US8507118B2 - Secondary battery and fabrication method thereof - Google Patents

Secondary battery and fabrication method thereof Download PDF

Info

Publication number
US8507118B2
US8507118B2 US13/211,401 US201113211401A US8507118B2 US 8507118 B2 US8507118 B2 US 8507118B2 US 201113211401 A US201113211401 A US 201113211401A US 8507118 B2 US8507118 B2 US 8507118B2
Authority
US
United States
Prior art keywords
negative electrode
positive electrode
positive
current collector
fused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/211,401
Other versions
US20120058374A1 (en
Inventor
Kinya Aota
Toshiro Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Assigned to HITACHI VEHICLE ENERGY, LTD. reassignment HITACHI VEHICLE ENERGY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJITA, TOSHIRO, AOTA, KINYA
Publication of US20120058374A1 publication Critical patent/US20120058374A1/en
Application granted granted Critical
Publication of US8507118B2 publication Critical patent/US8507118B2/en
Assigned to HITACHI AUTOMOTIVE SYSTEMS, LTD. reassignment HITACHI AUTOMOTIVE SYSTEMS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HITACHI VEHICLE ENERGY, LTD.
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • H01M50/645Plugs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention relates to a secondary battery such as a lithium secondary battery and a fabrication method through which the secondary battery is manufactured.
  • a prismatic lithium secondary battery includes a flat jelly roll constituted with a winding assembly of a positive electrode formed by coating a positive foil with a positive active material, a negative electrode formed by coating a negative foil with a negative active material and a separator that prevents contact between the positive electrode and the negative electrode.
  • the jelly roll which is housed in a case, and a positive electrode connector terminal and a negative electrode connector terminal disposed at a lid so as to be exposed to the outside are electrically connected with the jelly roll via current collector plates.
  • the case and the lid are welded together and thus sealed and after an electrolyte is injected through an injection opening located at the lid, the injection opening is sealed through welding.
  • Japanese Laid Open Patent Publication No. 2009-259524 discloses a battery manufactured by inserting a cylindrical connector terminal via through holes formed at an external terminal, an insulating member, a lid and a gasket respectively, locking the individual members through swaging onto the connector terminal which is widened toward the outer circumferential side from its central axis and fusing the outer circumferential edge of the swaged portion of the connector terminal with the external terminal through spot laser welding.
  • Japanese Laid Open Patent Publication No. S 62-254992 discloses an aluminum laser welding method implemented in an oxygen-containing atmosphere, which assures a greater penetration depth of weld achieved by lowering the reflection rate with which the laser beam is reflected, via an oxide layer.
  • the laser welding method disclosed in Japanese Laid Open Patent Publication No. S 62-254992 does not factor in, in any way whatsoever, wet spreading of a weld pool occurring at a staged portion such as a swaged portion.
  • a jelly roll that includes a positive electrode and a negative electrode wound via a separator; a case housing the jelly roll; a lid that seals the case; and electrically conductive input/output members via which charge/discharge power is input and output between the jelly roll and an external load
  • the electrically conductive input/output members include, at least; a positive electrode current collector plate with one end thereof connected to the positive electrode; a negative electrode current collector plate with one end thereof connected to the negative electrode; a positive electrode external conductive member with one end thereof connected to another end of the positive electrode current collector plate and another end thereof extending to an outer side of the lid; a negative electrode external conductive member with one end thereof connected to another end of the negative electrode current collector plate and another end thereof extending to the outer side of the lid; the one end of the positive electrode external conductive member and the one end of the negative electrode external conductive member are respectively swage-fused to the other end of the positive electrode current collector plate and the other end
  • the oxide layer of a secondary battery according to the 1st aspect may assume a film thickness required to minimize wettability of a molten metal at the swage-fused area.
  • the one end of the swage-fused positive electrode external conductive member and the one end of the swage-fused negative electrode external conductive member each include a staged portion passing through the positive electrode current collector plate or the negative electrode current collector plate and projecting out through a surface of the positive electrode current collector plate or the negative electrode current collector plate; and the positive electrode external conductive member is fused with the positive electrode current collector plate at the staged portion and the negative electrode external conductive member is fused with the negative electrode current collector plate at the staged portion, with the oxide layer formed at the surface of each swage-fused area.
  • the positive electrode external conductive member includes; a positive electrode connector terminal with one end thereof swage-fused to the positive electrode current collector plate; and a positive electrode external terminal disposed on the outer side of the lid, with another end thereof passing through the positive electrode external terminal and the positive electrode connector terminal swage-fused with the positive electrode external terminal;
  • the negative electrode external conductive member includes; a negative electrode connector terminal with one end thereof swage-fused to the negative electrode current collector plate; and a negative electrode external terminal disposed on the outer side of the lid, with another end thereof passing through negative electrode external terminal and the negative electrode connector terminal swage-fused with the negative electrode external terminal; and the oxide layer is formed at the surface of each swage-fused area where the positive or negative electrode connector terminal is swage-fused with the positive or negative external terminal.
  • the other end of the swage-fused positive electrode connector terminal and the other end of the swage-fused negative electrode connector terminal each include a staged portion projecting out through a surface of the positive electrode external terminal or the negative electrode external terminal; and the positive electrode connector terminal is fused with the positive electrode external terminal at the staged portion and the negative electrode connector terminal is fused with the negative electrode external terminal at the staged portion, with the oxide layer formed at the surface of each swage-fused area.
  • the other end of the positive electrode external conductive member and the other end of the negative electrode external conductive member of a secondary battery according to the 1st aspect may be each a terminal connected with the external load.
  • the surface of the swage-fused area of a secondary battery according to the 1st aspect may assume a projecting shape.
  • a secondary battery comprises: a jelly roll that includes a positive electrode and a negative electrode wound via a separator; a case housing the winding back; a lid that seals the case; and electrically conductive input/output members via which charge/discharge currents are input and output between the jelly roll and an external load, wherein: the electrically conductive input/output members include, at least; a positive electrode current collector plate with one end thereof connected to the positive electrode; a negative electrode current collector plate with one end thereof connected to the negative electrode; a positive electrode connector terminal with one end thereof connected to the positive electrode current collector plate; a negative electrode connector terminal with one end thereof connected to the negative electrode current collector plate; and a positive electrode external terminal disposed on an outer side of the lid, which is swage-fused with the positive electrode connector terminal with another end of the positive electrode connector terminal passing through the positive electrode external terminal and a negative electrode external terminal disposed on the outer side of the lid, which is swage-fused with the
  • the other end of the swage-fused positive electrode connector terminal and the other end of the swage-fused negative electrode connector terminal each include a staged portion projecting out through a surface of the positive electrode external terminal or the negative electrode external terminal; and the positive electrode connector terminal is fused with the positive electrode external terminal at the staged portion and the negative electrode connector terminal is fused with the negative electrode external terminal at the staged portion, with the oxide layer formed at the surface of each swage-fused area.
  • the surface of the swage-fused area of a secondary battery according to the 8th aspect may assume a projecting shape.
  • a secondary battery fabrication method through which a secondary battery according to the 1st aspect is manufactured comprises: a welding step in which the swage-fused area is formed through laser welding executed within an atmosphere containing oxygen with an oxygen concentration of 10% or higher.
  • welding target members of a secondary battery fabrication method according to the 11th aspect may be exposed to air while undergoing laser welding in the welding step.
  • a secondary battery fabrication method comprises: a first step in which the jelly roll is manufactured by winding the positive electrode and the negative electrode via the separator; a second step in which the positive electrode connector terminal and the negative electrode connector terminal are respectively swaged with the positive electrode current collector plate and the negative electrode current collector plate used to connect the positive electrode and the negative electrode to the positive electrode external terminal and the negative electrode external terminal respectively; a third step in which the positive electrode connector terminal and the negative electrode connector terminal are respectively swaged with the positive electrode external terminal and the negative electrode external terminal; a fourth step in which the positive electrode current collector plate and the negative electrode current collector plate are respectively connected to the positive electrode and the negative electrode; a fifth step in which swaging portions formed through the second step are welded in an oxygen-containing atmosphere with a specific oxygen concentration; a sixth step in which swaging portions formed through the third step are welded in an oxygen-containing atmosphere with a specific oxygen concentration; a seventh step in which a
  • an occurrence of defective welding attributable to wet spreading of molten metal, manifesting specifically in a staged portion, can be prevented.
  • FIG. 1 is a perspective of the secondary battery achieved in an embodiment of the present invention.
  • FIG. 2 is a perspective showing the state of connection achieved by the jelly roll and the current collector plates in the secondary battery shown in FIG. 1 .
  • FIG. 3 is a perspective of the lid assembly members in the secondary battery in FIG. 1 .
  • FIG. 4 is a perspective showing the jelly roll in the secondary battery in FIG. 1 .
  • FIG. 5 is an exploded perspective of the positive electrode current collector plate and the positive electrode connector terminal in the secondary battery in FIG. 1 .
  • FIG. 6 shows, in a longitudinal sectional view, the positive electrode current collector plate and the positive electrode connector terminal in FIG. 5 assembled together.
  • FIG. 7 shows, in a longitudinal sectional view, the positive electrode connector terminal in FIG. 6 in a swaged state.
  • FIG. 8 is an exploded perspective of a gasket swaging portion in the secondary battery in FIG. 1 .
  • FIG. 9 shows, in a longitudinal sectional view, the positive electrode connector terminal in FIG. 7 with the positive electrode external terminal mounted thereat.
  • FIG. 10 shows, in a longitudinal sectional view, the positive electrode connector terminal in FIG. 9 in a swaged state.
  • FIG. 11 is a perspective of the positive electrode current collector plate and the positive electrode connector terminal having undergone the welding process, taken from the inside of the lid.
  • FIG. 12 is a perspective of a welding device.
  • FIG. 13 shows, in a longitudinal sectional view, an initial stage of the welding process in which the positive electrode connector terminal in FIG. 10 is welded onto the positive electrode external terminal.
  • FIG. 14 shows, in a longitudinal sectional view, an intermediate stage of the welding process in which the positive electrode connector terminal in FIG. 10 is welded onto the positive electrode external terminal.
  • FIG. 15 shows, in a longitudinal sectional view, a finishing stage of the welding process in which the positive electrode connector terminal in FIG. 10 is welded onto the positive electrode external terminal.
  • FIG. 16 shows, in a longitudinal sectional view, how the positive electrode current collector plate and the positive electrode connector terminal in FIG. 11 become welded together.
  • FIG. 17 presents a flowchart of an embodiment of the secondary battery manufacturing method according to the present invention.
  • FIG. 18 presents a flowchart of the external terminal-connector terminal welding step in FIG. 17 .
  • FIG. 19 presents a flowchart of the current collector plate-connector terminal welding step in FIG. 18 .
  • a secondary battery 100 is manufactured by first inserting a lid assembly 150 shown in FIG. 2 into a case 61 and then sealing the case 61 .
  • FIG. 2 shows the lid assembly 150 assembled by mounting a jelly roll (winding pack) 6 shown in FIG. 4 at a lid-terminal assembly 170 shown in FIG. 3 .
  • the lid-terminal assembly 170 includes a lid 13 with positive and negative electrode external terminals 16 and 32 and positive and negative electrode current collector plates 10 and 31 mounted thereat.
  • the lid 13 As the lid 13 is welded to the case 61 along the peripheral edges thereof, the case 61 becomes sealed.
  • An electrolyte injection opening 13 b is formed at the lid 13 and after the case 61 is sealed, an electrolyte (not shown) is poured into the case 61 through the electrolyte injection opening 13 b .
  • the electrolyte injection opening 13 b is sealed by welding an electrolyte plug 62 thereto.
  • the positive electrode external terminal 16 and the negative electrode external terminal 32 respectively include through holes 16 b and 32 b formed therein, and the positive electrode external terminal 16 and the negative electrode external terminal 32 are connected to a bus bar (not shown) via bolts (not shown) inserted through the through holes 16 b and 32 b.
  • the jelly roll 6 is formed by winding a positive foil 1 and a negative foil 3 with a separator 5 inserted between them in a flat configuration.
  • the positive foil 1 is an aluminum foil with a 30 ⁇ m thickness
  • the negative foil 3 is a copper foil with a 15 ⁇ m thickness.
  • the separator 5 is constituted of a porous polyethylene resin.
  • the two surfaces of the positive foil 1 are coated with a positive active material 2
  • the two surfaces of the negative foil 3 are coated with a negative active material 4 . Electricity is charged and discharged between the positive active material 2 and the negative active material 4 at the jelly roll 6 .
  • Metal foil exposed areas where neither the active material 2 or 4 is applied are formed at the two ends of the winding assembly, one area located at an end of the positive foil 1 and extending along the length of the positive foil and the other area located at an end of the negative foil 3 and facing opposite the one area.
  • the positive electrode current collector plate 10 and the negative electrode current collector plate 31 are welded to these exposed areas, which are flattened.
  • the lid assembly 150 is constituted with the lid-terminal assembly 170 and the jelly roll 6 .
