US8172125B2 - Vehicle door frame and method of producing the same - Google Patents
Vehicle door frame and method of producing the same Download PDFInfo
- Publication number
- US8172125B2 US8172125B2 US12/870,915 US87091510A US8172125B2 US 8172125 B2 US8172125 B2 US 8172125B2 US 87091510 A US87091510 A US 87091510A US 8172125 B2 US8172125 B2 US 8172125B2
- Authority
- US
- United States
- Prior art keywords
- door frame
- frame member
- design part
- molten metal
- connecting part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J5/00—Doors
- B60J5/04—Doors arranged at the vehicle sides
- B60J5/0401—Upper door structure
- B60J5/0402—Upper door structure window frame details, including sash guides and glass runs
Definitions
- the present invention relates to a vehicle door frame made of a material such as an aluminum alloy (light alloy) and a method of producing the vehicle door frame.
- vehicle door frames are made by butt-welding (corner welding) ends (butted ends) of at least a pillar member (e.g., a vertical pillar sash member or a door frame member) and an upper sash member (door frame member).
- TIG welding or MIG welding is generally utilized to carry out such a welding process.
- An aluminum alloy extruded product tends to be mainly used as a material for the vehicle door frame instead of a conventional roll-formed product made of an iron-based material for the purpose of weight reduction.
- An example of such a method of producing a vehicle door frame is disclosed in Japanese Unexamined Patent Publication 2003-412525.
- TIG welding or MIG welding is a process that joins base materials (base metals) together by melting these base materials while also melting a welding wire or a filler wire; however, it is visually impossible to check the degree (depth) of welding of the base materials merely by looking the surface of the welded portion.
- the present invention has been devised in view of the above described problem of the related art and provides a vehicle door frame which makes visual inspection of the weld strength possible.
- the present invention further provides a method of producing such a vehicle door frame.
- the present invention has been devised based on a reversed way of thinking in which if the welding operation continues to be performed to a degree until the molten metal melts through the inner surface (back/underside) from the outer surface (welding surface) (i.e., if the welding operation is performed excessively), the weld depth (weld strength) can be visually checked by visually recognizing that the molten metal has melted through the inner surface thereof (i.e., through to the other side).
- a vehicle door frame including a first door frame member and a second door frame member which are made of light alloy and positioned end-to-end to be butt-welded to each other, wherein each of the first door frame member and the second door frame member includes a design part, an enclosed section provided on a vehicle interior side, a connecting part which connects an inner surface of the design part with the enclosed section; and a first dam protrusion and a second dam protrusion which project from the inner surface of the design part and are positioned on opposite sides of the connecting part, respectively, the first dam protrusion, the design part and the connecting part defining a first space therebetween and the second dam protrusion, the design part and the connecting part defining a second space therebetween.
- Ends of the first and second dam protrusions of the first door frame member and corresponding ends of the first and second dam protrusions of the second door frame member are respectively butt-positioned against each other when the butted ends of the first door frame member and the second door frame member are joined to each other by butt-welding.
- Molten metal is present in the first space and the second space after the molten metal has melted and passed through the inner surface of the design part from the outer surface thereof upon butted ends of the first door frame member and the second door frame member being butt-welded to each other from the outer surface of the design part.
- a method of producing a vehicle door frame including a first door frame member and a second door frame member which are made of light alloy and positioned end-to-end to be butt-welded to each other, the method including: forming the first door frame member and the second door frame member by extrusion molding so that each of the first door frame member and the second door frame member includes: a design part; a enclosed section provided on a vehicle interior side; a connecting part which connects an inner surface of the design part with the enclosed section; and a first dam protrusion and a second dam protrusion which project from the inner surface of the design part and are positioned on opposite sides of the connecting part, respectively; butting ends of the first door frame member and the second door frame member, each of the ends including the design part, the connecting part, the first dam protrusion and the second dam protrusion; setting at least one back plate on the inner surface of the butted ends of the first door frame member and the second door frame member so as to foLia a first molten metal trap
- the weld strength (completion of the welding operation) can be visually checked by utilizing the occurrence of a phenomenon in which molten metal melts through the inner surface of the butted ends by an excessive welding operation, which makes it possible to achieve a high-strength vehicle door frame, the weld depth (weld strength) of which has been visually checked.
