US7982776B2 - SBI motion artifact removal apparatus and method - Google Patents
SBI motion artifact removal apparatus and method Download PDFInfo
- Publication number
- US7982776B2 US7982776B2 US11/777,602 US77760207A US7982776B2 US 7982776 B2 US7982776 B2 US 7982776B2 US 77760207 A US77760207 A US 77760207A US 7982776 B2 US7982776 B2 US 7982776B2
- Authority
- US
- United States
- Prior art keywords
- motion
- sbi
- data
- image
- resolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 192
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000003384 imaging method Methods 0.000 claims abstract description 40
- 238000001514 detection method Methods 0.000 claims abstract description 13
- 239000013598 vector Substances 0.000 claims description 34
- 230000003247 decreasing effect Effects 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 7
- 238000013519 translation Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 230000002596 correlated effect Effects 0.000 claims 3
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 230000000007 visual effect Effects 0.000 abstract description 5
- 230000004044 response Effects 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 description 26
- 230000008569 process Effects 0.000 description 19
- 230000006870 function Effects 0.000 description 9
- 238000005286 illumination Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000013507 mapping Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000013506 data mapping Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/101—Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20201—Motion blur correction
Definitions
- the present invention relates generally to systems, devices, and methods for eliminating image tearing effects and other visual artifacts perceived during imaging when an SBI or Scanned Beam Imaging device moves appreciably relative to the subject matter being imaged.
- Imaging devices can have different native resolutions and frame rates.
- Focal Plane Array (FPA) devices typically use Charge Coupled Device (CCD) or similar technologies to capture video images.
- CCD imagers typically capture 30 full frames per second (fps) using a technique called interlacing, whereby first the odd numbered horizontal lines of the frame are imaged and then the even numbered lines are imaged.
- fps full frames per second
- interlacing a technique called interlacing, whereby first the odd numbered horizontal lines of the frame are imaged and then the even numbered lines are imaged.
- Each half frame is resolved all at once at 60 fps, and when displayed on a screen each half frame is blended to some degree by the human eye with the next half frame to make the full screen image.
- the 60 fps refresh rate is generally beyond the human perception threshold, so the video appears continuous and uninterrupted.
- SBI devices use a higher resolution technology that is less forgiving in regards to movement of the subject matter. Instead of acquiring the entire frame at once, the area to be imaged is rapidly scanned point-by-point by an incident beam of light, the returned light being picked up by sensors and translated into a native data stream representing a series of scanned points and associated returned light intensity values. Unlike CCD imaging, where all or half of the pixels are imaged simultaneously, each scanned point in an SBI image is temporally displaced forward in time from the previously scanned point. If the SBI device and scene experience relative movement between the time the first data point is sampled and the last data point is sampled, the subject matter as a whole will not be imaged evenly. Because each data point is sampled very quickly in full resolution, there is relatively no blurring of the image to mask movement artifacts as one has with CCD imaging.
- the scanning pattern for an SBI image is usually a bi-sinusoidal or some other scanning pattern as known in the art; see, for example see the scanning beam imaging endoscope in U.S. Patent Application US 2005/0020926 A1 to Wikloff et al. Due to the temporal differences in each scanned point, a complex relationship exists between the instantaneous direction and velocity of the SBI device's scanning beam and direction and velocity of the moving subject matter resulting in image artifacts not typically seen in CCD imaging.
- the scanning beam may no longer image the subject matter evenly.
- the subject matter may appear to become somewhat distorted, and these distortions can appear visually as texture artifacts where some features become thicker or thinner based on the interaction between the scanning pattern and the direction of motion of the subject matter. Some fine features can become suddenly more easily discernable while fine features in other parts of the image can disappear altogether as the scanned lines lump together.
- some parts of the subject matter may be scanned multiple times, while others not scanned at all.
- this aliasing effect can present itself for example as multiple simultaneous overlapping images, serrations of various forms, or as a tearing of parts or all of the image. To the user, these effects can be visually uncomfortable and distracting.
- the present invention meets the above and other needs.
- One embodiment of the invention works by selectively reducing resolution when motion is detected.
- Another embodiment of the invention works by tracking the movement of the SBI device and reconstructing the translated data points, shifting them to compensate for the differences in movement between data samples.
- Another embodiment works by a combination of resolution reduction and shifted image reconstructing when motion is detected.
- the user's need to recognize small structures in the subject matter generally decreases. For example, when the user is moving the SBI device rapidly, the user is typically looking for the general area to begin examining. It is well known that the human visual system cannot resolve high resolution in a moving scene. Therefore, the user only requires resolution sufficient to see larger structures to help guide the user to the area desired to be imaged. Once the user slows or stops panning the SBI device the user is typically desiring to look at a specific area in the subject matter and will desire an increase in resolution.
- one embodiment of the system, device and method couples the resolution of the SBI device inversely to the motion of the SBI device and subject matter being imaged.
- the maximum resolution is presented for optimal viewing by the user.
- the resolution of the image is decreased, thereby reducing the occurrence of tearing effects and other visual artifacts that would otherwise be perceived by the user. Altering the displayed resolution is accomplished using a motion artifact removal image processor.
- This embodiment of the invention tracks the motion of the SBI device and associates one or more vectors with each data sample.
- the motion artifact removal image processor then reconstructs a corrected image from the SBI image stream by using one or more of the vectors to translate each data sample to the proper position relative to the other data samples as if there had been no motion. Reconstruction of the image presents the user a corrected image with reduced motion artifacts and tearing while maintaining the native high resolution of the SBI imager as much as possible.
- the motion artifact removal image processor has a means for ascertaining the relative motion of the SBI device relative to the subject matter being imaged.
- the means can include one or more accelerometers attached to the SBI device or the motion can be detected algorithmically by analyzing the image data for indications of movement, for example by looking for changes from image frame to image frame, or scan line to scan line.
- FIG. 1 a is a schematic diagram of a prior art imaging system using a Focal Plane Array (FPA) imaging device.
- FPA Focal Plane Array
- FIG. 1 b is a schematic diagram of a prior art imaging system using an SBI device.
- FIG. 2 a is a schematic diagram of an embodiment of the imaging system where an SBI device has a motion detector and implements a motion artifact removal image process to remove artifacts caused by relative motion between an SBI device and a target.
- FIG. 2 b is a schematic diagram of an embodiment of the imaging system where an SBI device has a motion detector, implements a motion artifact removal image process to remove artifacts caused by movement during imaging, and can convert between Lissajous and Cartesian spaces.
- FIG. 3 a is an illustration of an SBI scanning process.
- FIG. 3 b is an illustration used to facilitate understanding the process of translating data points to new scan lines or new coordinates.
- FIGS. 4 a - 4 c are exemplary illustrations of one embodiment of the motion artifact removal algorithm where resolution is reduced when motion is detected.
- FIG. 5 is an exemplary illustration of one embodiment of the motion artifact removal algorithm where scanned data points are translated to new scan lines or coordinates in response to the detected motion.
- FIGS. 1 a and 1 b detail the prior art imaging systems.
- FIGS. 2 a and 2 b describe exemplary embodiments of the present invention.
- FIGS. 3 a and 3 b illustrate the scanning and data sample translation processes of an SBI device and system.
- FIGS. 4 a - c , and 5 show examples of the artifact removal processes.
- the FPA controller 114 controls an I/O port 116 , a full field illuminator 102 , and a CCD detector 112 .
- the full field illuminator 102 illuminates a target illumination area 106 of a target subject matter 101 with a broad beam of illumination 104 .
- the CCD detector 112 spatially resolves returned illumination 110 from the target imaging area 108 and converts it to an electrical signal for eventual display.
- a full field illuminator 102 illuminates a target illumination area 106 of a target subject matter 101 , for example a patient, with a beam of illumination 104 .
- the illuminated area 106 is typically as large as or slightly larger than the target imaging area 108 .
- the CCD detector 112 captures the returned illumination 110 of the target imaging area 108 and converts the returned illumination 110 into pixel data values that can be read by the FPA controller 114 .
- the FPA controller 114 provides a processed video signal via the I/O port 116 .
- the video signal from the FPA imaging system 100 can be any kind of analog signal including a composite signal, an S-Video signal, or a Component RGB signal, the Component RGB in either interlaced or progressive scan being common.
- the video signal can be in a digital format using a USB, IEEE 1394, DVI, HDMI or other high speed serial digital signal.
- U.S. Published Application 2005/0020926 discloses an SBI device which is shown in FIG. 1 b herein.
- This imager can be used in applications in which cameras have been used in the past. In particular it can be used in medical devices such as video endoscopes, laparoscopes, etc.
- FIG. 1 b shows a block diagram of one example of a scanned beam imager system 118 .
- An SBI illuminator 120 creates a first beam of light 122 .
- a scanner 124 deflects the first beam of light across an SBI field-of-view (FOV) 128 to produce a second scanned beam of light 126 , shown in two positions 126 a and 126 b .
- the scanned beam of light 126 is substantially narrower than the broad beam of illumination 104 of an FPA-based system, and sequentially illuminates spots in the SBI FOV 128 , shown as positions 128 a and 128 b , corresponding to beam positions 126 a and 126 b , respectively.
- the illuminating light beam 126 is reflected, absorbed, scattered, refracted, or otherwise affected by the object or material in the FOV 128 to produce scattered light energy.
- a portion of the scattered light energy 130 shown emanating from spot positions 126 a and 126 b as scattered energy rays 130 a and 130 b , respectively, travels to one or more SBI detectors 132 that receive the light. For consistency this light will be referred to as “returned” light.
- the detectors produce electrical signals corresponding to the amount of light energy received.
- Image information is provided as an array of data, where each location in the array corresponds to a position in the scan pattern.
- the electrical signals are connected to an SBI controller 134 that builds up a digital image and transmits it for further processing, decoding, archiving, printing, display, or other treatment or use via SBI I/O interface 136 .
- Illuminator 120 may include multiple emitters such as, for instance, light emitting diodes (LEDs), lasers, thermal sources, arc sources, fluorescent sources, gas discharge sources, or other types of illuminators.
- LEDs light emitting diodes
- illuminator 120 comprises a red laser diode having a wavelength of approximately 635 to 670 nanometers (nm).
- illuminator 120 comprises three lasers: a red diode laser, a green diode-pumped solid state (DPSS) laser, and a blue DPSS laser at approximately 635 nm, 532 nm, and 473 nm, respectively.
- DPSS green diode-pumped solid state
- Illuminator 120 may include, in the case of multiple emitters, beam combining optics to combine some or all of the emitters into a single beam. Illuminator 120 may also include beam-shaping optics such as one or more collimating lenses and/or apertures. Additionally, while the wavelengths described in the previous embodiments have been in the optically visible range, other wavelengths may be within the scope of the invention. The illuminators 120 and detectors 132 may operate at different wavelengths, as for example to utilize fluorescence. Illuminator 120 , while illustrated as a single beam, may comprise a plurality of beams converging on a single scanner 124 or onto separate scanners 124 .
- scanners 124 employs a MEMS scanner capable of deflection about two orthogonal scan axes, in which both scan axes are driven at a frequency near their natural mechanical resonant frequency of the MEMS device upon which it is constructed. In another example, one axis is operated near resonance while the other is operated substantially off resonance. For completeness it is also noted that scanner 124 are also known that employ two reflectors, one of which oscillates sinusoidally and the other of which simply scans linearly. SBI devices are advantageous because they are often able to provide higher resolution and a broader scan area. An SBI device is able to provide pixel by pixel interrogation with a high range of data capture.
- FIG. 2 a the system is similar to the scanned beam imager system 118 of FIG. 1 b with the addition of an SBI controller with a motion artifact removal image processor 202 that is in communication with a motion detector 204 .
- an SBI controller with a motion artifact removal image processor 202 that is in communication with a motion detector 204 .
- the target subject matter 101 or patient, may move during imaging as illustrated for a single dimension in FIG. 2 a
- FOV 206 can also change over time.
- FIG. 2 b Referring now to the schematic diagram of an embodiment of an SBI system with a motion artifact removal image processor and Lissajous to Cartesian converter 208 depicted in FIG. 2 b , the system is similar to SBI system with a motion artifact removal image processor 200 depicted in FIG. 2 a with the addition of an Lissajous to Cartesian converter 212 that is in communication with the SBI controller with motion artifact removal image processor 202 .
- an SBI formatted digital sample data stream is delivered from the SBI detector 132 .
- the data points are scanned and sampled every 20 ns and delivered in an RGBF format where R, G, and B are 12 bit values of Red, Green, and Blue respectively, and F is a separate 12 bit value for Fluorescence.
- the subject matter could be sampled and the data may represent infrared, ultraviolet, or grayscale brightness.
- the subject matter could be sampled at a non-uniform rate, in higher or lower resolutions.
- the motion detector 204 detects if the scanner 124 is moving appreciably relative to the target subject matter 101 being imaged the SBI controller with a motion artifact removal image processor 202 applies algorithms to the image data in order to reduce or eliminate the occurrences of artifacts.
- the SBI controller with a motion artifact removal image processor 202 can detect relative motion algorithmically or through the use of a motion detector 204 sensor in the SBI systems 200 , 208 .
- Sensing motion computationally has the advantage that the SBI controller with a motion artifact removal image processor 202 will detect any relative motion, whether it is the target subject matter 101 or the scanner 124 that is moving.
- Algorithmic motion sensing also requires no physical sensors in the SBI systems 200 , 208 .
- Sensing motion using a motion detector 204 sensor requires less computational processing, but requires physical placement of one or more motion detector 204 sensors in the SBI systems 200 , 208 .
- the motion detector 204 sensors comprise a set MEMS accelerometers such as the Analog Devices ADXL330 3-axis linear acceleration sensor. Using accelerometers allows the SBI systems 200 , 208 to compute translation of the SBI systems 200 , 208 in all three axis of motion, as well as rotation, allowing detailed information about the precise movement of the SBI systems 200 , 208 during scanning.
- the motion detector 204 is any suitable device capable of determining the instantaneous position and orientation of the scanner 124 relative to the target subject matter 101 , including but not limited to accelerometers and associated software, mechanical positioning systems, infrared or electro-optical positioning systems, and RF-type positioning systems.
- the scanner 124 is in a separate device from the SBI controller with motion artifact removal image processor 202 . Because the relative motion that matters is the relative motion between the scanner 124 and the target subject matter 101 , future references may accordingly refer to the relative motion as between the scanner 124 and the target subject matter 101 . However, because different embodiments can have the SBI controller with motion artifact removal image processor 202 incorporated into the same device or devices as the scanner 124 , such references should also be read to include the relative motion between the entire SBI systems 200 , 208 and target subject matter 101 as well.
- motion is approximated algorithmically by using the occurrence of natural edges in the target subject matter 101 to detect motion.
- the SBI device scans the target subject matter 101 in a sequential fashion, creating slight sampling time differences between when the lines or points are scanned.
- the SBI systems 200 , 208 interleave or interlace the scan paths by a factor of approximately 32:1 (compared to 2:1 for NTSC interleaved video), although alternative embodiments with different interleave ratios are contemplated.
- the position of edges in the target subject matter 101 should be relatively contiguous and in the same place.
- the SBI controller with motion artifact removal image processor 202 determines which data points in previous or successive frames should be next to each other and estimates the amount of movement of the subject matter from the spatial shifts of data points that occur during scanning. For example SBI controller with motion artifact removal image processor 202 can analyze where edges in the target subject matter 101 occur during one frame and detect the extent of the motion by comparing the movement of those edges in subsequent data points of another frame.
- a Fourier transform is one method of sensing relative motion of an SBI systems 200 , 208 and is similar in some respects to the method used to detect the focus of an FPA imaging system 100 as is known in the art.
- Fourier transforms reveal the spectral content of data. Images having many sharp edges or sample-to-sample transitions yield large high frequency results, and smooth continuous data yields comparatively less high frequency results.
- an FPA imaging system 100 When properly focused, an FPA imaging system 100 generally presents sharp images with objects in the target subject matter 101 having clearly delineated edges.
- an FPA imaging system 100 performing a Fourier transform on a portion of an image having sharp edges yields a proportionally larger amount of high frequency data versus a Fourier transform on a portion having less distinct or blurry edges. Also, in an FPA imaging system 100 , a sudden decrease in high frequency data from the Fourier transform of a portion of an image indicates possible blurring caused by an increase in motion, whereas a returning increase in high frequency results indicates a sharpening of the image cause by a cessation of motion.
- the SBI controller with motion artifact removal image processor 202 performs a Fourier transform on data comprised of a data point in a selected scan line and neighboring data points in adjacent scan lines. Any movement of the SBI device or target subject matter 101 can cause discernable spatial shifts or jump discontinuities of the target subject matter 101 from scanned line to scanned line that results in image tearing artifacts and the appearance of artificial edges in the image because of the times differences between scans of the target subject matter 101 .
- the Fourier transform is generally performed using data points from neighboring data points in adjacent scan lines that are generally orthogonal to the direction of scanning, but any direction other than the direction of scanning will work to varying degrees.
- a vector describing the movement can be approximated by performing Fourier transforms on portions of the video data and analyzing the changes in the resulting distribution of frequencies indicated by the Fourier transform.
- the SBI system with a motion artifact removal image processor and Lissajous to Cartesian converter 208 first rasterizes the SBI imaged data in a Lissajous to Cartesian converter 212 into a Cartesian-oriented frame having dimensions of x by y, where x and y are chosen to be large enough to provide sufficient spectral information, before performing Fourier analysis on the rasterized frame.
- the Lissajous to Cartesian converter 212 is a process running on the SBI controller with motion artifact removal image processor 202 . While the use of the Fourier transform is described, it will be clear that other transforms of similar nature, typically relating space or time and frequency, may be employed as well. Such transforms include discrete cosine transforms, fast Fourier transforms, Walsh transforms, wavelet transforms, etc.
- An alternate embodiment of the SBI system with a motion artifact removal image processor and Lissajous to Cartesian converter 208 converts the SBI formatted digital sample data stream into a format compatible with a commercial display device (not shown) and outputs it via the I/O port 136 , although it is contemplated that this functionality could be implemented in a separate unit in another embodiment of the invention. Both high and low resolutions and refresh rates are contemplated.
- the display device may require a progressive scan 720 HDMI (ITU-R BT.601) with a 60 fps refresh rate signal.
- the display device may require an SVGA VESA-compatible signal using at least 800 ⁇ 600 pixel resolution and 72 fps refresh rate, for example the Dynamic Display's MD1518-101 commercially available medical grade display.
- the display device is a heads up display worn by the physician that accepts an SBI formatted digital sample data stream. Other suitable displays as would be known by one having ordinary skill in the art could also be used.
- FIG. 3 a an example FOV 206 of the SBI systems 200 , 208 with both a Lissajous pattern 302 and a corresponding Cartesian space 304 is illustrated.
- FIG. 3 b illustrates how the mapping of SBI data points into a Cartesian space 304 can be performed. Because each SBI data point does not cleanly map in one and only one Cartesian space 304 data point, it may be desirable to map each SBI data point into one or more Cartesian pixels. The following discussion describes how to map from Lissajous scan lines to Cartesian coordinates and then from Cartesian coordinates back to Lissajous scan lines.
- the scanner 124 employs an oscillating reflector with two orthogonal axis of rotation (labeled x and y) that operate in a resonant mode. The rate of oscillation is typically higher in one axis than the other.
- the scanner 124 causes a beam 122 of light reflected from its surface to trace a Lissajous pattern 302 .
- a and B are amplitudes, ⁇ f and ⁇ s , ⁇ f and ⁇ s the fast and slow scan frequencies and phase offsets respectively.
- We refer to motion of this sort as a precessing, bisinusoidal scan.
- the basic Lissajous pattern can precess.
- the number of slow axis cycles required to precess the pattern to an initial spatial point, is called the interleave factor.
- the Lissajous pattern is spatially repeated after a set number of oscillations on the slow axis (interleave factor). Once a reference point on the complete set of Lissajous patterns is identified, one can view the constant sample time, digital data stream captured at each optical detector as a vector of constant length, the Scanned Data Vector (SDV i ). The number of samples in the vector (N) is equal to the interleave factor times the period of the slow axis oscillation divided by the sample interval (t s ).
- the scanner assembly data stream can be viewed as a matrix, the Scanned Data Matrix (SDM), that has a row count equal to the number of sampled detectors (M) and a column count equal to the number of samples in each SDV (N).
- SDM Scanned Data Matrix
- the pixel data matrix is a two-dimensional matrix with row and column indices that represent the display space. For example, there may be 600 rows (Y) and 800 columns (X) and each point in the data set may be a triple representing red (R), green (G), and blue (B) display intensities.
- Matrix T is an N ⁇ XY matrix where N is the number of samples in the SD V; X is the number of horizontal pixels in the display space; and Y is the number of vertical pixels in the display space.
- Converting from the Lissajous space SDM to the Cartesian space PDM potentially requires mapping SBI data points into multiple Cartesian pixels.
- the scan trajectory (solid line) is shown overlaying pixel data (crosses).
- the index into the data samples is j and pixels have indices (k,l), corresponding to discrete values of conventional Cartesian coordinates (x,y): not matrix indices (row, column).
- the origin of the pixel data coordinates is in the upper left hand corner. Data from a particular data sample will be distributed into pixels falling into a region of radius r d centered on the sample.
- the solid line represents a portion of a specific trajectory of the dual resonant scanned beam through the scene.
- the diamonds indicate samples along that trajectory.
- the sample index (j) increases from the top left to bottom right in this depiction.
- the trajectory of the beam (with increasing sample index) can be in any direction through a subset of the scene. Note that the samples at the top left and bottom right are closer together than the samples in the center of the figure. This difference is shown to reinforce the implications of a constant data-sampling rate applied to resonant scanned beams.
- the particular sample index on the beam, m will be utilized in subsequent discussions.
- the following process can be used to populate the T matrix.
- precise knowledge of the path of the scanned beam that knowledge is assumed to be inherent in the scanner drive and positioning system
- it is possible to identify the pixel data point closest to the sample, m, at t m ⁇ t s from the start of the frame.
- pixel with the indices (k,l).
- construct a circle in Cartesian space of radius, r d over which the data from sample, m, is going to be distributed.
- the Lissajous to Cartesian converter 212 can internally use a much larger Cartesian frame with greater dynamic range than would be output to a monitor or received from an FPA or SBI device, and simply downsample and reduce the dynamic range appropriate to the monitor or storage device prior to outputting a video signal. Such a frame would reduce the loss in conversion between SBI and Cartesian spaces. It should be noted therefore, that this disclosure contemplates embodiments where the image processor is adapted to use an internal pixel frame that is both equal to, less than, or greater than that of an SBI or FPA pixel-oriented imaging device.
- FIG. 3 b is especially applicable to converting from Lissajous to Cartesian spaces, it is also applicable to Lissajous to Lissajous data mapping.
- weighting function described for FIG. 3 b would also be applicable to mapping of data from one Lissajous SBI scan line to other Lissajous SBI scan lines without having to first convert to Cartesian spaces.
- Such a weighting function can be used when translating data points in the reconstruction method of motion artifact removal described later in the application.
- an SBI system 200 , 208 scans a field of view 206 .
- the scanner 124 scans using a precessing bisinusoidal or Lissajous pattern for each scanned line 402 before returning close to, but slightly ahead of or behind its original starting point. As an example, after a scanning 15 lines, the cumulative effect of the offsets have caused the scanner 124 to be scanning completely different portions of the field of view 206 . For ease of explanation, only a small region of a small subset of scanned lines 402 are illustrated.
- an SBI device resolves each data point consecutively, one at a time.
- the effect, as shown, is that by the time the scanner 124 has scanned several lines, the subject matter 404 being scanned may have moved substantially.
- the method of eliminating motion artifacts is to reduce resolution when the detected motion is deemed large enough to cause visible artifacts.
- SBI controller with motion artifact removal image processor 202 detects motion either algorithmically or from the motion detector 204 , the later scan lines 402 are discarded while the earlier scan lines 402 are repeated to create a complete set of downsampled scan lines 412 .
- FIGS. 4 b and 4 c A simple example will be explained first, and a more complicated example is illustrated later in FIGS. 4 b and 4 c . As a simple example and without referring to any figures yet, to drop the resolution by half, only the first half of a set of scan lines 402 are utilized.
- This same process can be extended to drop the resolution to 1 ⁇ 3rd, 1 ⁇ 4th, 1 ⁇ 5th etc.
- the rough edges in the reconstituted downsampled image can be blended to create a more appealing image.
- FIGS. 4 b and 4 c This process is illustrated in FIGS. 4 b and 4 c for dropping the resolution to 1 ⁇ 4th the original resolution.
- the figures show subject matter 404 that is moving during sampling, as illustrated by its curvilinear path 403 .
- FIG. 4 b only the first four scan lines 402 out of sixteen scans lines 402 are used to create the downsampled scan lines 412 in FIG. 4 c which is displayed to the physician or user of the device.
- Scan line 402 n 2 in FIG.
- FIGS. 4 b and 4 c used clear boxes 408 and cross-hatched boxes 406 to represent the sampled data points for the scan lines 402 , where cross-hatched boxes 406 delineate samples where the subject matter 404 was found and sampled and clear boxes 408 delineate samples where the subject matter was not found.
- the vertically striped boxes 410 of FIG. 4 c illustrate the duplicated sampled data points for the subject matter 404 , which are duplications of the cross-hatched boxes 406 onto subsequence downsampled scan lines 412 .
- this resolution reduction process is lossy, as information in the later scan lines 402 is discarded, but it does have the benefit that it is relatively straightforward to implement and is not computationally intensive.
- This method is especially applicable to those embodiments of the invention where motion is detected using a simple accelerometer as the motion detector 204 or where the motion detection means 204 provides a motion magnitude as opposed to a vector which would provide both direction and magnitude and allow for more complex reconstruction algorithms as detailed later in the application.
- Simple experimentation and trial and error can be utilized to determine what pattern of scan line dropping results in a comfortable image for the user, as each type of SBI device can have somewhat different scanning characteristics, and each display device may have different characteristics.
- one or more lines can be averaged together, instead of merely repeated, using a weighting function, interpolation, convolving or any other technique as would be known in the art to make the repeated lines.
- the resolution is decreased proportionally as the detected motion increases.
- proportionally this is to meant to include both a linear relationship as well as any non-linear function, for instance a quadratic or higher order equation.
- the detected motion may be at a threshold where the system would change the resolution back and forth between different resolutions. This can be visually unpleasant to the user.
- the relationship may have hysteresis built into the algorithm so as to prevent rapid bouncing between different resolutions. For example there may be a slightly higher threshold amount of movement necessary to trigger a decrease in resolution than the amount necessary to trigger a subsequent re-increase in resolution. The exact relationship may be best determined by experimentation for the combination of scanner and display.
- the resolution is decreased in a step fashion. As the detected motion decreased below certain threshold values, the resolution is re-increased. As is common practice with step-type functions, the threshold values of motion necessary to trigger a decrease in resolution will be higher than for subsequently re-increasing resolution. This use of different values is commonly known as hysteresis and is used to prevent rapid changing back and forth between two different resolutions when the motion value is near a threshold value. Reducing the resolution in steps is meant to include both situation where hysteresis is employed and where no hysteresis is necessary.
- the SBI controller with motion artifact removal image processor 202 develops a vector 502 having both a magnitude and direction to describe the motion of the subject matter 404 relative to the scanner 124 .
- the vector 502 can be a single value for the entire scanned frame and all scan lines 402 .
- the vector 502 can be a value associated with each scanned line 402 for all the scanned data points in each line 402 .
- the vector 502 can be a characterization of the instantaneous motion of scanner 124 relative to the target subject matter 101 that will approximate the curvilinear path 403 of the subject matter for all sampled data points in a scanned frame.
- the motion of each individual data point can be individually calculated from the vector 502 .
- the Motion Artifact Removal Image Processor 206 can perform a smoothing algorithm to the vector(s) 502 to reduce noise or other unwanted rapid transitions.
- the SBI controller with motion artifact removal image processor 202 uses the vector 502 to remap each sampled data point 406 of the subject matter 404 in the SBI image data stream back to the correct position relative to the other data samples where it would have been sampled had it been sampled concurrently with a reference data point in one of the scan lines 402 .
- the current sample data point or scan line 402 can be used, requiring all previously scan lines to be translated by the current instantaneous vector 502 , or any data point or scan line 402 can be used as the reference data point.
- the reference data point is the first data point of the first scan line 402 .
- 3 b can also help to smooth out the data as it is translated to new positions.
- the larger the value of the vector 502 the more desirable it would be to have the weighting function spread the distribution of the translated scan point 504 values to additional surrounding data points. This is because large movements of the subject matter 404 will generally result in more overlap of translated data points during scanning and also gaps of missing data scan lines.
- the SBI controller with motion artifact removal image processor 202 works directly with the SBI data stream, preferably creating a new SBI data stream and mapping the data points from each of the scan lines 402 one by one into the new SBI data stream.
- the SBI system with a motion artifact removal image processor and Lissajous to Cartesian converter 208 first rasterizes the SBI imaged data into a Cartesian-oriented frame having dimensions of x by y with a pixel depth of z, where x, y, and z are chosen to be large enough to provide sufficient resolution for the display device and for other post-processing.
- the SBI controller with motion artifact removal image processor 202 maps each the data point from each of the scan lines 402 one by one into the Cartesian-oriented frame, and uses this frame to generate a new SBI data stream for an SBI display or output the Cartesian-oriented frame to an FPA display.
- the SBI controller with motion artifact removal image processor 202 in the SBI systems 200 , 208 is implemented using one or more microcontroller processors (which may be independently applied or embedded in an ASIC or FPGA), and may also include one or more discrete electronic support chips.
- microcontroller processors which may be independently applied or embedded in an ASIC or FPGA
- discrete electronic support chips The actual circuit implementation necessary to perform the digital signal processing necessary for post processing, data mapping and other pixel manipulation processes could be done in a variety of ways that would be obvious to one of ordinary skill in the art.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
Abstract
Description
x(t)=A sin(w t t+φ t)
y(t)=B cos(w s t+φ s).
where A and B are amplitudes, ωf and φs, φf and φs the fast and slow scan frequencies and phase offsets respectively. We refer to motion of this sort as a precessing, bisinusoidal scan.
[SDV][T]=[PDV]
where the pixel data vector PDV is then reordered to yield the pixel data matrix PDM. If the number of samples in the SDV vector is N and the size of the Cartesian space is X by Y, the transformation matrix, T, is of dimension N by (X*Y).
where:
- w is the weighting factor,
- s is the length of the vector from the SBI data point to the pixel of interest
- F is a controllable constant that sets how fast the effects of the SBI data falls off as the value of 1 increases.
- rd is the radius of the circle over which the data from the SBI sample is being distributed.
[SDV]=[PDV]T−1
where T is constructed as shown above. The above equation yields the multi-bit (analog) scan beam vector, SDV, which would result from a multi-bit (analog) Cartesian space matrix, PDM. Note that, in general, T is not square and the creation of the pseudoinverse matrix T−1 can be computationally challenging, but can be accomplished as is known in the art. Distribution of multi-bit Cartesian space data to a multi-bit drive (continuously varying modulation) of the scan beam in Lissajous space does require construction of the inverse of the T matrix.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/777,602 US7982776B2 (en) | 2007-07-13 | 2007-07-13 | SBI motion artifact removal apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/777,602 US7982776B2 (en) | 2007-07-13 | 2007-07-13 | SBI motion artifact removal apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090015695A1 US20090015695A1 (en) | 2009-01-15 |
US7982776B2 true US7982776B2 (en) | 2011-07-19 |
Family
ID=40252770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/777,602 Expired - Fee Related US7982776B2 (en) | 2007-07-13 | 2007-07-13 | SBI motion artifact removal apparatus and method |
Country Status (1)
Country | Link |
---|---|
US (1) | US7982776B2 (en) |
Cited By (236)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090273688A1 (en) * | 2008-05-03 | 2009-11-05 | Osamu Nonaka | Image recording and playback device, and image recording and playback method |
US8811769B1 (en) * | 2012-02-28 | 2014-08-19 | Lytro, Inc. | Extended depth of field and variable center of perspective in light-field processing |
US20180149753A1 (en) * | 2016-11-30 | 2018-05-31 | Yujin Robot Co., Ltd. | Ridar apparatus based on time of flight and moving object |
US10205896B2 (en) | 2015-07-24 | 2019-02-12 | Google Llc | Automatic lens flare detection and correction for light-field images |
US10275892B2 (en) | 2016-06-09 | 2019-04-30 | Google Llc | Multi-view scene segmentation and propagation |
US10275898B1 (en) | 2015-04-15 | 2019-04-30 | Google Llc | Wedge-based light-field video capture |
US10298834B2 (en) | 2006-12-01 | 2019-05-21 | Google Llc | Video refocusing |
US10334151B2 (en) | 2013-04-22 | 2019-06-25 | Google Llc | Phase detection autofocus using subaperture images |
US10341632B2 (en) | 2015-04-15 | 2019-07-02 | Google Llc. | Spatial random access enabled video system with a three-dimensional viewing volume |
EP3506290A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Detection and escalation of security responses of surgical instruments to increasing severity threats |
EP3505120A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adjustments based on airborne particle properties |
EP3506297A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
EP3505099A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Determining the state of an ultrasonic electromechanical system according to frequency shift |
EP3505130A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical instrument with a tissue marking assembly |
EP3505092A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adjustment of device control programs based on stratified contextual data in addition to the data |
EP3505106A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Estimating state of ultrasonic end effector and control system therefor |
EP3506301A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical system distributed processing |
EP3506313A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical hub situational awareness |
EP3505118A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Increasing radio frequency to create pad-less monopolar loop |
EP3505085A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Controlling a surgical instrument according to sensed closure parameters |
EP3506293A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Cloud-based medical analytics for security and authentication trends and reactive measures |
EP3506294A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical systems with prioritized data transmission capabilities |
EP3505114A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation sensing and display |
EP3505115A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
EP3505198A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Dual in-series large and small droplet filters |
EP3505131A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
EP3505083A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation sensor arrangements |
EP3505094A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
EP3505053A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Capacitive coupled return path pad with separable array elements |
EP3506305A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
EP3505086A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Systems for detecting proximity of surgical end effector to cancerous tissue |
EP3506272A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
EP3505090A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Stapling device with both compulsory and discretionary lockouts based on sensed parameters |
EP3506300A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Self describing data packets generated at an issuing instrument |
EP3506302A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
EP3505102A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Temperature control of ultrasonic end effector and control system therefor |
EP3505103A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
EP3505104A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Detection of end effector emersion in liquid |
EP3505123A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation sensing and generator control |
EP3506275A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
EP3506295A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Safety systems for smart powered surgical stapling |
EP3506306A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical systems with autonomously adjustable control programs |
EP3505116A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Smoke evacuation system including a segmented control circuit for interactive surgical platform |
EP3505089A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Powered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping |
EP3506286A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adaptive control program updates for surgical hubs |
EP3506298A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical hub coordination of control and communication of operating room devices |
EP3506299A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Data stripping method to interrogate patient records and create anonymized record |
EP3505042A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
EP3505082A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Interactive surgical system |
EP3506281A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Sterile field interactive control displays |
EP3505126A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
EP3506312A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Interactive surgical systems with encrypted communication capabilities |
EP3505113A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
EP3506276A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
EP3506289A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Data pairing to interconnect a device measured parameter with an outcome |
EP3505084A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical instrument cartridge sensor assemblies |
EP3506287A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adaptive control program updates for surgical devices |
EP3505129A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Control of a surgical system through a surgical barrier |
EP3506270A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Communication of data where a surgical network is using context of the data and requirements of a receiving system / user to influence inclusion or linkage of data and metadata to establish continuity |
EP3506317A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Interactive surgical systems with condition handling of devices and data capabilities |
EP3506284A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Cloud-based medical analytics for customization and recommendations to a user |
EP3506291A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical hub control arrangements |
EP3505088A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
EP3505125A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical instrument having a flexible electrode |
EP3506288A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical hub spatial awareness to determine devices in operating theater |
EP3506283A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
EP3505096A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
EP3506274A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical systems for detecting end effector tissue distribution irregularities |
EP3505119A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Interruption of energy due to inadvertent capacitive coupling |
EP3506311A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
EP3505122A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
EP3505095A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
EP3505117A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Computer implemented interactive surgical systems |
EP3505041A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Dual cmos array imaging |
EP3506304A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical instrument having a flexible circuit |
EP3506285A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Aggregation and reporting of surgical hub data |
EP3505105A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
EP3506280A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
EP3506303A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation sensing and motor control |
EP3505098A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Activation of energy devices |
EP3505132A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation flow paths |
WO2019130120A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation sensing and generator control |
WO2019130088A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Systems for detecting proximity of surgical end effector to cancerous tissue |
WO2019130097A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controls for robot-assisted surgical platforms |
WO2019130115A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument with a tissue marking assembly |
WO2019130086A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
WO2019130100A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cooperative surgical actions for robot-assisted surgical platforms |
WO2019130119A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation flow paths |
WO2019130112A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Increasing radio frequency to create pad-less monopolar loop |
WO2019130091A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Capacitive coupled return path pad with separable array elements |
WO2019130117A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation sensing and motor control |
WO2019130109A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
WO2019130124A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Smoke evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
WO2019130085A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
WO2019130121A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation sensing and display |
WO2019130125A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Dual in-series large and small droplet filters |
WO2019130087A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical systems for detecting end effector tissue distribution irregularities |
WO2019130107A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Determining the state of an ultrasonic end effector |
WO2019130105A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Determining tissue composition via an ultrasonic system |
WO2019130093A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Data handling and prioritization in a cloud analytics network |
WO2019130116A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical systems with prioritized data transmission capabilities |
WO2019130089A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument cartridge sensor assemblies |
WO2019130103A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controlling an ultrasonic surgical instrument according to tissue location |
WO2019130106A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Determining the state of an ultrasonic electromechanical system according to frequency shift |
WO2019130123A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Smoke evacuation system including a segmented control circuit for interactive surgical platform |
WO2019130110A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Detection of end effector emersion in liquid |
WO2019130092A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Sensing arrangements for robot-assisted surgical platforms |
WO2019130083A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
WO2019130114A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument having a flexible circuit |
WO2019130104A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
WO2019130094A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cloud interface for coupled surgical devices |
WO2019130113A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument having a flexible electrode |
WO2019130111A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Interruption of energy due to inadvertent capacitive coupling |
WO2019130122A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
WO2019134008A2 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Radio frequency energy device for delivering combined electrical signals |
WO2019130090A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Variable output cartridge sensor assembly |
WO2019130118A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation sensor arrangements |
EP3508140A1 (en) | 2017-12-28 | 2019-07-10 | Ethicon LLC | Variable output cartridge sensor assembly |
US10354399B2 (en) | 2017-05-25 | 2019-07-16 | Google Llc | Multi-view back-projection to a light-field |
US10412373B2 (en) | 2015-04-15 | 2019-09-10 | Google Llc | Image capture for virtual reality displays |
US10419737B2 (en) | 2015-04-15 | 2019-09-17 | Google Llc | Data structures and delivery methods for expediting virtual reality playback |
EP3547326A1 (en) | 2018-03-28 | 2019-10-02 | Ethicon LLC | Method of sensing particulate from smoke evacuated from a patient adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
EP3545862A2 (en) | 2018-03-28 | 2019-10-02 | Ethicon LLC | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
EP3545887A1 (en) | 2018-03-28 | 2019-10-02 | Ethicon LLC | Method for smoke evacuation for surgical hub |
WO2019186501A1 (en) | 2018-03-30 | 2019-10-03 | Ethicon Llc | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
WO2019186500A2 (en) | 2018-03-30 | 2019-10-03 | Ethicon Llc | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
WO2019186502A1 (en) | 2018-03-30 | 2019-10-03 | Ethicon Llc | Method for smoke evacuation for surgical hub |
US10440407B2 (en) | 2017-05-09 | 2019-10-08 | Google Llc | Adaptive control for immersive experience delivery |
US10444931B2 (en) | 2017-05-09 | 2019-10-15 | Google Llc | Vantage generation and interactive playback |
US10469873B2 (en) | 2015-04-15 | 2019-11-05 | Google Llc | Encoding and decoding virtual reality video |
US10474227B2 (en) | 2017-05-09 | 2019-11-12 | Google Llc | Generation of virtual reality with 6 degrees of freedom from limited viewer data |
US10540818B2 (en) | 2015-04-15 | 2020-01-21 | Google Llc | Stereo image generation and interactive playback |
US10546424B2 (en) | 2015-04-15 | 2020-01-28 | Google Llc | Layered content delivery for virtual and augmented reality experiences |
US10545215B2 (en) | 2017-09-13 | 2020-01-28 | Google Llc | 4D camera tracking and optical stabilization |
US10552947B2 (en) | 2012-06-26 | 2020-02-04 | Google Llc | Depth-based image blurring |
US10565734B2 (en) | 2015-04-15 | 2020-02-18 | Google Llc | Video capture, processing, calibration, computational fiber artifact removal, and light-field pipeline |
US10567464B2 (en) | 2015-04-15 | 2020-02-18 | Google Llc | Video compression with adaptive view-dependent lighting removal |
EP3616632A1 (en) | 2018-08-28 | 2020-03-04 | Ethicon LLC | Temperature control of ultrasonic end effector and control system therefor |
WO2020051478A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Regional location tracking of components of a modular energy system |
WO2020051481A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Modular surgical energy system with positional awareness with digital logic |
WO2020051477A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Instrument tracking arrangement based on real time clock information |
WO2020051455A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | First and second communication protocol arrangement for driving primary and secondary devices through a single port |
WO2020051450A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Flexible hand-switch circuit |
US10594945B2 (en) | 2017-04-03 | 2020-03-17 | Google Llc | Generating dolly zoom effect using light field image data |
US10679361B2 (en) | 2016-12-05 | 2020-06-09 | Google Llc | Multi-view rotoscope contour propagation |
US10772651B2 (en) | 2017-10-30 | 2020-09-15 | Ethicon Llc | Surgical instruments comprising a system for articulation and rotation compensation |
WO2020204987A1 (en) | 2019-03-29 | 2020-10-08 | Ethicon Llc | Automatic ultrasonic energy activation circuit design for modular surgical systems |
WO2020204988A1 (en) | 2019-03-29 | 2020-10-08 | Ethicon Llc | Modular surgical energy system with module positional awareness sensing with time counter |
WO2020260999A1 (en) | 2019-06-27 | 2020-12-30 | Ethicon Llc | Robotic surgical system with safety and cooperative sensing control |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US10965862B2 (en) | 2018-01-18 | 2021-03-30 | Google Llc | Multi-camera navigation interface |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11013569B2 (en) | 2019-06-27 | 2021-05-25 | Cilag Gmbh International | Surgical systems with interchangeable motor packs |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
USD928725S1 (en) | 2019-09-05 | 2021-08-24 | Cilag Gmbh International | Energy module |
USD928726S1 (en) | 2019-09-05 | 2021-08-24 | Cilag Gmbh International | Energy module monopolar port |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11207146B2 (en) | 2019-06-27 | 2021-12-28 | Cilag Gmbh International | Surgical instrument drive systems with cable-tightening system |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
USD939545S1 (en) | 2019-09-05 | 2021-12-28 | Cilag Gmbh International | Display panel or portion thereof with graphical user interface for energy module |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11259807B2 (en) | 2019-02-19 | 2022-03-01 | Cilag Gmbh International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11278362B2 (en) | 2019-06-27 | 2022-03-22 | Cilag Gmbh International | Surgical instrument drive systems |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11298148B2 (en) | 2018-03-08 | 2022-04-12 | Cilag Gmbh International | Live time tissue classification using electrical parameters |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11328446B2 (en) | 2015-04-15 | 2022-05-10 | Google Llc | Combining light-field data with active depth data for depth map generation |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11369443B2 (en) | 2019-06-27 | 2022-06-28 | Cilag Gmbh International | Method of using a surgical modular robotic assembly |
US11376083B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Determining robotic surgical assembly coupling status |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11399906B2 (en) | 2019-06-27 | 2022-08-02 | Cilag Gmbh International | Robotic surgical system for controlling close operation of end-effectors |
US11413102B2 (en) | 2019-06-27 | 2022-08-16 | Cilag Gmbh International | Multi-access port for surgical robotic systems |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11547468B2 (en) | 2019-06-27 | 2023-01-10 | Cilag Gmbh International | Robotic surgical system with safety and cooperative sensing control |
US11547465B2 (en) | 2012-06-28 | 2023-01-10 | Cilag Gmbh International | Surgical end effector jaw and electrode configurations |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11596291B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws |
US11607278B2 (en) | 2019-06-27 | 2023-03-21 | Cilag Gmbh International | Cooperative robotic surgical systems |
US11612445B2 (en) | 2019-06-27 | 2023-03-28 | Cilag Gmbh International | Cooperative operation of robotic arms |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11723729B2 (en) | 2019-06-27 | 2023-08-15 | Cilag Gmbh International | Robotic surgical assembly coupling safety mechanisms |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11857252B2 (en) | 2021-03-30 | 2024-01-02 | Cilag Gmbh International | Bezel with light blocking features for modular energy system |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11931026B2 (en) | 2021-06-30 | 2024-03-19 | Cilag Gmbh International | Staple cartridge replacement |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11950860B2 (en) | 2021-03-30 | 2024-04-09 | Cilag Gmbh International | User interface mitigation techniques for modular energy systems |
US11968776B2 (en) | 2021-03-30 | 2024-04-23 | Cilag Gmbh International | Method for mechanical packaging for modular energy system |
US11963727B2 (en) | 2021-03-30 | 2024-04-23 | Cilag Gmbh International | Method for system architecture for modular energy system |
US11978554B2 (en) | 2021-03-30 | 2024-05-07 | Cilag Gmbh International | Radio frequency identification token for wireless surgical instruments |
US11974829B2 (en) | 2021-06-30 | 2024-05-07 | Cilag Gmbh International | Link-driven articulation device for a surgical device |
US11980411B2 (en) | 2021-03-30 | 2024-05-14 | Cilag Gmbh International | Header for modular energy system |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US12004824B2 (en) | 2021-03-30 | 2024-06-11 | Cilag Gmbh International | Architecture for modular energy system |
US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
US12040749B2 (en) | 2021-03-30 | 2024-07-16 | Cilag Gmbh International | Modular energy system with dual amplifiers and techniques for updating parameters thereof |
US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US12079460B2 (en) | 2022-06-28 | 2024-09-03 | Cilag Gmbh International | Profiles for modular energy system |
US12121256B2 (en) | 2023-04-06 | 2024-10-22 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008001623A1 (en) * | 2008-05-07 | 2009-11-12 | Robert Bosch Gmbh | Projection method and projection device |
US8510462B2 (en) * | 2009-03-31 | 2013-08-13 | Canon Kabushiki Kaisha | Network streaming of a video media from a media server to a media client |
WO2011035070A1 (en) * | 2009-09-17 | 2011-03-24 | Masimo Laboratories, Inc. | Improving analyte monitoring using one or more accelerometers |
ES2884700T3 (en) * | 2010-12-21 | 2021-12-10 | 3Shape As | Motion blur compensation |
TWI435286B (en) * | 2011-05-04 | 2014-04-21 | Altek Corp | Image processing method and apparatus |
JP6150583B2 (en) * | 2013-03-27 | 2017-06-21 | オリンパス株式会社 | Image processing apparatus, endoscope apparatus, program, and operation method of image processing apparatus |
US20150026130A1 (en) * | 2013-07-17 | 2015-01-22 | LiveQoS Inc. | Method for efficient management of email attachments |
JP2017010092A (en) | 2015-06-17 | 2017-01-12 | キヤノン株式会社 | Image processing apparatus, imaging device, image processing method, image processing program, and recording medium |
JP2017010095A (en) * | 2015-06-17 | 2017-01-12 | キヤノン株式会社 | Image processing apparatus, imaging device, image processing method, image processing program, and recording medium |
JP6541454B2 (en) | 2015-06-17 | 2019-07-10 | キヤノン株式会社 | Image processing apparatus, imaging apparatus, image processing method, image processing program, and storage medium |
DE102017219307B4 (en) * | 2017-10-27 | 2019-07-11 | Siemens Healthcare Gmbh | Method and system for compensating motion artifacts by machine learning |
GB201807598D0 (en) * | 2018-05-10 | 2018-06-27 | Univ Oxford Innovation Ltd | Method and apparatus for use with a scanning apparatus |
Citations (321)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3758199A (en) | 1971-11-22 | 1973-09-11 | Sperry Rand Corp | Piezoelectrically actuated light deflector |
US3959582A (en) | 1975-03-31 | 1976-05-25 | The United States Of America As Represented By The Secretary Of The Navy | Solid state electronically rotatable raster scan for television cameras |
US4082635A (en) | 1976-08-02 | 1978-04-04 | Ciba-Geigy Corporation | Ultraviolet light-curable diacrylate hydantoin adhesive compositions |
US4141362A (en) | 1977-05-23 | 1979-02-27 | Richard Wolf Gmbh | Laser endoscope |
US4313431A (en) | 1978-12-06 | 1982-02-02 | Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung | Endoscopic apparatus with a laser light conductor |
US4379039A (en) | 1979-12-29 | 1983-04-05 | Toyo Boseki Kabushiki Kaish | Ultraviolet curable resin composition |
US4403273A (en) | 1981-01-26 | 1983-09-06 | Olympus Optical Co., Ltd. | Illuminating system for endoscopes |
US4409477A (en) | 1981-06-22 | 1983-10-11 | Sanders Associates, Inc. | Scanning optical system |
US4421382A (en) | 1980-04-01 | 1983-12-20 | Asahi Kogaku Kogyo Kabushiki Kaisha | Fiber retaining device for power laser |
US4524761A (en) | 1981-03-16 | 1985-06-25 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US4527552A (en) | 1981-03-25 | 1985-07-09 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US4573465A (en) | 1981-11-19 | 1986-03-04 | Nippon Infrared Industries Co., Ltd. | Laser irradiation apparatus |
US4576999A (en) | 1982-05-06 | 1986-03-18 | General Electric Company | Ultraviolet radiation-curable silicone release compositions with epoxy and/or acrylic functionality |
US4597380A (en) | 1982-09-30 | 1986-07-01 | Laser Industries Ltd. | Endoscopic attachment to a surgical laser |
US4643967A (en) | 1983-07-07 | 1987-02-17 | Bryant Bernard J | Antibody method for lowering risk of susceptibility to HLA-associated diseases in future human generations |
US4676231A (en) | 1984-09-14 | 1987-06-30 | Olympus Optical Co., Ltd. | Laser probe |
US4760840A (en) | 1986-12-16 | 1988-08-02 | The Regents Of The University Of California | Endoscopic laser instrument |
US4803550A (en) | 1987-04-17 | 1989-02-07 | Olympus Optical Co., Ltd. | Imaging apparatus having illumination means |
US4872458A (en) | 1986-09-16 | 1989-10-10 | Olympus Optical Co., Ltd. | Thermotherapy apparatus |
US4902083A (en) | 1988-05-31 | 1990-02-20 | Reflection Technology, Inc. | Low vibration resonant scanning unit for miniature optical display apparatus |
US4902115A (en) | 1986-09-22 | 1990-02-20 | Olympus Optical Co., Ltd. | Optical system for endoscopes |
DE3837248A1 (en) | 1988-10-28 | 1990-05-03 | Teichmann Heinrich Otto Dr Phy | Device for treating skin lesions |
US4934773A (en) | 1987-07-27 | 1990-06-19 | Reflection Technology, Inc. | Miniature video display system |
US4938205A (en) | 1988-05-27 | 1990-07-03 | The University Of Connecticut | Endoscope with traced raster and elemental photodetectors |
US5003300A (en) | 1987-07-27 | 1991-03-26 | Reflection Technology, Inc. | Head mounted display for miniature video display system |
US5023905A (en) | 1988-07-25 | 1991-06-11 | Reflection Technology, Inc. | Pocket data receiver with full page visual display |
US5048077A (en) | 1988-07-25 | 1991-09-10 | Reflection Technology, Inc. | Telephone handset with full-page visual display |
US5074860A (en) | 1989-06-09 | 1991-12-24 | Heraeus Lasersonics, Inc. | Apparatus for directing 10.6 micron laser radiation to a tissue site |
US5078150A (en) | 1988-05-02 | 1992-01-07 | Olympus Optical Co., Ltd. | Spectral diagnosing apparatus with endoscope |
US5163945A (en) | 1991-10-18 | 1992-11-17 | Ethicon, Inc. | Surgical clip applier |
US5163936A (en) | 1991-01-22 | 1992-11-17 | Reliant Laser Corp. | Endoscopic mirror laser beam delivery system and method for controlling alignment |
US5172685A (en) | 1988-05-27 | 1992-12-22 | The University Of Connecticut | Endoscope and video laser camera system therefor |
US5192288A (en) | 1992-05-26 | 1993-03-09 | Origin Medsystems, Inc. | Surgical clip applier |
US5200838A (en) | 1988-05-27 | 1993-04-06 | The University Of Connecticut | Lateral effect imaging system |
US5200819A (en) | 1988-05-27 | 1993-04-06 | The University Of Connecticut | Multi-dimensional imaging system for endoscope |
US5207670A (en) | 1990-06-15 | 1993-05-04 | Rare Earth Medical, Inc. | Photoreactive suturing of biological materials |
US5218195A (en) | 1991-06-25 | 1993-06-08 | Fuji Photo Film Co., Ltd. | Scanning microscope, scanning width detecting device, and magnification indicating apparatus |
US5251025A (en) | 1987-03-05 | 1993-10-05 | Fuji Optical Systems, Inc. | Electronic video dental camera |
US5251613A (en) | 1991-05-06 | 1993-10-12 | Adair Edwin Lloyd | Method of cervical videoscope with detachable camera |
US5269289A (en) | 1990-12-25 | 1993-12-14 | Olympus Optical Co., Ltd. | Cavity insert device using fuzzy theory |
US5318024A (en) | 1985-03-22 | 1994-06-07 | Massachusetts Institute Of Technology | Laser endoscope for spectroscopic imaging |
US5334991A (en) | 1992-05-15 | 1994-08-02 | Reflection Technology | Dual image head-mounted display |
US5368015A (en) | 1991-03-18 | 1994-11-29 | Wilk; Peter J. | Automated surgical system and apparatus |
US5370643A (en) | 1992-07-06 | 1994-12-06 | Ceramoptec, Inc. | Multiple effect laser delivery device and system for medical procedures |
US5387197A (en) | 1993-02-25 | 1995-02-07 | Ethicon, Inc. | Trocar safety shield locking mechanism |
US5393647A (en) | 1993-07-16 | 1995-02-28 | Armand P. Neukermans | Method of making superhard tips for micro-probe microscopy and field emission |
US5436655A (en) | 1991-08-09 | 1995-07-25 | Olympus Optical Co., Ltd. | Endoscope apparatus for three dimensional measurement for scanning spot light to execute three dimensional measurement |
US5467104A (en) | 1992-10-22 | 1995-11-14 | Board Of Regents Of The University Of Washington | Virtual retinal display |
US5488862A (en) | 1993-10-18 | 1996-02-06 | Armand P. Neukermans | Monolithic silicon rate-gyro with integrated sensors |
US5531740A (en) | 1994-09-06 | 1996-07-02 | Rapistan Demag Corporation | Automatic color-activated scanning treatment of dermatological conditions by laser |
US5545211A (en) | 1993-09-27 | 1996-08-13 | Sooho Medi-Tech Co., Ltd. | Stent for expanding a lumen |
US5552452A (en) | 1993-03-15 | 1996-09-03 | Arch Development Corp. | Organic tissue glue for closure of wounds |
US5557444A (en) | 1994-10-26 | 1996-09-17 | University Of Washington | Miniature optical scanner for a two axis scanning system |
US5590660A (en) | 1994-03-28 | 1997-01-07 | Xillix Technologies Corp. | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
US5596339A (en) | 1992-10-22 | 1997-01-21 | University Of Washington | Virtual retinal display with fiber optic point source |
US5608451A (en) | 1994-03-11 | 1997-03-04 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US5629790A (en) | 1993-10-18 | 1997-05-13 | Neukermans; Armand P. | Micromachined torsional scanner |
US5649952A (en) | 1993-12-28 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5657165A (en) | 1995-10-11 | 1997-08-12 | Reflection Technology, Inc. | Apparatus and method for generating full-color images using two light sources |
US5694237A (en) | 1996-09-25 | 1997-12-02 | University Of Washington | Position detection of mechanical resonant scanner mirror |
US5701132A (en) | 1996-03-29 | 1997-12-23 | University Of Washington | Virtual retinal display with expanded exit pupil |
US5713891A (en) | 1995-06-02 | 1998-02-03 | Children's Medical Center Corporation | Modified solder for delivery of bioactive substances and methods of use thereof |
US5728121A (en) | 1996-04-17 | 1998-03-17 | Teleflex Medical, Inc. | Surgical grasper devices |
US5735792A (en) | 1992-11-25 | 1998-04-07 | Clarus Medical Systems, Inc. | Surgical instrument including viewing optics and an atraumatic probe |
US5742419A (en) | 1995-11-07 | 1998-04-21 | The Board Of Trustees Of The Leland Stanford Junior Universtiy | Miniature scanning confocal microscope |
US5742421A (en) | 1996-03-01 | 1998-04-21 | Reflection Technology, Inc. | Split lens video display system |
US5768461A (en) | 1995-11-02 | 1998-06-16 | General Scanning, Inc. | Scanned remote imaging method and system and method of determining optimum design characteristics of a filter for use therein |
US5797944A (en) | 1992-11-12 | 1998-08-25 | Ethicon Endo-Surgery, Inc. | Visualization trocar |
US5817061A (en) | 1997-05-16 | 1998-10-06 | Ethicon Endo-Surgery, Inc. | Trocar assembly |
US5823943A (en) | 1994-08-02 | 1998-10-20 | Olympus Optical Co., Ltd | Light source device for endoscopes |
US5827176A (en) | 1996-02-13 | 1998-10-27 | Fuji Photo Optical Co., Ltd. | Endoscopic imaging system with rotating photoelectric line sensor |
US5841553A (en) | 1995-12-26 | 1998-11-24 | Xros, Inc. | Compact document scanner or printer engine |
US5861549A (en) | 1996-12-10 | 1999-01-19 | Xros, Inc. | Integrated Silicon profilometer and AFM head |
US5867297A (en) | 1997-02-07 | 1999-02-02 | The Regents Of The University Of California | Apparatus and method for optical scanning with an oscillatory microelectromechanical system |
US5895866A (en) | 1996-01-22 | 1999-04-20 | Neukermans; Armand P. | Micromachined silicon micro-flow meter |
US5903397A (en) | 1998-05-04 | 1999-05-11 | University Of Washington | Display with multi-surface eyepiece |
US5907425A (en) | 1995-12-19 | 1999-05-25 | The Board Of Trustees Of The Leland Stanford Junior University | Miniature scanning confocal microscope |
US5913591A (en) | 1998-01-20 | 1999-06-22 | University Of Washington | Augmented imaging using a silhouette to improve contrast |
US5947930A (en) | 1997-03-26 | 1999-09-07 | Ethicon Endo-Surgery, Inc. | Trocar having protector with sinusoidal member |
US5969465A (en) | 1997-04-01 | 1999-10-19 | Xros, Inc. | Adjusting operating characteristics of micromachined torsional oscillators |
US5982528A (en) | 1998-01-20 | 1999-11-09 | University Of Washington | Optical scanner having piezoelectric drive |
US5982555A (en) | 1998-01-20 | 1999-11-09 | University Of Washington | Virtual retinal display with eye tracking |
US5995264A (en) | 1998-01-20 | 1999-11-30 | University Of Washington | Counter balanced optical scanner |
US6008781A (en) | 1992-10-22 | 1999-12-28 | Board Of Regents Of The University Of Washington | Virtual retinal display |
US6013025A (en) | 1996-07-11 | 2000-01-11 | Micro Medical Devices, Inc. | Integrated illumination and imaging system |
US6016440A (en) | 1996-07-29 | 2000-01-18 | Bruker Analytik Gmbh | Device for infrared (IR) spectroscopic investigations of internal surfaces of a body |
US6017356A (en) | 1997-09-19 | 2000-01-25 | Ethicon Endo-Surgery Inc. | Method for using a trocar for penetration and skin incision |
US6017603A (en) | 1995-04-28 | 2000-01-25 | Nippon Kayaku Kabushiki Kaisha | Ultraviolet-curing adhesive composition and article |
US6024744A (en) | 1997-08-27 | 2000-02-15 | Ethicon, Inc. | Combined bipolar scissor and grasper |
US6043799A (en) | 1998-02-20 | 2000-03-28 | University Of Washington | Virtual retinal display with scanner array for generating multiple exit pupils |
US6046720A (en) | 1997-05-07 | 2000-04-04 | University Of Washington | Point source scanning apparatus and method |
US6044705A (en) | 1993-10-18 | 2000-04-04 | Xros, Inc. | Micromachined members coupled for relative rotation by torsion bars |
US6049407A (en) | 1997-05-05 | 2000-04-11 | University Of Washington | Piezoelectric scanner |
US6056721A (en) | 1997-08-08 | 2000-05-02 | Sunscope International, Inc. | Balloon catheter and method |
US6057952A (en) | 1999-01-14 | 2000-05-02 | Olympus Optical Co., Ltd. | Light scanning device and confocal optical device using the same |
US6059720A (en) | 1997-03-07 | 2000-05-09 | Asahi Kogaku Kogyo Kabushiki Kaisha | Endoscope system with amplification of fluorescent image |
US6064779A (en) | 1997-07-23 | 2000-05-16 | Xros, Inc. | Handheld document scanner |
US6086528A (en) | 1997-09-11 | 2000-07-11 | Adair; Edwin L. | Surgical devices with removable imaging capability and methods of employing same |
US6097353A (en) | 1998-01-20 | 2000-08-01 | University Of Washington | Augmented retinal display with view tracking and data positioning |
US6122394A (en) | 1996-05-01 | 2000-09-19 | Xros, Inc. | Compact, simple, 2D raster, image-building fingerprint scanner |
US6139175A (en) | 1996-05-15 | 2000-10-31 | Olympus Optical Co., Ltd. | Light source for endoscopes, having different numerical-aperture light collection system |
US6140979A (en) | 1998-08-05 | 2000-10-31 | Microvision, Inc. | Scanned display with pinch, timing, and distortion correction |
US6151167A (en) | 1998-08-05 | 2000-11-21 | Microvision, Inc. | Scanned display with dual signal fiber transmission |
US6154321A (en) | 1998-01-20 | 2000-11-28 | University Of Washington | Virtual retinal display with eye tracking |
US6172789B1 (en) | 1999-01-14 | 2001-01-09 | The Board Of Trustees Of The Leland Stanford Junior University | Light scanning device and confocal optical device using the same |
US6178346B1 (en) | 1998-10-23 | 2001-01-23 | David C. Amundson | Infrared endoscopic imaging in a liquid with suspended particles: method and apparatus |
US6179776B1 (en) | 1999-03-12 | 2001-01-30 | Scimed Life Systems, Inc. | Controllable endoscopic sheath apparatus and related method of use |
US6192267B1 (en) | 1994-03-21 | 2001-02-20 | Scherninski Francois | Endoscopic or fiberscopic imaging device using infrared fluorescence |
US6191761B1 (en) | 1998-11-09 | 2001-02-20 | University Of Washington | Method and apparatus for determining optical distance |
US6200595B1 (en) | 1998-04-24 | 2001-03-13 | Kuraray Co., Ltd. | Medical adhesive |
US6204832B1 (en) | 1997-05-07 | 2001-03-20 | University Of Washington | Image display with lens array scanning relative to light source array |
US6207392B1 (en) | 1997-11-25 | 2001-03-27 | The Regents Of The University Of California | Semiconductor nanocrystal probes for biological applications and process for making and using such probes |
US6210401B1 (en) | 1991-08-02 | 2001-04-03 | Shui T. Lai | Method of, and apparatus for, surgery of the cornea |
US6221068B1 (en) | 1998-01-15 | 2001-04-24 | Northwestern University | Method for welding tissue |
US6229139B1 (en) | 1998-07-23 | 2001-05-08 | Xros, Inc. | Handheld document scanner |
US6235017B1 (en) | 1997-03-11 | 2001-05-22 | Vitcon Projektconsult Gmbh | Device for ablation of material by means of laser radiation |
US6245590B1 (en) | 1999-08-05 | 2001-06-12 | Microvision Inc. | Frequency tunable resonant scanner and method of making |
US6256131B1 (en) | 1999-08-05 | 2001-07-03 | Microvision Inc. | Active tuning of a torsional resonant structure |
US6276798B1 (en) | 1998-09-29 | 2001-08-21 | Applied Spectral Imaging, Ltd. | Spectral bio-imaging of the eye |
US6281862B1 (en) | 1998-11-09 | 2001-08-28 | University Of Washington | Scanned beam display with adjustable accommodation |
US6284185B1 (en) | 1995-04-28 | 2001-09-04 | Nippon Kayaku Kabushiki Kaisha | Ultraviolet-curable adhesive composition for bonding opaque substrates |
US6285489B1 (en) | 1999-08-05 | 2001-09-04 | Microvision Inc. | Frequency tunable resonant scanner with auxiliary arms |
US6292287B1 (en) | 1999-05-20 | 2001-09-18 | Olympus Optical Co., Ltd. | Scanning confocal optical device |
US6294775B1 (en) | 1999-06-08 | 2001-09-25 | University Of Washington | Miniature image acquistion system using a scanning resonant waveguide |
US6294239B1 (en) | 1995-04-28 | 2001-09-25 | Nippon Kayaku Kabushiki Kaisha | Ultraviolet-curable adhesive composition |
US6293911B1 (en) | 1996-11-20 | 2001-09-25 | Olympus Optical Co., Ltd. | Fluorescent endoscope system enabling simultaneous normal light observation and fluorescence observation in infrared spectrum |
EP1139141A2 (en) | 2000-03-27 | 2001-10-04 | Cronos Integrated Microsystems, Inc. | Microelectromechanical devices having brake assemblies therein to control movement of optical shutters and other movable elements |
US6323037B1 (en) | 1998-04-06 | 2001-11-27 | Cornell Research Foundation, Inc. | Composition for tissue welding and method of use |
US6327493B1 (en) | 1997-08-28 | 2001-12-04 | Olympus Optical Co., Ltd. | Light scanning devices of a water-tight structure to be inserted into a body cavity to obtain optical information on inside of a biological tissue |
US6331909B1 (en) | 1999-08-05 | 2001-12-18 | Microvision, Inc. | Frequency tunable resonant scanner |
US6333110B1 (en) | 1998-11-10 | 2001-12-25 | Bio-Pixels Ltd. | Functionalized nanocrystals as visual tissue-specific imaging agents, and methods for fluorescence imaging |
US20010055462A1 (en) | 2000-06-19 | 2001-12-27 | Seibel Eric J. | Medical imaging, diagnosis, and therapy using a scanning single optical fiber system |
US6338641B2 (en) | 1998-07-24 | 2002-01-15 | Krone Gmbh | Electrical connector |
US20020015724A1 (en) | 1998-08-10 | 2002-02-07 | Chunlin Yang | Collagen type i and type iii hemostatic compositions for use as a vascular sealant and wound dressing |
US20020024495A1 (en) | 1998-08-05 | 2002-02-28 | Microvision, Inc. | Scanned beam display |
US6353183B1 (en) | 1996-05-23 | 2002-03-05 | The Siemon Company | Adapter plate for use with cable adapters |
US6362912B1 (en) | 1999-08-05 | 2002-03-26 | Microvision, Inc. | Scanned imaging apparatus with switched feeds |
US6364829B1 (en) | 1999-01-26 | 2002-04-02 | Newton Laboratories, Inc. | Autofluorescence imaging system for endoscopy |
US6369954B1 (en) | 1997-10-08 | 2002-04-09 | Universite Joseph Fourier | Lens with variable focus |
US6369928B1 (en) | 2000-11-01 | 2002-04-09 | Optical Biopsy Technologies, Inc. | Fiber-coupled, angled-dual-illumination-axis confocal scanning microscopes for performing reflective and two-photon fluorescence imaging |
US6370422B1 (en) | 1998-03-19 | 2002-04-09 | Board Of Regents, The University Of Texas System | Fiber-optic confocal imaging apparatus and methods of use |
US6370406B1 (en) | 1995-11-20 | 2002-04-09 | Cirrex Corp. | Method and apparatus for analyzing a test material by inducing and detecting light-matter interactions |
US6373995B1 (en) | 1998-11-05 | 2002-04-16 | Agilent Technologies, Inc. | Method and apparatus for processing image data acquired by an optical scanning device |
US20020050956A1 (en) | 2000-09-11 | 2002-05-02 | Microvision, Inc. | Scanned display with pinch, timing, and distortion correction |
US6384406B1 (en) | 1999-08-05 | 2002-05-07 | Microvision, Inc. | Active tuning of a torsional resonant structure |
US6392220B1 (en) | 1998-09-02 | 2002-05-21 | Xros, Inc. | Micromachined members coupled for relative rotation by hinges |
US6396461B1 (en) | 1998-08-05 | 2002-05-28 | Microvision, Inc. | Personal display with vision tracking |
US20020075284A1 (en) | 2000-08-03 | 2002-06-20 | Rabb Maurice F. | Display of images and image transitions |
US6414779B1 (en) | 2000-11-30 | 2002-07-02 | Opeical Biopsy Technologies, Inc. | Integrated angled-dual-axis confocal scanning endoscopes |
US6417502B1 (en) | 1998-08-05 | 2002-07-09 | Microvision, Inc. | Millimeter wave scanning imaging system having central reflectors |
US20020088925A1 (en) | 1998-08-05 | 2002-07-11 | Microvision, Inc. | Low light viewer with image simulation |
US6423956B1 (en) | 2000-07-28 | 2002-07-23 | Optical Biopsy Technologies | Fiber-coupled, high-speed, integrated, angled-dual-axis confocal scanning microscopes employing vertical cross-section scanning |
US6425900B1 (en) | 2000-10-19 | 2002-07-30 | Ethicon Endo-Surgery | Method for attaching hernia mesh |
US6426013B1 (en) | 1993-10-18 | 2002-07-30 | Xros, Inc. | Method for fabricating micromachined members coupled for relative rotation |
US6433907B1 (en) | 1999-08-05 | 2002-08-13 | Microvision, Inc. | Scanned display with plurality of scanning assemblies |
US6435637B1 (en) | 1999-10-29 | 2002-08-20 | Scitex Digital Printing, Inc. | Fluid and vacuum control in an ink jet printing system |
US20020115922A1 (en) | 2001-02-12 | 2002-08-22 | Milton Waner | Infrared assisted monitoring of a catheter |
US6441356B1 (en) | 2000-07-28 | 2002-08-27 | Optical Biopsy Technologies | Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes |
US6445362B1 (en) | 1999-08-05 | 2002-09-03 | Microvision, Inc. | Scanned display with variation compensation |
US6447524B1 (en) | 2000-10-19 | 2002-09-10 | Ethicon Endo-Surgery, Inc. | Fastener for hernia mesh fixation |
US20020141026A1 (en) | 2001-02-06 | 2002-10-03 | Wiklof Christopher A. | Scanner and method for sweeping a beam across a target |
US6462770B1 (en) | 1998-04-20 | 2002-10-08 | Xillix Technologies Corp. | Imaging system with automatic gain control for reflectance and fluorescence endoscopy |
US6464363B1 (en) | 1999-03-17 | 2002-10-15 | Olympus Optical Co., Ltd. | Variable mirror, optical apparatus and decentered optical system which include variable mirror, variable-optical characteristic optical element or combination thereof |
US6467345B1 (en) | 1993-10-18 | 2002-10-22 | Xros, Inc. | Method of operating micromachined members coupled for relative rotation |
US6470124B1 (en) | 1998-09-15 | 2002-10-22 | Assistance Publique - Hopitaux De Paris | Device for observation inside a body providing improved quality of observation |
US20020158814A1 (en) | 2001-04-09 | 2002-10-31 | Bright Gregory Scott | Electronically scanned beam display |
US6477403B1 (en) | 1999-08-09 | 2002-11-05 | Asahi Kogaku Kogyo Kabushiki Kaisha | Endoscope system |
US6478809B1 (en) | 2000-02-04 | 2002-11-12 | Gregory R. Brotz | Suture and method of use |
US20020171776A1 (en) | 2001-05-15 | 2002-11-21 | Microvision, Inc. | System and method for capturing, transmitting, and displaying an image |
US20020171937A1 (en) | 2001-05-15 | 2002-11-21 | Microvision, Inc. | System and method for producing an image with a screen using erase (off) and image (on) light sources |
US6485413B1 (en) | 1991-04-29 | 2002-11-26 | The General Hospital Corporation | Methods and apparatus for forward-directed optical scanning instruments |
US6494578B1 (en) | 2000-07-13 | 2002-12-17 | The Regents Of The University Of California | Virtual reality peripheral vision scotoma screening |
US6503196B1 (en) | 1997-01-10 | 2003-01-07 | Karl Storz Gmbh & Co. Kg | Endoscope having a composite distal closure element |
US6510338B1 (en) | 1998-02-07 | 2003-01-21 | Karl Storz Gmbh & Co. Kg | Method of and devices for fluorescence diagnosis of tissue, particularly by endoscopy |
US6515781B2 (en) | 1999-08-05 | 2003-02-04 | Microvision, Inc. | Scanned imaging apparatus with switched feeds |
US6513939B1 (en) | 2002-03-18 | 2003-02-04 | Nortel Networks Limited | Micro-mirrors with variable focal length, and optical components comprising micro-mirrors |
US20030030753A1 (en) | 2000-02-10 | 2003-02-13 | Tetsujiro Kondo | Image processing device and method, and recording medium |
US20030032143A1 (en) | 2000-07-24 | 2003-02-13 | Neff Thomas B. | Collagen type I and type III compositions for use as an adhesive and sealant |
US6520972B2 (en) | 2000-02-04 | 2003-02-18 | Stephen F. Peters | Surgical clip applier |
US20030034709A1 (en) | 2001-07-31 | 2003-02-20 | Iolon, Inc. | Micromechanical device having braking mechanism |
US6525310B2 (en) | 1999-08-05 | 2003-02-25 | Microvision, Inc. | Frequency tunable resonant scanner |
US6529770B1 (en) | 2000-11-17 | 2003-03-04 | Valentin Grimblatov | Method and apparatus for imaging cardiovascular surfaces through blood |
US6527708B1 (en) | 1999-07-02 | 2003-03-04 | Pentax Corporation | Endoscope system |
US6530698B1 (en) | 1999-07-09 | 2003-03-11 | Sumitomo Electric Industries, Ltd. | Optical device |
US6537211B1 (en) | 1998-01-26 | 2003-03-25 | Massachusetts Institute Of Technology | Flourescence imaging endoscope |
US20030058190A1 (en) | 2001-09-21 | 2003-03-27 | Microvision, Inc. | Scanned display with pinch, timing, and distortion correction |
US6545260B1 (en) | 1999-11-19 | 2003-04-08 | Olympus Optical Co., Ltd. | Light scanning optical device which acquires a high resolution two-dimensional image without employing a charge-coupled device |
US20030086172A1 (en) | 2001-11-02 | 2003-05-08 | Microvision, Inc. | Apparatus and methods for generating multiple exit-pupil images in an expanded exit pupil |
US6563106B1 (en) | 2000-02-01 | 2003-05-13 | Calient Networks, Inc. | Micro-electro-mechanical-system (MEMS) mirror device and methods for fabricating the same |
US6563105B2 (en) | 1999-06-08 | 2003-05-13 | University Of Washington | Image acquisition with depth enhancement |
US20030092995A1 (en) | 2001-11-13 | 2003-05-15 | Medtronic, Inc. | System and method of positioning implantable medical devices |
US6572606B2 (en) | 2000-01-12 | 2003-06-03 | Lasersight Technologies, Inc. | Laser fluence compensation of a curved surface |
US6583117B2 (en) | 1995-01-20 | 2003-06-24 | The Microsearch Foundation Of Australia | Method of tissue repair |
US6583772B1 (en) | 1998-08-05 | 2003-06-24 | Microvision, Inc. | Linked scanner imaging system and method |
US6585642B2 (en) | 2000-07-18 | 2003-07-01 | Evergreen Medical Incorporated | Endoscope with a removable suction tube |
US20030130562A1 (en) | 2002-01-09 | 2003-07-10 | Scimed Life Systems, Inc. | Imaging device and related methods |
US20030142934A1 (en) | 2001-12-10 | 2003-07-31 | Carnegie Mellon University And University Of Pittsburgh | Endoscopic imaging system |
US6603552B1 (en) | 1999-12-22 | 2003-08-05 | Xillix Technologies Corp. | Portable system for detecting skin abnormalities based on characteristic autofluorescence |
US6608297B2 (en) | 1997-07-23 | 2003-08-19 | Xeros, Inc. | Scanner document speed encoder |
US20030159447A1 (en) | 2000-05-29 | 2003-08-28 | Massimo Sergio | Refrigerated beverage dispenser provided with a sanitizing device |
US6639719B2 (en) | 2001-05-15 | 2003-10-28 | Microvision, Inc. | System and method for using multiple beams to respectively scan multiple regions of an image |
US6650877B1 (en) | 1999-04-30 | 2003-11-18 | Microvision, Inc. | Method and system for identifying data locations associated with real world observations |
US20030214460A1 (en) | 2002-05-17 | 2003-11-20 | Microvision, Inc. | Scanning-mirror structure having a cut or a composite design to reduce deformation of the mirror face, and related system and method |
US20030216729A1 (en) | 2002-05-20 | 2003-11-20 | Marchitto Kevin S. | Device and method for wound healing and uses therefor |
US6654158B2 (en) | 2001-04-20 | 2003-11-25 | Microvision, Inc. | Frequency tunable resonant scanner with auxiliary arms |
US6653621B2 (en) | 2001-03-23 | 2003-11-25 | Microvision, Inc. | Frequency tunable resonant scanner and method of making |
US6661393B2 (en) | 1999-08-05 | 2003-12-09 | Microvision, Inc. | Scanned display with variation compensation |
US20040004585A1 (en) | 2002-05-17 | 2004-01-08 | Microvision, Inc. | Apparatus and method for bi-directionally sweeping an image beam in the vertical dimension and related apparati and methods |
US20040008782A1 (en) * | 2002-07-15 | 2004-01-15 | Boyce Jill Macdonald | Motion estimation with weighting prediction |
US6685804B1 (en) | 1999-10-22 | 2004-02-03 | Sanyo Electric Co., Ltd. | Method for fabricating electrode for rechargeable lithium battery |
US6689056B1 (en) | 1999-04-07 | 2004-02-10 | Medtronic Endonetics, Inc. | Implantable monitoring probe |
US6699170B1 (en) | 1997-01-31 | 2004-03-02 | Endologix, Inc. | Radiation delivery balloon catheter |
US20040057103A1 (en) | 2002-09-25 | 2004-03-25 | Bernstein Jonathan Jay | Magnetic damping for MEMS rotational devices |
US20040076390A1 (en) | 2000-07-10 | 2004-04-22 | Dong Yang Victor Xiao | Method and apparatus for high resolution coherent optical imaging |
US20040085617A1 (en) | 2002-11-01 | 2004-05-06 | Microvision, Inc. | Frequency tunable resonant scanner with auxiliary arms |
US20040087844A1 (en) | 2002-11-01 | 2004-05-06 | Brian Yen | Apparatus and method for pattern delivery of radiation and biological characteristic analysis |
US6741884B1 (en) | 1998-09-03 | 2004-05-25 | Hypermed, Inc. | Infrared endoscopic balloon probes |
US20040101822A1 (en) | 2002-11-26 | 2004-05-27 | Ulrich Wiesner | Fluorescent silica-based nanoparticles |
US6749346B1 (en) | 1995-11-07 | 2004-06-15 | The Board Of Trustees Of The Leland Stanford Junior University | Miniature scanning confocal microscope |
US20040113059A1 (en) | 2002-12-16 | 2004-06-17 | Olympus America Inc. | Confocal microscope |
US20040118821A1 (en) | 2002-12-21 | 2004-06-24 | Eo Technics Co., Ltd. | Chip scale marker and marking method |
US20040119004A1 (en) | 2002-11-25 | 2004-06-24 | Microvision, Inc. | Frequency tunable resonant scanner and method of making |
US20040122328A1 (en) | 2000-06-19 | 2004-06-24 | University Of Washington | Integrated optical scanning image acquisition and display |
US6755536B2 (en) | 2001-05-15 | 2004-06-29 | Microvision, Inc. | System and method for displaying/projecting a color image |
US6768588B2 (en) | 2001-11-02 | 2004-07-27 | Microvision, Inc. | Apparatus and methods for generating multiple exit-pupil images in an expanded exit pupil |
US6771001B2 (en) | 2001-03-16 | 2004-08-03 | Optical Coating Laboratory, Inc. | Bi-stable electrostatic comb drive with automatic braking |
US20040151466A1 (en) | 2003-01-24 | 2004-08-05 | Janet Crossman-Bosworth | Optical beam scanning system for compact image display or image acquisition |
US20040155834A1 (en) | 1998-08-05 | 2004-08-12 | Microvision, Inc. | Display system and method for reducing the magnitude of or eliminating a visual artifact caused by a shift in a viewer's gaze |
US6782748B2 (en) | 2002-11-12 | 2004-08-31 | Honeywell International, Inc. | High-G acceleration protection by caging |
US6786382B1 (en) | 2003-07-09 | 2004-09-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an articulation joint for a firing bar track |
US6795221B1 (en) | 1999-08-05 | 2004-09-21 | Microvision, Inc. | Scanned display with switched feeds and distortion correction |
US6802809B2 (en) | 2001-06-29 | 2004-10-12 | Olympus Corporation | Endoscope |
US20040225222A1 (en) | 2003-05-08 | 2004-11-11 | Haishan Zeng | Real-time contemporaneous multimodal imaging and spectroscopy uses thereof |
US6821245B2 (en) | 2000-07-14 | 2004-11-23 | Xillix Technologies Corporation | Compact fluorescence endoscopy video system |
US20040236371A1 (en) | 2003-01-24 | 2004-11-25 | Mcnally-Heintzelman Karen M. | Light-activated adhesive composite, system, and methods of use thereof |
US20040240866A1 (en) | 2002-02-21 | 2004-12-02 | Ramsbottom Andrew Paul | Image capture and display system |
US20040252377A1 (en) | 2001-11-02 | 2004-12-16 | Microvision, Inc. | Apparatus and methods for generating multiple exit-pupil images in an expanded exit pupil |
US20040254474A1 (en) | 2001-05-07 | 2004-12-16 | Eric Seibel | Optical fiber scanner for performing multimodal optical imaging |
US6845190B1 (en) | 2000-11-27 | 2005-01-18 | University Of Washington | Control of an optical fiber scanner |
US20050014995A1 (en) | 2001-11-09 | 2005-01-20 | David Amundson | Direct, real-time imaging guidance of cardiac catheterization |
US20050020877A1 (en) | 2003-05-16 | 2005-01-27 | Olympus Corporation | Optical imaging apparatus for imaging living tissue |
US20050020926A1 (en) | 2003-06-23 | 2005-01-27 | Wiklof Christopher A. | Scanning endoscope |
US20050023356A1 (en) | 2003-07-29 | 2005-02-03 | Microvision, Inc., A Corporation Of The State Of Washington | Method and apparatus for illuminating a field-of-view and capturing an image |
US20050030305A1 (en) | 1999-08-05 | 2005-02-10 | Margaret Brown | Apparatuses and methods for utilizing non-ideal light sources |
US6856712B2 (en) | 2000-11-27 | 2005-02-15 | University Of Washington | Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition |
US6856436B2 (en) | 2002-06-26 | 2005-02-15 | Innovations In Optics, Inc. | Scanning light source system |
US20050038322A1 (en) | 2003-08-11 | 2005-02-17 | Scimed Life Systems | Imaging endoscope |
US6879428B2 (en) | 2001-12-26 | 2005-04-12 | Intermec Ip Corp. | Frame grabbing with laser scanner with sweeping by silicon planar electrostatics actuator |
US6888552B2 (en) | 2001-06-08 | 2005-05-03 | University Of Southern California | High dynamic range image editing |
US6894823B2 (en) | 2002-04-26 | 2005-05-17 | Corning Intellisense Llc | Magnetically actuated microelectromechanical devices and method of manufacture |
US6899675B2 (en) | 2002-01-15 | 2005-05-31 | Xillix Technologies Corp. | Fluorescence endoscopy video systems with no moving parts in the camera |
US20050116038A1 (en) | 2003-11-14 | 2005-06-02 | Lewis John R. | Scanned beam imager |
US6902527B1 (en) | 1999-05-18 | 2005-06-07 | Olympus Corporation | Endoscope system with charge multiplying imaging device and automatic gain control |
US6905057B2 (en) | 2003-09-29 | 2005-06-14 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission |
US20050162762A1 (en) | 2004-01-26 | 2005-07-28 | Nikon Corporation | Adaptive-optics actuator arrays and methods for using such arrays |
US20050187441A1 (en) | 2004-01-19 | 2005-08-25 | Kenji Kawasaki | Laser-scanning examination apparatus |
US6939364B1 (en) | 2001-10-09 | 2005-09-06 | Tissue Adhesive Technologies, Inc. | Composite tissue adhesive |
US20050203343A1 (en) | 2004-03-05 | 2005-09-15 | Korea Electrotechnology Research Institute | Fluorescent endoscope system having improved image detection module |
US20050222801A1 (en) * | 2004-04-06 | 2005-10-06 | Thomas Wulff | System and method for monitoring a mobile computing product/arrangement |
US6957898B2 (en) | 2003-02-13 | 2005-10-25 | San-Hua Yu | Adhesive type LED lead frame |
US20050240147A1 (en) | 2004-04-21 | 2005-10-27 | Exploramed Ii, Inc. | Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat |
US6967757B1 (en) | 2003-11-24 | 2005-11-22 | Sandia Corporation | Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation |
US6974472B2 (en) | 2001-04-04 | 2005-12-13 | Taewoong Medical Co., Ltd. | Flexible self-expandable stent using shape memory alloy and method and apparatus for fabricating the same |
US6976994B2 (en) | 1997-10-01 | 2005-12-20 | Boston Scientific Scimed, Inc. | Flexible metal wire stent |
US6978921B2 (en) | 2003-05-20 | 2005-12-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an E-beam firing mechanism |
US6985271B2 (en) | 2002-03-12 | 2006-01-10 | Corning Incorporated | Pointing angle control of electrostatic micro mirrors |
US20060010985A1 (en) | 2004-07-14 | 2006-01-19 | Jds Uniphase Corporation | Method and system for reducing operational shock sensitivity of MEMS devices |
US6991602B2 (en) | 2002-01-11 | 2006-01-31 | Olympus Corporation | Medical treatment method and apparatus |
WO2006020605A2 (en) | 2004-08-10 | 2006-02-23 | The Regents Of The University Of California | Device and method for the delivery and/or elimination of compounds in tissue |
US7005195B2 (en) | 2003-03-21 | 2006-02-28 | General Motors Corporation | Metallic-based adhesion materials |
US7009634B2 (en) | 2000-03-08 | 2006-03-07 | Given Imaging Ltd. | Device for in-vivo imaging |
US7013730B2 (en) | 2003-12-15 | 2006-03-21 | Honeywell International, Inc. | Internally shock caged serpentine flexure for micro-machined accelerometer |
US7015956B2 (en) | 2002-01-25 | 2006-03-21 | Omnivision Technologies, Inc. | Method of fast automatic exposure or gain control in a MOS image sensor |
US7018401B1 (en) | 1999-02-01 | 2006-03-28 | Board Of Regents, The University Of Texas System | Woven intravascular devices and methods for making the same and apparatus for delivery of the same |
US7025777B2 (en) | 2002-07-31 | 2006-04-11 | Unison Therapeutics, Inc. | Flexible and conformable stent and method of forming same |
US20060084867A1 (en) | 2003-10-17 | 2006-04-20 | Tremblay Brian M | Method and apparatus for surgical navigation |
US7035777B2 (en) | 2000-03-31 | 2006-04-25 | Hitachi, Ltd. | Method of offering wall-thickness thinning prediction information, and computer-readable recording medium storing wall-thickness thinning prediction program, and method of planning piping work plan |
US7033348B2 (en) | 2001-04-10 | 2006-04-25 | The Research Foundation Of The City University Of New York | Gelatin based on Power-gel™ as solders for Cr4+laser tissue welding and sealing of lung air leak and fistulas in organs |
US7065301B2 (en) | 2003-05-08 | 2006-06-20 | Sioptical, Inc. | High speed, silicon-based electro-optic modulator |
US7066879B2 (en) | 2003-07-15 | 2006-06-27 | The Trustees Of Columbia University In The City Of New York | Insertable device and system for minimal access procedure |
US7071594B1 (en) | 2002-11-04 | 2006-07-04 | Microvision, Inc. | MEMS scanner with dual magnetic and capacitive drive |
US7078378B1 (en) | 1998-06-18 | 2006-07-18 | Avastra Ltd. | Method of tissue repair II |
US20060195014A1 (en) | 2005-02-28 | 2006-08-31 | University Of Washington | Tethered capsule endoscope for Barrett's Esophagus screening |
US7108656B2 (en) | 2002-08-06 | 2006-09-19 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US7112302B2 (en) | 2003-05-23 | 2006-09-26 | Yoshimi Inc. | Methods for making shape memory alloy products |
US7126903B2 (en) | 2002-02-14 | 2006-10-24 | Koninklijke Philips Electronics N. V. | Variable focus lens |
US20060238774A1 (en) | 2003-01-20 | 2006-10-26 | Michael Lindner | Interferometric measuring device |
US20060245971A1 (en) | 2005-05-02 | 2006-11-02 | Burns Andrew A | Photoluminescent silica-based sensors and methods of use |
EP1716802A1 (en) | 2004-02-16 | 2006-11-02 | Olympus Corporation | Endoscope and endoscope system |
US20060284790A1 (en) | 1998-08-05 | 2006-12-21 | Tegreene Clarence T | Optical scanning system with correction |
US20070038119A1 (en) | 2005-04-18 | 2007-02-15 | Zhongping Chen | Optical coherent tomographic (OCT) imaging apparatus and method using a fiber bundle |
US20070046778A1 (en) | 2005-08-31 | 2007-03-01 | Olympus Corporation | Optical imaging device |
US7189961B2 (en) | 2005-02-23 | 2007-03-13 | University Of Washington | Scanning beam device with detector assembly |
US20070135770A1 (en) | 2005-12-13 | 2007-06-14 | Ethicon Endo-Surgery, Inc. | Endoscopic device stabilizer |
EP1797813A1 (en) | 2005-12-13 | 2007-06-20 | Siemens Aktiengesellschaft | Optical measuring device for measuring a hollow space |
US20070156021A1 (en) | 2005-09-14 | 2007-07-05 | Bradford Morse | Remote imaging apparatus having an adaptive lens |
US20070161876A1 (en) | 2005-11-18 | 2007-07-12 | Spectrx, Inc. | Method and apparatus for rapid detection and diagnosis of tissue abnormalities |
US20070162093A1 (en) | 2006-01-11 | 2007-07-12 | Porter Roger D | Therapeutic laser treatment |
US20070167681A1 (en) | 2001-10-19 | 2007-07-19 | Gill Thomas J | Portable imaging system employing a miniature endoscope |
US20070173707A1 (en) | 2003-07-23 | 2007-07-26 | Lockheed Martin Corporation | Method of and Apparatus for Detecting Diseased Tissue by Sensing Two Bands of Infrared Radiation |
US20070179366A1 (en) | 2000-09-25 | 2007-08-02 | Critisense Ltd. | Apparatus and Method for Monitoring Tissue Vitality Parameters |
US20070197874A1 (en) | 2006-02-23 | 2007-08-23 | Olympus Corporation | Endoscope observation device, observation device and observation method using endoscope |
US20070197875A1 (en) | 2003-11-14 | 2007-08-23 | Osaka Shoji | Endoscope device and imaging method using the same |
US20070203413A1 (en) | 2003-09-15 | 2007-08-30 | Beth Israel Deaconess Medical Center | Medical Imaging Systems |
EP1747751A3 (en) | 2005-07-29 | 2007-09-12 | Fujinon Corporation | Optical diagnosis and treatment apparatus |
US20070213618A1 (en) | 2006-01-17 | 2007-09-13 | University Of Washington | Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope |
US20070213588A1 (en) | 2006-02-28 | 2007-09-13 | Olympus Corporation | Endoscope system and observation method using the same |
US7271383B2 (en) | 2004-08-11 | 2007-09-18 | Lexmark International, Inc. | Scanning system with feedback for a MEMS oscillating scanner |
US20070225695A1 (en) | 2004-05-03 | 2007-09-27 | Woodwelding Ag | Light Diffuser and Process for Producing the Same |
JP2007244590A (en) | 2006-03-15 | 2007-09-27 | Olympus Medical Systems Corp | Imaging system |
JP2007244680A (en) | 2006-03-16 | 2007-09-27 | Olympus Medical Systems Corp | Image pickup system |
US20070238930A1 (en) | 2006-02-27 | 2007-10-11 | Wiklof Christopher A | Endoscope tips, scanned beam endoscopes using same, and methods of use |
US20070244365A1 (en) | 2006-04-17 | 2007-10-18 | Microvision, Inc. | Scanned beam imagers and endoscopes with positionable light collector |
US20070260121A1 (en) | 2006-05-08 | 2007-11-08 | Ethicon Endo-Surgery, Inc. | Endoscopic Translumenal Surgical Systems |
US20070260273A1 (en) | 2006-05-08 | 2007-11-08 | Ethicon Endo-Surgery, Inc. | Endoscopic Translumenal Surgical Systems |
WO2007041542A3 (en) | 2005-09-30 | 2007-11-15 | Cornova Inc | Systems and methods for analysis and treatment of a body lumen |
US20070272841A1 (en) * | 2006-05-25 | 2007-11-29 | Microvision, Inc. | Method and apparatus for capturing an image of a moving object |
WO2007070831A3 (en) | 2005-12-15 | 2007-12-13 | Microvision Inc | Method and apparatus for calibrating an endoscope system |
US20080007722A1 (en) * | 2005-03-24 | 2008-01-10 | Hunter Engineering Company | Vehicle wheel alignment system scanned beam imaging sensor |
US20080058629A1 (en) | 2006-08-21 | 2008-03-06 | University Of Washington | Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation |
US7504948B2 (en) * | 2006-04-26 | 2009-03-17 | Symbol Technologies, Inc. | Wireless rugged mobile data capture device with integrated RFID reader |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19709261A1 (en) * | 1997-03-06 | 1998-09-10 | Basf Ag | Process for the simultaneous production of acetylene and hydrocyanic acid from acrylonitrile |
-
2007
- 2007-07-13 US US11/777,602 patent/US7982776B2/en not_active Expired - Fee Related
Patent Citations (386)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3758199A (en) | 1971-11-22 | 1973-09-11 | Sperry Rand Corp | Piezoelectrically actuated light deflector |
US3959582A (en) | 1975-03-31 | 1976-05-25 | The United States Of America As Represented By The Secretary Of The Navy | Solid state electronically rotatable raster scan for television cameras |
US4082635A (en) | 1976-08-02 | 1978-04-04 | Ciba-Geigy Corporation | Ultraviolet light-curable diacrylate hydantoin adhesive compositions |
US4141362A (en) | 1977-05-23 | 1979-02-27 | Richard Wolf Gmbh | Laser endoscope |
US4313431A (en) | 1978-12-06 | 1982-02-02 | Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung | Endoscopic apparatus with a laser light conductor |
US4379039A (en) | 1979-12-29 | 1983-04-05 | Toyo Boseki Kabushiki Kaish | Ultraviolet curable resin composition |
US4421382A (en) | 1980-04-01 | 1983-12-20 | Asahi Kogaku Kogyo Kabushiki Kaisha | Fiber retaining device for power laser |
US4403273A (en) | 1981-01-26 | 1983-09-06 | Olympus Optical Co., Ltd. | Illuminating system for endoscopes |
US4524761A (en) | 1981-03-16 | 1985-06-25 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US4527552A (en) | 1981-03-25 | 1985-07-09 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US4409477A (en) | 1981-06-22 | 1983-10-11 | Sanders Associates, Inc. | Scanning optical system |
US4573465A (en) | 1981-11-19 | 1986-03-04 | Nippon Infrared Industries Co., Ltd. | Laser irradiation apparatus |
US4576999A (en) | 1982-05-06 | 1986-03-18 | General Electric Company | Ultraviolet radiation-curable silicone release compositions with epoxy and/or acrylic functionality |
US4597380A (en) | 1982-09-30 | 1986-07-01 | Laser Industries Ltd. | Endoscopic attachment to a surgical laser |
US4643967A (en) | 1983-07-07 | 1987-02-17 | Bryant Bernard J | Antibody method for lowering risk of susceptibility to HLA-associated diseases in future human generations |
US4676231A (en) | 1984-09-14 | 1987-06-30 | Olympus Optical Co., Ltd. | Laser probe |
US5318024A (en) | 1985-03-22 | 1994-06-07 | Massachusetts Institute Of Technology | Laser endoscope for spectroscopic imaging |
US4872458A (en) | 1986-09-16 | 1989-10-10 | Olympus Optical Co., Ltd. | Thermotherapy apparatus |
US4902115A (en) | 1986-09-22 | 1990-02-20 | Olympus Optical Co., Ltd. | Optical system for endoscopes |
US4760840A (en) | 1986-12-16 | 1988-08-02 | The Regents Of The University Of California | Endoscopic laser instrument |
US5251025A (en) | 1987-03-05 | 1993-10-05 | Fuji Optical Systems, Inc. | Electronic video dental camera |
US4803550A (en) | 1987-04-17 | 1989-02-07 | Olympus Optical Co., Ltd. | Imaging apparatus having illumination means |
US4934773A (en) | 1987-07-27 | 1990-06-19 | Reflection Technology, Inc. | Miniature video display system |
US5003300A (en) | 1987-07-27 | 1991-03-26 | Reflection Technology, Inc. | Head mounted display for miniature video display system |
US5078150A (en) | 1988-05-02 | 1992-01-07 | Olympus Optical Co., Ltd. | Spectral diagnosing apparatus with endoscope |
US5200838A (en) | 1988-05-27 | 1993-04-06 | The University Of Connecticut | Lateral effect imaging system |
US4938205A (en) | 1988-05-27 | 1990-07-03 | The University Of Connecticut | Endoscope with traced raster and elemental photodetectors |
US5172685A (en) | 1988-05-27 | 1992-12-22 | The University Of Connecticut | Endoscope and video laser camera system therefor |
US5200819A (en) | 1988-05-27 | 1993-04-06 | The University Of Connecticut | Multi-dimensional imaging system for endoscope |
US4902083A (en) | 1988-05-31 | 1990-02-20 | Reflection Technology, Inc. | Low vibration resonant scanning unit for miniature optical display apparatus |
US5023905A (en) | 1988-07-25 | 1991-06-11 | Reflection Technology, Inc. | Pocket data receiver with full page visual display |
US5048077A (en) | 1988-07-25 | 1991-09-10 | Reflection Technology, Inc. | Telephone handset with full-page visual display |
DE3837248A1 (en) | 1988-10-28 | 1990-05-03 | Teichmann Heinrich Otto Dr Phy | Device for treating skin lesions |
US5074860A (en) | 1989-06-09 | 1991-12-24 | Heraeus Lasersonics, Inc. | Apparatus for directing 10.6 micron laser radiation to a tissue site |
US5207670A (en) | 1990-06-15 | 1993-05-04 | Rare Earth Medical, Inc. | Photoreactive suturing of biological materials |
US5269289A (en) | 1990-12-25 | 1993-12-14 | Olympus Optical Co., Ltd. | Cavity insert device using fuzzy theory |
US5163936A (en) | 1991-01-22 | 1992-11-17 | Reliant Laser Corp. | Endoscopic mirror laser beam delivery system and method for controlling alignment |
US5368015A (en) | 1991-03-18 | 1994-11-29 | Wilk; Peter J. | Automated surgical system and apparatus |
US6485413B1 (en) | 1991-04-29 | 2002-11-26 | The General Hospital Corporation | Methods and apparatus for forward-directed optical scanning instruments |
US5251613A (en) | 1991-05-06 | 1993-10-12 | Adair Edwin Lloyd | Method of cervical videoscope with detachable camera |
US5218195A (en) | 1991-06-25 | 1993-06-08 | Fuji Photo Film Co., Ltd. | Scanning microscope, scanning width detecting device, and magnification indicating apparatus |
US6210401B1 (en) | 1991-08-02 | 2001-04-03 | Shui T. Lai | Method of, and apparatus for, surgery of the cornea |
US5436655A (en) | 1991-08-09 | 1995-07-25 | Olympus Optical Co., Ltd. | Endoscope apparatus for three dimensional measurement for scanning spot light to execute three dimensional measurement |
US5163945A (en) | 1991-10-18 | 1992-11-17 | Ethicon, Inc. | Surgical clip applier |
US5334991A (en) | 1992-05-15 | 1994-08-02 | Reflection Technology | Dual image head-mounted display |
US5192288A (en) | 1992-05-26 | 1993-03-09 | Origin Medsystems, Inc. | Surgical clip applier |
US5370643A (en) | 1992-07-06 | 1994-12-06 | Ceramoptec, Inc. | Multiple effect laser delivery device and system for medical procedures |
US5467104A (en) | 1992-10-22 | 1995-11-14 | Board Of Regents Of The University Of Washington | Virtual retinal display |
US5596339A (en) | 1992-10-22 | 1997-01-21 | University Of Washington | Virtual retinal display with fiber optic point source |
US5659327A (en) | 1992-10-22 | 1997-08-19 | Board Of Regents Of The University Of Washington | Virtual retinal display |
US6317103B1 (en) | 1992-10-22 | 2001-11-13 | University Of Washington | Virtual retinal display and method for tracking eye position |
US6008781A (en) | 1992-10-22 | 1999-12-28 | Board Of Regents Of The University Of Washington | Virtual retinal display |
US6639570B2 (en) | 1992-10-22 | 2003-10-28 | University Of Washington | Retinal display scanning of image with plurality of image sectors |
US20020163484A1 (en) | 1992-10-22 | 2002-11-07 | University Of Washington | Display with variably transmissive element |
US5797944A (en) | 1992-11-12 | 1998-08-25 | Ethicon Endo-Surgery, Inc. | Visualization trocar |
US5735792A (en) | 1992-11-25 | 1998-04-07 | Clarus Medical Systems, Inc. | Surgical instrument including viewing optics and an atraumatic probe |
US5387197A (en) | 1993-02-25 | 1995-02-07 | Ethicon, Inc. | Trocar safety shield locking mechanism |
US5552452A (en) | 1993-03-15 | 1996-09-03 | Arch Development Corp. | Organic tissue glue for closure of wounds |
US5393647A (en) | 1993-07-16 | 1995-02-28 | Armand P. Neukermans | Method of making superhard tips for micro-probe microscopy and field emission |
US5658710A (en) | 1993-07-16 | 1997-08-19 | Adagio Associates, Inc. | Method of making superhard mechanical microstructures |
US5545211A (en) | 1993-09-27 | 1996-08-13 | Sooho Medi-Tech Co., Ltd. | Stent for expanding a lumen |
US5648618A (en) | 1993-10-18 | 1997-07-15 | Armand P. Neukermans | Micromachined hinge having an integral torsion sensor |
US6426013B1 (en) | 1993-10-18 | 2002-07-30 | Xros, Inc. | Method for fabricating micromachined members coupled for relative rotation |
US6044705A (en) | 1993-10-18 | 2000-04-04 | Xros, Inc. | Micromachined members coupled for relative rotation by torsion bars |
US6467345B1 (en) | 1993-10-18 | 2002-10-22 | Xros, Inc. | Method of operating micromachined members coupled for relative rotation |
US5629790A (en) | 1993-10-18 | 1997-05-13 | Neukermans; Armand P. | Micromachined torsional scanner |
US5488862A (en) | 1993-10-18 | 1996-02-06 | Armand P. Neukermans | Monolithic silicon rate-gyro with integrated sensors |
US5649952A (en) | 1993-12-28 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5608451A (en) | 1994-03-11 | 1997-03-04 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US6192267B1 (en) | 1994-03-21 | 2001-02-20 | Scherninski Francois | Endoscopic or fiberscopic imaging device using infrared fluorescence |
US5827190A (en) | 1994-03-28 | 1998-10-27 | Xillix Technologies Corp. | Endoscope having an integrated CCD sensor |
US5590660A (en) | 1994-03-28 | 1997-01-07 | Xillix Technologies Corp. | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
US6086531A (en) | 1994-08-02 | 2000-07-11 | Olympus Optical Co., Ltd. | Light source device for endoscopes |
US5823943A (en) | 1994-08-02 | 1998-10-20 | Olympus Optical Co., Ltd | Light source device for endoscopes |
US5993037A (en) | 1994-08-02 | 1999-11-30 | Olympus Optical Co., Ltd. | Light source device for endoscopes |
US5531740A (en) | 1994-09-06 | 1996-07-02 | Rapistan Demag Corporation | Automatic color-activated scanning treatment of dermatological conditions by laser |
US5751465A (en) | 1994-10-26 | 1998-05-12 | University Of Washington | Miniature optical scanner for a two axis scanning system |
US6288816B1 (en) | 1994-10-26 | 2001-09-11 | University Of Washington | Miniature optical scanner for a two axis scanning system |
US5557444A (en) | 1994-10-26 | 1996-09-17 | University Of Washington | Miniature optical scanner for a two axis scanning system |
US6583117B2 (en) | 1995-01-20 | 2003-06-24 | The Microsearch Foundation Of Australia | Method of tissue repair |
US6294239B1 (en) | 1995-04-28 | 2001-09-25 | Nippon Kayaku Kabushiki Kaisha | Ultraviolet-curable adhesive composition |
US6017603A (en) | 1995-04-28 | 2000-01-25 | Nippon Kayaku Kabushiki Kaisha | Ultraviolet-curing adhesive composition and article |
US6284185B1 (en) | 1995-04-28 | 2001-09-04 | Nippon Kayaku Kabushiki Kaisha | Ultraviolet-curable adhesive composition for bonding opaque substrates |
US5713891A (en) | 1995-06-02 | 1998-02-03 | Children's Medical Center Corporation | Modified solder for delivery of bioactive substances and methods of use thereof |
US5657165A (en) | 1995-10-11 | 1997-08-12 | Reflection Technology, Inc. | Apparatus and method for generating full-color images using two light sources |
US5768461A (en) | 1995-11-02 | 1998-06-16 | General Scanning, Inc. | Scanned remote imaging method and system and method of determining optimum design characteristics of a filter for use therein |
US6749346B1 (en) | 1995-11-07 | 2004-06-15 | The Board Of Trustees Of The Leland Stanford Junior University | Miniature scanning confocal microscope |
US5742419A (en) | 1995-11-07 | 1998-04-21 | The Board Of Trustees Of The Leland Stanford Junior Universtiy | Miniature scanning confocal microscope |
US6370406B1 (en) | 1995-11-20 | 2002-04-09 | Cirrex Corp. | Method and apparatus for analyzing a test material by inducing and detecting light-matter interactions |
US6272907B1 (en) | 1995-12-11 | 2001-08-14 | Xros, Inc. | Integrated silicon profilometer and AFM head |
US6154305A (en) | 1995-12-19 | 2000-11-28 | The Board Of Trustees Of The Leland Stanford Junior University | Miniature scanning confocal microscope |
US5907425A (en) | 1995-12-19 | 1999-05-25 | The Board Of Trustees Of The Leland Stanford Junior University | Miniature scanning confocal microscope |
US6007208A (en) | 1995-12-19 | 1999-12-28 | The Board Of Trustees Of The Leland Stanford Junior University | Miniature scanning confocal microscope |
US6088145A (en) | 1995-12-19 | 2000-07-11 | The Board Of Trustees Of The Leland Stanford Junior University | Miniature scanning confocal microscope |
US5841553A (en) | 1995-12-26 | 1998-11-24 | Xros, Inc. | Compact document scanner or printer engine |
US5895866A (en) | 1996-01-22 | 1999-04-20 | Neukermans; Armand P. | Micromachined silicon micro-flow meter |
US5827176A (en) | 1996-02-13 | 1998-10-27 | Fuji Photo Optical Co., Ltd. | Endoscopic imaging system with rotating photoelectric line sensor |
US5742421A (en) | 1996-03-01 | 1998-04-21 | Reflection Technology, Inc. | Split lens video display system |
US6157352A (en) | 1996-03-29 | 2000-12-05 | University Of Washington | Virtual retinal display with expanded exit pupil |
US5701132A (en) | 1996-03-29 | 1997-12-23 | University Of Washington | Virtual retinal display with expanded exit pupil |
US5969871A (en) | 1996-03-29 | 1999-10-19 | University Of Washington | Virtual retinal display with lens array for expanding exit pupil |
US6700552B2 (en) | 1996-03-29 | 2004-03-02 | University Of Washington | Scanning display with expanded exit pupil |
US5728121A (en) | 1996-04-17 | 1998-03-17 | Teleflex Medical, Inc. | Surgical grasper devices |
US6122394A (en) | 1996-05-01 | 2000-09-19 | Xros, Inc. | Compact, simple, 2D raster, image-building fingerprint scanner |
US6139175A (en) | 1996-05-15 | 2000-10-31 | Olympus Optical Co., Ltd. | Light source for endoscopes, having different numerical-aperture light collection system |
US6353183B1 (en) | 1996-05-23 | 2002-03-05 | The Siemon Company | Adapter plate for use with cable adapters |
US6013025A (en) | 1996-07-11 | 2000-01-11 | Micro Medical Devices, Inc. | Integrated illumination and imaging system |
US6016440A (en) | 1996-07-29 | 2000-01-18 | Bruker Analytik Gmbh | Device for infrared (IR) spectroscopic investigations of internal surfaces of a body |
US6069725A (en) | 1996-09-25 | 2000-05-30 | University Of Washington | Position detection of mechanical resonant scanner mirror |
US6243186B1 (en) | 1996-09-25 | 2001-06-05 | University Of Washington | Position detection of mechanical resonant scanner mirror |
US6061163A (en) | 1996-09-25 | 2000-05-09 | University Of Washington | Position detection of mechanical resonant scanner mirror |
US5694237A (en) | 1996-09-25 | 1997-12-02 | University Of Washington | Position detection of mechanical resonant scanner mirror |
US6293911B1 (en) | 1996-11-20 | 2001-09-25 | Olympus Optical Co., Ltd. | Fluorescent endoscope system enabling simultaneous normal light observation and fluorescence observation in infrared spectrum |
US5861549A (en) | 1996-12-10 | 1999-01-19 | Xros, Inc. | Integrated Silicon profilometer and AFM head |
US6503196B1 (en) | 1997-01-10 | 2003-01-07 | Karl Storz Gmbh & Co. Kg | Endoscope having a composite distal closure element |
US6699170B1 (en) | 1997-01-31 | 2004-03-02 | Endologix, Inc. | Radiation delivery balloon catheter |
US5867297A (en) | 1997-02-07 | 1999-02-02 | The Regents Of The University Of California | Apparatus and method for optical scanning with an oscillatory microelectromechanical system |
US6059720A (en) | 1997-03-07 | 2000-05-09 | Asahi Kogaku Kogyo Kabushiki Kaisha | Endoscope system with amplification of fluorescent image |
US6235017B1 (en) | 1997-03-11 | 2001-05-22 | Vitcon Projektconsult Gmbh | Device for ablation of material by means of laser radiation |
US5947930A (en) | 1997-03-26 | 1999-09-07 | Ethicon Endo-Surgery, Inc. | Trocar having protector with sinusoidal member |
US5969465A (en) | 1997-04-01 | 1999-10-19 | Xros, Inc. | Adjusting operating characteristics of micromachined torsional oscillators |
US6049407A (en) | 1997-05-05 | 2000-04-11 | University Of Washington | Piezoelectric scanner |
US6204832B1 (en) | 1997-05-07 | 2001-03-20 | University Of Washington | Image display with lens array scanning relative to light source array |
US6046720A (en) | 1997-05-07 | 2000-04-04 | University Of Washington | Point source scanning apparatus and method |
US5817061A (en) | 1997-05-16 | 1998-10-06 | Ethicon Endo-Surgery, Inc. | Trocar assembly |
US6064779A (en) | 1997-07-23 | 2000-05-16 | Xros, Inc. | Handheld document scanner |
US6608297B2 (en) | 1997-07-23 | 2003-08-19 | Xeros, Inc. | Scanner document speed encoder |
US6056721A (en) | 1997-08-08 | 2000-05-02 | Sunscope International, Inc. | Balloon catheter and method |
US6024744A (en) | 1997-08-27 | 2000-02-15 | Ethicon, Inc. | Combined bipolar scissor and grasper |
US6327493B1 (en) | 1997-08-28 | 2001-12-04 | Olympus Optical Co., Ltd. | Light scanning devices of a water-tight structure to be inserted into a body cavity to obtain optical information on inside of a biological tissue |
US6086528A (en) | 1997-09-11 | 2000-07-11 | Adair; Edwin L. | Surgical devices with removable imaging capability and methods of employing same |
US6017356A (en) | 1997-09-19 | 2000-01-25 | Ethicon Endo-Surgery Inc. | Method for using a trocar for penetration and skin incision |
US6976994B2 (en) | 1997-10-01 | 2005-12-20 | Boston Scientific Scimed, Inc. | Flexible metal wire stent |
US6369954B1 (en) | 1997-10-08 | 2002-04-09 | Universite Joseph Fourier | Lens with variable focus |
US6207392B1 (en) | 1997-11-25 | 2001-03-27 | The Regents Of The University Of California | Semiconductor nanocrystal probes for biological applications and process for making and using such probes |
US6221068B1 (en) | 1998-01-15 | 2001-04-24 | Northwestern University | Method for welding tissue |
US6257727B1 (en) | 1998-01-20 | 2001-07-10 | University Of Washington | Augmented imaging using silhouette to improve contrast |
US6166841A (en) | 1998-01-20 | 2000-12-26 | University Of Washington | Counter balanced optical scanner |
US6097353A (en) | 1998-01-20 | 2000-08-01 | University Of Washington | Augmented retinal display with view tracking and data positioning |
US5913591A (en) | 1998-01-20 | 1999-06-22 | University Of Washington | Augmented imaging using a silhouette to improve contrast |
US6220711B1 (en) | 1998-01-20 | 2001-04-24 | University Of Washington | Augmented imaging using a silhouette to improve contrast |
US6560028B2 (en) | 1998-01-20 | 2003-05-06 | University Of Washington | Virtual retinal display with eye tracking |
US6285505B1 (en) | 1998-01-20 | 2001-09-04 | University Of Washington | Virtual retinal display with eye tracking |
US6535183B2 (en) | 1998-01-20 | 2003-03-18 | University Of Washington | Augmented retinal display with view tracking and data positioning |
US6154321A (en) | 1998-01-20 | 2000-11-28 | University Of Washington | Virtual retinal display with eye tracking |
US5982528A (en) | 1998-01-20 | 1999-11-09 | University Of Washington | Optical scanner having piezoelectric drive |
US6369953B2 (en) | 1998-01-20 | 2002-04-09 | University Of Washington | Virtual retinal display with eye tracking |
US5995264A (en) | 1998-01-20 | 1999-11-30 | University Of Washington | Counter balanced optical scanner |
US5982555A (en) | 1998-01-20 | 1999-11-09 | University Of Washington | Virtual retinal display with eye tracking |
US6537211B1 (en) | 1998-01-26 | 2003-03-25 | Massachusetts Institute Of Technology | Flourescence imaging endoscope |
US6510338B1 (en) | 1998-02-07 | 2003-01-21 | Karl Storz Gmbh & Co. Kg | Method of and devices for fluorescence diagnosis of tissue, particularly by endoscopy |
US6204829B1 (en) | 1998-02-20 | 2001-03-20 | University Of Washington | Scanned retinal display with exit pupil selected based on viewer's eye position |
US6352344B2 (en) | 1998-02-20 | 2002-03-05 | University Of Washington | Scanned retinal display with exit pupil selected based on viewer's eye position |
US6043799A (en) | 1998-02-20 | 2000-03-28 | University Of Washington | Virtual retinal display with scanner array for generating multiple exit pupils |
US6370422B1 (en) | 1998-03-19 | 2002-04-09 | Board Of Regents, The University Of Texas System | Fiber-optic confocal imaging apparatus and methods of use |
US6323037B1 (en) | 1998-04-06 | 2001-11-27 | Cornell Research Foundation, Inc. | Composition for tissue welding and method of use |
US6462770B1 (en) | 1998-04-20 | 2002-10-08 | Xillix Technologies Corp. | Imaging system with automatic gain control for reflectance and fluorescence endoscopy |
US6200595B1 (en) | 1998-04-24 | 2001-03-13 | Kuraray Co., Ltd. | Medical adhesive |
US5903397A (en) | 1998-05-04 | 1999-05-11 | University Of Washington | Display with multi-surface eyepiece |
US7078378B1 (en) | 1998-06-18 | 2006-07-18 | Avastra Ltd. | Method of tissue repair II |
US6229139B1 (en) | 1998-07-23 | 2001-05-08 | Xros, Inc. | Handheld document scanner |
US6338641B2 (en) | 1998-07-24 | 2002-01-15 | Krone Gmbh | Electrical connector |
US6140979A (en) | 1998-08-05 | 2000-10-31 | Microvision, Inc. | Scanned display with pinch, timing, and distortion correction |
US6324007B1 (en) | 1998-08-05 | 2001-11-27 | Microvision, Inc. | Scanned display with dual signal fiber transmission |
US6583772B1 (en) | 1998-08-05 | 2003-06-24 | Microvision, Inc. | Linked scanner imaging system and method |
US20020024495A1 (en) | 1998-08-05 | 2002-02-28 | Microvision, Inc. | Scanned beam display |
US20040085261A1 (en) | 1998-08-05 | 2004-05-06 | Microvision, Inc. | Linked scanner imaging system and method |
US20060284790A1 (en) | 1998-08-05 | 2006-12-21 | Tegreene Clarence T | Optical scanning system with correction |
US20020088925A1 (en) | 1998-08-05 | 2002-07-11 | Microvision, Inc. | Low light viewer with image simulation |
US20020167462A1 (en) | 1998-08-05 | 2002-11-14 | Microvision, Inc. | Personal display with vision tracking |
US20040155186A1 (en) | 1998-08-05 | 2004-08-12 | Microvision, Inc. | Scanned beam display |
US7190329B2 (en) | 1998-08-05 | 2007-03-13 | Microvision, Inc. | Apparatus for remotely imaging a region |
US6417502B1 (en) | 1998-08-05 | 2002-07-09 | Microvision, Inc. | Millimeter wave scanning imaging system having central reflectors |
US6396461B1 (en) | 1998-08-05 | 2002-05-28 | Microvision, Inc. | Personal display with vision tracking |
US20040155834A1 (en) | 1998-08-05 | 2004-08-12 | Microvision, Inc. | Display system and method for reducing the magnitude of or eliminating a visual artifact caused by a shift in a viewer's gaze |
US6151167A (en) | 1998-08-05 | 2000-11-21 | Microvision, Inc. | Scanned display with dual signal fiber transmission |
US20020015724A1 (en) | 1998-08-10 | 2002-02-07 | Chunlin Yang | Collagen type i and type iii hemostatic compositions for use as a vascular sealant and wound dressing |
US6392220B1 (en) | 1998-09-02 | 2002-05-21 | Xros, Inc. | Micromachined members coupled for relative rotation by hinges |
US6741884B1 (en) | 1998-09-03 | 2004-05-25 | Hypermed, Inc. | Infrared endoscopic balloon probes |
US6470124B1 (en) | 1998-09-15 | 2002-10-22 | Assistance Publique - Hopitaux De Paris | Device for observation inside a body providing improved quality of observation |
US6276798B1 (en) | 1998-09-29 | 2001-08-21 | Applied Spectral Imaging, Ltd. | Spectral bio-imaging of the eye |
US6178346B1 (en) | 1998-10-23 | 2001-01-23 | David C. Amundson | Infrared endoscopic imaging in a liquid with suspended particles: method and apparatus |
US6373995B1 (en) | 1998-11-05 | 2002-04-16 | Agilent Technologies, Inc. | Method and apparatus for processing image data acquired by an optical scanning device |
US6388641B2 (en) | 1998-11-09 | 2002-05-14 | University Of Washington | Scanned beam display with adjustable accommodation |
US6538625B2 (en) | 1998-11-09 | 2003-03-25 | University Of Washington | Scanned beam display with adjustable accommodation |
US6734835B2 (en) | 1998-11-09 | 2004-05-11 | University Of Washington | Patent scanned beam display with adjustable light intensity |
US6281862B1 (en) | 1998-11-09 | 2001-08-28 | University Of Washington | Scanned beam display with adjustable accommodation |
US20030016187A1 (en) | 1998-11-09 | 2003-01-23 | University Of Washington | Optical scanning system with variable focus lens |
US6492962B2 (en) | 1998-11-09 | 2002-12-10 | University Of Washington | Optical scanning system with variable focus lens |
US6191761B1 (en) | 1998-11-09 | 2001-02-20 | University Of Washington | Method and apparatus for determining optical distance |
US6333110B1 (en) | 1998-11-10 | 2001-12-25 | Bio-Pixels Ltd. | Functionalized nanocrystals as visual tissue-specific imaging agents, and methods for fluorescence imaging |
US6172789B1 (en) | 1999-01-14 | 2001-01-09 | The Board Of Trustees Of The Leland Stanford Junior University | Light scanning device and confocal optical device using the same |
US6057952A (en) | 1999-01-14 | 2000-05-02 | Olympus Optical Co., Ltd. | Light scanning device and confocal optical device using the same |
US6364829B1 (en) | 1999-01-26 | 2002-04-02 | Newton Laboratories, Inc. | Autofluorescence imaging system for endoscopy |
US7018401B1 (en) | 1999-02-01 | 2006-03-28 | Board Of Regents, The University Of Texas System | Woven intravascular devices and methods for making the same and apparatus for delivery of the same |
US6179776B1 (en) | 1999-03-12 | 2001-01-30 | Scimed Life Systems, Inc. | Controllable endoscopic sheath apparatus and related method of use |
US6464363B1 (en) | 1999-03-17 | 2002-10-15 | Olympus Optical Co., Ltd. | Variable mirror, optical apparatus and decentered optical system which include variable mirror, variable-optical characteristic optical element or combination thereof |
US6689056B1 (en) | 1999-04-07 | 2004-02-10 | Medtronic Endonetics, Inc. | Implantable monitoring probe |
US20040133786A1 (en) | 1999-04-30 | 2004-07-08 | Microvision, Inc. | Method and system for identifying data locations associated with real world observations |
US6650877B1 (en) | 1999-04-30 | 2003-11-18 | Microvision, Inc. | Method and system for identifying data locations associated with real world observations |
US20050010787A1 (en) | 1999-04-30 | 2005-01-13 | Microvision, Inc. | Method and system for identifying data locations associated with real world observations |
US6674993B1 (en) | 1999-04-30 | 2004-01-06 | Microvision, Inc. | Method and system for identifying data locations associated with real world observations |
US6902527B1 (en) | 1999-05-18 | 2005-06-07 | Olympus Corporation | Endoscope system with charge multiplying imaging device and automatic gain control |
US6292287B1 (en) | 1999-05-20 | 2001-09-18 | Olympus Optical Co., Ltd. | Scanning confocal optical device |
US6563105B2 (en) | 1999-06-08 | 2003-05-13 | University Of Washington | Image acquisition with depth enhancement |
US6294775B1 (en) | 1999-06-08 | 2001-09-25 | University Of Washington | Miniature image acquistion system using a scanning resonant waveguide |
US6527708B1 (en) | 1999-07-02 | 2003-03-04 | Pentax Corporation | Endoscope system |
US6530698B1 (en) | 1999-07-09 | 2003-03-11 | Sumitomo Electric Industries, Ltd. | Optical device |
US20040223202A1 (en) | 1999-08-05 | 2004-11-11 | Microvision, Inc. | Scanned beam image capture device with a plurality of scan regions |
US6795221B1 (en) | 1999-08-05 | 2004-09-21 | Microvision, Inc. | Scanned display with switched feeds and distortion correction |
US6245590B1 (en) | 1999-08-05 | 2001-06-12 | Microvision Inc. | Frequency tunable resonant scanner and method of making |
US6803561B2 (en) | 1999-08-05 | 2004-10-12 | Microvision, Inc. | Frequency tunable resonant scanner |
US6445362B1 (en) | 1999-08-05 | 2002-09-03 | Microvision, Inc. | Scanned display with variation compensation |
US6515278B2 (en) | 1999-08-05 | 2003-02-04 | Microvision, Inc. | Frequency tunable resonant scanner and method of making |
US6525310B2 (en) | 1999-08-05 | 2003-02-25 | Microvision, Inc. | Frequency tunable resonant scanner |
US6661393B2 (en) | 1999-08-05 | 2003-12-09 | Microvision, Inc. | Scanned display with variation compensation |
US6515781B2 (en) | 1999-08-05 | 2003-02-04 | Microvision, Inc. | Scanned imaging apparatus with switched feeds |
US20040196518A1 (en) | 1999-08-05 | 2004-10-07 | Microvision, Inc. | Active tuning of a torsional resonant structure |
US6535325B2 (en) | 1999-08-05 | 2003-03-18 | Microvision, Inc. | Frequency tunable resonant scanner with auxiliary arms |
US6433907B1 (en) | 1999-08-05 | 2002-08-13 | Microvision, Inc. | Scanned display with plurality of scanning assemblies |
US6331909B1 (en) | 1999-08-05 | 2001-12-18 | Microvision, Inc. | Frequency tunable resonant scanner |
US20040179254A1 (en) | 1999-08-05 | 2004-09-16 | Microvision, Inc. | Scanned imaging apparatus with switched feeds |
US6256131B1 (en) | 1999-08-05 | 2001-07-03 | Microvision Inc. | Active tuning of a torsional resonant structure |
US20050030305A1 (en) | 1999-08-05 | 2005-02-10 | Margaret Brown | Apparatuses and methods for utilizing non-ideal light sources |
US6762867B2 (en) | 1999-08-05 | 2004-07-13 | Microvision, Inc. | Scanned display with plurality of scanning assemblies |
US6384406B1 (en) | 1999-08-05 | 2002-05-07 | Microvision, Inc. | Active tuning of a torsional resonant structure |
US6362912B1 (en) | 1999-08-05 | 2002-03-26 | Microvision, Inc. | Scanned imaging apparatus with switched feeds |
US6285489B1 (en) | 1999-08-05 | 2001-09-04 | Microvision Inc. | Frequency tunable resonant scanner with auxiliary arms |
US6477403B1 (en) | 1999-08-09 | 2002-11-05 | Asahi Kogaku Kogyo Kabushiki Kaisha | Endoscope system |
US6685804B1 (en) | 1999-10-22 | 2004-02-03 | Sanyo Electric Co., Ltd. | Method for fabricating electrode for rechargeable lithium battery |
US6435637B1 (en) | 1999-10-29 | 2002-08-20 | Scitex Digital Printing, Inc. | Fluid and vacuum control in an ink jet printing system |
US6545260B1 (en) | 1999-11-19 | 2003-04-08 | Olympus Optical Co., Ltd. | Light scanning optical device which acquires a high resolution two-dimensional image without employing a charge-coupled device |
US6603552B1 (en) | 1999-12-22 | 2003-08-05 | Xillix Technologies Corp. | Portable system for detecting skin abnormalities based on characteristic autofluorescence |
US6572606B2 (en) | 2000-01-12 | 2003-06-03 | Lasersight Technologies, Inc. | Laser fluence compensation of a curved surface |
US6563106B1 (en) | 2000-02-01 | 2003-05-13 | Calient Networks, Inc. | Micro-electro-mechanical-system (MEMS) mirror device and methods for fabricating the same |
US6520972B2 (en) | 2000-02-04 | 2003-02-18 | Stephen F. Peters | Surgical clip applier |
US6478809B1 (en) | 2000-02-04 | 2002-11-12 | Gregory R. Brotz | Suture and method of use |
US20030030753A1 (en) | 2000-02-10 | 2003-02-13 | Tetsujiro Kondo | Image processing device and method, and recording medium |
US7009634B2 (en) | 2000-03-08 | 2006-03-07 | Given Imaging Ltd. | Device for in-vivo imaging |
EP1139141A2 (en) | 2000-03-27 | 2001-10-04 | Cronos Integrated Microsystems, Inc. | Microelectromechanical devices having brake assemblies therein to control movement of optical shutters and other movable elements |
US7035777B2 (en) | 2000-03-31 | 2006-04-25 | Hitachi, Ltd. | Method of offering wall-thickness thinning prediction information, and computer-readable recording medium storing wall-thickness thinning prediction program, and method of planning piping work plan |
US20030159447A1 (en) | 2000-05-29 | 2003-08-28 | Massimo Sergio | Refrigerated beverage dispenser provided with a sanitizing device |
US6975898B2 (en) | 2000-06-19 | 2005-12-13 | University Of Washington | Medical imaging, diagnosis, and therapy using a scanning single optical fiber system |
US20010055462A1 (en) | 2000-06-19 | 2001-12-27 | Seibel Eric J. | Medical imaging, diagnosis, and therapy using a scanning single optical fiber system |
US20040122328A1 (en) | 2000-06-19 | 2004-06-24 | University Of Washington | Integrated optical scanning image acquisition and display |
US20040076390A1 (en) | 2000-07-10 | 2004-04-22 | Dong Yang Victor Xiao | Method and apparatus for high resolution coherent optical imaging |
US6494578B1 (en) | 2000-07-13 | 2002-12-17 | The Regents Of The University Of California | Virtual reality peripheral vision scotoma screening |
US6736511B2 (en) | 2000-07-13 | 2004-05-18 | The Regents Of The University Of California | Virtual reality peripheral vision scotoma screening |
US6821245B2 (en) | 2000-07-14 | 2004-11-23 | Xillix Technologies Corporation | Compact fluorescence endoscopy video system |
US6585642B2 (en) | 2000-07-18 | 2003-07-01 | Evergreen Medical Incorporated | Endoscope with a removable suction tube |
US20030032143A1 (en) | 2000-07-24 | 2003-02-13 | Neff Thomas B. | Collagen type I and type III compositions for use as an adhesive and sealant |
US6441356B1 (en) | 2000-07-28 | 2002-08-27 | Optical Biopsy Technologies | Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes |
US6423956B1 (en) | 2000-07-28 | 2002-07-23 | Optical Biopsy Technologies | Fiber-coupled, high-speed, integrated, angled-dual-axis confocal scanning microscopes employing vertical cross-section scanning |
US20020075284A1 (en) | 2000-08-03 | 2002-06-20 | Rabb Maurice F. | Display of images and image transitions |
US20020050956A1 (en) | 2000-09-11 | 2002-05-02 | Microvision, Inc. | Scanned display with pinch, timing, and distortion correction |
US20070179366A1 (en) | 2000-09-25 | 2007-08-02 | Critisense Ltd. | Apparatus and Method for Monitoring Tissue Vitality Parameters |
US6447524B1 (en) | 2000-10-19 | 2002-09-10 | Ethicon Endo-Surgery, Inc. | Fastener for hernia mesh fixation |
US6425900B1 (en) | 2000-10-19 | 2002-07-30 | Ethicon Endo-Surgery | Method for attaching hernia mesh |
US6369928B1 (en) | 2000-11-01 | 2002-04-09 | Optical Biopsy Technologies, Inc. | Fiber-coupled, angled-dual-illumination-axis confocal scanning microscopes for performing reflective and two-photon fluorescence imaging |
US6529770B1 (en) | 2000-11-17 | 2003-03-04 | Valentin Grimblatov | Method and apparatus for imaging cardiovascular surfaces through blood |
US6856712B2 (en) | 2000-11-27 | 2005-02-15 | University Of Washington | Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition |
US6845190B1 (en) | 2000-11-27 | 2005-01-18 | University Of Washington | Control of an optical fiber scanner |
US6522444B2 (en) | 2000-11-30 | 2003-02-18 | Optical Biopsy Technologies, Inc. | Integrated angled-dual-axis confocal scanning endoscopes |
US6414779B1 (en) | 2000-11-30 | 2002-07-02 | Opeical Biopsy Technologies, Inc. | Integrated angled-dual-axis confocal scanning endoscopes |
US20020141026A1 (en) | 2001-02-06 | 2002-10-03 | Wiklof Christopher A. | Scanner and method for sweeping a beam across a target |
US20020115922A1 (en) | 2001-02-12 | 2002-08-22 | Milton Waner | Infrared assisted monitoring of a catheter |
US6771001B2 (en) | 2001-03-16 | 2004-08-03 | Optical Coating Laboratory, Inc. | Bi-stable electrostatic comb drive with automatic braking |
US6512622B2 (en) | 2001-03-23 | 2003-01-28 | Microvision, Inc. | Active tuning of a torsional resonant structure |
US6687034B2 (en) | 2001-03-23 | 2004-02-03 | Microvision, Inc. | Active tuning of a torsional resonant structure |
US6653621B2 (en) | 2001-03-23 | 2003-11-25 | Microvision, Inc. | Frequency tunable resonant scanner and method of making |
US6974472B2 (en) | 2001-04-04 | 2005-12-13 | Taewoong Medical Co., Ltd. | Flexible self-expandable stent using shape memory alloy and method and apparatus for fabricating the same |
US20060164330A1 (en) | 2001-04-09 | 2006-07-27 | Microvision, Inc. | Scanned light beam display with brightness compensation |
US7061450B2 (en) | 2001-04-09 | 2006-06-13 | Microvision, Inc. | Electronically scanned beam display |
US20020158814A1 (en) | 2001-04-09 | 2002-10-31 | Bright Gregory Scott | Electronically scanned beam display |
US7033348B2 (en) | 2001-04-10 | 2006-04-25 | The Research Foundation Of The City University Of New York | Gelatin based on Power-gel™ as solders for Cr4+laser tissue welding and sealing of lung air leak and fistulas in organs |
US6654158B2 (en) | 2001-04-20 | 2003-11-25 | Microvision, Inc. | Frequency tunable resonant scanner with auxiliary arms |
US6714331B2 (en) | 2001-04-20 | 2004-03-30 | Microvision, Inc. | Scanned imaging apparatus with switched feeds |
US20040254474A1 (en) | 2001-05-07 | 2004-12-16 | Eric Seibel | Optical fiber scanner for performing multimodal optical imaging |
US20020171776A1 (en) | 2001-05-15 | 2002-11-21 | Microvision, Inc. | System and method for capturing, transmitting, and displaying an image |
US6639719B2 (en) | 2001-05-15 | 2003-10-28 | Microvision, Inc. | System and method for using multiple beams to respectively scan multiple regions of an image |
US6755536B2 (en) | 2001-05-15 | 2004-06-29 | Microvision, Inc. | System and method for displaying/projecting a color image |
US20020171937A1 (en) | 2001-05-15 | 2002-11-21 | Microvision, Inc. | System and method for producing an image with a screen using erase (off) and image (on) light sources |
US6888552B2 (en) | 2001-06-08 | 2005-05-03 | University Of Southern California | High dynamic range image editing |
US6802809B2 (en) | 2001-06-29 | 2004-10-12 | Olympus Corporation | Endoscope |
US20030034709A1 (en) | 2001-07-31 | 2003-02-20 | Iolon, Inc. | Micromechanical device having braking mechanism |
US7023402B2 (en) | 2001-09-21 | 2006-04-04 | Microvision, Inc. | Scanned display with pinch, timing, and distortion correction |
US20030058190A1 (en) | 2001-09-21 | 2003-03-27 | Microvision, Inc. | Scanned display with pinch, timing, and distortion correction |
US6939364B1 (en) | 2001-10-09 | 2005-09-06 | Tissue Adhesive Technologies, Inc. | Composite tissue adhesive |
US20070167681A1 (en) | 2001-10-19 | 2007-07-19 | Gill Thomas J | Portable imaging system employing a miniature endoscope |
US20040252377A1 (en) | 2001-11-02 | 2004-12-16 | Microvision, Inc. | Apparatus and methods for generating multiple exit-pupil images in an expanded exit pupil |
US20030086172A1 (en) | 2001-11-02 | 2003-05-08 | Microvision, Inc. | Apparatus and methods for generating multiple exit-pupil images in an expanded exit pupil |
US6768588B2 (en) | 2001-11-02 | 2004-07-27 | Microvision, Inc. | Apparatus and methods for generating multiple exit-pupil images in an expanded exit pupil |
US20050014995A1 (en) | 2001-11-09 | 2005-01-20 | David Amundson | Direct, real-time imaging guidance of cardiac catheterization |
US20030092995A1 (en) | 2001-11-13 | 2003-05-15 | Medtronic, Inc. | System and method of positioning implantable medical devices |
US20030142934A1 (en) | 2001-12-10 | 2003-07-31 | Carnegie Mellon University And University Of Pittsburgh | Endoscopic imaging system |
US6879428B2 (en) | 2001-12-26 | 2005-04-12 | Intermec Ip Corp. | Frame grabbing with laser scanner with sweeping by silicon planar electrostatics actuator |
US20030130562A1 (en) | 2002-01-09 | 2003-07-10 | Scimed Life Systems, Inc. | Imaging device and related methods |
US6991602B2 (en) | 2002-01-11 | 2006-01-31 | Olympus Corporation | Medical treatment method and apparatus |
US6899675B2 (en) | 2002-01-15 | 2005-05-31 | Xillix Technologies Corp. | Fluorescence endoscopy video systems with no moving parts in the camera |
US7015956B2 (en) | 2002-01-25 | 2006-03-21 | Omnivision Technologies, Inc. | Method of fast automatic exposure or gain control in a MOS image sensor |
US7126903B2 (en) | 2002-02-14 | 2006-10-24 | Koninklijke Philips Electronics N. V. | Variable focus lens |
US20040240866A1 (en) | 2002-02-21 | 2004-12-02 | Ramsbottom Andrew Paul | Image capture and display system |
US6985271B2 (en) | 2002-03-12 | 2006-01-10 | Corning Incorporated | Pointing angle control of electrostatic micro mirrors |
US6513939B1 (en) | 2002-03-18 | 2003-02-04 | Nortel Networks Limited | Micro-mirrors with variable focal length, and optical components comprising micro-mirrors |
US6894823B2 (en) | 2002-04-26 | 2005-05-17 | Corning Intellisense Llc | Magnetically actuated microelectromechanical devices and method of manufacture |
US20030214460A1 (en) | 2002-05-17 | 2003-11-20 | Microvision, Inc. | Scanning-mirror structure having a cut or a composite design to reduce deformation of the mirror face, and related system and method |
US20040004585A1 (en) | 2002-05-17 | 2004-01-08 | Microvision, Inc. | Apparatus and method for bi-directionally sweeping an image beam in the vertical dimension and related apparati and methods |
US20030216729A1 (en) | 2002-05-20 | 2003-11-20 | Marchitto Kevin S. | Device and method for wound healing and uses therefor |
US6856436B2 (en) | 2002-06-26 | 2005-02-15 | Innovations In Optics, Inc. | Scanning light source system |
US20040008782A1 (en) * | 2002-07-15 | 2004-01-15 | Boyce Jill Macdonald | Motion estimation with weighting prediction |
US7025777B2 (en) | 2002-07-31 | 2006-04-11 | Unison Therapeutics, Inc. | Flexible and conformable stent and method of forming same |
US7108656B2 (en) | 2002-08-06 | 2006-09-19 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US7071931B2 (en) | 2002-08-09 | 2006-07-04 | Microvision, Inc. | Image capture device with projected display |
US20040075624A1 (en) | 2002-08-09 | 2004-04-22 | Microvision, Inc. | Image capture device with projected display |
US20040057103A1 (en) | 2002-09-25 | 2004-03-25 | Bernstein Jonathan Jay | Magnetic damping for MEMS rotational devices |
US20040087844A1 (en) | 2002-11-01 | 2004-05-06 | Brian Yen | Apparatus and method for pattern delivery of radiation and biological characteristic analysis |
US20040085617A1 (en) | 2002-11-01 | 2004-05-06 | Microvision, Inc. | Frequency tunable resonant scanner with auxiliary arms |
US7071594B1 (en) | 2002-11-04 | 2006-07-04 | Microvision, Inc. | MEMS scanner with dual magnetic and capacitive drive |
US6782748B2 (en) | 2002-11-12 | 2004-08-31 | Honeywell International, Inc. | High-G acceleration protection by caging |
US20040119004A1 (en) | 2002-11-25 | 2004-06-24 | Microvision, Inc. | Frequency tunable resonant scanner and method of making |
US20040101822A1 (en) | 2002-11-26 | 2004-05-27 | Ulrich Wiesner | Fluorescent silica-based nanoparticles |
US20060183246A1 (en) | 2002-11-26 | 2006-08-17 | Ulrich Wiesner | Fluorescent silica-based nanoparticles |
US20040113059A1 (en) | 2002-12-16 | 2004-06-17 | Olympus America Inc. | Confocal microscope |
US20040118821A1 (en) | 2002-12-21 | 2004-06-24 | Eo Technics Co., Ltd. | Chip scale marker and marking method |
US20060238774A1 (en) | 2003-01-20 | 2006-10-26 | Michael Lindner | Interferometric measuring device |
US20040151466A1 (en) | 2003-01-24 | 2004-08-05 | Janet Crossman-Bosworth | Optical beam scanning system for compact image display or image acquisition |
US20040236371A1 (en) | 2003-01-24 | 2004-11-25 | Mcnally-Heintzelman Karen M. | Light-activated adhesive composite, system, and methods of use thereof |
US6957898B2 (en) | 2003-02-13 | 2005-10-25 | San-Hua Yu | Adhesive type LED lead frame |
US7005195B2 (en) | 2003-03-21 | 2006-02-28 | General Motors Corporation | Metallic-based adhesion materials |
US7065301B2 (en) | 2003-05-08 | 2006-06-20 | Sioptical, Inc. | High speed, silicon-based electro-optic modulator |
US20040225222A1 (en) | 2003-05-08 | 2004-11-11 | Haishan Zeng | Real-time contemporaneous multimodal imaging and spectroscopy uses thereof |
US20050020877A1 (en) | 2003-05-16 | 2005-01-27 | Olympus Corporation | Optical imaging apparatus for imaging living tissue |
US6978921B2 (en) | 2003-05-20 | 2005-12-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an E-beam firing mechanism |
US7112302B2 (en) | 2003-05-23 | 2006-09-26 | Yoshimi Inc. | Methods for making shape memory alloy products |
US20050020926A1 (en) | 2003-06-23 | 2005-01-27 | Wiklof Christopher A. | Scanning endoscope |
US7448995B2 (en) * | 2003-06-23 | 2008-11-11 | Microvision, Inc. | Scanning endoscope |
US6786382B1 (en) | 2003-07-09 | 2004-09-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an articulation joint for a firing bar track |
US7066879B2 (en) | 2003-07-15 | 2006-06-27 | The Trustees Of Columbia University In The City Of New York | Insertable device and system for minimal access procedure |
US20070173707A1 (en) | 2003-07-23 | 2007-07-26 | Lockheed Martin Corporation | Method of and Apparatus for Detecting Diseased Tissue by Sensing Two Bands of Infrared Radiation |
US20050023356A1 (en) | 2003-07-29 | 2005-02-03 | Microvision, Inc., A Corporation Of The State Of Washington | Method and apparatus for illuminating a field-of-view and capturing an image |
US20050038322A1 (en) | 2003-08-11 | 2005-02-17 | Scimed Life Systems | Imaging endoscope |
US20070203413A1 (en) | 2003-09-15 | 2007-08-30 | Beth Israel Deaconess Medical Center | Medical Imaging Systems |
US6905057B2 (en) | 2003-09-29 | 2005-06-14 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission |
US20060084867A1 (en) | 2003-10-17 | 2006-04-20 | Tremblay Brian M | Method and apparatus for surgical navigation |
US20050116038A1 (en) | 2003-11-14 | 2005-06-02 | Lewis John R. | Scanned beam imager |
US20070197875A1 (en) | 2003-11-14 | 2007-08-23 | Osaka Shoji | Endoscope device and imaging method using the same |
US7232071B2 (en) | 2003-11-14 | 2007-06-19 | Microvision, Inc. | Scanned beam imager |
US6967757B1 (en) | 2003-11-24 | 2005-11-22 | Sandia Corporation | Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation |
US7013730B2 (en) | 2003-12-15 | 2006-03-21 | Honeywell International, Inc. | Internally shock caged serpentine flexure for micro-machined accelerometer |
US20050187441A1 (en) | 2004-01-19 | 2005-08-25 | Kenji Kawasaki | Laser-scanning examination apparatus |
US20050162762A1 (en) | 2004-01-26 | 2005-07-28 | Nikon Corporation | Adaptive-optics actuator arrays and methods for using such arrays |
EP1716802A1 (en) | 2004-02-16 | 2006-11-02 | Olympus Corporation | Endoscope and endoscope system |
US20050203343A1 (en) | 2004-03-05 | 2005-09-15 | Korea Electrotechnology Research Institute | Fluorescent endoscope system having improved image detection module |
US20050222801A1 (en) * | 2004-04-06 | 2005-10-06 | Thomas Wulff | System and method for monitoring a mobile computing product/arrangement |
US20050240147A1 (en) | 2004-04-21 | 2005-10-27 | Exploramed Ii, Inc. | Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat |
US20070225695A1 (en) | 2004-05-03 | 2007-09-27 | Woodwelding Ag | Light Diffuser and Process for Producing the Same |
US20060010985A1 (en) | 2004-07-14 | 2006-01-19 | Jds Uniphase Corporation | Method and system for reducing operational shock sensitivity of MEMS devices |
WO2006020605A2 (en) | 2004-08-10 | 2006-02-23 | The Regents Of The University Of California | Device and method for the delivery and/or elimination of compounds in tissue |
US7271383B2 (en) | 2004-08-11 | 2007-09-18 | Lexmark International, Inc. | Scanning system with feedback for a MEMS oscillating scanner |
US7189961B2 (en) | 2005-02-23 | 2007-03-13 | University Of Washington | Scanning beam device with detector assembly |
US7391013B2 (en) | 2005-02-23 | 2008-06-24 | University Of Washington | Scanning beam device with detector assembly |
US20060195014A1 (en) | 2005-02-28 | 2006-08-31 | University Of Washington | Tethered capsule endoscope for Barrett's Esophagus screening |
US20080007722A1 (en) * | 2005-03-24 | 2008-01-10 | Hunter Engineering Company | Vehicle wheel alignment system scanned beam imaging sensor |
US20070038119A1 (en) | 2005-04-18 | 2007-02-15 | Zhongping Chen | Optical coherent tomographic (OCT) imaging apparatus and method using a fiber bundle |
US20060245971A1 (en) | 2005-05-02 | 2006-11-02 | Burns Andrew A | Photoluminescent silica-based sensors and methods of use |
EP1747751A3 (en) | 2005-07-29 | 2007-09-12 | Fujinon Corporation | Optical diagnosis and treatment apparatus |
US20070046778A1 (en) | 2005-08-31 | 2007-03-01 | Olympus Corporation | Optical imaging device |
US20070156021A1 (en) | 2005-09-14 | 2007-07-05 | Bradford Morse | Remote imaging apparatus having an adaptive lens |
WO2007041542A3 (en) | 2005-09-30 | 2007-11-15 | Cornova Inc | Systems and methods for analysis and treatment of a body lumen |
US20070161876A1 (en) | 2005-11-18 | 2007-07-12 | Spectrx, Inc. | Method and apparatus for rapid detection and diagnosis of tissue abnormalities |
EP1797813A1 (en) | 2005-12-13 | 2007-06-20 | Siemens Aktiengesellschaft | Optical measuring device for measuring a hollow space |
US20070135770A1 (en) | 2005-12-13 | 2007-06-14 | Ethicon Endo-Surgery, Inc. | Endoscopic device stabilizer |
WO2007070831A3 (en) | 2005-12-15 | 2007-12-13 | Microvision Inc | Method and apparatus for calibrating an endoscope system |
US20070162093A1 (en) | 2006-01-11 | 2007-07-12 | Porter Roger D | Therapeutic laser treatment |
US20070213618A1 (en) | 2006-01-17 | 2007-09-13 | University Of Washington | Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope |
US20070197874A1 (en) | 2006-02-23 | 2007-08-23 | Olympus Corporation | Endoscope observation device, observation device and observation method using endoscope |
US20070238930A1 (en) | 2006-02-27 | 2007-10-11 | Wiklof Christopher A | Endoscope tips, scanned beam endoscopes using same, and methods of use |
US20070213588A1 (en) | 2006-02-28 | 2007-09-13 | Olympus Corporation | Endoscope system and observation method using the same |
JP2007244590A (en) | 2006-03-15 | 2007-09-27 | Olympus Medical Systems Corp | Imaging system |
JP2007244680A (en) | 2006-03-16 | 2007-09-27 | Olympus Medical Systems Corp | Image pickup system |
US20070244365A1 (en) | 2006-04-17 | 2007-10-18 | Microvision, Inc. | Scanned beam imagers and endoscopes with positionable light collector |
US7504948B2 (en) * | 2006-04-26 | 2009-03-17 | Symbol Technologies, Inc. | Wireless rugged mobile data capture device with integrated RFID reader |
US20070260121A1 (en) | 2006-05-08 | 2007-11-08 | Ethicon Endo-Surgery, Inc. | Endoscopic Translumenal Surgical Systems |
US20070260273A1 (en) | 2006-05-08 | 2007-11-08 | Ethicon Endo-Surgery, Inc. | Endoscopic Translumenal Surgical Systems |
US20070272841A1 (en) * | 2006-05-25 | 2007-11-29 | Microvision, Inc. | Method and apparatus for capturing an image of a moving object |
US20080058629A1 (en) | 2006-08-21 | 2008-03-06 | University Of Washington | Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation |
Non-Patent Citations (36)
Title |
---|
"Bladeless Trocars," by Johnson & Johnson, http://jnjgateway.com (date of first publication unknown). |
"Crystalplex Technology-PlxBead(TM) Superior Qualities," http:www.crystalplex.com (date of first publication unknown). |
"Crystalplex Technology—PlxBead™ Superior Qualities," http:www.crystalplex.com (date of first publication unknown). |
"Custom Polarzing Cube Beamsplitters," from GlobalSpec The Engineering Search Engine, http://www.globalspec.com (date of first publication unknown). |
"Holographic Beam Combiner for Ladar, Printer, Fiber Optics, and Cancer Treatment," by Digital Optics Technologies, Inc., http://www.mdatechnology.net (date of first publication unknown). |
"Microvision [illuminating information] Products/Overview, Corporate Overview Presentation 2006" (2006). |
"Press Information-Phillips' Fluid Lenses Bring Things into Focus," http://www.newscenter.philips.com (Mar. 3, 2004). |
"Scan Mode Strategies for SCUBA-2" (May 25, 2005). |
"Volcano Products-IVUS Imaging Visions® PV018," http://www.volcanotherapeutics.com (date of first publication unknown). |
Barhoum, E.S. et al., "Optical modeling of an ultrathin scanning fiber endoscope, a preliminary study of confocal versus non-confocal detection," Optics Express, vol. 13, No. 19, pp. 7548-7652 (Sep. 19, 2005). |
Brown, D.M., Abstract from SPIE Digital Library for "High-power laser diode beam combiner," Optical Engineering, vol. 42, Issue 11 (2003). |
Hammond, S.W., "Architecture and Operation of a Systolic Sparse Matrix Engine," Proceedings of the 3rd SIAM Conference on Parallel Processing for Scientific Computing, pp. 419-423 (1987). |
International Search Report issued regarding International Application No. PCT/US2007/078868 (Mar. 28, 2008). |
Invitation to Pay Additional Fees with Partial International Search Report, PCT/US2008/074273 (Dec. 30, 2008). |
Invitation to Pay Additional Fees with Partial International Search Report, PCT/US2008/074275 (Jan. 16, 2009). |
James, R. et al., "Update on MEMS-based Scanned Beam Imager" (date of first publication unknown). |
Jutzi, B. et al., "Sub-Pixel Edge Localization Based on Laser Waveform Analysis," ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005," Enschede, the Netherlands (Sep. 12-14, 2005). |
Kiang, M-H et al., "Surface-Micromachined Electrostatic-Comb Driven Scanning Micromirrors for Barcode Scanners" (date of first publication unknown). |
Lettice, J., "The $5 'no moving parts' fluid zoom lens-twice," The Register (Mar. 15, 2004). |
Lewis, J.R. et al., "Scanned beam medical imager," MOEMS Display and Imaging Systems II, Proceedings of SPIE vol. 5348, pp. 40-51 (2004). |
Literature entitled "All fiber beam combiner from Point Source" (Oct. 13, 2006). |
Literature entitled "Dallas Semiconductor MAXIM-Visible-Laser Driver has Digitally Controlled Power Modulation," by Maxim Integrated Products, http://www.maxim-ic.com (Jul. 1, 2001). |
Park, H. et al., "Development of Double-Sided Silicon Strip Position Sensor," 2005 IEEE Nuclear Science Symposium Conference Record, pp. 781-785 (2005). |
PCT, International Search Report, PCT/U52008/059231 (Jul. 4, 2008). |
PCT, International Search Report, PCT/US2007/087923 (May 21, 2008). |
PCT, International Search Report, PCT/US2007/087930 (Jul. 3, 2008). |
PCT, International Search Report, PCT/US2008/051274 (Jul. 18, 2008). |
PCT, International Search Report, PCT/US2008/056589 (Jul. 30, 2008). |
PCT, International Search Report, PCT/US2008/056596 (Jun. 23, 2008). |
PCT, International Search Report, PCT/US2008/059235 (Jul. 14, 2008). |
PCT, International Search Report, PCT/US2008/066552 (Oct. 23, 2008). |
Ra, H. et al., "Biomedical Optics & Medical Imaging-Microtechnology enables endoscopic confocal microscopy," SPIE (http://spie.org) (2007). |
Seifert, M. et al., "High Power Diode Laser Beam Scanning in Multi-Kilowatt Range," Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics (2004). |
Wiklof, C., "Display technology spawns laser camera," Laser Focus World (Dec. 2004). |
Xu, Q. et al., "Micrometre-scale silicon electro-optic modulator," Nature, vol. 435, pp. 325-327 (May 19, 2005). |
Yeh, R. et al., "Microelectromechanical Components for Articulated Microrobots" (date of first publication unknown). |
Cited By (530)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10298834B2 (en) | 2006-12-01 | 2019-05-21 | Google Llc | Video refocusing |
US8199212B2 (en) * | 2008-05-03 | 2012-06-12 | Olympus Imaging Corp. | Image recording and playback device, and image recording and playback method |
US20090273688A1 (en) * | 2008-05-03 | 2009-11-05 | Osamu Nonaka | Image recording and playback device, and image recording and playback method |
US8811769B1 (en) * | 2012-02-28 | 2014-08-19 | Lytro, Inc. | Extended depth of field and variable center of perspective in light-field processing |
US8971625B2 (en) | 2012-02-28 | 2015-03-03 | Lytro, Inc. | Generating dolly zoom effect using light field image data |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US10552947B2 (en) | 2012-06-26 | 2020-02-04 | Google Llc | Depth-based image blurring |
US11839420B2 (en) | 2012-06-28 | 2023-12-12 | Cilag Gmbh International | Stapling assembly comprising a firing member push tube |
US11547465B2 (en) | 2012-06-28 | 2023-01-10 | Cilag Gmbh International | Surgical end effector jaw and electrode configurations |
US10334151B2 (en) | 2013-04-22 | 2019-06-25 | Google Llc | Phase detection autofocus using subaperture images |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10540818B2 (en) | 2015-04-15 | 2020-01-21 | Google Llc | Stereo image generation and interactive playback |
US10565734B2 (en) | 2015-04-15 | 2020-02-18 | Google Llc | Video capture, processing, calibration, computational fiber artifact removal, and light-field pipeline |
US10341632B2 (en) | 2015-04-15 | 2019-07-02 | Google Llc. | Spatial random access enabled video system with a three-dimensional viewing volume |
US10412373B2 (en) | 2015-04-15 | 2019-09-10 | Google Llc | Image capture for virtual reality displays |
US10567464B2 (en) | 2015-04-15 | 2020-02-18 | Google Llc | Video compression with adaptive view-dependent lighting removal |
US11328446B2 (en) | 2015-04-15 | 2022-05-10 | Google Llc | Combining light-field data with active depth data for depth map generation |
US10419737B2 (en) | 2015-04-15 | 2019-09-17 | Google Llc | Data structures and delivery methods for expediting virtual reality playback |
US10469873B2 (en) | 2015-04-15 | 2019-11-05 | Google Llc | Encoding and decoding virtual reality video |
US10546424B2 (en) | 2015-04-15 | 2020-01-28 | Google Llc | Layered content delivery for virtual and augmented reality experiences |
US10275898B1 (en) | 2015-04-15 | 2019-04-30 | Google Llc | Wedge-based light-field video capture |
US10205896B2 (en) | 2015-07-24 | 2019-02-12 | Google Llc | Automatic lens flare detection and correction for light-field images |
US10275892B2 (en) | 2016-06-09 | 2019-04-30 | Google Llc | Multi-view scene segmentation and propagation |
US20180149753A1 (en) * | 2016-11-30 | 2018-05-31 | Yujin Robot Co., Ltd. | Ridar apparatus based on time of flight and moving object |
US10962647B2 (en) * | 2016-11-30 | 2021-03-30 | Yujin Robot Co., Ltd. | Lidar apparatus based on time of flight and moving object |
US10679361B2 (en) | 2016-12-05 | 2020-06-09 | Google Llc | Multi-view rotoscope contour propagation |
US10594945B2 (en) | 2017-04-03 | 2020-03-17 | Google Llc | Generating dolly zoom effect using light field image data |
US10474227B2 (en) | 2017-05-09 | 2019-11-12 | Google Llc | Generation of virtual reality with 6 degrees of freedom from limited viewer data |
US10444931B2 (en) | 2017-05-09 | 2019-10-15 | Google Llc | Vantage generation and interactive playback |
US10440407B2 (en) | 2017-05-09 | 2019-10-08 | Google Llc | Adaptive control for immersive experience delivery |
US10354399B2 (en) | 2017-05-25 | 2019-07-16 | Google Llc | Multi-view back-projection to a light-field |
US10545215B2 (en) | 2017-09-13 | 2020-01-28 | Google Llc | 4D camera tracking and optical stabilization |
US11819231B2 (en) | 2017-10-30 | 2023-11-21 | Cilag Gmbh International | Adaptive control programs for a surgical system comprising more than one type of cartridge |
US11406390B2 (en) | 2017-10-30 | 2022-08-09 | Cilag Gmbh International | Clip applier comprising interchangeable clip reloads |
US11291465B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Surgical instruments comprising a lockable end effector socket |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11207090B2 (en) | 2017-10-30 | 2021-12-28 | Cilag Gmbh International | Surgical instruments comprising a biased shifting mechanism |
US11141160B2 (en) | 2017-10-30 | 2021-10-12 | Cilag Gmbh International | Clip applier comprising a motor controller |
US11129636B2 (en) | 2017-10-30 | 2021-09-28 | Cilag Gmbh International | Surgical instruments comprising an articulation drive that provides for high articulation angles |
US11123070B2 (en) | 2017-10-30 | 2021-09-21 | Cilag Gmbh International | Clip applier comprising a rotatable clip magazine |
US11109878B2 (en) | 2017-10-30 | 2021-09-07 | Cilag Gmbh International | Surgical clip applier comprising an automatic clip feeding system |
US11103268B2 (en) | 2017-10-30 | 2021-08-31 | Cilag Gmbh International | Surgical clip applier comprising adaptive firing control |
US11071560B2 (en) | 2017-10-30 | 2021-07-27 | Cilag Gmbh International | Surgical clip applier comprising adaptive control in response to a strain gauge circuit |
US11051836B2 (en) | 2017-10-30 | 2021-07-06 | Cilag Gmbh International | Surgical clip applier comprising an empty clip cartridge lockout |
US11045197B2 (en) | 2017-10-30 | 2021-06-29 | Cilag Gmbh International | Clip applier comprising a movable clip magazine |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11026712B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Surgical instruments comprising a shifting mechanism |
US11026713B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Surgical clip applier configured to store clips in a stored state |
US10980560B2 (en) | 2017-10-30 | 2021-04-20 | Ethicon Llc | Surgical instrument systems comprising feedback mechanisms |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US10932806B2 (en) | 2017-10-30 | 2021-03-02 | Ethicon Llc | Reactive algorithm for surgical system |
US10772651B2 (en) | 2017-10-30 | 2020-09-15 | Ethicon Llc | Surgical instruments comprising a system for articulation and rotation compensation |
US11413042B2 (en) | 2017-10-30 | 2022-08-16 | Cilag Gmbh International | Clip applier comprising a reciprocating clip advancing member |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11564703B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Surgical suturing instrument comprising a capture width which is larger than trocar diameter |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11602366B2 (en) | 2017-10-30 | 2023-03-14 | Cilag Gmbh International | Surgical suturing instrument configured to manipulate tissue using mechanical and electrical power |
US11648022B2 (en) | 2017-10-30 | 2023-05-16 | Cilag Gmbh International | Surgical instrument systems comprising battery arrangements |
US11696778B2 (en) | 2017-10-30 | 2023-07-11 | Cilag Gmbh International | Surgical dissectors configured to apply mechanical and electrical energy |
US11759224B2 (en) | 2017-10-30 | 2023-09-19 | Cilag Gmbh International | Surgical instrument systems comprising handle arrangements |
US11793537B2 (en) | 2017-10-30 | 2023-10-24 | Cilag Gmbh International | Surgical instrument comprising an adaptive electrical system |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11925373B2 (en) | 2017-10-30 | 2024-03-12 | Cilag Gmbh International | Surgical suturing instrument comprising a non-circular needle |
US12035983B2 (en) | 2017-10-30 | 2024-07-16 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US12059218B2 (en) | 2017-10-30 | 2024-08-13 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
EP3505088A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
EP3505125A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical instrument having a flexible electrode |
EP3506273A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Systems for adjusting end effector parameters based on perioperative information |
EP3506288A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical hub spatial awareness to determine devices in operating theater |
EP3505109A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Situational awareness of electrosurgical systems |
EP3506283A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
EP3505096A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
EP3506274A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical systems for detecting end effector tissue distribution irregularities |
EP3505119A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Interruption of energy due to inadvertent capacitive coupling |
EP3506311A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
EP3505122A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
EP3505095A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
EP3505117A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Computer implemented interactive surgical systems |
EP3505041A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Dual cmos array imaging |
EP3505108A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Controlling an ultrasonic surgical instrument according to tissue location |
EP3506304A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical instrument having a flexible circuit |
EP3506285A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Aggregation and reporting of surgical hub data |
EP3506296A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Safety systems for smart powered surgical stapling |
EP3506308A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical system for presenting information interpreted from external data |
EP3506310A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
EP3505105A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
EP3506280A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
EP3506303A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation sensing and motor control |
EP3505098A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Activation of energy devices |
EP3505132A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation flow paths |
WO2019133137A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
WO2019133130A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
WO2019133064A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
WO2019130120A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation sensing and generator control |
WO2019134007A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Activation of energy devices |
WO2019134006A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Temperature control of ultrasonic end effector and control system therefor |
WO2019133059A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Spatial awareness of surgical hubs in operating rooms |
WO2019130088A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Systems for detecting proximity of surgical end effector to cancerous tissue |
WO2019130080A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cloud-based medical analytics for security and authentication trends and reactive measures |
WO2019130097A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controls for robot-assisted surgical platforms |
WO2019130095A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
WO2019133149A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Control of a surgical system through a surgical barrier |
WO2019130115A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument with a tissue marking assembly |
WO2019133066A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub situational awareness |
WO2019130079A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
WO2019130086A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
WO2019130100A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cooperative surgical actions for robot-assisted surgical platforms |
WO2019130119A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation flow paths |
WO2019133135A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical filed based on the usage and situational awareness of devices |
WO2019133134A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
WO2019133131A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication of data where a surgical network is using context of the data and requirements of a receiving system / user to influence inclusion or linkage of data and metadata to establish continuity |
WO2019133133A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical system for presenting information interpreted from external data |
WO2019130077A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cloud-based medical analytics for customization and recommendations to a user |
WO2019133138A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Stapling device with both compulsory and discretionary lockouts based on sensed parameters |
WO2019133136A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical systems with autonomously adjustable control programs |
WO2019130112A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Increasing radio frequency to create pad-less monopolar loop |
WO2019133127A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
WO2019130096A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
WO2019133141A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
WO2019130091A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Capacitive coupled return path pad with separable array elements |
WO2019133128A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
WO2019133065A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Data pairing to interconnect a device measured parameter with an outcome |
WO2019130117A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation sensing and motor control |
WO2019133148A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
WO2019130109A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
WO2019130099A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controllers for robot-assisted surgical platforms |
WO2019130124A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Smoke evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
WO2019133125A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Adjustments based on airborne particle properties |
WO2019133071A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Sterile field interactive control displays |
WO2019130085A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
WO2019130121A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation sensing and display |
WO2019133147A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
WO2019133139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Adjustment of device control programs based on stratified contextual data in addition to the data |
WO2019130101A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Display arrangements for robot-assisted surgical platforms |
WO2019130125A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Dual in-series large and small droplet filters |
WO2019133058A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub coordination of control and communication of operating room devices |
WO2019130074A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Dual cmos array imaging |
WO2019130087A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical systems for detecting end effector tissue distribution irregularities |
WO2019133140A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Powered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping |
WO2019130098A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Automatic tool adjustments for robot-assisted surgical platforms |
WO2019133146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Automated data scaling, alignment, and organizing based on predefined parameters with surgical networks |
WO2019133070A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Display of alignment of staple cartridge to prior linear staple line |
WO2019133062A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Data stripping method to interrogate patient records and create anonymized record |
WO2019133069A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub spatial awareness to determine devices in operating theater |
WO2019130073A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Characterization of tissue irregularities through the use of monochromatic light refractivity |
WO2019130107A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Determining the state of an ultrasonic end effector |
WO2019130105A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Determining tissue composition via an ultrasonic system |
WO2019130093A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Data handling and prioritization in a cloud analytics network |
WO2019133143A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub and modular device response adjustment based on situational awareness |
WO2019130116A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical systems with prioritized data transmission capabilities |
WO2019133142A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
WO2019130089A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument cartridge sensor assemblies |
WO2019130084A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
WO2019133056A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
WO2019130103A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controlling an ultrasonic surgical instrument according to tissue location |
WO2019130108A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
WO2019133063A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
WO2019133067A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical system distributed processing |
WO2019130106A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Determining the state of an ultrasonic electromechanical system according to frequency shift |
WO2019133145A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Interactive surgical system |
WO2019133129A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
WO2019130076A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Adaptive control program updates for surgical hubs |
WO2019130123A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Smoke evacuation system including a segmented control circuit for interactive surgical platform |
WO2019130110A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Detection of end effector emersion in liquid |
WO2019130092A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Sensing arrangements for robot-assisted surgical platforms |
WO2019130083A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
WO2019130114A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument having a flexible circuit |
WO2019133072A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Computer implemented interactive surgical systems |
WO2019133060A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
WO2019130104A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
WO2019133132A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
WO2019130094A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cloud interface for coupled surgical devices |
WO2019130072A2 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
WO2019133061A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub control arrangements |
WO2019133057A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Interactive surgical systems with condition handling of devices and data capabilities |
WO2019130113A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument having a flexible electrode |
WO2019130075A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Adaptive control program updates for surgical devices |
WO2019133068A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Aggregation and reporting of surgical hub data |
WO2019130111A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Interruption of energy due to inadvertent capacitive coupling |
WO2019130122A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
WO2019134008A2 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Radio frequency energy device for delivering combined electrical signals |
WO2019133144A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
WO2019130090A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Variable output cartridge sensor assembly |
WO2019130118A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical evacuation sensor arrangements |
WO2019133126A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Adjustment of a surgical device function based on situational awareness |
WO2019130078A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
EP3508140A1 (en) | 2017-12-28 | 2019-07-10 | Ethicon LLC | Variable output cartridge sensor assembly |
EP3509070A2 (en) | 2017-12-28 | 2019-07-10 | Ethicon LLC | Radio frequency energy device for delivering combined electrical signals |
EP3506284A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Cloud-based medical analytics for customization and recommendations to a user |
WO2019140465A1 (en) | 2017-12-28 | 2019-07-18 | Ethicon Llc | Estimating state of ultrasonic end effector and control system therefor |
EP3506278A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Display of alignment of staple cartridge to prior linear staple line |
EP3506317A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Interactive surgical systems with condition handling of devices and data capabilities |
US12096985B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US12076010B2 (en) | 2017-12-28 | 2024-09-03 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
EP4413945A2 (en) | 2017-12-28 | 2024-08-14 | Ethicon LLC | Surgical instrument having a flexible electrode |
US12059169B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US12059124B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
EP3506270A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Communication of data where a surgical network is using context of the data and requirements of a receiving system / user to influence inclusion or linkage of data and metadata to establish continuity |
EP3505129A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Control of a surgical system through a surgical barrier |
EP3506287A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adaptive control program updates for surgical devices |
EP3505084A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical instrument cartridge sensor assemblies |
EP3506289A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Data pairing to interconnect a device measured parameter with an outcome |
EP3506276A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
EP3505113A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
EP3506312A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Interactive surgical systems with encrypted communication capabilities |
EP3505126A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
EP3506281A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Sterile field interactive control displays |
EP3613374A1 (en) | 2017-12-28 | 2020-02-26 | Ethicon LLC | Surgical evacuation sensing and generator control |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
EP3506290A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US12053159B2 (en) | 2017-12-28 | 2024-08-06 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US12048496B2 (en) | 2017-12-28 | 2024-07-30 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US12042207B2 (en) | 2017-12-28 | 2024-07-23 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
EP3505120A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adjustments based on airborne particle properties |
US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
US12009095B2 (en) | 2017-12-28 | 2024-06-11 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
EP4365914A2 (en) | 2017-12-28 | 2024-05-08 | Ethicon LLC | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11931110B2 (en) | 2017-12-28 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a control system that uses input from a strain gage circuit |
EP3506297A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11918302B2 (en) | 2017-12-28 | 2024-03-05 | Cilag Gmbh International | Sterile field interactive control displays |
EP3505099A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Determining the state of an ultrasonic electromechanical system according to frequency shift |
US11903587B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Adjustment to the surgical stapling control based on situational awareness |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11890065B2 (en) | 2017-12-28 | 2024-02-06 | Cilag Gmbh International | Surgical system to limit displacement |
EP3505082A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Interactive surgical system |
US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
EP3659639A1 (en) | 2017-12-28 | 2020-06-03 | Ethicon LLC | Dual in-series large and small droplet filters |
EP3505042A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
EP3506299A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Data stripping method to interrogate patient records and create anonymized record |
EP3711696A1 (en) | 2017-12-28 | 2020-09-23 | Ethicon LLC | Surgical evacuation sensing and display |
EP3711695A1 (en) | 2017-12-28 | 2020-09-23 | Ethicon LLC | Surgical evacuation sensing and display |
EP3505130A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical instrument with a tissue marking assembly |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11864845B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Sterile field interactive control displays |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
EP3506298A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical hub coordination of control and communication of operating room devices |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
EP3506286A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adaptive control program updates for surgical hubs |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
EP3505089A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Powered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping |
EP3505116A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Smoke evacuation system including a segmented control circuit for interactive surgical platform |