  • the lid-terminal assembly 170 includes the positive and negative electrode current collector plates 10 and 31 , which are welded respectively to the positive foil 1 and the negative foil 3 exposed at the two ends of the jelly roll 6 .
  • the positive and negative electrode current collector plates 10 and 31 are thus electrically and mechanically connected to the winding pack 60 .
  • the lid-terminal assembly 170 includes the lid 13 , the positive and negative electrode current collector plates 10 and 31 , positive and negative connector terminals 11 and 33 , gaskets 12 , insulating members 14 and the positive and negative electrode external terminals 16 and 32 , which are all integrated through the manufacturing steps to be described in detail later.
  • the positive electrode current collector plate 10 and the negative electrode current collector plate 31 are metal plates bent along the contours of the side surfaces of the jelly roll 6 located at the two ends that face opposite each other along the axial direction and are respectively constituted of the materials constituting the positive foil 1 and the negative foil 3 , i.e., aluminum and copper.
  • FIGS. 5 through 11 the lid-terminal assembly 170 is described in detail. It is to be noted that identical shapes and structures are assumed on the positive electrode side and on the negative electrode side and FIGS. 5 through 11 shows the structure on the positive electrode side.
  • the positive and negative electrode current collector plates 10 and 31 and the positive and negative electrode connector terminals 11 and 33 in FIG. 5 are locked through swaging in advance, as illustrated in FIGS. 6 and 7 .
  • through holes 10 a and 31 a are formed at the positive electrode current collector plate 10 and the negative electrode current collector plate 31
  • tubular portions 11 a and 11 b are present at the two ends of the positive electrode connector terminal 11 and at the two ends of the negative electrode connector terminal 33 .
  • the positive and negative electrode current collector plates 10 and 31 and the positive and negative connector terminals 11 and 33 are locked through swaging by first inserting the tubular portions 11 a and 33 a at the positive and negative electrode connector terminals 11 and 33 respectively through the through holes 10 a and 31 a at the positive and negative electrode current collector plates 10 and 31 .
  • the tubular portions 11 a and 33 a are then locked by swaging them toward the outer circumference, thereby forming swaging portions 11 c and 33 c respectively.
  • the positive and negative electrode current collector plates 10 and 31 become swage-locked to the positive and negative electrode connector terminals 11 and 33 respectively.
  • a through hole 13 a through which the positive and negative electrode connector terminals 11 and 33 are inserted, are formed at the lid 13 .
  • the positive and negative electrode connector terminals 11 and 33 respectively include shaft portions 11 b and 33 b inserted through the through holes 13 a to project out of the lid 13 and head portions 11 f and 33 f assuming a larger diameter than the shaft portions.
  • the positive and negative electrode connector terminals 11 and 33 are inserted through the through holes 13 a with gaskets 12 fitted around the shaft portions 11 b and 33 b .
  • the positive and negative electrode external terminals 16 and 32 are fitted, via the insulating members 14 , around the shaft portions 11 b and 33 b of the positive and negative electrode connector terminals 11 and 33 on the outside of the lid 13 .
  • the shaft portions 11 b and 33 b subsequently undergo a swaging step and a welding step.
  • FIG. 10 is a sectional view of the positive and negative electrode connector terminals 11 and 33 , i.e., the positive and negative electrode current collector plates 10 and 31 , locked onto the lid 13 together with the positive and negative external terminals 16 and 32 through the swaging step.
  • the swaging portions 11 c and 33 c and the swaging portions 11 d and 33 d are formed at the positive and negative electrode connector terminals 11 and 33 respectively on the inside and on the outside of the lid 13 , and the positive and negative electrode current collector plates 10 and 31 , the insulating members 14 and the positive and negative electrode external terminals 16 and 32 are securely fixed to the lid 13 by swage-locking the positive and negative electrode connector terminals 11 and 33 .
  • the head portions 11 f and 33 f are pressed into contact with the gaskets 12 through the swaging step to be described in detail later, thereby sealing the gaps between the lid 13 and the positive and negative electrode connector terminals 11 and 33 .
  • the shaft portions 11 b and 33 b at the positive and negative electrode connector terminals 11 and 33 become electrically connected with the positive and negative electrode external terminals 16 and 32 respectively while remaining electrically insulated from the lid 13 .
  • first swaging portions the swaging portions 11 c and 33 c formed to lock the current collector plates 10 and 31
  • second swaging portions the swaging portions 11 d and 33 d formed to lock the external terminals 16 and 32
  • the first swaging portions 11 c and 33 c and the second swaging portions 11 d and 33 d in the secondary battery 100 according to the present invention are not only mechanically locked but also fixed through welding. Through the swage-lock, the various members are mechanically locked while assuring a high level of strength. Through the welding fusion, the positive and negative electrode connector terminals and the positive and negative electrode external terminals are electrically connected so as to reduce the connection resistance.
  • the first and second swaging portions are welded in an oxygen-containing atmosphere so as to encourage formation of an oxide layer at the surfaces of the welded areas and the welded areas are formed in a projecting shape by minimizing the extent to which the molten metals, i.e., the wet weld pools, spread.
  • FIG. 11 is a perspective of the first swaging portion 11 c at which the positive electrode current collector plate 10 is locked through swaging, taken from the rear surface side of the lid 13 . It is to be noted, however, that FIG. 11 includes the reference numerals assigned to members included on the negative electrode side, which are referred to in the subsequent description. Likewise, FIGS. 13 through 16 also include the reference numerals assigned to the members included in the negative electrode side structure.
  • a plurality of welding spots 60 are formed through spot laser welding, which is a welding process executed by using laser light, at the circumferential edges of the first swaging portions 11 c and 33 c .
  • the welding spots 60 formed at the first swaging portions 11 c and 33 c will be referred to as first welding spots.
  • a plurality of welding spots 34 and a plurality of welding spots 35 are respectively formed at the circumferential edges of the second swaging portion 11 d and the second swaging portion 33 d through spot laser welding.
  • the welding spots 34 and 35 formed at the second swaging portions 11 d and 33 d will be referred to as second welding spots.
  • the positive and negative electrode current collector plates 10 and 31 , the positive and negative electrode connector terminals 11 and 33 and the positive and negative electrode external terminals 16 and 32 are securely connected both electrically and mechanically, and thus, better reliability is assured.
  • the welding device 300 includes a laser oscillator 40 , an optical fiber 41 , a machining head 42 and a chamber 43 .
  • the machining head 42 which radiates laser light 20 onto the welding spots 34 and 35 is installed in the chamber 43 and the oscillator 40 is connected, via the optical fiber 41 , to the machining head 42 .
  • the oscillator 40 generates YAG laser light through oscillation and directs the laser beam thus generated into the optical fiber 41 .
  • the laser light having been input to the optical fiber 41 is transmitted through the optical fiber 41 to the machining head 42 which outputs laser spotlight 20 by condensing the laser light at a condenser lens (not shown in the figure).
  • the atmosphere within the chamber 43 can be adjusted via an inflow port 44 and an outflow port 45 disposed thereat.
  • a lid-terminal assembly 170 A in a manufacturing-in-progress state with the positive and negative electrode connector terminals 11 and 33 and the positive and negative electrode external terminals 16 and 32 swage-locked to the lid 13 , is placed within the chamber 43 .
  • the air inside the chamber 43 is replaced with oxygen by supplying oxygen through the inflow port 44 while releasing the air through the outflow port 45 and the oxygen concentration within the chamber 43 is adjusted to a predetermined value.
  • the second welding spots 34 and 35 are welded within the atmosphere achieving the predetermined level of oxygen concentration thus achieved.
  • the swaging portions 11 d and 33 d are laser welded within the oxygen-containing atmosphere by radiating the laser spot light 20 onto the second swaging portions 34 and 35 in the chamber 43 , as shown in FIG. 13 .
  • oxide layers 25 through 27 are formed at each of the welding spots 34 and 35 in the secondary battery in the embodiment, as shown in FIG. 15 .
  • These oxide layers 25 through 27 limit the wet spread of a wet molten pool 24 (minimize the wettability).
  • the welding spot 34 or 35 does not crack.
  • the swaging portions 11 c and 31 c at which the positive and negative electrode collector plates 10 and 31 and the positive and negative electrode connector terminals 11 and 32 are swaged together in the secondary battery achieved in the embodiment, are laser welded in an oxygen-containing atmosphere.
  • the swaging portions 11 c and 33 c are each laser spot welded by supplying oxygen through a nozzle 47 toward each welding spot 60 .
  • the welding spot 60 becomes oxidized and an oxide layer 50 and an oxide layer 51 are formed over the area.
  • These oxide layers 50 and 51 limit the wet spread of a wet molten pool 48 .
  • the welding spot 60 does not crack.
  • molten pools 21 and 24 are formed at each of the second welding spots 34 and 35 ranging over the second swaging portions 11 d and 33 d and the surfaces of the external terminals 16 and 32 adjacent to the second swaging portions 11 d and 33 d (only the positive electrode external terminal 16 is shown in the figures).
  • the oxygen-containing atmosphere induces formation of oxide layers 22 and 25 at the surfaces of the molten pools 21 and 24 , formation of oxide layers 23 and 26 near the molten pools 21 and 24 at each of the second swaging portions 11 d and 33 d , and formation of an oxide layer 27 at the surface of the external terminal 16 or 32 adjacent to the second swaging portion 11 d or 33 d.
  • the molten pool 48 is formed at each of the first welding spots 60 ranging over the first swaging portion 11 c or 33 c and the surface of the current collector plate 10 or 31 adjacent to the first swaging portions 11 d and 33 d (only the positive electrode current collector plate 10 is shown in the figure).
  • the oxygen-containing atmosphere induces formation of oxide layers 49 and 50 at the surface of the molten pool 48 , formation of an oxide layer 51 near the molten pool 48 at each of the first swaging portions 11 c and 33 c , and formation of an oxide layer 51 at the surface of the current collector plate 10 or 31 adjacent to the first swaging portion 11 c or 33 c.
  • the wet molten metal can spread only if the heat of the molten pools 21 , 24 and 48 breaks the oxide layers 23 , 26 , 27 and 51 formed adjacent to the molten pools.
  • a high level of energy is required to break the oxide layers, i.e., the oxide layers cannot be readily destroyed.
  • the molten pools 21 , 24 and 48 are not allowed to spread readily.
  • the circumferential edges of the second swaging portions 11 d and 33 d are staged relative to the positive and negative electrode external terminals 16 and 32
  • the circumferential edges of the first swaging portions 11 c and 33 c are staged relative to the surfaces of the positive and negative electrode current collector plates 10 and 31 .
  • the molten pools 21 , 24 and 48 formed at the swaging portions 11 c , 11 d , 33 c and 33 d tend to flow downward toward the positive and negative electrode external terminals 16 and 32 and the positive and negative electrode current collector plates 10 and 31 taking up lower positions.
  • a high level of supporting force provided by the oxide layers 22 , 23 , 25 through 27 and 49 through 51 deters the downward flow.
  • the secondary battery in the embodiment is manufactured by oxidizing the surfaces of the members present around molten weld pools when welding the positive and negative electrode current collector plates 10 and 31 with the positive and negative electrode connector terminals 11 and 33 and welding the positive and negative electrode external terminals 16 and 32 with the positive and negative electrode connector terminals 11 and 33 , so as to minimize the extent to which the wet weld surfaces are allowed to spread and thus prevent cracking at the welded areas.
  • FIG. 17 shows the manufacturing procedure through which the secondary battery described above is manufactured.
  • step S 1701 The jelly roll 6 (see FIG. 4 ) is manufactured by winding the positive electrode and the negative electrode in a flat configuration.
  • step S 1702 The positive electrode current collector plate 10 and the negative electrode current collector plate 31 are respectively locked with the positive electrode connector terminal 11 and the negative electrode connector terminal 33 through swaging.
  • step S 1703 The positive electrode external terminal 16 and the negative electrode external terminal 32 are respectively locked with the positive electrode connector terminal 11 and the negative electrode connector terminal 33 through swaging.
  • step S 1704 The positive electrode external terminal 16 and the negative electrode external terminal 32 are respectively welded to the positive electrode connector terminal 11 and the negative electrode connector terminal 33 through laser welding. This step will be described in detail later.
  • step S 1705 The positive electrode current collector plate 10 and the negative electrode current collector plate 31 are respectively welded to the positive electrode connector terminal 11 and the negative electrode connector terminal 33 through laser welding. This step will be described in detail later.
  • step S 1706 The jelly roll 6 is connected with the positive and negative electrode current collector plates 10 and 31 .
  • step S 1707 The lid 13 is welded onto the case 61 and thus the case 61 is sealed.
  • step S 1708 The case 61 is filled with electrolyte, poured through the electrolyte injection opening 13 b.
  • step S 1709 The electrolyte injection opening 13 b is tightly sealed with the electrolyte plug 62 .
  • step S 1710 The secondary battery assembly process is completed through steps S 1701 to S 1709 described above.
  • step S 1704 executed as part of the manufacturing procedure shown in FIG. 17 to weld the positive and negative electrode external terminals 16 and 32 to the positive and negative electrode connector terminals 11 and 33 , includes the following steps, as shown in FIG. 18 .
  • step S 1801 A work-in-progress assembly 170 A, which is to become the lid-terminal assembly 170 , with the positive and negative electrode current collector plates 10 and 31 fully locked through swaging with the positive and negative electrode connector terminals 11 and 33 respectively and the positive and negative electrode external terminals 16 and 32 fully locked through swaging with the positive and negative electrode connector terminals 11 and 33 respectively, is placed inside the chamber 43 (see FIG. 12 ).
  • the inflow port 44 and the outflow port 45 are both open to the atmosphere, and thus, the chamber 43 is filled with air.
  • step S 1802 A gas with an oxygen concentration regulated to a predetermined level is delivered into the chamber 43 through the inflow port 44 , while the outflow port 45 remains open to the atmosphere.
  • step S 1803 The gas is continuously delivered into the chamber 43 through the inflow port 44 over a predetermined length of time while the outflow port 45 remains open to the atmosphere. As a result, the atmosphere within the chamber 43 is replaced with the gas containing oxygen at the predetermined concentration.