- FIG. 1 is a side elevational view of a vehicle door frame according to the present invention
- FIG. 2 is a cross sectional view of a door frame member of the vehicle door frame, taken along the line II-II shown in FIG. 1 , showing a cross sectional shape thereof by way of example;
- FIG. 3 is a view corresponding to FIG. 2 , showing the door frame member and two back plates positioned on the back (inner surface) of the door frame member;
- FIG. 4 is a front view as viewed in the direction of the arrow IV shown in FIG. 3 , showing the front shape (shape in plan view) of each back plate;
- FIG. 5 is a cross sectional view taken along the line V-V shown in FIG. 4 and viewed in the direction of the appended arrows, showing a state where molten metal has melted through the inner surface of each design part by a welding operation performed from the outer surface of each design part;
- FIG. 6 is a view similar to that of FIG. 2 , showing a cross sectional shape of the door frame member by way of example after the molten metal on both sides of the welded portion is smoothly finished;
- FIG. 7 is a cross sectional view of the door frame member (a portion thereof) having a cross sectional shape shown in FIG. 2 , a weather strip and a glass run, showing a state where the weather strip and the glass run have been installed to the door frame member;
- FIG. 8 is a cross sectional view of the door frame member (a portion thereof) having a cross sectional shape shown in FIG. 6 , a weather strip and a glass run, showing a state where the weather strip and the glass run have been installed to the door frame member.
- FIG. 1 is a front (side) elevational view of a rear door frame (rear left door frame) 10 , viewed from outside thereof, from among the door frames of a vehicle.
- the rear door frame 10 is provided with a rear pillar (pillar member/vertical pillar sash member/first door frame member) 11 and an upper sash (door frame member) 12 which are welded to each other by butt-welding (corner welding) the ends (butted ends) of the rear pillar 11 and the upper sash 12 .
- the front door frame(s) (not shown) has substantially the same structure as that of the rear door frame 10 .
- the rear pillar 11 and the upper sash 12 are each formed as an aluminum alloy extruded product having a uniform cross sectional shape.
- the rear pillar 11 is provided at an upper end thereof with an obliquely-cut end surface 11 a
- the upper sash 12 is provided at a front end thereof (i.e., toward the front of the vehicle) with an obliquely-cut end surface 12 a .
- the obliquely-cut end surfaces 11 a and 12 a are butt-positioned to form butted ends of the rear pillar 11 and the upper sash 12 which are to be joined together by butt-welding.
- a section W shows a section which is welded by TIG welding or MIG welding.
- FIG. 2 shows an example of this cross sectional shape (however, FIGS. 2 , 4 and 6 through 8 illustrate the shape of a cross section taken along a plane orthogonal to the longitudinal direction of the rear pillar 11 (the upper sash 12 ); and in the section W, the cross sectional shape appears to be longer in the vertical direction as viewed in a direction orthogonal to the obliquely-cut end surface 11 a ( 12 a )).
- the rear pillar 11 is provided with a design part 111 , an enclosed section (hollow section) 112 and a connecting part 113
- the upper sash 12 is provided with a design part 121 , an enclosed section (hollow section) 122 and a connecting part 123
- the design part 111 constitutes part of an exterior surface of the door frame (rear door frame 10 )
- the enclosed section 112 is positioned on the vehicle interior side and provides strength to the rear pillar 11
- the connecting part 113 connects the inner surface of the design part 111 and the enclosed section 112 to each other.
- the design part 121 constitutes part of an exterior surface of the door frame (rear door frame 10 ), the enclosed section 121 is positioned on the vehicle interior side and provides strength to the upper sash 12 , and the connecting part 123 connects the inner surface of the design part 121 and the enclosed section 122 to each other.
- the rear pillar 11 (the upper sash 12 ) is provided on the inner surface of the design part 111 ( 121 ) on the vehicle-body frame side (upper side with respect to FIG. 2 ) of the connecting part 113 ( 123 ) with a dam protrusion 114 ( 124 ) and on the window-glass side (lower side with respect to FIG.
- the dam protrusions 114 ( 124 ) and 115 ( 125 ) are respectively positioned on opposite sides of the connecting part 113 ( 123 ) with respect to a direction along the extending direction (i.e., a direction into the page of FIG. 2 ) of the connecting part 113 ( 123 ).
- the rear pillar 11 (the upper sash 12 ) is provided, on the vehicle-body frame side (upper side with respect to FIG.
- two back plates 20 and 30 are positioned (set) immediately behind the butted ends of the rear pillar 11 and the upper sash 12 which are to be butt-welded to each other as shown in FIGS. 3 and 4 .
