on main processor arithmetic flags |
US20040059879A1 (en) * | 2002-09-23 | 2004-03-25 | Rogers Paul L. | Access priority protocol for computer system |
JP4266619B2 (en) * | 2002-11-25 | 2009-05-20 | 株式会社ルネサステクノロジ | Arbitration circuit |
US20040103251A1 (en) * | 2002-11-26 | 2004-05-27 | Mitchell Alsup | Microprocessor including a first level cache and a second level cache having different cache line sizes |
US7003628B1 (en) * | 2002-12-27 | 2006-02-21 | Unisys Corporation | Buffered transfer of data blocks between memory and processors independent of the order of allocation of locations in the buffer |
US7657772B2 (en) * | 2003-02-13 | 2010-02-02 | International Business Machines Corporation | Thermally aware integrated circuit |
US7191383B2 (en) * | 2003-03-28 | 2007-03-13 | International Business Machines Corporation | System and method for optimizing iterative circuit for cyclic redundancy check (CRC) calculation |
US7149829B2 (en) * | 2003-04-18 | 2006-12-12 | Sonics, Inc. | Various methods and apparatuses for arbitration among blocks of functionality |
US7120714B2 (en) * | 2003-05-27 | 2006-10-10 | Intel Corporation | High-speed starvation-free arbiter system, rotating-priority arbiter, and two stage arbitration method |
US7284080B2 (en) * | 2003-07-07 | 2007-10-16 | Sigmatel, Inc. | Memory bus assignment for functional devices in an audio/video signal processing system |
US7353362B2 (en) * | 2003-07-25 | 2008-04-01 | International Business Machines Corporation | Multiprocessor subsystem in SoC with bridge between processor clusters interconnetion and SoC system bus |
US7240277B2 (en) * | 2003-09-26 | 2007-07-03 | Texas Instruments Incorporated | Memory error detection reporting |
US7689738B1 (en) * | 2003-10-01 | 2010-03-30 | Advanced Micro Devices, Inc. | Peripheral devices and methods for transferring incoming data status entries from a peripheral to a host |
GB2411975B (en) * | 2003-12-09 | 2006-10-04 | Advanced Risc Mach Ltd | Data processing apparatus and method for performing arithmetic operations in SIMD data processing |
US7310722B2 (en) * | 2003-12-18 | 2007-12-18 | Nvidia Corporation | Across-thread out of order instruction dispatch in a multithreaded graphics processor |
US7441105B1 (en) * | 2004-01-02 | 2008-10-21 | Altera Corporation | Reducing multiplexer circuitry for operand select logic associated with a processor |
TWI242134B (en) * | 2004-02-12 | 2005-10-21 | Via Tech Inc | Data extraction method and system |
US7769950B2 (en) * | 2004-03-24 | 2010-08-03 | Qualcomm Incorporated | Cached memory system and cache controller for embedded digital signal processor |
US7336284B2 (en) * | 2004-04-08 | 2008-02-26 | Ati Technologies Inc. | Two level cache memory architecture |
US7430638B2 (en) * | 2004-06-14 | 2008-09-30 | Mossman Holdings Llc | Adaptive input / output compressed system and data cache and system using same |
US7761529B2 (en) * | 2004-06-30 | 2010-07-20 | Intel Corporation | Method, system, and program for managing memory requests by devices |
US7243200B2 (en) * | 2004-07-15 | 2007-07-10 | International Business Machines Corporation | Establishing command order in an out of order DMA command queue |
US7213106B1 (en) * | 2004-08-09 | 2007-05-01 | Sun Microsystems, Inc. | Conservative shadow cache support in a point-to-point connected multiprocessing node |
US9280473B2 (en) * | 2004-12-02 | 2016-03-08 | Intel Corporation | Method and apparatus for accessing physical memory from a CPU or processing element in a high performance manner |
US20060242150A1 (en) * | 2004-12-21 | 2006-10-26 | Fabrice Jogand-Coulomb | Method using control structure for versatile content control |
US7149645B2 (en) * | 2004-12-30 | 2006-12-12 | Intel Corporation | Method and apparatus for accurate on-die temperature measurement |
US8135910B2 (en) * | 2005-02-11 | 2012-03-13 | International Business Machines Corporation | Bandwidth of a cache directory by slicing the cache directory into two smaller cache directories and replicating snooping logic for each sliced cache directory |
US7373462B2 (en) * | 2005-03-29 | 2008-05-13 | International Business Machines Corporation | Snoop filter for filtering snoop requests |
US20060259701A1 (en) * | 2005-05-16 | 2006-11-16 | Texas Instruments Incorporated | Providing cache status information across multiple cache levels |