  • step S 1804 The positive electrode connector terminal 11 and the negative electrode connector terminal 33 are respectively welded to the positive electrode external terminal 16 and the negative electrode external terminal 32 , through spot welding at, for instance, four spots set for each weld site, by using the laser light 20 .
  • the pulse energy of the laser light 20 used in the welding process should be set to, for instance, 30 J.
  • the welding process is executed by radiating the laser light 20 condensed into, for instance, a 0.4 mm-diameter circular beam toward the area around the swaging portions 11 d or 33 d so as to condense the laser beam onto the surface of each welding spot 34 or 35 .
  • the radiating angle should be, for instance, 60° relative to the positive electrode external terminal 16 or the negative electrode external terminal 32 .
  • FIG. 13 does not include an illustration of the natural oxide layer and simply shows the oxide layer 19 assuming a significant thickness attributable to the oxidation.
  • FIG. 14 shows the state during the intermediate stage of the welding process in a sectional view.
  • each of the swaging portions 11 d and 33 d starts to partially melt after a specific length of time elapses and a molten weld pool 21 is formed as a result.
  • An aluminum (or copper) oxide layer is formed at the surface of the molten pool 21 . Since the specific gravity of the oxide layer formed inside the molten pool 21 is smaller than that of the liquid aluminum (liquid copper), the oxide layer comes up to the surface of the molten pool 21 and thus forms a thick oxide layer 22 together with the oxide layer already present at the surface. As a result, the oxide layer 19 in FIG.
  • FIG. 15 shows the late stage of the welding process in a sectional view.
  • the molten pool 24 increases its volume and a large volume molten pool 24 is formed after a specific length of time elapses.
  • An oxide layer 25 with a large thickness which includes the oxide layers 22 and 23 formed as shown in FIG. 14 , is formed at the surface of the molten pool 24 .
  • an oxide layer 26 is formed at the surface of the welding spot near the molten pool 24 at the swaged portions 11 d or 33 d and an oxide layer 27 is formed at the surface of the welding spot near the molten pool 24 at the positive electrode external terminal 16 or the negative electrode external terminal 32 .
  • the oxide layer 26 and the oxide layer 27 are new oxide layers formed due to the exposure to the oxygen-containing atmosphere at high temperature.
  • the molten pool 24 expands while destroying the aluminum oxide layer 26 assuming a significant thickness and a high melting point, which is present at the surface of the nearby welding spot. Since a high level of breaking energy is required to destroy the oxide layer 26 , the wettability at the molten pool 24 and the nearby welding spot surfaces is lowered. As a result, the extent to which the wet molten pool 24 is allowed to wet spread is minimized and the surface area of the molten pool 24 is not allowed to become very large. Thus, the molten pool 24 becomes solidified while sustaining a projecting surface shape. Since a low tensile residual stress level is assured at the center of the projecting surface of the molding pool 24 in the fully solidified state, cracking can be effectively prevented.
  • the oxide layers 25 through 27 assume film thicknesses large enough to minimize the wettability of the molten metals.
  • step S 1805 The positive and negative electrode connector terminals 11 and 33 become fully welded with the positive and negative electrode external terminals 16 and 32 through steps S 1801 to S 1804 described above.
  • step S 1705 executed as part of the manufacturing procedure shown in FIG. 17 to weld the positive and negative electrode current collector plates 10 and 31 to the positive and negative electrode connector terminals 11 and 33 , includes the following step, as shown in FIG. 19 .
  • step S 1901 While the welding process through which the positive and negative electrode connector terminals 11 and 33 are welded to the positive and negative electrode external terminals 16 and 32 is in progress, a work-in-progress assembly 170 B, to become the lid-terminal assembly 170 , is sprayed with oxygen through a side-gassing process, as shown in FIG. 16 .
  • the term “side gassing” process is used to refer to a processing step in which a gas is sprayed toward a welding spot 60 along a direction at a tilt relative to the direction in which the laser light 20 is radiated.
  • a processing step in which a gas is sprayed along a direction coaxial to the laser light 20 in contrast, is referred to as a “center-gassing” process.
  • FIG. 16 shows, in a sectional view, a state assumed during the welding process executed to weld the positive and negative electrode current collector plates 10 and 32 to the positive and negative electrode connector terminals 11 and 33 respectively.
  • the laser light 20 is radiated at a 60° tilt relative to the surface of the positive electrode current collector plate 10 or the negative electrode current collector plate 32 .
  • an oxide layer 50 and an oxide layer 51 formed by oxidizing each welding spot 60 with oxygen sprayed through the nozzle 47 toward the welding spot, deter the spread of the surface area of the wet molten pool 48 .
  • the molten pool 48 solidifies while sustaining a projecting surface shape and since a lower tensile residual stress level is assured at the center of the molten pool surface in the fully solidified molten pool, cracking can be effectively prevented.
  • the requirements imposed with regard to the oxygen-containing atmosphere match the requirements for the oxygen-containing atmosphere within which the positive and negative electrode connector terminals 11 and 33 are welded to the positive and negative external terminals 16 and 32 .
  • step S 1902 The positive and negative current collector plates 11 and 33 are welded to the positive and negative electrode connector terminals 16 and 32 at, for instance, four welding spots in each welding site, with the energy level of the laser light and the spot size set to match those assumed for the welding process through which the positive and negative electrode connector terminals 11 and 33 are welded with the positive and negative external terminals 16 and 32 .
  • the oxide layers initially formed at the swaged portions 11 c and 33 c increase their thicknesses and eventually, oxide layers 50 with a large thickness are formed as the oxide layers initially formed at the swaged portions become integrated with the oxide layers formed near the molten pools.
  • an oxide layer 51 is formed over the surface of each welding spot near the molten pool 48 at the swaged portion 11 c or 33 c and an oxide layer 51 is also formed over the surface of the welding spot near the molten pool 48 in the positive electrode current collector plate 10 or the negative electrode current collector plate 33 .
  • the wettability at the molten pool 48 and the nearby welding spot surfaces is lowered.
  • the extent to which the wet molten pool 48 is allowed to spread is minimized and the molten pool 48 becomes solidified while sustaining a projecting surface shape. Since a low tensile residual stress level is assured at the center of the projecting surface of the molding pool in the fully solidified state, cracking can be effectively prevented.
  • the negative electrode current collector plate 31 and the negative electrode connector terminal 33 are welded together at four welding spots.
  • step S 1903 The positive and negative electrode current collector plates 10 and 31 become fully welded with the positive and negative electrode connector terminals 11 and 33 through steps S 1901 and S 1902 described above.
  • the oxide layers 50 and 51 assume film thicknesses large enough to minimize the wettability of the molten metals.
  • the secondary battery manufacturing method according to the present invention described above includes welding steps in which swaging fusion spots are formed through laser welding executed in an atmosphere containing oxygen with an oxygen concentration of 10% or more.
  • the secondary battery manufacturing method achieved in the embodiment comprises a first step in which the jelly roll 6 is manufactured by winding the positive electrode 1 and the negative electrode 3 via the separator 5 , a second step in which the positive electrode connector terminal 11 and the negative electrode connector terminal 33 are respectively swaged with the positive electrode current collector plate 10 and the negative electrode current collector plate 31 used to connect the positive electrode 1 and the negative electrode 3 to the positive electrode external terminal 16 and the negative electrode external terminal 32 respectively, a third step in which the positive electrode connector terminal 11 and the negative electrode connector terminal 33 are respectively swaged with the positive electrode external terminal 16 and the negative electrode external terminal 32 , a fourth step in which the positive electrode current collector plate 10 and the negative electrode current collector plate 31 are respectively connected to the positive electrode 1 and the negative electrode 3 , a fifth step in which swaged portions formed through the second step are welded in an oxygen-containing atmosphere with a specific oxygen concentration, a sixth step in which swaged portions formed through the third step are welded in an oxygen-containing atmosphere with a specific oxygen concentration,
  • the positive and negative electrode current collector plates 10 and 31 are welded to the positive and negative electrode connector terminals 11 and 33 through laser welding executed in an atmosphere created by spraying oxygen.
  • the positive and negative electrode current collector plates 10 and 31 and the positive and negative electrode connector terminals 11 and 33 may be welded in an oxygen-containing atmosphere with a specific oxygen concentration created within the chamber 43 , as in the welding process executed to weld the positive and negative electrode connector terminals 11 and 33 to the positive and negative electrode external terminals 16 and 32 .
  • the secondary battery in the embodiment described above which includes the positive and negative electrode current collector plates 10 and 31 , the positive and negative electrode connector terminals 11 and 33 and the positive and negative electrode external terminals 16 and 32 , is manufactured by swage-locking the positive and negative electrode current collector plates 10 and 31 with the positive and negative electrode connector terminals 11 and 33 and then fusing the positive and negative electrode current collector plates 10 and 31 with the positive and negative electrode connector terminals 11 and 33 respectively (first locking portions) and then by swage-locking the positive and negative electrode connector terminals 11 and 33 to the positive and negative electrode external terminals 16 and 32 and also by fusing the positive and negative electrode current collector plates 10 and 31 to the positive and negative electrode connector terminals 11 and 33 respectively (second locking portions).
  • the present invention is not limited to this example and it may be adopted in a secondary battery in which the first locking portions alone are welded or a secondary battery in which the second locking portions alone are welded.
  • the secondary battery according to the present invention may comprise a jelly roll 6 that includes a positive electrode 1 and a negative electrode 3 wound via a separator 5 , a case 61 housing the winding back 6 , a lid 13 that seals the case 61 , and electrically conductive input/output members ( 10 ⁇ , 11 , 16 , 31 , 33 , 32 ) via which charge/discharge currents are input and output between the jelly roll 6 and an external load.
  • a jelly roll 6 that includes a positive electrode 1 and a negative electrode 3 wound via a separator 5 , a case 61 housing the winding back 6 , a lid 13 that seals the case 61 , and electrically conductive input/output members ( 10 ⁇ , 11 , 16 , 31 , 33 , 32 ) via which charge/discharge currents are input and output between the jelly roll 6 and an external load.
  • the electrically conductive input/output members may include, at least, a positive electrode current collector plate 10 with one end thereof connected to the positive electrode 1 , a negative electrode current collector plate 31 with one end thereof connected to the negative electrode 3 , a positive electrode external conductive member 11 with one end thereof connected to another end of the positive electrode current collector plate 10 and another end thereof extending to the outside of the lid 13 and a negative electrode external conductive member 33 with one end thereof connected to another end of the negative electrode current collector plate 31 and another end thereof extending to the outside of the lid 13 .
  • the one end of the positive electrode external conductive member 11 and the one end of the negative electrode external conductive member 33 may be respectively swage-fused to the other ends of the positive electrode current collector plate 10 and the negative electrode current collector plate 31 with oxide layers 50 and 51 formed at the surface of each swage-fused area.
  • the secondary battery according to the present invention may comprise a jelly roll 6 that includes a positive electrode 1 and a negative electrode 3 wound via a separator 5 , a case 61 housing the winding back 6 , a lid 13 that seals the case 61 , and electrically conductive input/output members ( 10 , 11 , 16 , 31 , 33 , 32 ) via which charge/discharge currents are input and output between the jelly roll 6 and an external load.
  • a jelly roll 6 that includes a positive electrode 1 and a negative electrode 3 wound via a separator 5 , a case 61 housing the winding back 6 , a lid 13 that seals the case 61 , and electrically conductive input/output members ( 10 , 11 , 16 , 31 , 33 , 32 ) via which charge/discharge currents are input and output between the jelly roll 6 and an external load.
  • the electrically conductive input/output members may include, at least, a positive electrode current collector plate 10 with one end thereof connected to the positive electrode 1 , a negative electrode current collector plate 31 with one end thereof connected to the negative electrode 3 , a positive electrode connector terminal 11 with one end thereof connected to the positive electrode current collector plate 10 , a negative electrode connector terminal 33 with one end thereof connected to the negative electrode current collector plate 31 , a positive electrode external terminal 16 disposed on an outer side of the lid 13 , which is swage-fused with the positive electrode connector terminal 11 with another end of the positive electrode connector terminal 11 passing through the positive electrode external terminal 16 , and a negative electrode external terminal 32 disposed on the outer side of the lid 13 , which is swage-fused with the negative electrode connector terminal 33 with another end of the negative electrode connector terminal 33 passing through the negative electrode external terminal 32 , oxide layers 25 through 27 may be formed at a the surface of each swage-fused area where the positive or negative electrode connector terminal 11 or 33 is swage-fused with
  • the present invention is not limited to this example.
  • the present invention may be adopted in a secondary battery that does not include the positive and negative electrode external terminals 16 and 32 .
  • the present invention may be adopted in a secondary battery that includes the bus bar directly locked to the front end of the positive and negative electrode connector terminals 11 and 33 swage-locked and also fused onto the current collector plates 10 and 31 respectively, i.e., to the front ends passing through the lid 13 and projecting to the outside.
  • the shape of the front ends does not need to be a shaft shape and the present invention may be adopted in a secondary battery with the front ends of the connector terminals assuming a flat shape.
  • the present invention is not limited to the examples described in reference to the embodiment pertaining to the shape and structure of the current collector plates and the shape and structure of the jelly roll as well.
  • the welding device engaged in operation to execute the welding process in the oxygen-containing atmosphere is not limited to that described in reference to the embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