- the back plate 20 is provided with a connecting-part contacting surface 21 that is shaped into a right-angular recess, in a plan view, which comes in contact with surfaces on the vehicle-body frame side of the connecting parts 113 and 123 , and a blocking surface 22 which comes in contact with the dam protrusions 114 and 124 .
- the connecting-part contacting surface 21 and the blocking surface define a molten metal trapping space 23 between the connecting part 113 ( 123 ) and the dam protrusion 114 ( 124 ).
- the back plate 30 is provided with a connecting-part contacting surface 31 shaped into a right-angular protrusion, in a plan view, which comes in contact with surfaces of the connecting parts 113 and 123 on the window-glass side, and an blocking surface 32 which comes in contact with the dam protrusions 115 and 125 .
- the connecting-part contacting surface 31 and the blocking surface 32 form a molten metal trapping space 33 between the connecting part 113 ( 123 ) and the dam protrusion 115 ( 125 ).
- each of the back plates 20 and 30 is hatched, and the molten metal trapping spaces 23 and 33 are hatched with different hatch lines on the hatch lines of the back plates 20 and 30 .
- FIG. 5 schematically shows such an excessive welding manner. Molten metal which melts through and between the butt-positioned obliquely-cut end surfaces (butted ends) 11 a and 12 a of the design parts 11 and 12 enters the molten metal trapping spaces 23 and 33 to be trapped therein.
- Entrance of the molten metal (designated by a letter “M” in FIG. 5 ) into the molten metal trapping spaces 23 and 33 can be visually checked by removing the back plates 20 and 30 , respectively. Accordingly, by visually monitoring the weld in such a manner, the rear pillar 11 and the upper sash 12 can be butt-welded to each other while ensuring sufficient weld strength.
- FIG. 6 shows a cross sectional shape of the rear pillar 11 (the upper sash 12 ) by way of example after such welded traces are smoothly finished. As can be seen in FIG.
- the molten metal trapping space 23 which is defined between the connecting part 113 ( 123 ) and the dam protrusion 114 ( 124 ), and the molten metal trapping space 33 , which is defined between the connecting part 113 ( 123 ) and the dam protrusion 115 ( 125 ), are each filled with molten metal in the vicinity of the obliquely-cut end surfaces 11 a and 12 a of the rear pillar 11 and the upper pillar 12 .
- the dam protrusion 114 ( 124 ) and the dam protrusion 115 ( 125 ) have been transformed to a uniform-thickness portion 114 D( 124 D) and a uniform-thickness portion 115 D( 125 D) which are continuous with the connecting part 113 ( 123 ), respectively.
- the weather strip groove 116 ( 126 ) and the glass run groove 118 ( 128 ) have also been transformed to a single-side-grooved glass run groove 116 D( 126 D) and a single-side-grooved glass run groove 118 D( 128 D), respectively.
- FIGS. 7 and 8 show a weather strip WS which is continuously inserted into the weather strip groove 116 ( 126 ) and the single-side-grooved weather strip groove 116 D( 126 D) and a glass run GR which is continuously inserted into the glass run groove 118 ( 128 ) and the single-side-grooved glass run groove 118 D( 128 D).
- the weather strip WS is a member which is positioned on the edge of a door frame (the rear frame 10 ) therealong and fills in the gap between the door frame and a door opening of the vehicle body when the door is closed
- the glass run GR is a member for guiding an edge of a movable window pane installed to the door frame.
- the weather strip WS can be made of a flexible material having a uniform cross sectional shape which can be deformed to correspond to the difference in shape between the weather strip groove 116 ( 126 ) and the single-side-grooved weather strip groove 116 D( 126 D), and the glass run GR can likewise be made of a flexible material having a uniform cross sectional shape which can be deformed to correspond to the difference in shape between the glass run groove 118 ( 128 ) and the single-side-grooved glass run groove 118 D( 128 D).
- a portion of the weather strip WS which corresponds to the single-side-grooved weather strip groove 116 D( 126 D) to be made to differ in shape (cross sectional shape) from the remaining portion thereof and for a portion of the glass run GR which corresponds to the single-side-grooved glass run groove 118 D( 128 D) to be made to differ in shape (cross sectional shape) from the remaining portion thereof.