EP3505092A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adjustment of device control programs based on stratified contextual data in addition to the data |
EP3506306A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical systems with autonomously adjustable control programs |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
EP3506295A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Safety systems for smart powered surgical stapling |
EP3506275A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
EP3505123A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation sensing and generator control |
EP3505104A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Detection of end effector emersion in liquid |
US11045591B2 (en) | 2017-12-28 | 2021-06-29 | Cilag Gmbh International | Dual in-series large and small droplet filters |
EP3505103A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
EP3847982A1 (en) | 2017-12-28 | 2021-07-14 | Ethicon LLC | Surgical hub coordination of control and communication of operating room devices |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
EP3505102A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Temperature control of ultrasonic end effector and control system therefor |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
EP4278991A2 (en) | 2017-12-28 | 2023-11-22 | Ethicon LLC | Interactive surgical systems with encrypted communication capabilities |
EP3505106A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Estimating state of ultrasonic end effector and control system therefor |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
EP3506302A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
EP3506300A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Self describing data packets generated at an issuing instrument |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11114195B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Surgical instrument with a tissue marking assembly |
EP3505090A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Stapling device with both compulsory and discretionary lockouts based on sensed parameters |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
EP3506301A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical system distributed processing |
EP3506272A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
EP3505100A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Determining the state of an ultrasonic end effector |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
EP3506291A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical hub control arrangements |
EP3506269A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical hub and modular device response adjustment based on situational awareness |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US11179204B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
EP3505086A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11779337B2 (en) | 2017-12-28 | 2023-10-10 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11775682B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11213359B2 (en) | 2017-12-28 | 2022-01-04 | Cilag Gmbh International | Controllers for robot-assisted surgical platforms |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
EP3506313A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical hub situational awareness |
US11751958B2 (en) | 2017-12-28 | 2023-09-12 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
EP3506305A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11737668B2 (en) | 2017-12-28 | 2023-08-29 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11712303B2 (en) | 2017-12-28 | 2023-08-01 | Cilag Gmbh International | Surgical instrument comprising a control circuit |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11701185B2 (en) | 2017-12-28 | 2023-07-18 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
EP3967249A1 (en) | 2017-12-28 | 2022-03-16 | Ethicon LLC | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11696760B2 (en) | 2017-12-28 | 2023-07-11 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
EP3505121A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Adjustment of a surgical device function based on situational awareness |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
EP3505053A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Capacitive coupled return path pad with separable array elements |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
EP3505094A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
EP3505118A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Increasing radio frequency to create pad-less monopolar loop |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
EP3506292A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Spatial awareness of surgical hubs in operating rooms |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
EP3505097A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Determining tissue composition via an ultrasonic system |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
EP3505083A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation sensor arrangements |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
EP3505085A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Controlling a surgical instrument according to sensed closure parameters |
US11601371B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11596291B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11589932B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
EP3506309A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
EP3506293A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11382697B2 (en) | 2017-12-28 | 2022-07-12 | Cilag Gmbh International | Surgical instruments comprising button circuits |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
EP3506294A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical systems with prioritized data transmission capabilities |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
EP3505131A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
EP3505198A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Dual in-series large and small droplet filters |
EP3505114A2 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Surgical evacuation sensing and display |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
EP3505115A1 (en) | 2017-12-28 | 2019-07-03 | Ethicon LLC | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
EP4064292A1 (en) | 2017-12-28 | 2022-09-28 | Ethicon LLC | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US10965862B2 (en) | 2018-01-18 | 2021-03-30 | Google Llc | Multi-camera navigation interface |
US11844545B2 (en) | 2018-03-08 | 2023-12-19 | Cilag Gmbh International | Calcified vessel identification |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11678901B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Vessel sensing for adaptive advanced hemostasis |
US11344326B2 (en) | 2018-03-08 | 2022-05-31 | Cilag Gmbh International | Smart blade technology to control blade instability |
US11589915B2 (en) | 2018-03-08 | 2023-02-28 | Cilag Gmbh International | In-the-jaw classifier based on a model |
US11701139B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11678927B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Detection of large vessels during parenchymal dissection using a smart blade |
US11707293B2 (en) | 2018-03-08 | 2023-07-25 | Cilag Gmbh International | Ultrasonic sealing algorithm with temperature control |
US11298148B2 (en) | 2018-03-08 | 2022-04-12 | Cilag Gmbh International | Live time tissue classification using electrical parameters |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11534196B2 (en) | 2018-03-08 | 2022-12-27 | Cilag Gmbh International | Using spectroscopy to determine device use state in combo instrument |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11457944B2 (en) | 2018-03-08 | 2022-10-04 | Cilag Gmbh International | Adaptive advanced tissue treatment pad saver mode |
US11617597B2 (en) | 2018-03-08 | 2023-04-04 | Cilag Gmbh International | Application of smart ultrasonic blade technology |
US11389188B2 (en) | 2018-03-08 | 2022-07-19 | Cilag Gmbh International | Start temperature of blade |
US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
US11839396B2 (en) | 2018-03-08 | 2023-12-12 | Cilag Gmbh International | Fine dissection mode for tissue classification |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11701162B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Smart blade application for reusable and disposable devices |
US11464532B2 (en) | 2018-03-08 | 2022-10-11 | Cilag Gmbh International | Methods for estimating and controlling state of ultrasonic end effector |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
US11589865B2 (en) | 2018-03-28 | 2023-02-28 | Cilag Gmbh International | Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems |
US11931027B2 (en) | 2018-03-28 | 2024-03-19 | Cilag Gmbh Interntional | Surgical instrument comprising an adaptive control system |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11986185B2 (en) | 2018-03-28 | 2024-05-21 | Cilag Gmbh International | Methods for controlling a surgical stapler |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
EP3545887A1 (en) | 2018-03-28 | 2019-10-02 | Ethicon LLC | Method for smoke evacuation for surgical hub |
US11166716B2 (en) | 2018-03-28 | 2021-11-09 | Cilag Gmbh International | Stapling instrument comprising a deactivatable lockout |
EP3547326A1 (en) | 2018-03-28 | 2019-10-02 | Ethicon LLC | Method of sensing particulate from smoke evacuated from a patient adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11937817B2 (en) | 2018-03-28 | 2024-03-26 | Cilag Gmbh International | Surgical instruments with asymmetric jaw arrangements and separate closure and firing systems |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11213294B2 (en) | 2018-03-28 | 2022-01-04 | Cilag Gmbh International | Surgical instrument comprising co-operating lockout features |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11406382B2 (en) | 2018-03-28 | 2022-08-09 | Cilag Gmbh International | Staple cartridge comprising a lockout key configured to lift a firing member |
EP3545862A2 (en) | 2018-03-28 | 2019-10-02 | Ethicon LLC | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
WO2019186502A1 (en) | 2018-03-30 | 2019-10-03 | Ethicon Llc | Method for smoke evacuation for surgical hub |
WO2019186501A1 (en) | 2018-03-30 | 2019-10-03 | Ethicon Llc | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
WO2019186500A2 (en) | 2018-03-30 | 2019-10-03 | Ethicon Llc | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US12121255B2 (en) | 2018-08-24 | 2024-10-22 | Cilag Gmbh International | Electrical power output control based on mechanical forces |
EP3616632A1 (en) | 2018-08-28 | 2020-03-04 | Ethicon LLC | Temperature control of ultrasonic end effector and control system therefor |
US11638602B2 (en) | 2018-09-07 | 2023-05-02 | Cilag Gmbh International | Coordinated stackable multi-module surgical system |
US11931089B2 (en) | 2018-09-07 | 2024-03-19 | Cilag Gmbh International | Modular surgical energy system with module positional awareness sensing with voltage detection |
US11696790B2 (en) | 2018-09-07 | 2023-07-11 | Cilag Gmbh International | Adaptably connectable and reassignable system accessories for modular energy system |
US11684401B2 (en) | 2018-09-07 | 2023-06-27 | Cilag Gmbh International | Backplane connector design to connect stacked energy modules |
US11696791B2 (en) | 2018-09-07 | 2023-07-11 | Cilag Gmbh International | Surgical instrument utilizing drive signal to power secondary function |
US11471206B2 (en) | 2018-09-07 | 2022-10-18 | Cilag Gmbh International | Method for controlling a modular energy system user interface |
US11696789B2 (en) | 2018-09-07 | 2023-07-11 | Cilag Gmbh International | Consolidated user interface for modular energy system |
US11678925B2 (en) | 2018-09-07 | 2023-06-20 | Cilag Gmbh International | Method for controlling an energy module output |
WO2020051471A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Power and communication mitigation arrangement for modular surgical energy system |
WO2020051457A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Flexible neutral electrode |
WO2020051455A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | First and second communication protocol arrangement for driving primary and secondary devices through a single port |
US11666368B2 (en) | 2018-09-07 | 2023-06-06 | Cilag Gmbh International | Method for constructing and using a modular surgical energy system with multiple devices |
US11712280B2 (en) | 2018-09-07 | 2023-08-01 | Cilag Gmbh International | Passive header module for a modular energy system |
EP4085860A1 (en) | 2018-09-07 | 2022-11-09 | Ethicon LLC | Smart return pad sensing through modulation of near field communication and contact quality monitoring signals |
WO2020051439A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Passive header module for a modular energy system |
US11950823B2 (en) | 2018-09-07 | 2024-04-09 | Cilag Gmbh International | Regional location tracking of components of a modular energy system |
US11998258B2 (en) | 2018-09-07 | 2024-06-04 | Cilag Gmbh International | Energy module for driving multiple energy modalities |
EP4360575A2 (en) | 2018-09-07 | 2024-05-01 | Ethicon LLC | Surgical modular energy system with footer module |
WO2020051463A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Surgical modular energy system with a segmented backplane |
WO2020051474A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Managing simultaneous monopolar outputs using duty cycle and synchronization |
WO2020051476A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Port presence detection system for modular energy system |
US11510720B2 (en) | 2018-09-07 | 2022-11-29 | Cilag Gmbh International | Managing simultaneous monopolar outputs using duty cycle and synchronization |
US11628006B2 (en) | 2018-09-07 | 2023-04-18 | Cilag Gmbh International | Method for energy distribution in a surgical modular energy system |
WO2020051449A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Surgical instrument utilizing drive signal to power secondary function |
US11684400B2 (en) | 2018-09-07 | 2023-06-27 | Cilag Gmbh International | Grounding arrangement of energy modules |
WO2020051478A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Regional location tracking of components of a modular energy system |
US11804679B2 (en) | 2018-09-07 | 2023-10-31 | Cilag Gmbh International | Flexible hand-switch circuit |
WO2020051443A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Adaptably connectable and reassignable system accessories for modular energy system |
US11806062B2 (en) | 2018-09-07 | 2023-11-07 | Cilag Gmbh International | Surgical modular energy system with a segmented backplane |
WO2020051442A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Energy module for driving multiple energy modalities |
WO2020051472A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Coordinated energy outputs of separate but connected modules |
US12042201B2 (en) | 2018-09-07 | 2024-07-23 | Cilag Gmbh International | Method for communicating between modules and devices in a modular surgical system |
WO2020051446A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Backplane connector design to connect stacked energy modules |
WO2020051481A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Modular surgical energy system with positional awareness with digital logic |
US11918269B2 (en) | 2018-09-07 | 2024-03-05 | Cilag Gmbh International | Smart return pad sensing through modulation of near field communication and contact quality monitoring signals |
WO2020051477A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Instrument tracking arrangement based on real time clock information |
US11350978B2 (en) | 2018-09-07 | 2022-06-07 | Cilag Gmbh International | Flexible neutral electrode |
US11923084B2 (en) | 2018-09-07 | 2024-03-05 | Cilag Gmbh International | First and second communication protocol arrangement for driving primary and secondary devices through a single port |
US12035956B2 (en) | 2018-09-07 | 2024-07-16 | Cilag Gmbh International | Instrument tracking arrangement based on real time clock information |
WO2020051466A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Surgical modular energy system with footer module |
WO2020051440A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Consolidated user interface for modular energy system |
WO2020051444A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Grounding arrangement of energy modules |
WO2020051462A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Smart return pad sensing through modulation of near field communication and contact quality monitoring signals |
WO2020051475A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Modular surgical energy system with module positional awareness sensing with voltage detection |
WO2020051448A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Energy module for driving multiple energy modalities through a port |
WO2020051450A1 (en) | 2018-09-07 | 2020-03-12 | Ethicon Llc | Flexible hand-switch circuit |
US11896279B2 (en) | 2018-09-07 | 2024-02-13 | Cilag Gmbh International | Surgical modular energy system with footer module |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11291444B2 (en) | 2019-02-19 | 2022-04-05 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a closure lockout |
US11272931B2 (en) | 2019-02-19 | 2022-03-15 | Cilag Gmbh International | Dual cam cartridge based feature for unlocking a surgical stapler lockout |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11331100B2 (en) | 2019-02-19 | 2022-05-17 | Cilag Gmbh International | Staple cartridge retainer system with authentication keys |
US11331101B2 (en) | 2019-02-19 | 2022-05-17 | Cilag Gmbh International | Deactivator element for defeating surgical stapling device lockouts |
US11925350B2 (en) | 2019-02-19 | 2024-03-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11291445B2 (en) | 2019-02-19 | 2022-04-05 | Cilag Gmbh International | Surgical staple cartridges with integral authentication keys |
US11517309B2 (en) | 2019-02-19 | 2022-12-06 | Cilag Gmbh International | Staple cartridge retainer with retractable authentication key |
US11259807B2 (en) | 2019-02-19 | 2022-03-01 | Cilag Gmbh International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
US11298130B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Staple cartridge retainer with frangible authentication key |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11743665B2 (en) | 2019-03-29 | 2023-08-29 | Cilag Gmbh International | Modular surgical energy system with module positional awareness sensing with time counter |
US11218822B2 (en) | 2019-03-29 | 2022-01-04 | Cilag Gmbh International | Audio tone construction for an energy module of a modular energy system |
WO2020204987A1 (en) | 2019-03-29 | 2020-10-08 | Ethicon Llc | Automatic ultrasonic energy activation circuit design for modular surgical systems |
WO2020204986A1 (en) | 2019-03-29 | 2020-10-08 | Ethicon Llc | Audio tone construction for an energy module of a modular energy system |
WO2020204988A1 (en) | 2019-03-29 | 2020-10-08 | Ethicon Llc | Modular surgical energy system with module positional awareness sensing with time counter |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11207146B2 (en) | 2019-06-27 | 2021-12-28 | Cilag Gmbh International | Surgical instrument drive systems with cable-tightening system |
US11413102B2 (en) | 2019-06-27 | 2022-08-16 | Cilag Gmbh International | Multi-access port for surgical robotic systems |
US11607278B2 (en) | 2019-06-27 | 2023-03-21 | Cilag Gmbh International | Cooperative robotic surgical systems |
US11376082B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Robotic surgical system with local sensing of functional parameters based on measurements of multiple physical inputs |
US11376083B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Determining robotic surgical assembly coupling status |
US11013569B2 (en) | 2019-06-27 | 2021-05-25 | Cilag Gmbh International | Surgical systems with interchangeable motor packs |
US11723729B2 (en) | 2019-06-27 | 2023-08-15 | Cilag Gmbh International | Robotic surgical assembly coupling safety mechanisms |
US11369443B2 (en) | 2019-06-27 | 2022-06-28 | Cilag Gmbh International | Method of using a surgical modular robotic assembly |
US11399906B2 (en) | 2019-06-27 | 2022-08-02 | Cilag Gmbh International | Robotic surgical system for controlling close operation of end-effectors |
US11612445B2 (en) | 2019-06-27 | 2023-03-28 | Cilag Gmbh International | Cooperative operation of robotic arms |
US12059224B2 (en) | 2019-06-27 | 2024-08-13 | Cilag Gmbh International | Robotic surgical system with safety and cooperative sensing control |
US11547468B2 (en) | 2019-06-27 | 2023-01-10 | Cilag Gmbh International | Robotic surgical system with safety and cooperative sensing control |
WO2020260999A1 (en) | 2019-06-27 | 2020-12-30 | Ethicon Llc | Robotic surgical system with safety and cooperative sensing control |
US11278362B2 (en) | 2019-06-27 | 2022-03-22 | Cilag Gmbh International | Surgical instrument drive systems |
USD1026010S1 (en) | 2019-09-05 | 2024-05-07 | Cilag Gmbh International | Energy module with alert screen with graphical user interface |
USD939545S1 (en) | 2019-09-05 | 2021-12-28 | Cilag Gmbh International | Display panel or portion thereof with graphical user interface for energy module |
USD928725S1 (en) | 2019-09-05 | 2021-08-24 | Cilag Gmbh International | Energy module |
USD928726S1 (en) | 2019-09-05 | 2021-08-24 | Cilag Gmbh International | Energy module monopolar port |
US11980411B2 (en) | 2021-03-30 | 2024-05-14 | Cilag Gmbh International | Header for modular energy system |
US11963727B2 (en) | 2021-03-30 | 2024-04-23 | Cilag Gmbh International | Method for system architecture for modular energy system |
US12040749B2 (en) | 2021-03-30 | 2024-07-16 | Cilag Gmbh International | Modular energy system with dual amplifiers and techniques for updating parameters thereof |
US11857252B2 (en) | 2021-03-30 | 2024-01-02 | Cilag Gmbh International | Bezel with light blocking features for modular energy system |
US11978554B2 (en) | 2021-03-30 | 2024-05-07 | Cilag Gmbh International | Radio frequency identification token for wireless surgical instruments |
US12004824B2 (en) | 2021-03-30 | 2024-06-11 | Cilag Gmbh International | Architecture for modular energy system |
US11950860B2 (en) | 2021-03-30 | 2024-04-09 | Cilag Gmbh International | User interface mitigation techniques for modular energy systems |
US11968776B2 (en) | 2021-03-30 | 2024-04-23 | Cilag Gmbh International | Method for mechanical packaging for modular energy system |
US11931026B2 (en) | 2021-06-30 | 2024-03-19 | Cilag Gmbh International | Staple cartridge replacement |
US11974829B2 (en) | 2021-06-30 | 2024-05-07 | Cilag Gmbh International | Link-driven articulation device for a surgical device |
US12079460B2 (en) | 2022-06-28 | 2024-09-03 | Cilag Gmbh International | Profiles for modular energy system |
US12121256B2 (en) | 2023-04-06 | 2024-10-22 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
Also Published As
Publication number | Publication date |
---|---|
US20090015695A1 (en) | 2009-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7982776B2 (en) | SBI motion artifact removal apparatus and method | |
US11727542B2 (en) | Super resolution and color motion artifact correction in a pulsed hyperspectral, fluorescence, and laser mapping imaging system | |
US7995045B2 (en) | Combined SBI and conventional image processor | |
US20230137694A1 (en) | Super resolution and color motion artifact correction in a pulsed color imaging system | |
US11398011B2 (en) | Super resolution and color motion artifact correction in a pulsed laser mapping imaging system | |
US11793399B2 (en) | Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system | |
JP3961729B2 (en) | All-focus imaging device | |
US9818193B2 (en) | Spatial resolution enhancement in hyperspectral imaging | |
US7262765B2 (en) | Apparatuses and methods for utilizing non-ideal light sources | |
US11276148B2 (en) | Super resolution and color motion artifact correction in a pulsed fluorescence imaging system | |
US20210158496A1 (en) | High resolution and high depth of field camera systems and methods using focus stacking | |
US12013496B2 (en) | Noise aware edge enhancement in a pulsed laser mapping imaging system | |
CN106456292B (en) | Systems, methods, devices for collecting color information related to an object undergoing a 3D scan | |
US11010877B2 (en) | Apparatus, system and method for dynamic in-line spectrum compensation of an image | |
EP3987767A1 (en) | Hyperspectral, fluorescence, and laser mapping imaging with fixed pattern noise cancellation | |
US20200402207A1 (en) | Super resolution and color motion artifact correction in a pulsed fluorescence imaging system | |
US20090060381A1 (en) | Dynamic range and amplitude control for imaging | |
CN116097298A (en) | Infrared and non-infrared channel mixer for depth map construction using structured light | |
US20100157038A1 (en) | Endoscope system with scanning function | |
WO2022250760A1 (en) | Systems and methods for power efficient image acquisition using single photon avalanche diodes (spads) | |
JPH11118443A (en) | Shape measuring device | |
JPH1198395A (en) | Picture processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ETHICON ENDO-SURGERY, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUNKI-JACOBS, ROBERT J.;WEIR, MICHAEL P.;REEL/FRAME:019662/0382 Effective date: 20070717 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230719 |