A secondary battery includes: a jelly roll that includes a positive and a negative electrode wound via a separator; a case; a lid; and electrically conductive input/output members, wherein: the electrically conductive input/output members include, at least; a positive and a negative electrode current collector plate with one end thereof connected to the positive and the negative electrode respectively; a positive and a negative electrode external conductive member with one end thereof connected to another end of the positive and the negative electrode current collector plate respectively and another end thereof extending to an outer side of the lid; the one end of the positive and the negative electrode external conductive member are respectively swage-fused to the other end of the positive and the negative electrode current collector plate; and an oxide layer is formed at a surface of each swage-fused area.

Description

INCORPORATION BY REFERENCE
The disclosure of the following priority application is herein Incorporated by reference:
  • Japanese Patent Application No. 2010-197854 filed Sep. 3, 2010
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a secondary battery such as a lithium secondary battery and a fabrication method through which the secondary battery is manufactured.
2. Description of Related Art
Among lithium secondary batteries with large capacities (Wh) developed in recent years as motive power sources in hybrid vehicles, electric vehicles and the like, particularly intense interest is focused on prismatic lithium secondary batteries assuring high energy density (Wh/kg).
A prismatic lithium secondary battery includes a flat jelly roll constituted with a winding assembly of a positive electrode formed by coating a positive foil with a positive active material, a negative electrode formed by coating a negative foil with a negative active material and a separator that prevents contact between the positive electrode and the negative electrode. The jelly roll, which is housed in a case, and a positive electrode connector terminal and a negative electrode connector terminal disposed at a lid so as to be exposed to the outside are electrically connected with the jelly roll via current collector plates. The case and the lid are welded together and thus sealed and after an electrolyte is injected through an injection opening located at the lid, the injection opening is sealed through welding.
Japanese Laid Open Patent Publication No. 2009-259524 discloses a battery manufactured by inserting a cylindrical connector terminal via through holes formed at an external terminal, an insulating member, a lid and a gasket respectively, locking the individual members through swaging onto the connector terminal which is widened toward the outer circumferential side from its central axis and fusing the outer circumferential edge of the swaged portion of the connector terminal with the external terminal through spot laser welding.
Japanese Laid Open Patent Publication No. S 62-254992 discloses an aluminum laser welding method implemented in an oxygen-containing atmosphere, which assures a greater penetration depth of weld achieved by lowering the reflection rate with which the laser beam is reflected, via an oxide layer.
SUMMARY OF THE INVENTION
There is an issue yet to be optimally addressed with regard to the battery disclosed in Japanese Laid Open Patent Publication No. 2009-259524 in that when the outer circumferential edge of the swaged portion is welded, the melted outer circumferential edge of the swaged portion may wet spread over the surface of the outer terminal and cracking may occur due to the tensile residual stress manifesting as the melted material solidifies.
The laser welding method disclosed in Japanese Laid Open Patent Publication No. S 62-254992 does not factor in, in any way whatsoever, wet spreading of a weld pool occurring at a staged portion such as a swaged portion.
According to the 1st aspect of the present invention, a jelly roll that includes a positive electrode and a negative electrode wound via a separator; a case housing the jelly roll; a lid that seals the case; and electrically conductive input/output members via which charge/discharge power is input and output between the jelly roll and an external load, wherein: the electrically conductive input/output members include, at least; a positive electrode current collector plate with one end thereof connected to the positive electrode; a negative electrode current collector plate with one end thereof connected to the negative electrode; a positive electrode external conductive member with one end thereof connected to another end of the positive electrode current collector plate and another end thereof extending to an outer side of the lid; a negative electrode external conductive member with one end thereof connected to another end of the negative electrode current collector plate and another end thereof extending to the outer side of the lid; the one end of the positive electrode external conductive member and the one end of the negative electrode external conductive member are respectively swage-fused to the other end of the positive electrode current collector plate and the other end of the negative electrode current collector plate; and an oxide layer is formed at a surface of each swage-fused area.
According to the 2nd aspect of the present invention, the oxide layer of a secondary battery according to the 1st aspect may assume a film thickness required to minimize wettability of a molten metal at the swage-fused area.
According to the 3rd aspect of the present invention, it is preferred that in a secondary battery according to the 1st aspect, the one end of the swage-fused positive electrode external conductive member and the one end of the swage-fused negative electrode external conductive member each include a staged portion passing through the positive electrode current collector plate or the negative electrode current collector plate and projecting out through a surface of the positive electrode current collector plate or the negative electrode current collector plate; and the positive electrode external conductive member is fused with the positive electrode current collector plate at the staged portion and the negative electrode external conductive member is fused with the negative electrode current collector plate at the staged portion, with the oxide layer formed at the surface of each swage-fused area.
According to the 4th aspect of the present invention, it is preferred that in a secondary battery according to the 1st aspect, the positive electrode external conductive member includes; a positive electrode connector terminal with one end thereof swage-fused to the positive electrode current collector plate; and a positive electrode external terminal disposed on the outer side of the lid, with another end thereof passing through the positive electrode external terminal and the positive electrode connector terminal swage-fused with the positive electrode external terminal; the negative electrode external conductive member includes; a negative electrode connector terminal with one end thereof swage-fused to the negative electrode current collector plate; and a negative electrode external terminal disposed on the outer side of the lid, with another end thereof passing through negative electrode external terminal and the negative electrode connector terminal swage-fused with the negative electrode external terminal; and the oxide layer is formed at the surface of each swage-fused area where the positive or negative electrode connector terminal is swage-fused with the positive or negative external terminal.
According to the 5th aspect of the present invention, it is preferred that in a secondary battery according to the 4th aspect, the other end of the swage-fused positive electrode connector terminal and the other end of the swage-fused negative electrode connector terminal each include a staged portion projecting out through a surface of the positive electrode external terminal or the negative electrode external terminal; and the positive electrode connector terminal is fused with the positive electrode external terminal at the staged portion and the negative electrode connector terminal is fused with the negative electrode external terminal at the staged portion, with the oxide layer formed at the surface of each swage-fused area.
According to the 6th aspect of the present invention, the other end of the positive electrode external conductive member and the other end of the negative electrode external conductive member of a secondary battery according to the 1st aspect may be each a terminal connected with the external load.
According to the 7th aspect of the present invention, the surface of the swage-fused area of a secondary battery according to the 1st aspect may assume a projecting shape.
According to the 8th aspect of the present invention, a secondary battery comprises: a jelly roll that includes a positive electrode and a negative electrode wound via a separator; a case housing the winding back; a lid that seals the case; and electrically conductive input/output members via which charge/discharge currents are input and output between the jelly roll and an external load, wherein: the electrically conductive input/output members include, at least; a positive electrode current collector plate with one end thereof connected to the positive electrode; a negative electrode current collector plate with one end thereof connected to the negative electrode; a positive electrode connector terminal with one end thereof connected to the positive electrode current collector plate; a negative electrode connector terminal with one end thereof connected to the negative electrode current collector plate; and a positive electrode external terminal disposed on an outer side of the lid, which is swage-fused with the positive electrode connector terminal with another end of the positive electrode connector terminal passing through the positive electrode external terminal and a negative electrode external terminal disposed on the outer side of the lid, which is swage-fused with the negative electrode connector terminal with another end of the negative electrode connector terminal passing through the negative electrode external terminal; and an oxide layer is formed at a surfaces of each swage-fused area where the positive or negative electrode connector terminal is swage-fused to the positive or negative electrode external terminal.
According to the 9th aspect of the present invention, it is preferred that in a secondary battery according to the 8th aspect, the other end of the swage-fused positive electrode connector terminal and the other end of the swage-fused negative electrode connector terminal each include a staged portion projecting out through a surface of the positive electrode external terminal or the negative electrode external terminal; and the positive electrode connector terminal is fused with the positive electrode external terminal at the staged portion and the negative electrode connector terminal is fused with the negative electrode external terminal at the staged portion, with the oxide layer formed at the surface of each swage-fused area.
According to the 10th aspect of the present invention, the surface of the swage-fused area of a secondary battery according to the 8th aspect may assume a projecting shape.
According to the 11th aspect of the present invention, a secondary battery fabrication method through which a secondary battery according to the 1st aspect is manufactured, comprises: a welding step in which the swage-fused area is formed through laser welding executed within an atmosphere containing oxygen with an oxygen concentration of 10% or higher.
According to the 12th aspect of the present invention, welding target members of a secondary battery fabrication method according to the 11th aspect may be exposed to air while undergoing laser welding in the welding step.
According to the 13th aspect of the present invention, it is preferred that a secondary battery fabrication method according to the 11th aspect comprises: a first step in which the jelly roll is manufactured by winding the positive electrode and the negative electrode via the separator; a second step in which the positive electrode connector terminal and the negative electrode connector terminal are respectively swaged with the positive electrode current collector plate and the negative electrode current collector plate used to connect the positive electrode and the negative electrode to the positive electrode external terminal and the negative electrode external terminal respectively; a third step in which the positive electrode connector terminal and the negative electrode connector terminal are respectively swaged with the positive electrode external terminal and the negative electrode external terminal; a fourth step in which the positive electrode current collector plate and the negative electrode current collector plate are respectively connected to the positive electrode and the negative electrode; a fifth step in which swaging portions formed through the second step are welded in an oxygen-containing atmosphere with a specific oxygen concentration; a sixth step in which swaging portions formed through the third step are welded in an oxygen-containing atmosphere with a specific oxygen concentration; a seventh step in which a lid assembly is manufactured by connecting the lid-terminal assembly to the jelly roll, with the positive and negative electrode current collector plates, the positive and negative electrode connector terminals and the positive and negative electrode external terminals of the lid-terminal assembly having been integrated through the third through sixth steps; an eighth step in which the lid assembly is housed within a case that includes an opening; a ninth step in which the opening is covered with the lid to seal the case; and a tenth step in which an electrolyte is poured into the case.
According to the present invention, an occurrence of defective welding attributable to wet spreading of molten metal, manifesting specifically in a staged portion, can be prevented.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective of the secondary battery achieved in an embodiment of the present invention.
FIG. 2 is a perspective showing the state of connection achieved by the jelly roll and the current collector plates in the secondary battery shown in FIG. 1.
FIG. 3 is a perspective of the lid assembly members in the secondary battery in FIG. 1.
FIG. 4 is a perspective showing the jelly roll in the secondary battery in FIG. 1.
FIG. 5 is an exploded perspective of the positive electrode current collector plate and the positive electrode connector terminal in the secondary battery in FIG. 1.
FIG. 6 shows, in a longitudinal sectional view, the positive electrode current collector plate and the positive electrode connector terminal in FIG. 5 assembled together.
FIG. 7 shows, in a longitudinal sectional view, the positive electrode connector terminal in FIG. 6 in a swaged state.
FIG. 8 is an exploded perspective of a gasket swaging portion in the secondary battery in FIG. 1.
FIG. 9 shows, in a longitudinal sectional view, the positive electrode connector terminal in FIG. 7 with the positive electrode external terminal mounted thereat.
FIG. 10 shows, in a longitudinal sectional view, the positive electrode connector terminal in FIG. 9 in a swaged state.
FIG. 11 is a perspective of the positive electrode current collector plate and the positive electrode connector terminal having undergone the welding process, taken from the inside of the lid.
FIG. 12 is a perspective of a welding device.
FIG. 13 shows, in a longitudinal sectional view, an initial stage of the welding process in which the positive electrode connector terminal in FIG. 10 is welded onto the positive electrode external terminal.
FIG. 14 shows, in a longitudinal sectional view, an intermediate stage of the welding process in which the positive electrode connector terminal in FIG. 10 is welded onto the positive electrode external terminal.
FIG. 15 shows, in a longitudinal sectional view, a finishing stage of the welding process in which the positive electrode connector terminal in FIG. 10 is welded onto the positive electrode external terminal.
FIG. 16 shows, in a longitudinal sectional view, how the positive electrode current collector plate and the positive electrode connector terminal in FIG. 11 become welded together.
FIG. 17 presents a flowchart of an embodiment of the secondary battery manufacturing method according to the present invention.
FIG. 18 presents a flowchart of the external terminal-connector terminal welding step in FIG. 17.
FIG. 19 presents a flowchart of the current collector plate-connector terminal welding step in FIG. 18.
DESCRIPTION OF PREFERRED EMBODIMENT
An embodiment of the secondary battery according to the present invention is described in reference to drawings.
(Overall Structure)
As shown in FIG. 1, a secondary battery 100 is manufactured by first inserting a lid assembly 150 shown in FIG. 2 into a case 61 and then sealing the case 61. FIG. 2 shows the lid assembly 150 assembled by mounting a jelly roll (winding pack) 6 shown in FIG. 4 at a lid-terminal assembly 170 shown in FIG. 3.
As shown in FIG. 3, the lid-terminal assembly 170 includes a lid 13 with positive and negative electrode external terminals 16 and 32 and positive and negative electrode current collector plates 10 and 31 mounted thereat. As the lid 13 is welded to the case 61 along the peripheral edges thereof, the case 61 becomes sealed. An electrolyte injection opening 13 b is formed at the lid 13 and after the case 61 is sealed, an electrolyte (not shown) is poured into the case 61 through the electrolyte injection opening 13 b. Once the case 61 is filled with the electrolyte, the electrolyte injection opening 13 b is sealed by welding an electrolyte plug 62 thereto.
The positive electrode external terminal 16 and the negative electrode external terminal 32 respectively include through holes 16 b and 32 b formed therein, and the positive electrode external terminal 16 and the negative electrode external terminal 32 are connected to a bus bar (not shown) via bolts (not shown) inserted through the through holes 16 b and 32 b.
(Jelly Roll)
As shown in FIG. 4, the jelly roll 6 is formed by winding a positive foil 1 and a negative foil 3 with a separator 5 inserted between them in a flat configuration. The positive foil 1 is an aluminum foil with a 30 μm thickness, whereas the negative foil 3 is a copper foil with a 15 μm thickness. The separator 5 is constituted of a porous polyethylene resin. The two surfaces of the positive foil 1 are coated with a positive active material 2, whereas the two surfaces of the negative foil 3 are coated with a negative active material 4. Electricity is charged and discharged between the positive active material 2 and the negative active material 4 at the jelly roll 6. Metal foil exposed areas where neither the active material 2 or 4 is applied are formed at the two ends of the winding assembly, one area located at an end of the positive foil 1 and extending along the length of the positive foil and the other area located at an end of the negative foil 3 and facing opposite the one area. The positive electrode current collector plate 10 and the negative electrode current collector plate 31 are welded to these exposed areas, which are flattened.
(Lid Assembly 150)