- the present invention has been applied to a corner welding for joining the rear frame 11 and the upper sash 12 to each other in the above described embodiment, the present invention can also be applied to a corner welding for joining other door frame members to each other.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010139446A JP5620721B2 (en) | 2010-06-18 | 2010-06-18 | Vehicle door frame and manufacturing method thereof |
JP2010-139446 | 2010-06-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110308171A1 US20110308171A1 (en) | 2011-12-22 |
US8172125B2 true US8172125B2 (en) | 2012-05-08 |
Family
ID=45327424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/870,915 Expired - Fee Related US8172125B2 (en) | 2010-06-18 | 2010-08-30 | Vehicle door frame and method of producing the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US8172125B2 (en) |
JP (1) | JP5620721B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140021739A1 (en) * | 2012-07-18 | 2014-01-23 | Shiroki Corporation | Vehicle door frame structure |
US20180079285A1 (en) * | 2016-09-21 | 2018-03-22 | Shiroki Corporation | Vehicle door frame |
US20220032754A1 (en) * | 2018-10-10 | 2022-02-03 | Shiroki Corporation | Vehicle door frame |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013176187A1 (en) | 2012-05-25 | 2013-11-28 | シロキ工業株式会社 | Method for smoothing weld member, and smoothing device |
EP3040224B1 (en) * | 2013-08-30 | 2020-04-01 | Aisin Seiki Kabushiki Kaisha | Vehicular door frame, and vehicular door frame intermediary member |
JP6336740B2 (en) * | 2013-11-19 | 2018-06-06 | シロキ工業株式会社 | Sash material |
JP2016084055A (en) * | 2014-10-28 | 2016-05-19 | シロキ工業株式会社 | Vehicle door frame |
JP2021094956A (en) * | 2019-12-16 | 2021-06-24 | シロキ工業株式会社 | Manufacturing method of vehicular door frame and vehicular door frame |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462021A (en) * | 1981-02-13 | 1984-07-24 | Sony Corporation | Digital-to-analog converter that compensates for integrated circuit resistor variations |
DE3340476A1 (en) * | 1983-11-09 | 1985-05-15 | Volkswagenwerk Ag, 3180 Wolfsburg | Vehicle window with a displaceable window pane |
US5024480A (en) * | 1987-12-24 | 1991-06-18 | Alfa Lancia Industriale S.P.A. | Bodywork for automobiles |
US5992021A (en) * | 1996-02-13 | 1999-11-30 | Aisin Seiki Kabushiki Kaisha | Door frame and method for forming a door frame |
JP2005053289A (en) * | 2003-07-31 | 2005-03-03 | Aisin Seiki Co Ltd | Door frame equipment |
JP2010012924A (en) * | 2008-07-03 | 2010-01-21 | Shiroki Corp | Door frame structure of vehicle |
US20100015851A1 (en) * | 2008-07-18 | 2010-01-21 | Hon Hai Precision Ind. Co., Ltd. | Cable assembly having improved configuration for suppressing cross-talk |
US20110030282A1 (en) * | 2005-01-18 | 2011-02-10 | Ruppert Gerald Y | Window surround for a motor vehicle |
US20110036017A1 (en) * | 2008-04-23 | 2011-02-17 | Paul Moreton-Smith | Motor vehicle door seal |
US20110099912A1 (en) * | 2007-03-30 | 2011-05-05 | Shiroki Corporation | Vehicle Door Frame Structure |
US20110302846A1 (en) * | 2010-06-11 | 2011-12-15 | Shiroki Corporation | Vehicle door frame |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006281245A (en) * | 2005-03-31 | 2006-10-19 | Matsuo Kogyosho:Kk | Structure of backing metal for welding |
JP5107518B2 (en) * | 2005-11-22 | 2012-12-26 | シロキ工業株式会社 | Welding apparatus and welding method |
-
2010
- 2010-06-18 JP JP2010139446A patent/JP5620721B2/en active Active
- 2010-08-30 US US12/870,915 patent/US8172125B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462021A (en) * | 1981-02-13 | 1984-07-24 | Sony Corporation | Digital-to-analog converter that compensates for integrated circuit resistor variations |
DE3340476A1 (en) * | 1983-11-09 | 1985-05-15 | Volkswagenwerk Ag, 3180 Wolfsburg | Vehicle window with a displaceable window pane |
US5024480A (en) * | 1987-12-24 | 1991-06-18 | Alfa Lancia Industriale S.P.A. | Bodywork for automobiles |