US7536605B2 (en) * | 2005-05-25 | 2009-05-19 | Alcatel-Lucent Usa Inc. | Injection of software faults into an operational system |
US9176741B2 (en) * | 2005-08-29 | 2015-11-03 | Invention Science Fund I, Llc | Method and apparatus for segmented sequential storage |
US7398361B2 (en) * | 2005-08-30 | 2008-07-08 | P.A. Semi, Inc. | Combined buffer for snoop, store merging, load miss, and writeback operations |
US7984241B2 (en) * | 2005-09-16 | 2011-07-19 | Hewlett-Packard Development Company, L.P. | Controlling processor access to cache memory |
US8019944B1 (en) * | 2005-09-28 | 2011-09-13 | Oracle America, Inc. | Checking for a memory ordering violation after a speculative cache write |
US7302510B2 (en) * | 2005-09-29 | 2007-11-27 | International Business Machines Corporation | Fair hierarchical arbiter |
US8817029B2 (en) * | 2005-10-26 | 2014-08-26 | Via Technologies, Inc. | GPU pipeline synchronization and control system and method |
JP4993913B2 (en) * | 2006-01-13 | 2012-08-08 | 株式会社日立製作所 | Storage control device and data management method thereof |
US7543116B2 (en) * | 2006-01-30 | 2009-06-02 | International Business Machines Corporation | Data processing system, cache system and method for handling a flush operation in a data processing system having multiple coherency domains |
JP4621604B2 (en) * | 2006-02-20 | 2011-01-26 | 株式会社東芝 | Bus device, bus system, and information transfer method |
US8826280B1 (en) * | 2006-03-23 | 2014-09-02 | Emc Corporation | Processing raw information for performing real-time monitoring of task queues |
US8621120B2 (en) * | 2006-04-17 | 2013-12-31 | International Business Machines Corporation | Stalling of DMA operations in order to do memory migration using a migration in progress bit in the translation control entry mechanism |
US20070268825A1 (en) * | 2006-05-19 | 2007-11-22 | Michael Corwin | Fine-grain fairness in a hierarchical switched system |
WO2008004592A1 (en) * | 2006-07-04 | 2008-01-10 | Sharp Kabushiki Kaisha | Communication device and apparatus, communication device control method and control program, and computer readable recording medium |
US7467280B2 (en) * | 2006-07-05 | 2008-12-16 | International Business Machines Corporation | Method for reconfiguring cache memory based on at least analysis of heat generated during runtime, at least by associating an access bit with a cache line and associating a granularity bit with a cache line in level-2 cache |
US7887235B2 (en) * | 2006-08-30 | 2011-02-15 | Freescale Semiconductor, Inc. | Multiple sensor thermal management for electronic devices |
US20080059672A1 (en) * | 2006-08-30 | 2008-03-06 | Irish John D | Methods and Apparatus for Scheduling Prioritized Commands on a Bus |
US20080059674A1 (en) * | 2006-09-01 | 2008-03-06 | Jiaxiang Shi | Apparatus and method for chained arbitration of a plurality of inputs |
US20080091866A1 (en) * | 2006-10-12 | 2008-04-17 | International Business Machines Corporation | Maintaining forward progress in a shared L2 by detecting and breaking up requestor starvation |
WO2008047180A1 (en) * | 2006-10-20 | 2008-04-24 | Freescale Semiconductor, Inc. | System and method for fetching an information unit |
US7606976B2 (en) * | 2006-10-27 | 2009-10-20 | Advanced Micro Devices, Inc. | Dynamically scalable cache architecture |
US7856532B2 (en) * | 2006-11-03 | 2010-12-21 | Arm Limited | Cache logic, data processing apparatus including cache logic, and a method of operating cache logic |
US8762087B2 (en) | 2006-11-17 | 2014-06-24 | Texas Instruments Incorporated | Accurate integrated circuit performance prediction using on-board sensors |
US20080140941A1 (en) * | 2006-12-07 | 2008-06-12 | Dasgupta Gargi B | Method and System for Hoarding Content on Mobile Clients |
US7603490B2 (en) * | 2007-01-10 | 2009-10-13 | International Business Machines Corporation | Barrier and interrupt mechanism for high latency and out of order DMA device |
US7725657B2 (en) * | 2007-03-21 | 2010-05-25 | Intel Corporation | Dynamic quality of service (QoS) for a shared cache |
WO2008155844A1 (en) * | 2007-06-20 | 2008-12-24 | Fujitsu Limited | Data processing unit and method for controlling cache |
US7809889B2 (en) * | 2007-07-18 | 2010-10-05 | Texas Instruments Incorporated | High performance multilevel cache hierarchy |