As shown in FIG. 2, the lid assembly 150 is constituted with the lid-terminal assembly 170 and the jelly roll 6. The lid-terminal assembly 170 includes the positive and negative electrode current collector plates 10 and 31, which are welded respectively to the positive foil 1 and the negative foil 3 exposed at the two ends of the jelly roll 6. The positive and negative electrode current collector plates 10 and 31 are thus electrically and mechanically connected to the winding pack 60.
(Lid-Terminal Assembly 170)
As shown in FIG. 3, the lid-terminal assembly 170 includes the lid 13, the positive and negative electrode current collector plates 10 and 31, positive and negative connector terminals 11 and 33, gaskets 12, insulating members 14 and the positive and negative electrode external terminals 16 and 32, which are all integrated through the manufacturing steps to be described in detail later. The positive electrode current collector plate 10 and the negative electrode current collector plate 31 are metal plates bent along the contours of the side surfaces of the jelly roll 6 located at the two ends that face opposite each other along the axial direction and are respectively constituted of the materials constituting the positive foil 1 and the negative foil 3, i.e., aluminum and copper.
In reference to FIGS. 5 through 11, the lid-terminal assembly 170 is described in detail. It is to be noted that identical shapes and structures are assumed on the positive electrode side and on the negative electrode side and FIGS. 5 through 11 shows the structure on the positive electrode side.
(Swaging at the Lid-Terminal Assembly 170)
The positive and negative electrode current collector plates 10 and 31 and the positive and negative electrode connector terminals 11 and 33 in FIG. 5 are locked through swaging in advance, as illustrated in FIGS. 6 and 7. Namely, through holes 10 a and 31 a are formed at the positive electrode current collector plate 10 and the negative electrode current collector plate 31, whereas tubular portions 11 a and 11 b (33 a and 33 b) are present at the two ends of the positive electrode connector terminal 11 and at the two ends of the negative electrode connector terminal 33.
As illustrated in FIGS. 5 through 10, the positive and negative electrode current collector plates 10 and 31 and the positive and negative connector terminals 11 and 33 are locked through swaging by first inserting the tubular portions 11 a and 33 a at the positive and negative electrode connector terminals 11 and 33 respectively through the through holes 10 a and 31 a at the positive and negative electrode current collector plates 10 and 31. The tubular portions 11 a and 33 a are then locked by swaging them toward the outer circumference, thereby forming swaging portions 11 c and 33 c respectively. As a result, the positive and negative electrode current collector plates 10 and 31 become swage-locked to the positive and negative electrode connector terminals 11 and 33 respectively.
As shown in FIG. 8, a through hole 13 a through which the positive and negative electrode connector terminals 11 and 33 are inserted, are formed at the lid 13. The positive and negative electrode connector terminals 11 and 33 respectively include shaft portions 11 b and 33 b inserted through the through holes 13 a to project out of the lid 13 and head portions 11 f and 33 f assuming a larger diameter than the shaft portions.
As shown in FIG. 9, the positive and negative electrode connector terminals 11 and 33 are inserted through the through holes 13 a with gaskets 12 fitted around the shaft portions 11 b and 33 b. In addition, the positive and negative electrode external terminals 16 and 32 are fitted, via the insulating members 14, around the shaft portions 11 b and 33 b of the positive and negative electrode connector terminals 11 and 33 on the outside of the lid 13. The shaft portions 11 b and 33 b subsequently undergo a swaging step and a welding step.
FIG. 10 is a sectional view of the positive and negative electrode connector terminals 11 and 33, i.e., the positive and negative electrode current collector plates 10 and 31, locked onto the lid 13 together with the positive and negative external terminals 16 and 32 through the swaging step. As shown in FIG. 10, the swaging portions 11 c and 33 c and the swaging portions 11 d and 33 d are formed at the positive and negative electrode connector terminals 11 and 33 respectively on the inside and on the outside of the lid 13, and the positive and negative electrode current collector plates 10 and 31, the insulating members 14 and the positive and negative electrode external terminals 16 and 32 are securely fixed to the lid 13 by swage-locking the positive and negative electrode connector terminals 11 and 33.
After inserting the shaft portions 11 b and 33 b through the various members, as described earlier, the head portions 11 f and 33 f are pressed into contact with the gaskets 12 through the swaging step to be described in detail later, thereby sealing the gaps between the lid 13 and the positive and negative electrode connector terminals 11 and 33. Through this process, the shaft portions 11 b and 33 b at the positive and negative electrode connector terminals 11 and 33 become electrically connected with the positive and negative electrode external terminals 16 and 32 respectively while remaining electrically insulated from the lid 13.
In the following description, the swaging portions 11 c and 33 c formed to lock the current collector plates 10 and 31 will be referred to as first swaging portions and the swaging portions 11 d and 33 d formed to lock the external terminals 16 and 32 will be referred to as second swaging portions.
The first swaging portions 11 c and 33 c and the second swaging portions 11 d and 33 d in the secondary battery 100 according to the present invention are not only mechanically locked but also fixed through welding. Through the swage-lock, the various members are mechanically locked while assuring a high level of strength. Through the welding fusion, the positive and negative electrode connector terminals and the positive and negative electrode external terminals are electrically connected so as to reduce the connection resistance.
According to the present invention, the first and second swaging portions are welded in an oxygen-containing atmosphere so as to encourage formation of an oxide layer at the surfaces of the welded areas and the welded areas are formed in a projecting shape by minimizing the extent to which the molten metals, i.e., the wet weld pools, spread.
(Welding the First and Second Swaging Portions)
In reference to FIG. 11, the welding positions are set at the first swaging portions 11 c and 33 c are explained. FIG. 11 is a perspective of the first swaging portion 11 c at which the positive electrode current collector plate 10 is locked through swaging, taken from the rear surface side of the lid 13. It is to be noted, however, that FIG. 11 includes the reference numerals assigned to members included on the negative electrode side, which are referred to in the subsequent description. Likewise, FIGS. 13 through 16 also include the reference numerals assigned to the members included in the negative electrode side structure.
As shown in FIG. 11, a plurality of welding spots 60 are formed through spot laser welding, which is a welding process executed by using laser light, at the circumferential edges of the first swaging portions 11 c and 33 c. In the following description, the welding spots 60 formed at the first swaging portions 11 c and 33 c will be referred to as first welding spots.
In addition, as shown in FIGS. 1 through 3, a plurality of welding spots 34 and a plurality of welding spots 35 are respectively formed at the circumferential edges of the second swaging portion 11 d and the second swaging portion 33 d through spot laser welding. In the following description, the welding spots 34 and 35 formed at the second swaging portions 11 d and 33 d will be referred to as second welding spots.
Through the swaging fusion achieved by combining the swage-lock and the welding fusion as described above, the positive and negative electrode current collector plates 10 and 31, the positive and negative electrode connector terminals 11 and 33 and the positive and negative electrode external terminals 16 and 32 are securely connected both electrically and mechanically, and thus, better reliability is assured.
(Overview of Welding at the First Welding Spots 60 and the Second Welding Spots 34 and 35)
In reference to FIG. 12, a welding device 300 that may be used to weld the second welding spots 34 and 35 is briefly described. The welding device 300 includes a laser oscillator 40, an optical fiber 41, a machining head 42 and a chamber 43.
The machining head 42, which radiates laser light 20 onto the welding spots 34 and 35 is installed in the chamber 43 and the oscillator 40 is connected, via the optical fiber 41, to the machining head 42. The oscillator 40 generates YAG laser light through oscillation and directs the laser beam thus generated into the optical fiber 41. The laser light having been input to the optical fiber 41 is transmitted through the optical fiber 41 to the machining head 42 which outputs laser spotlight 20 by condensing the laser light at a condenser lens (not shown in the figure). The atmosphere within the chamber 43 can be adjusted via an inflow port 44 and an outflow port 45 disposed thereat.
—Welding at the Second Swaging Portions 34 and 35
As shown in FIG. 12, a lid-terminal assembly 170A in a manufacturing-in-progress state, with the positive and negative electrode connector terminals 11 and 33 and the positive and negative electrode external terminals 16 and 32 swage-locked to the lid 13, is placed within the chamber 43. The air inside the chamber 43 is replaced with oxygen by supplying oxygen through the inflow port 44 while releasing the air through the outflow port 45 and the oxygen concentration within the chamber 43 is adjusted to a predetermined value. The second welding spots 34 and 35 are welded within the atmosphere achieving the predetermined level of oxygen concentration thus achieved.
The swaging portions 11 d and 33 d, at which the positive and negative electrode connector terminals 11 and 33 are locked through swaging to the positive and negative electrode external terminals 16 and 32 in the secondary battery in the embodiment, are laser welded within the oxygen-containing atmosphere by radiating the laser spot light 20 onto the second swaging portions 34 and 35 in the chamber 43, as shown in FIG. 13. As a result, oxide layers 25 through 27 are formed at each of the welding spots 34 and 35 in the secondary battery in the embodiment, as shown in FIG. 15. These oxide layers 25 through 27 limit the wet spread of a wet molten pool 24 (minimize the wettability). In addition, since the molten pool becomes solidified while sustaining a projecting shape, the welding spot 34 or 35 does not crack.
—Welding at the First Swaging Portions 60
The swaging portions 11 c and 31 c, at which the positive and negative electrode collector plates 10 and 31 and the positive and negative electrode connector terminals 11 and 32 are swaged together in the secondary battery achieved in the embodiment, are laser welded in an oxygen-containing atmosphere. Namely, as shown in FIG. 16, the swaging portions 11 c and 33 c are each laser spot welded by supplying oxygen through a nozzle 47 toward each welding spot 60. As a result, the welding spot 60 becomes oxidized and an oxide layer 50 and an oxide layer 51 are formed over the area. These oxide layers 50 and 51 limit the wet spread of a wet molten pool 48. In addition, since the molten pool becomes solidified while sustaining a projecting shape, the welding spot 60 does not crack.
(Details of Welding at the First Welding Spots 60 and the Second Welding Spots 34 and 35)
As shown in FIGS. 14 and 15, when welding the outside of the lid 13, molten pools 21 and 24 are formed at each of the second welding spots 34 and 35 ranging over the second swaging portions 11 d and 33 d and the surfaces of the external terminals 16 and 32 adjacent to the second swaging portions 11 d and 33 d (only the positive electrode external terminal 16 is shown in the figures). The oxygen-containing atmosphere induces formation of oxide layers 22 and 25 at the surfaces of the molten pools 21 and 24, formation of oxide layers 23 and 26 near the molten pools 21 and 24 at each of the second swaging portions 11 d and 33 d, and formation of an oxide layer 27 at the surface of the external terminal 16 or 32 adjacent to the second swaging portion 11 d or 33 d.
As shown in FIG. 16, when welding the inside of the lid 13, the molten pool 48 is formed at each of the first welding spots 60 ranging over the first swaging portion 11 c or 33 c and the surface of the current collector plate 10 or 31 adjacent to the first swaging portions 11 d and 33 d (only the positive electrode current collector plate 10 is shown in the figure). The oxygen-containing atmosphere induces formation of oxide layers 49 and 50 at the surface of the molten pool 48, formation of an oxide layer 51 near the molten pool 48 at each of the first swaging portions 11 c and 33 c, and formation of an oxide layer 51 at the surface of the current collector plate 10 or 31 adjacent to the first swaging portion 11 c or 33 c.
The wet molten metal can spread only if the heat of the molten pools 21, 24 and 48 breaks the oxide layers 23, 26, 27 and 51 formed adjacent to the molten pools. However, a high level of energy is required to break the oxide layers, i.e., the oxide layers cannot be readily destroyed. As a result, the molten pools 21, 24 and 48 are not allowed to spread readily.
The circumferential edges of the second swaging portions 11 d and 33 d are staged relative to the positive and negative electrode external terminals 16 and 32, whereas the circumferential edges of the first swaging portions 11 c and 33 c are staged relative to the surfaces of the positive and negative electrode current collector plates 10 and 31. For this reason, the molten pools 21, 24 and 48 formed at the swaging portions 11 c, 11 d, 33 c and 33 d tend to flow downward toward the positive and negative electrode external terminals 16 and 32 and the positive and negative electrode current collector plates 10 and 31 taking up lower positions. However, a high level of supporting force provided by the oxide layers 22, 23, 25 through 27 and 49 through 51 deters the downward flow.
Consequently, the wettability of the molten pools and the surfaces of the neighboring welding spots is lowered, the extent to which the wet molten pools are allowed to spread is reduced, the surface areas of the molten pools 21, 24 and 48 are minimized and the molten pools 21, 24 and 48 are ultimately solidified while sustaining a projecting shape at their surfaces. Since low tensile residual stress is assured at the centers of the surfaces of the molten pools 21, 24 and 48 having solidified while sustaining the projecting shape, cracking is effectively prevented.
Namely, the secondary battery in the embodiment is manufactured by oxidizing the surfaces of the members present around molten weld pools when welding the positive and negative electrode current collector plates 10 and 31 with the positive and negative electrode connector terminals 11 and 33 and welding the positive and negative electrode external terminals 16 and 32 with the positive and negative electrode connector terminals 11 and 33, so as to minimize the extent to which the wet weld surfaces are allowed to spread and thus prevent cracking at the welded areas.
(Secondary Battery Manufacturing Method)
FIG. 17 shows the manufacturing procedure through which the secondary battery described above is manufactured.
step S1701: The jelly roll 6 (see FIG. 4) is manufactured by winding the positive electrode and the negative electrode in a flat configuration.
step S1702: The positive electrode current collector plate 10 and the negative electrode current collector plate 31 are respectively locked with the positive electrode connector terminal 11 and the negative electrode connector terminal 33 through swaging.
step S1703: The positive electrode external terminal 16 and the negative electrode external terminal 32 are respectively locked with the positive electrode connector terminal 11 and the negative electrode connector terminal 33 through swaging.
step S1704: The positive electrode external terminal 16 and the negative electrode external terminal 32 are respectively welded to the positive electrode connector terminal 11 and the negative electrode connector terminal 33 through laser welding. This step will be described in detail later.
step S1705: The positive electrode current collector plate 10 and the negative electrode current collector plate 31 are respectively welded to the positive electrode connector terminal 11 and the negative electrode connector terminal 33 through laser welding. This step will be described in detail later.
step S1706: The jelly roll 6 is connected with the positive and negative electrode current collector plates 10 and 31.
step S1707: The lid 13 is welded onto the case 61 and thus the case 61 is sealed.
step S1708: The case 61 is filled with electrolyte, poured through the electrolyte injection opening 13 b.
step S1709: The electrolyte injection opening 13 b is tightly sealed with the electrolyte plug 62.
step S1710: The secondary battery assembly process is completed through steps S1701 to S1709 described above.
(Welding Procedure Through which the Second Welding Spots 34 and 35 are Welded)
The welding process (step S1704), executed as part of the manufacturing procedure shown in FIG. 17 to weld the positive and negative electrode external terminals 16 and 32 to the positive and negative electrode connector terminals 11 and 33, includes the following steps, as shown in FIG. 18.
step S1801: A work-in-progress assembly 170A, which is to become the lid-terminal assembly 170, with the positive and negative electrode current collector plates 10 and 31 fully locked through swaging with the positive and negative electrode connector terminals 11 and 33 respectively and the positive and negative electrode external terminals 16 and 32 fully locked through swaging with the positive and negative electrode connector terminals 11 and 33 respectively, is placed inside the chamber 43 (see FIG. 12).
It is to be noted that when the work-in-progress assembly 170A is placed in the chamber 43, the inflow port 44 and the outflow port 45 are both open to the atmosphere, and thus, the chamber 43 is filled with air.
step S1802: A gas with an oxygen concentration regulated to a predetermined level is delivered into the chamber 43 through the inflow port 44, while the outflow port 45 remains open to the atmosphere.
step S1803: The gas is continuously delivered into the chamber 43 through the inflow port 44 over a predetermined length of time while the outflow port 45 remains open to the atmosphere. As a result, the atmosphere within the chamber 43 is replaced with the gas containing oxygen at the predetermined concentration.
step S1804: The positive electrode connector terminal 11 and the negative electrode connector terminal 33 are respectively welded to the positive electrode external terminal 16 and the negative electrode external terminal 32, through spot welding at, for instance, four spots set for each weld site, by using the laser light 20. The pulse energy of the laser light 20 used in the welding process should be set to, for instance, 30 J.