US5992021A (en) * | 1996-02-13 | 1999-11-30 | Aisin Seiki Kabushiki Kaisha | Door frame and method for forming a door frame |
JP2005053289A (en) * | 2003-07-31 | 2005-03-03 | Aisin Seiki Co Ltd | Door frame equipment |
US20110030282A1 (en) * | 2005-01-18 | 2011-02-10 | Ruppert Gerald Y | Window surround for a motor vehicle |
US20110099912A1 (en) * | 2007-03-30 | 2011-05-05 | Shiroki Corporation | Vehicle Door Frame Structure |
US20110036017A1 (en) * | 2008-04-23 | 2011-02-17 | Paul Moreton-Smith | Motor vehicle door seal |
JP2010012924A (en) * | 2008-07-03 | 2010-01-21 | Shiroki Corp | Door frame structure of vehicle |
US20100015851A1 (en) * | 2008-07-18 | 2010-01-21 | Hon Hai Precision Ind. Co., Ltd. | Cable assembly having improved configuration for suppressing cross-talk |
US20110302846A1 (en) * | 2010-06-11 | 2011-12-15 | Shiroki Corporation | Vehicle door frame |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140021739A1 (en) * | 2012-07-18 | 2014-01-23 | Shiroki Corporation | Vehicle door frame structure |
CN103568787A (en) * | 2012-07-18 | 2014-02-12 | 白木工业株式会社 | Vehicle door frame structure |
US8979167B2 (en) * | 2012-07-18 | 2015-03-17 | Shiroki Corporation | Vehicle door frame structure |
US20180079285A1 (en) * | 2016-09-21 | 2018-03-22 | Shiroki Corporation | Vehicle door frame |
US10486508B2 (en) * | 2016-09-21 | 2019-11-26 | Shiroki Corporation | Vehicle door frame |
US20220032754A1 (en) * | 2018-10-10 | 2022-02-03 | Shiroki Corporation | Vehicle door frame |
US11897319B2 (en) * | 2018-10-10 | 2024-02-13 | Aisin Corporation | Vehicle door frame |
Also Published As
Publication number | Publication date |
---|---|
JP5620721B2 (en) | 2014-11-05 |
US20110308171A1 (en) | 2011-12-22 |
JP2012001153A (en) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8172125B2 (en) | Vehicle door frame and method of producing the same | |
US8727427B2 (en) | Front pillar for automobile | |
EP2862785B1 (en) | Welded structure for vehicle body panel | |
EP2730442A2 (en) | Vehicular door frame having vertical sash | |
JP6368708B2 (en) | Door sash with sash for vehicle | |
US20140021739A1 (en) | Vehicle door frame structure | |
WO2013008805A1 (en) | Door sash | |
KR960003314B1 (en) | Structure block manufacturing method and structure of vehicle | |
US8689703B2 (en) | Method for weld-joining attachment to outer panel of railway vehicle and car body side structure produced by the same | |
US10745060B2 (en) | Vehicle pillar structure and method for manufacturing vehicle pillar | |
JP4763993B2 (en) | Track chassis frame and aluminum alloy material for frame | |
CN210364067U (en) | Front door hole side panel assembly and vehicle | |
US20080268277A1 (en) | Method for the Production of a Sheet Metal Plate, in Particular of Steel, for the Manufacture of Motor Vehicle Body Components | |
JP2006341300A5 (en) | ||
KR101770127B1 (en) | Door assembly for vehicles | |
JP4484539B2 (en) | Railcar side structure | |
JP4280265B2 (en) | Railway vehicle | |
JP5096948B2 (en) | Construction machinery cab structure | |
JP4440832B2 (en) | Railway frame structure | |
JP7311399B2 (en) | Vehicle frame member and method for manufacturing vehicle frame member | |
JP4620033B2 (en) | Railway vehicle structure and frame member mounting method | |
JP6339844B2 (en) | Laser welding method for vehicle door sash and laser welding method for metal material | |
US10640152B2 (en) | Vehicle body side part structure | |
JP3657851B2 (en) | Joining method of plate materials | |
JP2021070423A (en) | Railway vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHIROKI CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKADA, TAKAYUKI;SHIMIZU, KENJI;YAMANE, GO;AND OTHERS;REEL/FRAME:024903/0984 Effective date: 20100824 |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: AISIN CORPORATION, JAPAN Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:SHIROKI CORPORATION;REEL/FRAME:059380/0588 Effective date: 20220309 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240508 |