US7865669B2 (en) * | 2007-08-02 | 2011-01-04 | International Machines Business Corporation | System and method for dynamically selecting the fetch path of data for improving processor performance |
US7734856B2 (en) * | 2007-08-22 | 2010-06-08 | Lantiq Deutschland Gmbh | Method for operating a plurality of arbiters and arbiter system |
US20090157968A1 (en) * | 2007-12-12 | 2009-06-18 | International Business Machines Corporation | Cache Memory with Extended Set-associativity of Partner Sets |
GB2457265B (en) * | 2008-02-07 | 2010-06-09 | Imagination Tech Ltd | Prioritising of instruction fetching in microprocessor systems |
JP2009193107A (en) * | 2008-02-12 | 2009-08-27 | Panasonic Corp | Memory access device |
US8180975B2 (en) * | 2008-02-26 | 2012-05-15 | Microsoft Corporation | Controlling interference in shared memory systems using parallelism-aware batch scheduling |
US8117395B1 (en) * | 2008-06-25 | 2012-02-14 | Marvell Israel (Misl) Ltd. | Multi-stage pipeline for cache access |
US8151008B2 (en) * | 2008-07-02 | 2012-04-03 | Cradle Ip, Llc | Method and system for performing DMA in a multi-core system-on-chip using deadline-based scheduling |
US8131947B2 (en) * | 2008-08-29 | 2012-03-06 | Freescale Semiconductor, Inc. | Cache snoop limiting within a multiple master data processing system |
US8782348B2 (en) * | 2008-09-09 | 2014-07-15 | Via Technologies, Inc. | Microprocessor cache line evict array |
JP2010128698A (en) * | 2008-11-26 | 2010-06-10 | Toshiba Corp | Multiprocessor system |
US8117397B2 (en) * | 2008-12-16 | 2012-02-14 | International Business Machines Corporation | Victim cache line selection |
JP5338819B2 (en) * | 2008-12-17 | 2013-11-13 | 日本電気株式会社 | Clock dividing circuit and clock dividing method |
US20100191911A1 (en) * | 2008-12-23 | 2010-07-29 | Marco Heddes | System-On-A-Chip Having an Array of Programmable Processing Elements Linked By an On-Chip Network with Distributed On-Chip Shared Memory and External Shared Memory |
US20100191913A1 (en) * | 2009-01-26 | 2010-07-29 | Agere Systems Inc. | Reconfiguration of embedded memory having a multi-level cache |
US8688964B2 (en) * | 2009-07-20 | 2014-04-01 | Microchip Technology Incorporated | Programmable exception processing latency |
US8359421B2 (en) * | 2009-08-06 | 2013-01-22 | Qualcomm Incorporated | Partitioning a crossbar interconnect in a multi-channel memory system |
US9052375B2 (en) | 2009-09-10 | 2015-06-09 | The Boeing Company | Method for validating aircraft traffic control data |
US8365036B2 (en) * | 2009-09-16 | 2013-01-29 | Freescale Semiconductor, Inc. | Soft error correction in a memory array and method thereof |
US8599863B2 (en) * | 2009-10-30 | 2013-12-03 | Calxeda, Inc. | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US8134389B2 (en) * | 2010-03-25 | 2012-03-13 | Apple Inc. | Programmable frequency divider |
US8560796B2 (en) * | 2010-03-29 | 2013-10-15 | Freescale Semiconductor, Inc. | Scheduling memory access requests using predicted memory timing and state information |
US20110246688A1 (en) * | 2010-04-01 | 2011-10-06 | Irwin Vaz | Memory arbitration to ensure low latency for high priority memory requests |
US8386714B2 (en) * | 2010-06-29 | 2013-02-26 | International Business Machines Corporation | Reducing write amplification in a cache with flash memory used as a write cache |
US8850131B2 (en) * | 2010-08-24 | 2014-09-30 | Advanced Micro Devices, Inc. | Memory request scheduling based on thread criticality |
US8977819B2 (en) * | 2010-09-21 | 2015-03-10 | Texas Instruments Incorporated | Prefetch stream filter with FIFO allocation and stream direction prediction |
US8904115B2 (en) * | 2010-09-28 | 2014-12-02 | Texas Instruments Incorporated | Cache with multiple access pipelines |
-
2011
- 2011-08-18 US US13/212,895 patent/US8904115B2/en active Active
- 2011-08-25 US US13/218,131 patent/US8547164B2/en active Active
- 2011-09-12 US US13/230,131 patent/US20120290755A1/en not_active Abandoned
- 2011-09-15 US US13/233,025 patent/US8880855B2/en active Active
- 2011-09-20 US US13/237,749 patent/US9075743B2/en active Active
- 2011-09-21 US US13/239,027 patent/US8683115B2/en active Active
- 2011-09-21 US US13/239,065 patent/US20120079155A1/en not_active Abandoned
- 2011-09-21 US US13/239,045 patent/US8732416B2/en active Active