The welding process is executed by radiating the laser light 20 condensed into, for instance, a 0.4 mm-diameter circular beam toward the area around the swaging portions 11 d or 33 d so as to condense the laser beam onto the surface of each welding spot 34 or 35. The radiating angle should be, for instance, 60° relative to the positive electrode external terminal 16 or the negative electrode external terminal 32.
While the temperatures at the swaging portions 11 d and 33 d and the positive and negative electrode external terminals 16 and 32 rise during the initial stage of the welding process, the temperatures do not become high enough to melt the swaging portions or the positive and negative electrode external terminals. The surfaces of the swaging portions 11 d and 33 d, where the temperatures have risen, react with oxygen present in the surrounding atmosphere, resulting in the formation of an oxide layer 19 at each surface. While a very thin natural oxide layer is present at the surface of the welding spot prior to the welding process, a thicker oxide layer is develops through the exposure to the high-temperature oxygen-containing atmosphere.
FIG. 13 does not include an illustration of the natural oxide layer and simply shows the oxide layer 19 assuming a significant thickness attributable to the oxidation.
FIG. 14 shows the state during the intermediate stage of the welding process in a sectional view. As the laser light 20 is continuously radiated in the state shown in FIG. 13, each of the swaging portions 11 d and 33 d starts to partially melt after a specific length of time elapses and a molten weld pool 21 is formed as a result. An aluminum (or copper) oxide layer is formed at the surface of the molten pool 21. Since the specific gravity of the oxide layer formed inside the molten pool 21 is smaller than that of the liquid aluminum (liquid copper), the oxide layer comes up to the surface of the molten pool 21 and thus forms a thick oxide layer 22 together with the oxide layer already present at the surface. As a result, the oxide layer 19 in FIG. 13 becomes a thick oxide layer 22 ranging over a large area as the oxidation progresses. In addition, as the temperature at the surface the swaging portion 11 d or 33 d near the molten pool 21 rises, reaction with the oxygen in the surrounding atmosphere occurs in the area to result in formation of a thick oxide layer 23.
FIG. 15 shows the late stage of the welding process in a sectional view. As the laser light 20 is continuously radiated in the state shown in FIG. 14, the molten pool 24 increases its volume and a large volume molten pool 24 is formed after a specific length of time elapses. An oxide layer 25 with a large thickness, which includes the oxide layers 22 and 23 formed as shown in FIG. 14, is formed at the surface of the molten pool 24.
In addition, an oxide layer 26 is formed at the surface of the welding spot near the molten pool 24 at the swaged portions 11 d or 33 d and an oxide layer 27 is formed at the surface of the welding spot near the molten pool 24 at the positive electrode external terminal 16 or the negative electrode external terminal 32. The oxide layer 26 and the oxide layer 27 are new oxide layers formed due to the exposure to the oxygen-containing atmosphere at high temperature.
As the welding process progresses, the molten pool 24 expands while destroying the aluminum oxide layer 26 assuming a significant thickness and a high melting point, which is present at the surface of the nearby welding spot. Since a high level of breaking energy is required to destroy the oxide layer 26, the wettability at the molten pool 24 and the nearby welding spot surfaces is lowered. As a result, the extent to which the wet molten pool 24 is allowed to wet spread is minimized and the surface area of the molten pool 24 is not allowed to become very large. Thus, the molten pool 24 becomes solidified while sustaining a projecting surface shape. Since a low tensile residual stress level is assured at the center of the projecting surface of the molding pool 24 in the fully solidified state, cracking can be effectively prevented.
As described above, the oxide layers 25 through 27 assume film thicknesses large enough to minimize the wettability of the molten metals.
The results of welding tests conducted in oxygen/nitrogen mixed gas atmospheres created inside the chamber 43 by setting the oxygen concentration level to 0%, 10%, 20%, 30%, 40%, 50% and 100% confirm that cracking can be effectively prevented when the oxygen concentration is 10% or higher. In addition, a cracking prevention effect was also observed when a welding process was executed in air having a 20% oxygen concentration outside the chamber 43.
It is to be noted that since the surface area of the wet molten pool can be reduced by minimizing the extent of wet spreading of the molten pool, the residual tensile residual stress attributable to the coagulative shrinkage occurring at the time of solidification can be reduced and thus, cracking can be prevented effectively. A particularly significant cracking-prevention effect is achieved on the positive electrode side since the coefficient of coagulative shrinkage of aluminum is high. Furthermore, a higher rate of laser light absorption, with which the laser light 20 is observed, is achieved through the oxidation, thereby achieving a secondary advantage of better weld penetration.
step S1805: The positive and negative electrode connector terminals 11 and 33 become fully welded with the positive and negative electrode external terminals 16 and 32 through steps S1801 to S1804 described above.
(Welding Procedure Through which the First Welding Spots 60 are Welded)
The welding process (step S1705), executed as part of the manufacturing procedure shown in FIG. 17 to weld the positive and negative electrode current collector plates 10 and 31 to the positive and negative electrode connector terminals 11 and 33, includes the following step, as shown in FIG. 19.
step S1901: While the welding process through which the positive and negative electrode connector terminals 11 and 33 are welded to the positive and negative electrode external terminals 16 and 32 is in progress, a work-in-progress assembly 170B, to become the lid-terminal assembly 170, is sprayed with oxygen through a side-gassing process, as shown in FIG. 16. The term “side gassing” process is used to refer to a processing step in which a gas is sprayed toward a welding spot 60 along a direction at a tilt relative to the direction in which the laser light 20 is radiated. A processing step in which a gas is sprayed along a direction coaxial to the laser light 20, in contrast, is referred to as a “center-gassing” process.
FIG. 16 shows, in a sectional view, a state assumed during the welding process executed to weld the positive and negative electrode current collector plates 10 and 32 to the positive and negative electrode connector terminals 11 and 33 respectively. The laser light 20 is radiated at a 60° tilt relative to the surface of the positive electrode current collector plate 10 or the negative electrode current collector plate 32. While the welding process is executed in room air, an oxide layer 50 and an oxide layer 51, formed by oxidizing each welding spot 60 with oxygen sprayed through the nozzle 47 toward the welding spot, deter the spread of the surface area of the wet molten pool 48. As a result, the molten pool 48 solidifies while sustaining a projecting surface shape and since a lower tensile residual stress level is assured at the center of the molten pool surface in the fully solidified molten pool, cracking can be effectively prevented. The requirements imposed with regard to the oxygen-containing atmosphere match the requirements for the oxygen-containing atmosphere within which the positive and negative electrode connector terminals 11 and 33 are welded to the positive and negative external terminals 16 and 32.
step S1902: The positive and negative current collector plates 11 and 33 are welded to the positive and negative electrode connector terminals 16 and 32 at, for instance, four welding spots in each welding site, with the energy level of the laser light and the spot size set to match those assumed for the welding process through which the positive and negative electrode connector terminals 11 and 33 are welded with the positive and negative external terminals 16 and 32. As in the welding process executed to weld the positive and negative electrode connector terminals 11 and 33 to the positive and negative electrode external terminals 16 and 32, the oxide layers initially formed at the swaged portions 11 c and 33 c increase their thicknesses and eventually, oxide layers 50 with a large thickness are formed as the oxide layers initially formed at the swaged portions become integrated with the oxide layers formed near the molten pools. Through radiation of the laser light 20, an oxide layer 51 is formed over the surface of each welding spot near the molten pool 48 at the swaged portion 11 c or 33 c and an oxide layer 51 is also formed over the surface of the welding spot near the molten pool 48 in the positive electrode current collector plate 10 or the negative electrode current collector plate 33.
Consequently, the wettability at the molten pool 48 and the nearby welding spot surfaces is lowered. As a result, the extent to which the wet molten pool 48 is allowed to spread is minimized and the molten pool 48 becomes solidified while sustaining a projecting surface shape. Since a low tensile residual stress level is assured at the center of the projecting surface of the molding pool in the fully solidified state, cracking can be effectively prevented. On the negative electrode side, too, the negative electrode current collector plate 31 and the negative electrode connector terminal 33 are welded together at four welding spots.
step S1903: The positive and negative electrode current collector plates 10 and 31 become fully welded with the positive and negative electrode connector terminals 11 and 33 through steps S1901 and S1902 described above.
As described above, the oxide layers 50 and 51 assume film thicknesses large enough to minimize the wettability of the molten metals.
The secondary battery manufacturing method according to the present invention described above includes welding steps in which swaging fusion spots are formed through laser welding executed in an atmosphere containing oxygen with an oxygen concentration of 10% or more.
In addition, the secondary battery manufacturing method achieved in the embodiment comprises a first step in which the jelly roll 6 is manufactured by winding the positive electrode 1 and the negative electrode 3 via the separator 5, a second step in which the positive electrode connector terminal 11 and the negative electrode connector terminal 33 are respectively swaged with the positive electrode current collector plate 10 and the negative electrode current collector plate 31 used to connect the positive electrode 1 and the negative electrode 3 to the positive electrode external terminal 16 and the negative electrode external terminal 32 respectively, a third step in which the positive electrode connector terminal 11 and the negative electrode connector terminal 33 are respectively swaged with the positive electrode external terminal 16 and the negative electrode external terminal 32, a fourth step in which the positive electrode current collector plate 10 and the negative electrode current collector plate 31 are respectively connected to the positive electrode 1 and the negative electrode 3, a fifth step in which swaged portions formed through the second step are welded in an oxygen-containing atmosphere with a specific oxygen concentration, a sixth step in which swaged portions formed through the third step are welded in an oxygen-containing atmosphere with a specific oxygen concentration, a seventh step in which the lid assembly 150 is manufactured by connecting the lid-terminal assembly 170, with the positive and negative electrode current collector plates 10 and 31, the positive and negative electrode connector terminals 11 and 33 and the positive and negative electrode external terminals 16 and 32 thereof having been integrated through the third through sixth steps, to the jelly roll 6, an eighth step in which the lid assembly 150 is housed within the case 61, which includes an opening, a ninth step in which the opening is covered with the lid 13 to seal the case 61, and a tenth step in which the electrolyte is poured into the case 61.
(Variations)
The embodiment described above allows for the following variations.
(1) In the embodiment described above, the positive and negative electrode current collector plates 10 and 31 are welded to the positive and negative electrode connector terminals 11 and 33 through laser welding executed in an atmosphere created by spraying oxygen. As an alternative, the positive and negative electrode current collector plates 10 and 31 and the positive and negative electrode connector terminals 11 and 33 may be welded in an oxygen-containing atmosphere with a specific oxygen concentration created within the chamber 43, as in the welding process executed to weld the positive and negative electrode connector terminals 11 and 33 to the positive and negative electrode external terminals 16 and 32.
(2) The secondary battery in the embodiment described above, which includes the positive and negative electrode current collector plates 10 and 31, the positive and negative electrode connector terminals 11 and 33 and the positive and negative electrode external terminals 16 and 32, is manufactured by swage-locking the positive and negative electrode current collector plates 10 and 31 with the positive and negative electrode connector terminals 11 and 33 and then fusing the positive and negative electrode current collector plates 10 and 31 with the positive and negative electrode connector terminals 11 and 33 respectively (first locking portions) and then by swage-locking the positive and negative electrode connector terminals 11 and 33 to the positive and negative electrode external terminals 16 and 32 and also by fusing the positive and negative electrode current collector plates 10 and 31 to the positive and negative electrode connector terminals 11 and 33 respectively (second locking portions). However, the present invention is not limited to this example and it may be adopted in a secondary battery in which the first locking portions alone are welded or a secondary battery in which the second locking portions alone are welded.
Accordingly, secondary batteries structured as described below are also within the scope of the present invention.
Namely, the secondary battery according to the present invention may comprise a jelly roll 6 that includes a positive electrode 1 and a negative electrode 3 wound via a separator 5, a case 61 housing the winding back 6, a lid 13 that seals the case 61, and electrically conductive input/output members (10μ, 11, 16, 31, 33, 32) via which charge/discharge currents are input and output between the jelly roll 6 and an external load. The electrically conductive input/output members may include, at least, a positive electrode current collector plate 10 with one end thereof connected to the positive electrode 1, a negative electrode current collector plate 31 with one end thereof connected to the negative electrode 3, a positive electrode external conductive member 11 with one end thereof connected to another end of the positive electrode current collector plate 10 and another end thereof extending to the outside of the lid 13 and a negative electrode external conductive member 33 with one end thereof connected to another end of the negative electrode current collector plate 31 and another end thereof extending to the outside of the lid 13. The one end of the positive electrode external conductive member 11 and the one end of the negative electrode external conductive member 33 may be respectively swage-fused to the other ends of the positive electrode current collector plate 10 and the negative electrode current collector plate 31 with oxide layers 50 and 51 formed at the surface of each swage-fused area.
In addition, the secondary battery according to the present invention may comprise a jelly roll 6 that includes a positive electrode 1 and a negative electrode 3 wound via a separator 5, a case 61 housing the winding back 6, a lid 13 that seals the case 61, and electrically conductive input/output members (10, 11, 16, 31, 33, 32) via which charge/discharge currents are input and output between the jelly roll 6 and an external load. The electrically conductive input/output members may include, at least, a positive electrode current collector plate 10 with one end thereof connected to the positive electrode 1, a negative electrode current collector plate 31 with one end thereof connected to the negative electrode 3, a positive electrode connector terminal 11 with one end thereof connected to the positive electrode current collector plate 10, a negative electrode connector terminal 33 with one end thereof connected to the negative electrode current collector plate 31, a positive electrode external terminal 16 disposed on an outer side of the lid 13, which is swage-fused with the positive electrode connector terminal 11 with another end of the positive electrode connector terminal 11 passing through the positive electrode external terminal 16, and a negative electrode external terminal 32 disposed on the outer side of the lid 13, which is swage-fused with the negative electrode connector terminal 33 with another end of the negative electrode connector terminal 33 passing through the negative electrode external terminal 32, oxide layers 25 through 27 may be formed at a the surface of each swage-fused area where the positive or negative electrode connector terminal 11 or 33 is swage-fused with the positive or negative electrode external terminal 16 or 32.
(3) While an explanation is given above on an example in which the present invention is adopted in a secondary battery that includes the positive and negative electrode current collector plates 10 and 31, the positive and negative electrode connector terminals 11 and 33 and the positive and negative electrode external terminals 16 and 32, the present invention is not limited to this example. For instance, the present invention may be adopted in a secondary battery that does not include the positive and negative electrode external terminals 16 and 32. Namely, the present invention may be adopted in a secondary battery that includes the bus bar directly locked to the front end of the positive and negative electrode connector terminals 11 and 33 swage-locked and also fused onto the current collector plates 10 and 31 respectively, i.e., to the front ends passing through the lid 13 and projecting to the outside.
It is to be noted that the shape of the front ends does not need to be a shaft shape and the present invention may be adopted in a secondary battery with the front ends of the connector terminals assuming a flat shape. Furthermore, the present invention is not limited to the examples described in reference to the embodiment pertaining to the shape and structure of the current collector plates and the shape and structure of the jelly roll as well.
It is to be also noted that the welding device engaged in operation to execute the welding process in the oxygen-containing atmosphere is not limited to that described in reference to the embodiment.
The above described embodiment is an example, and various modifications can be made without departing from the scope of the invention.

Claims (11)

What is claimed is:
1. A secondary battery comprising:
a jelly roll that includes a positive electrode and a negative electrode wound via a separator;
a case housing the jelly roll;
a lid that seals the case; and
electrically conductive input/output members via which charge/discharge power is input and output between the jelly roll and an external load, wherein:
the electrically conductive input/output members include, at least;
a positive electrode current collector plate with one end thereof connected to the positive electrode;
a negative electrode current collector plate with one end thereof connected to the negative electrode;
a positive electrode external conductive member with one end thereof connected to another end of the positive electrode current collector plate and another end thereof extending to an outer side of the lid;
a negative electrode external conductive member with one end thereof connected to another end of the negative electrode current collector plate and another end thereof extending to the outer side of the lid;
the one end of the positive electrode external conductive member and the one end of the negative electrode external conductive member are respectively swage-fused to the other end of the positive electrode current collector plate and the other end of the negative electrode current collector plate; and
an oxide layer is formed at a surface of each swage-fused area, wherein the one end of the swage-fused positive electrode external conductive member and the one end of the swage-fused negative electrode external conductive member each include a staged portion passing through the positive electrode current collector plate or the negative electrode current collector plate and projecting out through a surface of the positive electrode current collector plate or the negative electrode current collector plate; and the positive electrode external conductive member is fused with the positive electrode current collector plate at the staged portion and the negative electrode external conductive member is fused with the negative electrode current collector plate at the staged portion, with the oxide layer formed at the surface of each swage-fused area.
2. A secondary battery according to claim 1, wherein:
the oxide layer assumes a film thickness required to minimize wettability of a molten metal at the swage-fused area.
3. A secondary battery according to claim 1, wherein:
the positive electrode external conductive member includes;
a positive electrode connector terminal with one end thereof swage-fused to the positive electrode current collector plate; and
a positive electrode external terminal disposed on the outer side of the lid, with another end thereof passing through the positive electrode external terminal and the positive electrode connector terminal swage-fused with the positive electrode external terminal;
the negative electrode external conductive member includes;
a negative electrode connector terminal with one end thereof swage-fused to the negative electrode current collector plate; and
a negative electrode external terminal disposed on the outer side of the lid, with another end thereof passing through negative electrode external terminal and the negative electrode connector terminal swage-fused with the negative electrode external terminal; and
the oxide layer is formed at the surface of each swage-fused area where the positive or negative electrode connector terminal is swage-fused with the positive or negative external terminal.
4. A secondary battery according to claim 3, wherein:
the other end of the swage-fused positive electrode connector terminal and the other end of the swage-fused negative electrode connector terminal each include a staged portion projecting out through a surface of the positive electrode external terminal or the negative electrode external terminal; and
the positive electrode connector terminal is fused with the positive electrode external terminal at the staged portion and the negative electrode connector terminal is fused with the negative electrode external terminal at the staged portion, with the oxide layer formed at the surface of each swage-fused area.
5. A secondary battery according to claim 1, wherein:
the other end of the positive electrode external conductive member and the other end of the negative electrode external conductive member are each a terminal connected with the external load.
6. A secondary battery according to claim 1, wherein:
the surface of the swage-fused area assumes a projecting shape.
7. A secondary battery comprising:
a jelly roll that includes a positive electrode and a negative electrode wound via a separator;
a case housing the jelly roll;
a lid that seals the case; and
electrically conductive input/output members via which charge/discharge currents are input and output between the jelly roll and an external load, wherein:
the electrically conductive input/output members include, at least;
a positive electrode current collector plate with one end thereof connected to the positive electrode;
a negative electrode current collector plate with one end thereof connected to the negative electrode;
a positive electrode connector terminal with one end thereof connected to the positive electrode current collector plate;
a negative electrode connector terminal with one end thereof connected to the negative electrode current collector plate; and
a positive electrode external terminal disposed on an outer side of the lid, which is swage-fused with the positive electrode connector terminal with another end of the positive electrode connector terminal passing through the positive electrode external terminal;
a negative electrode external terminal disposed on the outer side of the lid, which is swage-fused with the negative electrode connector terminal with another end of the negative electrode connector terminal passing through the negative electrode external terminal; and
an oxide layer is formed at a surfaces of each swage-fused area where the positive or negative electrode connector terminal is swage-fused to the positive or negative electrode external terminal, wherein the other end of the swage-fused positive electrode connector terminal and the other end of the swage-fused negative electrode connector terminal each include a staged portion projecting out through a surface of the positive electrode external terminal or the negative electrode external terminal; and the positive electrode connector terminal is fused with the positive electrode external terminal at the staged portion and the negative electrode connector terminal is fused with the negative electrode external terminal at the staged portion, with the oxide layer formed at the surface of each swage-fused area.
8. A secondary battery according to claim 7, wherein:
the surface of the swage-fused area assumes a projecting shape.
9. A secondary battery fabrication method through which a secondary battery according to claim 1 is manufactured, comprising:
a welding step in which the swage-fused area is formed through laser welding executed within an atmosphere containing oxygen with an oxygen concentration of 10% or higher.
10. A secondary battery fabrication method according to claim 9, wherein:
welding target members are exposed to air while undergoing laser welding in the welding step.
11. A secondary battery fabrication method according to claim 9, comprising:
a first step in which the jelly roll is manufactured by winding the positive electrode and the negative electrode via the separator;
a second step in which the positive electrode connector terminal and the negative electrode connector terminal are respectively swaged with the positive electrode current collector plate and the negative electrode current collector plate used to connect the positive electrode and the negative electrode to the positive electrode external terminal and the negative electrode external terminal respectively;
a third step in which the positive electrode connector terminal and the negative electrode connector terminal are respectively swaged with the positive electrode external terminal and the negative electrode external terminal;
a fourth step in which the positive electrode current collector plate and the negative electrode current collector plate are respectively connected to the positive electrode and the negative electrode;
a fifth step in which swaged portions formed through the second step are welded in an oxygen-containing atmosphere with a specific oxygen concentration;
a sixth step in which swaged portions formed through the third step are welded in an oxygen-containing atmosphere with a specific oxygen concentration;
a seventh step in which a lid assembly is manufactured by connecting the lid-terminal assembly to the jelly roll, with the positive and negative electrode current collector plates, the positive and negative electrode connector terminals and the positive and negative electrode external terminals of the lid-terminal assembly having been integrated through the third through sixth steps;
an eighth step in which the lid assembly is housed within a case that includes an opening;
a ninth step in which the opening is covered with the lid to seal the case; and
a tenth step in which an electrolyte is poured into the case.
US13/211,401 2010-09-03 2011-08-17 Secondary battery and fabrication method thereof Expired - Fee Related US8507118B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010197854A JP5232840B2 (en) 2010-09-03 2010-09-03 Secondary battery and manufacturing method thereof
JP2010-197854 2010-09-03

Publications (2)

Publication Number Publication Date
US20120058374A1 US20120058374A1 (en) 2012-03-08
US8507118B2 true US8507118B2 (en) 2013-08-13

Family

ID=45770954

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/211,401 Expired - Fee Related US8507118B2 (en) 2010-09-03 2011-08-17 Secondary battery and fabrication method thereof

Country Status (3)

Country Link
US (1) US8507118B2 (en)
JP (1) JP5232840B2 (en)
CN (1) CN102386362B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707464B2 (en) 2015-09-21 2020-07-07 Ford Global Technologies, Llc Battery cell venting system for electrified vehicle batteries

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054959A1 (en) 2003-12-08 2005-06-16 Hewlett-Packard Development Company, L.P. Printing of images with selective gloss and toners therefor
JP4378662B2 (en) * 2008-01-31 2009-12-09 トヨタ自動車株式会社 Sealed battery manufacturing method
JP5447817B2 (en) 2009-01-22 2014-03-19 株式会社リコー toner
JP5536382B2 (en) * 2009-07-08 2014-07-02 矢崎総業株式会社 Power supply
JP5590391B2 (en) * 2010-07-27 2014-09-17 日立オートモティブシステムズ株式会社 Secondary battery
WO2012120774A1 (en) * 2011-03-10 2012-09-13 三洋電機株式会社 Battery pack and method for connecting cells
JP6022460B2 (en) * 2011-08-31 2016-11-09 三洋電機株式会社 Battery and manufacturing method thereof
JP2013197017A (en) * 2012-03-22 2013-09-30 Toshiba Corp Battery pack and conductive member
JP2014010992A (en) * 2012-06-28 2014-01-20 Toyota Motor Corp Sealed battery and manufacturing method therefor
JP5637181B2 (en) * 2012-06-29 2014-12-10 トヨタ自動車株式会社 Battery, battery manufacturing method, and battery manufacturing mask member
JP2014017081A (en) * 2012-07-06 2014-01-30 Hitachi Vehicle Energy Ltd Secondary battery
DE102012215206B4 (en) 2012-08-28 2022-01-13 Robert Bosch Gmbh Battery cell, battery cell module, method for manufacturing a battery cell module, battery and motor vehicle
WO2014049855A1 (en) 2012-09-28 2014-04-03 日立ビークルエナジー株式会社 Rectangular secondary battery
JP6117927B2 (en) * 2013-08-22 2017-04-19 日立オートモティブシステムズ株式会社 Secondary battery
KR102221802B1 (en) * 2014-02-07 2021-03-02 삼성에스디아이 주식회사 Secondary battery
KR102140213B1 (en) * 2014-02-21 2020-07-31 삼성에스디아이 주식회사 Battery pack
KR101583443B1 (en) * 2015-02-27 2016-01-25 신흥에스이씨주식회사 Method of manufacturing cap-assay of litium ion battery with high capacity and power
WO2017190042A1 (en) * 2016-04-29 2017-11-02 Nuburu, Inc Visible laser welding of electronic packaging, automotive electrics, battery and other components
JP6128266B2 (en) * 2016-06-03 2017-05-17 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6870316B2 (en) * 2016-12-21 2021-05-12 三洋電機株式会社 Square secondary battery and its manufacturing method
JP6760045B2 (en) * 2016-12-21 2020-09-23 三洋電機株式会社 Square secondary battery and its manufacturing method
JP6796260B2 (en) * 2017-08-23 2020-12-09 トヨタ自動車株式会社 Sealed battery
JP7098901B2 (en) * 2017-09-29 2022-07-12 三洋電機株式会社 Secondary battery and its manufacturing method
JP2019075214A (en) * 2017-10-12 2019-05-16 株式会社Gsユアサ Power storage element and manufacturing method of power storage element
WO2023013210A1 (en) * 2021-08-05 2023-02-09 株式会社村田製作所 Battery pack, battery pack manufacturing method, electric vehicle, and electric tool
CN115000642A (en) * 2022-06-10 2022-09-02 宁夏宝丰昱能科技有限公司 Square laminated battery

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357398A (en) * 1981-03-05 1982-11-02 The United States Of America As Represented By The United States Department Of Energy Electrochemical cell having cylindrical electrode elements
JPS62254992A (en) 1986-04-30 1987-11-06 Mitsubishi Electric Corp Laser welding method of aluminum member
JPS62283554A (en) 1986-06-02 1987-12-09 Fuji Elelctrochem Co Ltd Manufacture of cell with lead terminal
JPH04230953A (en) 1991-05-23 1992-08-19 Sanyo Electric Co Ltd Manufacture of battery
JP2000090893A (en) 1998-09-17 2000-03-31 Japan Storage Battery Co Ltd Battery and manufacture thereof
JP2002100340A (en) 2000-09-22 2002-04-05 Denso Corp Battery and its manufacturing method
JP2003092103A (en) 2001-07-11 2003-03-28 Japan Storage Battery Co Ltd Battery
JP2004014173A (en) 2002-06-04 2004-01-15 Japan Storage Battery Co Ltd Battery and manufacturing method for battery
US20040061476A1 (en) * 2002-09-18 2004-04-01 Matsushita Electric Industrial Co., Ltd. Prismatic battery
US20080241679A1 (en) 2007-03-30 2008-10-02 Sanyo Eletric Co., Ltd. Sealed battery with electrode terminal welded to current collector, and manufacturing method for the same
US20090087737A1 (en) 2007-09-28 2009-04-02 Sanyo Electric Co., Ltd. Sealed battery and manufacturing method thereof
WO2009110250A1 (en) 2008-03-07 2009-09-11 パナソニック株式会社 Lithium-ion secondary battery and manufacturing method thereof
JP2009259524A (en) 2008-04-15 2009-11-05 Toyota Motor Corp Lid of battery case, battery, and method of manufacturing the same
JP2009283256A (en) 2008-05-21 2009-12-03 Toyota Motor Corp Power supply device and power supply device manufacturing method
US20120052380A1 (en) 2010-08-31 2012-03-01 Hideo Nakamura Battery manufacturing method, battery, pre-welding positive plate manufacturing method, and pre-welding positive plate
US8268021B2 (en) * 2008-03-11 2012-09-18 Sanyo Electric Co., Ltd. Sealed battery and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671544B2 (en) * 1996-09-19 2005-07-13 株式会社デンソー Laser welding method
JP2002192365A (en) * 2000-12-26 2002-07-10 Nippon Sanso Corp Laser welding shield gas for galvanized sheet iron and welding method using the shield gas
KR100947989B1 (en) * 2007-11-06 2010-03-18 삼성에스디아이 주식회사 Secondary battery and manufacturing method thereof
CN101707238A (en) * 2009-11-06 2010-05-12 惠州市德赛锂电科技有限公司 Seal structure for lithium battery and preparation method thereof

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357398A (en) * 1981-03-05 1982-11-02 The United States Of America As Represented By The United States Department Of Energy Electrochemical cell having cylindrical electrode elements
JPS62254992A (en) 1986-04-30 1987-11-06 Mitsubishi Electric Corp Laser welding method of aluminum member
JPS62283554A (en) 1986-06-02 1987-12-09 Fuji Elelctrochem Co Ltd Manufacture of cell with lead terminal
JPH04230953A (en) 1991-05-23 1992-08-19 Sanyo Electric Co Ltd Manufacture of battery
JP2000090893A (en) 1998-09-17 2000-03-31 Japan Storage Battery Co Ltd Battery and manufacture thereof
US20030157404A1 (en) 1998-09-17 2003-08-21 Takefumi Inoue Battery and producing method thereof
JP2002100340A (en) 2000-09-22 2002-04-05 Denso Corp Battery and its manufacturing method
JP2003092103A (en) 2001-07-11 2003-03-28 Japan Storage Battery Co Ltd Battery
JP2004014173A (en) 2002-06-04 2004-01-15 Japan Storage Battery Co Ltd Battery and manufacturing method for battery
US20040061476A1 (en) * 2002-09-18 2004-04-01 Matsushita Electric Industrial Co., Ltd. Prismatic battery
US20080241679A1 (en) 2007-03-30 2008-10-02 Sanyo Eletric Co., Ltd. Sealed battery with electrode terminal welded to current collector, and manufacturing method for the same
JP2008251411A (en) 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Sealed battery and its manufacturing method
US20090087737A1 (en) 2007-09-28 2009-04-02 Sanyo Electric Co., Ltd. Sealed battery and manufacturing method thereof
JP2009087693A (en) 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Sealed battery and its manufacturing method
US20120270098A1 (en) 2007-09-28 2012-10-25 Sanyo Electric Co., Ltd. Sealed battery
WO2009110250A1 (en) 2008-03-07 2009-09-11 パナソニック株式会社 Lithium-ion secondary battery and manufacturing method thereof
US20110008661A1 (en) 2008-03-07 2011-01-13 Kiyomi Kozuki Lithium ion secondary battery and method for producing the same
US8268021B2 (en) * 2008-03-11 2012-09-18 Sanyo Electric Co., Ltd. Sealed battery and method for manufacturing the same
JP2009259524A (en) 2008-04-15 2009-11-05 Toyota Motor Corp Lid of battery case, battery, and method of manufacturing the same
JP2009283256A (en) 2008-05-21 2009-12-03 Toyota Motor Corp Power supply device and power supply device manufacturing method
US20110045345A1 (en) 2008-05-21 2011-02-24 Toyota Jidosha Kabushiki Kaisha Power source apparatus and method of manufacturing power source apparatus
US20120052380A1 (en) 2010-08-31 2012-03-01 Hideo Nakamura Battery manufacturing method, battery, pre-welding positive plate manufacturing method, and pre-welding positive plate
JP2012054038A (en) 2010-08-31 2012-03-15 Toyota Motor Corp Method for manufacturing battery, battery, method for manufacturing pre-welded positive electrode plate, and pre-welded positive electrode plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP office action of Appln. No. 2010-197854 dated Dec. 4, 2012 with English translation.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707464B2 (en) 2015-09-21 2020-07-07 Ford Global Technologies, Llc Battery cell venting system for electrified vehicle batteries
US11715861B2 (en) 2015-09-21 2023-08-01 Ford Global Technologies, Llc Battery cell venting system for electrified vehicle batteries

Also Published As

Publication number Publication date
JP2012054203A (en) 2012-03-15
CN102386362B (en) 2014-11-26
US20120058374A1 (en) 2012-03-08
JP5232840B2 (en) 2013-07-10
CN102386362A (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US8507118B2 (en) Secondary battery and fabrication method thereof
JP5550561B2 (en) Optimized dimensional relationship for electrochemical cells with coiled core
JP6138963B2 (en) Square battery
KR102143052B1 (en) Device case and method of manufacturing the same
US20060024571A1 (en) Cylindrical lithium rechargeable battery and method for fabricating the same
US20110195288A1 (en) Sealed battery and method for fabricating the same
JP2013243141A (en) Battery system
KR20080114504A (en) Sealed battery and preparing method thereof
WO1999025035A1 (en) Method of manufacturing enclosed battery and enclosed battery
US10403862B2 (en) Battery
US20210013474A1 (en) Secondary battery
JP2009117092A (en) Secondary battery and its manufacturing method
CN109671969B (en) Method for manufacturing secondary battery
US20130115492A1 (en) Sealed type battery
CN106537651A (en) Secondary battery
JP2014004619A (en) Laser joining method and joining component
US10290842B2 (en) Producing method of sealed battery
KR20130004724A (en) Secondary battery
JP6213784B2 (en) Sealed battery
JP2002358948A (en) Enclosed battery
JP4198652B2 (en) Sealed battery
KR100490547B1 (en) Lithium secondary battery having a protective mean
KR100508947B1 (en) Secondary battery and methode for sealing thereof
JP6792802B2 (en) How to manufacture sealed batteries and sealed batteries
JP5490967B1 (en) Power storage device and method for manufacturing power storage device

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI VEHICLE ENERGY, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AOTA, KINYA;FUJITA, TOSHIRO;SIGNING DATES FROM 20110829 TO 20110902;REEL/FRAME:026904/0036

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: HITACHI AUTOMOTIVE SYSTEMS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HITACHI VEHICLE ENERGY, LTD.;REEL/FRAME:033582/0955

Effective date: 20140805

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210813