- 2011-09-22 US US13/241,175 patent/US9195610B2/en active Active
- 2011-09-22 US US13/240,479 patent/US8904110B2/en active Active
- 2011-09-23 US US13/243,370 patent/US8904260B2/en active Active
- 2011-09-23 US US13/243,411 patent/US8607000B2/en active Active
- 2011-09-23 US US13/243,335 patent/US8707127B2/en active Active
- 2011-09-26 US US13/245,183 patent/US9075744B2/en active Active
- 2011-09-26 US US13/245,206 patent/US8656105B2/en active Active
- 2011-09-26 US US13/245,211 patent/US8732398B2/en active Active
- 2011-09-26 US US13/245,195 patent/US8661199B2/en active Active
- 2011-09-26 US US13/245,164 patent/US8560896B2/en active Active
- 2011-09-26 US US13/245,178 patent/US9009408B2/en active Active
- 2011-09-28 US US13/247,195 patent/US8856446B2/en active Active
- 2011-09-28 US US13/247,222 patent/US8683137B2/en active Active
- 2011-09-28 US US13/247,260 patent/US9183084B2/en active Active
- 2011-09-28 US US13/247,963 patent/US8832166B2/en active Active
- 2011-09-28 US US13/247,234 patent/US9189331B2/en active Active
- 2011-09-28 US US13/247,209 patent/US9003122B2/en active Active
- 2011-09-28 US US13/247,265 patent/US8532247B2/en active Active
- 2011-09-28 US US13/247,247 patent/US20120198165A1/en not_active Abandoned
-
2013
- 2013-05-06 US US13/888,050 patent/US8598932B2/en active Active
-
2015
- 2015-03-04 US US14/637,580 patent/US9268708B2/en active Active
- 2015-06-02 US US14/728,541 patent/US9298643B2/en active Active
- 2015-10-15 US US14/884,138 patent/US9575901B2/en active Active
-
2018
- 2018-05-29 US US15/991,241 patent/US10713180B2/en active Active
-
2020
- 2020-06-30 US US16/916,239 patent/US11537532B2/en active Active
-
2022
- 2022-12-19 US US18/083,703 patent/US20230244611A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6617893B1 (en) * | 1998-03-31 | 2003-09-09 | Lsi Logic Corporation | Digital variable clock divider |
US20110193596A1 (en) * | 2008-10-29 | 2011-08-11 | Atsufumi Shibayama | Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method |
US8422619B2 (en) * | 2008-10-29 | 2013-04-16 | Nec Corporation | Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method |
US20130176060A1 (en) * | 2010-09-02 | 2013-07-11 | Texas Instruments Incorporated | Asynchronous Clock Dividers to Reduce On-Chip Variations of Clock Timing |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8598932B2 (en) | Integer and half clock step division digital variable clock divider | |
US8732370B2 (en) | Multilayer arbitration for access to multiple destinations | |
US10853304B2 (en) | System on chip including clock management unit and method of operating the system on chip | |
US7296174B2 (en) | Apparatus and method to interface two different clock domains | |
US20130054852A1 (en) | Deadlock Avoidance in a Multi-Node System | |
US8754681B2 (en) | Multi-part clock management | |
CN113312303B (en) | Micro-architecture system of processor, soC chip and low-power-consumption intelligent equipment | |
US11275708B2 (en) | System on chip including clock management unit and method of operating the system on chip | |
EP4155960A1 (en) | Three-dimensional stacked programmable logic fabric and processor design architecture | |
US8990455B1 (en) | Offloading tasks from a central processing unit to peripheral function engines | |
EP1083487A2 (en) | Configuration bus reconfigurable/reprogrammable interface for expanded direct memory access processor | |
CN115686638A (en) | Unobstructed external device invocation | |
Walters et al. | Multicore SoC for on-board payload signal processing | |
JP7377811B2 (en) | Data processing engine tile architecture for integrated circuits | |
US5734927A (en) | System having registers for receiving data, registers for transmitting data, both at a different clock rate, and control circuitry for shifting the different clock rates | |
Wächter et al. | HeMPS-S: A homogeneous NoC-based MPSoCs framework prototyped in FPGAs | |
Kim et al. | A scalable multi-chip YOLO accelerator with a lightweight inter-chip adapter | |
Lin et al. | A system solution for High-Performance, low power SDR | |
Krishna | FPGA Implementation of On-Chip Network | |
Jingye et al. | Design and Realization of a Shared Storage Type SOPC Parallel System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |