US7356580B1 - Plug and play sensor integration for a process module - Google Patents
Plug and play sensor integration for a process module Download PDFInfo
- Publication number
- US7356580B1 US7356580B1 US09/539,313 US53931300A US7356580B1 US 7356580 B1 US7356580 B1 US 7356580B1 US 53931300 A US53931300 A US 53931300A US 7356580 B1 US7356580 B1 US 7356580B1
- Authority
- US
- United States
- Prior art keywords
- sensor
- computing system
- process module
- transmitting
- command
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 206
- 230000010354 integration Effects 0.000 title description 2
- 239000004065 semiconductor Substances 0.000 claims description 8
- 230000015654 memory Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4063—Device-to-bus coupling
- G06F13/4068—Electrical coupling
- G06F13/4081—Live connection to bus, e.g. hot-plugging
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4185—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
Definitions
- the present invention relates to the manufacture of semiconductor related devices. More particularly, the present invention relates to improved techniques for manufacturing semiconductor related devices.
- semiconductor devices may be placed in process modules for etching, deposition, polishing, etc. With the small tolerances required in today's semiconductor chips or flat panel displays, various sensors may be required to monitor the process module.
- Some sensors may be separated from the process module, where the process module is driven by a first computing system and the sensor is driven by a second computing system, where the first computing system and the second computing system do not exchange data in real time. Synchronization of information between the process module and separate sensors may be difficult. In addition the exchange of data between the process module and separate sensors may be difficult.
- Some sensors may be connected to the process module. These sensors could either have their own computing systems that are directly connected to the process module or they may use the computing system of the process module as their computing system. Such sensors can exchange data with the process module in real time. Often different sensors have different protocols. For each sensor the computing system of the process module would be programmed to comply with the protocol of the sensor, possibly requiring the creation of a different driver for each sensor. Each driver might require the specification of many commands, such as commands to signal an alarm, stop the process module, and to indicate when various process steps are initiated or discontinued. In addition, different sensors may generate different types of data so that the driver might need to specify how the process module would use the specific type of data from the sensor.
- a driver for each sensor is time consuming, possibly taking as much as one man year. If the process module manufacturer does not take the time to create a driver for a particular sensor the user might not be able to use that sensor with the process module. In addition, even if a driver exists for a sensor, the user may have to perform various steps to install a driver in a process module and specify specific data to be sent to or received from a sensor. To remove the sensor from the process module, a user may need to perform additional programming steps, such as removing a driver and deleting commands for information to be sent to or received from a sensor.
- a processing system such as a process module that can be connected to a plurality of sensors, wherein the processing system does not need to be programmed to match various protocols of various sensors. It is desirable to provide a processing system that allows an integration of sensors into the process module that allows the sensors to exchange information with the processing system with minimal additional programming.
- the invention relates, in one embodiment, to a processing system that shares information with sensors in a client-server relationship, wherein recipe and control commands are exchanged between the processing system and sensors.
- FIG. 1 is a schematic view of a process module and sensors in a preferred embodiment of the invention.
- FIG. 2A is a perspective view of a computer system that may be used in an embodiment of the invention.
- FIG. 2B is a block diagram of the computer system shown in FIG. 2A .
- FIG. 3 is another schematic view of the preferred embodiment of the invention.
- FIG. 4 is a data flow chart of information exchanged between the process module computing system and a sensor.
- FIG. 1 depicts a schematic view of a system 10 , comprising a process module 12 , a network 14 , and plurality of sensors 16 .
- the process module 12 comprises a process chamber 18 and a process module computing system 20 .
- the process chamber is a process chamber for processing semiconductor related devices, such as an etch chamber, deposition device, or polishing device, used in the manufacturing of semiconductor chips, flat panel displays, disk drives or other computer components.
- the network 14 may be either an internal bus within the process module computing system 20 or an external network or local area network, such as an Ethernet network, or a combination of both.
- the process module computing system 20 serves as a server, and the sensors 16 act as clients in a client server relationship with the process module computing system 20 .
- the sensors 16 may be a combination of a sensor and computing device connected to the process module computing system 20 by a local area network, or the sensors 16 may be only sensors connected to an internal bus of the process module computing system 20 .
- the process module computing system 20 has a VME architecture, where an input board with a VME bus is used to connect the sensors 16 to the rest of the computing system 20 .
- a first sensor 24 may be a spectrometer
- a second sensor 26 may be a particle monitor sensor
- an nth sensor 28 may be a monitor.
- thermometer Other types of sensors may be a thermometer, which could also be used to provide temperature control like a thermostat, pump sensors, chiller sensors, RF matching system sensors, endpoint system sensors, RGA sensors, IR absorption sensors, RF probes, and data analysis software.
- Software that analyze data from other sensors may be sensors as defined in the specification and claims.
- Each of the sensors 16 is able to measure a parameter within the process chamber 18 .
- the spectrometer measures the spectrum within the process chamber 18
- the particle monitor measures the particle density within the process chamber 18
- the plasma monitor measures the plasma within the process chamber 18
- thermometer measures the temperature within the process chamber.
- FIGS. 2A and 2B illustrate a computer system 900 , which is suitable for implementing embodiments of the present invention.
- FIG. 2A shows one possible physical form of the computer system.
- the computer system may have many physical forms ranging from an integrated circuit, a printed circuit board, an embedded real-time control system, and a small handheld device up to a huge super computer.
- Computer system 900 includes a monitor 902 , a display 904 , a housing 906 , a disk drive 908 , a keyboard 910 , and a mouse 912 .
- Disk 914 is a computer-readable medium used to transfer data to and from computer system 900 .
- FIG. 2B is an example of a block diagram for computer system 900 .
- Attached to system bus 920 are a wide variety of subsystems.
- Processor(s) 922 also referred to as central processing units, or CPUs
- Memory 924 includes random access memory (RAM) and read-only memory (ROM).
- RAM random access memory
- ROM read-only memory
- RAM random access memory
- ROM read-only memory
- RAM random access memory
- ROM read-only memory
- a fixed disk 926 is also coupled bi-directionally to CPU 922 ; it provides additional data storage capacity and may also include any of the computer-readable media described below.
- Fixed disk 926 may be used to store programs, data, and the like and is typically a secondary storage medium (such as a hard disk) that is slower than primary storage. It will be appreciated that the information retained within fixed disk 926 , may, in appropriate cases, be incorporated in standard fashion as virtual memory in memory 924 .
- Removable disk 914 may take the form of any of the computer-readable media described below.
- CPU 922 is also coupled to a variety of input/output devices such as display 904 , keyboard 910 , mouse 912 and speakers 930 .
- an input/output device may be any of: video displays, track balls, mice, keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or paper tape readers, tablets, styluses, voice or handwriting recognizers, biometrics readers, or other computers.
- CPU 922 optionally may be coupled to another computer or telecommunications network using network interface 940 . With such a network interface, it is contemplated that the CPU might receive information from the network, or might output information to the network in the course of performing the above-described method steps.
- method embodiments of the present invention may execute solely upon CPU 922 or may execute over a network such as the Internet in conjunction with a remote CPU that shares a portion of the processing.
- embodiments of the present invention further relate to computer storage products with a computer-readable medium that have computer code thereon for performing various computer-implemented operations.
- the media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts.
- Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media such as floptical disks; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (ASICs), programmable logic devices (PLDs) and ROM and RAM devices.
- Examples of computer code include machine code, such as produced by a compiler, and files containing higher level code that are executed by a computer using an interpreter.
- a computer system 900 as shown in FIGS. 2A and 2B is used as the process module computing system 20
- part of the computer system bus 920 may form part of the network 14 and a network connected to the network interface 940 may form part of the network 14 .
- the process module computing system 20 may be connected to other computing systems through the network, where the process module computing system 20 acts as a client.
- FIG. 3 is a communications schematic of the system 10 shown in FIG. 1 .
- the network 14 is a TCP/IP network.
- the process module computing system 20 has an IP address and multiple ports to serve as the server of the TCP/IP network.
- the address of the process module computing system 20 is 10.0.10.1, which has three ports, numbered 10001, 10002, and 10003.
- Each sensor 16 has an IP address and one port to act as the client of the process module computing system 20 .
- the sensors 16 have an IP address and one port which indicate that they are ports of the process module computing system 20 .
- the first sensor 24 has an IP address of 10.0.10.1.11 and a port number of 10001
- the second sensor 26 has an IP address of 10.0.10.12 with a port number of 10002
- the nth sensor 28 has an IP address of 10.0.10.13 with a port number of 10003.
- FIG. 4 is a communication time sequence chart between the process module 12 and a sensor, with time starting at the top of FIG. 4 and proceeding downward.
- communications between the process module computing system and the first sensor 24 will be described.
- the two types are “Command” messages and “Acknowledgement” messages.
- a command may be a control command, data report, alarm report, or status report.
- the process module computing system 20 and the first sensor 24 are started and self initialized (steps 402 and 404 ). Because of the process module computing system 20 acts as a server and the first sensor 24 acts as a client, it may not matter whether the process module computing system 20 or the first sensor 24 is started first. When the process module computing system 20 is self-initialized, a connection monitor task object 30 is spawn, as shown in FIG. 1 . If the process module computing system 20 is first started, the process module computing system 20 waits to be connected with the first sensor 24 (step 406 ).
- the first sensor 24 sends a “Connect to Process Chamber” message to the process module computing system 20 (step 408 ), which is a request by the first sensor 24 to connect to the process module computing system 20 on a client/server basis.
- a first sensor messaging task 32 is spawn by the connection monitor task 30 , as shown in FIG. 1 .
- other sensor messaging tasks 34 are spawn when other sensors are connected to the process module 12 .
- the first sensor 24 then sends a “Command to get Alarm Table” message to the process module computing system 20 (step 410 ).
- the computing system 20 responds with an “Acknowledgment” message (step 412 ).
- the first sensor 24 receives the “Acknowledgment” message and waits for the alarm table (step 414 ).
- the process module computing system 20 sends an “Alarm Table” message to the first sensor 24 (step 416 ), which designates the number of alarms that the process module will handle.
- the Alarm Table provides alarm identification numbers and a description of each alarm.
- the first sensor 24 replies with an “Acknowledgement” message (step 420 ).
- the first sensor 24 then sends a “Command to get Date/Time and Initialization Data” message to the process module computing system 20 (step 422 ).
- an “Acknowledgement” message is sent to the first sensor 24 (step 424 ).
- a “Date/Time and Initialization Data” message is sent from the process module computing system 20 to the first sensor 24 (step 426 ), which allows the first sensor 24 to be synchronized with the process module computing system 20 .
- the first sensor 24 replies with an “Acknowledgement” message (step 428 ).
- the process module computing system 20 then sends a “Command to Get Reportable Specification” message to the first sensor 24 (step 430 ).
- the first sensor 24 replies with an “Acknowledgement” message (step 432 ).
- the first sensor 24 then sends a “Reportable Specification” message (step 434 ), which informs the process module computing system 20 of the type of data that will be provided by the first sensor 24 .
- the process module computing system 20 complies with an “Acknowledgement” message (step 436 ).
- Different sensors may generate different types of data. Some of these data types are Boolean, integer, enumerators and floating point.
- the possible range of data is also important.
- the frequency of the data is important, i.e. how often the data is measured. Some sensors may automatically send data, while other sensors may only send data when requested.
- the “Reportable Specification” message may provide information regarding data type, range, frequency, and distribution, allowing the process module computing system 20 to use the data from the first sensor 24 without requiring additional programming of the process module computing system 20 . Since additional programming is not required, a user interface to program the process module computing system 20 to each different sensor data type may not be required.
- the first sensor 24 then waits for a request for information (step 438 ). If the process module computing system 20 needs additional information, a “Send the Requested Information” message is sent from the process module computing system 20 to the first sensor 24 (step 440 ), to which the first sensor replies with an “Acknowledgement” message (step 442 ).
- Process related command messages are then sent from the process module computing system 20 to the first sensor 24 (step 444 ), to which the first sensor 24 replies with an “Acknowledgement” message (step 446 ).
- the process related commands are a plurality of commands by the process module computing system 20 which relate to actions starting and stopping process steps occurring in the process chamber 18 . For example, in an etch chamber a first process related command would be sent to the first sensor 24 , sending a recipe to the first sensor 24 , to which the first sensor 24 sends an “Acknowledgement” message as a reply.
- a second process related command would be sent to the first sensor 24 indicating that the wafer is in the process chamber 18 , to which the first sensor 24 sends an “Acknowledgement” message in reply.
- a third process related command may be sent to the first sensor 24 to indicate the start of the recipe process, to which an “Acknowledgement” message is sent as a reply.
- a fourth process related command is sent to the first sensor 24 , to which the first sensor 24 sends an “Acknowledgement” message in reply.
- a fifth process related command is sent to the first sensor 24 , to which the first sensor 24 sends an “Acknowledgement” reply.
- Process commands and acknowledgements are made for the starting and stopping of each step in the recipe.
- a “recipe end” process step is sent to the first sensor 24 to which the first sensor 24 sends an acknowledgement.
- a “wafer out” process command is sent to the first sensor 24 to which the first sensor 24 sends an acknowledgement. Therefore a process related command relating to an action is sent from the process module computing system 20 when the action is executed in the process chamber, where the action may be starting or stopping a step in the process chamber.
- the first sensor 24 may send a “Process Related Result” message to the process module computing system 20 (step 448 ), to which the process module computing system 20 would send an “Acknowledgement” message to the first sensor 24 as a reply (step 450 ).
- the “Process Related Result” message may be an alarm message, which may cause the process module computing system 20 to abort the process.
- the “Process Related Result” message may provide feedback information, such as temperature, which allows the process module computing system 20 to adjust the temperature accordingly.
- the “Process Related Result” message may provide data for analysis after the process is completed, which may be stored in the process module computing system 20 .
- all sensors 16 may provide real time data that is time stamped and synchronized with the process chamber.
- the synchronized data allows an in depth analysis of the process for troubleshooting.
- the real time data may be used to adjust the process in the process chamber during processing.
- All of the data from all of the sensors 16 may be stored in the process module computing system 20 , which acts as a server for the sensors. Using the reportable specification information of each sensor the data may be put in a usable form.
- a Command message comprises a lead message and a Command Data Packet.
- the lead message which in the preferred embodiment is two bytes long, contains the length of the Command Data Packet.
- the Acknowledgement message comprises a lead message and an Acknowledgement Data Packet.
- the lead message which in the preferred embodiment is two bytes long, contains the length of the Acknowledgement Data Packet.
- the first byte of the Command Data Packet holds a predefined level number. More preferably, all communications between the process module computing system 20 and a sensor has a level number of 3. In this case, communications between the process module computing system 20 and other computing systems where the other computing systems are not client sensors of the process module computing system 20 would have a level number that would not be equal to 3.
- the sensors and process module computing system 20 may more easily determine which messages are for the process module computing system 20 and sensors in a client/server relationship.
- the second byte of the Command Data Packet comprises a “Command ID” which provides a value between 0 to 255, which is used to designate a command type, such as start recipe, start step, end recipe, abort recipe step, post alarm due to error condition, clear posted alarm, and status information.
- a third byte of the Command Data Packet provides a transaction number for the command. In the preferred embodiment, the transaction number is between 0 and 15. The remaining bytes of the Command Data packet provide command data.
- an Acknowledgement Data Packet is only 3 bytes long.
- the purpose of the Acknowledgement Data Packet is to let the sender know that the Command Data Packet has been successfully received by the receiver.
- the first byte of the Acknowledgement Data Packet is a predefined level number, which is equal to the predefined level number of the Command Data Packet.
- the second byte of the Acknowledgement Data Packet is a number set to indicate that the data packet is an Acknowledgement Data Packet.
- the third byte of the Acknowledgement Data Packet is the command ID of the received command.
- a heartbeat message is sent by the process module to the sensor. If no acknowledgement is received, the sensor messaging task is deleted as part of the process of disconnecting the sensor. If a new sensor is added or a sensor with a deleted sensor messaging task sends a connection message, a new sensor messaging task is spawn. Therefore, the sensors 16 may be added to and removed from the network 14 while the process module computing system 20 is running. Thus the sensors 16 are hot swappable plug and play sensors.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Automation & Control Theory (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Drying Of Semiconductors (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/539,313 US7356580B1 (en) | 2000-03-30 | 2000-03-30 | Plug and play sensor integration for a process module |
KR1020027013084A KR100806559B1 (ko) | 2000-03-30 | 2001-03-19 | 반도체 관련 디바이스 처리 장치에서의 통신 방법 및 반도체 관련 디바이스 처리 장치 |
AU2001245853A AU2001245853A1 (en) | 2000-03-30 | 2001-03-19 | Plug and play sensor integration for a process module |
EP01918818A EP1269276B1 (fr) | 2000-03-30 | 2001-03-19 | Integration d'un capteur pret-a-l'emploi pour un module de traitement |
CNB018105696A CN1210658C (zh) | 2000-03-30 | 2001-03-19 | 用于工艺模件的即插即用传感器组合的实现方法 |
PCT/US2001/008719 WO2001075617A2 (fr) | 2000-03-30 | 2001-03-19 | Integration d'un capteur pret-a-l'emploi pour un module de traitement |
JP2001573229A JP5420131B2 (ja) | 2000-03-30 | 2001-03-19 | 処理モジュールのためのプラグアンドプレイセンサインテグレーション |
TW090106905A TW495670B (en) | 2000-03-30 | 2001-03-23 | Plug and play sensor integration for a process module |
US11/693,664 US7672747B2 (en) | 2000-03-30 | 2007-03-29 | Recipe-and-component control module and methods thereof |
JP2012261914A JP2013065880A (ja) | 2000-03-30 | 2012-11-30 | 処理モジュールのためのプラグアンドプレイセンサインテグレーション |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/539,313 US7356580B1 (en) | 2000-03-30 | 2000-03-30 | Plug and play sensor integration for a process module |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/693,664 Continuation-In-Part US7672747B2 (en) | 2000-03-30 | 2007-03-29 | Recipe-and-component control module and methods thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US7356580B1 true US7356580B1 (en) | 2008-04-08 |
Family
ID=24150695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/539,313 Expired - Fee Related US7356580B1 (en) | 2000-03-30 | 2000-03-30 | Plug and play sensor integration for a process module |
Country Status (8)
Country | Link |
---|---|
US (1) | US7356580B1 (fr) |
EP (1) | EP1269276B1 (fr) |
JP (2) | JP5420131B2 (fr) |
KR (1) | KR100806559B1 (fr) |
CN (1) | CN1210658C (fr) |
AU (1) | AU2001245853A1 (fr) |
TW (1) | TW495670B (fr) |
WO (1) | WO2001075617A2 (fr) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070282939A1 (en) * | 2004-11-17 | 2007-12-06 | Yokogawa Electric Corporation | Field Device and System Employing the Same |
US20080082653A1 (en) * | 2006-09-28 | 2008-04-03 | Chung-Ho Huang | Targeted data collection architecture |
US20080082579A1 (en) * | 2006-09-29 | 2008-04-03 | Chung-Ho Huang | Dynamic component-tracking system and methods therefor |
US20080243988A1 (en) * | 2000-03-30 | 2008-10-02 | Chung-Ho Huang | Recipe-and-component control module and methods thereof |
US20090319569A1 (en) * | 2008-06-24 | 2009-12-24 | Microsoft Corporation | Context platform |
US20090320143A1 (en) * | 2008-06-24 | 2009-12-24 | Microsoft Corporation | Sensor interface |
US20100249976A1 (en) * | 2009-03-31 | 2010-09-30 | International Business Machines Corporation | Method and system for evaluating a machine tool operating characteristics |
US20100332201A1 (en) * | 2009-06-30 | 2010-12-30 | Luc Albarede | Methods and apparatus for predictive preventive maintenance of processing chambers |
US20100330710A1 (en) * | 2009-06-30 | 2010-12-30 | Jiangxin Wang | Methods for constructing an optimal endpoint algorithm |
US20100332011A1 (en) * | 2009-06-30 | 2010-12-30 | Venugopal Vijayakumar C | Methods and arrangements for in-situ process monitoring and control for plasma processing tools |
US20100332014A1 (en) * | 2009-06-30 | 2010-12-30 | Luc Albarede | Arrangement for identifying uncontrolled events at the process module level and methods thereof |
US20100332012A1 (en) * | 2009-06-30 | 2010-12-30 | Chung-Ho Huang | Arrangement for identifying uncontrolled events at the process module level and methods thereof |
US20100332013A1 (en) * | 2009-06-30 | 2010-12-30 | Choi Brian D | Methods and apparatus to predict etch rate uniformity for qualification of a plasma chamber |
US20110276738A1 (en) * | 2010-04-29 | 2011-11-10 | Electronics And Telecommunications Research Institute | Sensor node including general-purpose interface port and plug and play function, sensor board including general-purpose interface port and sensor device driver, general-purpose interface port, and operation method of sensor node, sensor board, and general-purpose interface port |
US20120254487A1 (en) * | 2011-04-01 | 2012-10-04 | Seiko Epson Corporation | Data writing method and data writing device |
US20130007316A1 (en) * | 2011-06-30 | 2013-01-03 | Hannam University Institute For Industry-Academia Cooperation | Plug and play sensor module, sensor node, and plug and play connection method |
CN107181810A (zh) * | 2017-06-06 | 2017-09-19 | 刘爽 | 多用途可扩展式安全监测预警系统及方法 |
US20230076507A1 (en) * | 2021-09-03 | 2023-03-09 | Apple Inc. | Controller for Multiple Sensor Types in an SoC |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100970684B1 (ko) * | 2002-07-03 | 2010-07-15 | 도쿄엘렉트론가부시키가이샤 | 동적 센서 구성 및 런타임 실행 방법 |
US7206655B2 (en) * | 2003-07-21 | 2007-04-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | System and method for acquiring semiconductor process status information |
DE102005046802A1 (de) * | 2005-09-30 | 2007-04-05 | Audi Ag | Verfahren und Vorrichtung zur Bereitstellung von Informationen eines Umfelds eines Systems, insbesondere eines Kraftfahrzeugs |
DE202007017525U1 (de) * | 2007-12-15 | 2008-03-13 | Wincor Nixdorf International Gmbh | Kassensystem |
CN106292342B (zh) * | 2015-05-15 | 2018-11-02 | 北京四维拓智教育科技有限公司 | 处理器、外接器件、控制系统及其热插拔方法 |
US10763144B2 (en) * | 2018-03-01 | 2020-09-01 | Verity Instruments, Inc. | Adaptable-modular optical sensor based process control system, and method of operation thereof |
Citations (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4267572A (en) | 1978-04-08 | 1981-05-12 | Bodenseewerk Perkin-Elmer & Co. | Apparatus for determining the concentration of the components of a sample |
US4365303A (en) | 1980-02-07 | 1982-12-21 | The Perkin-Elmer Corporation | Method and apparatus for determining the nature of an unknown chemical substance |
US4490806A (en) | 1982-06-04 | 1984-12-25 | Research Corporation | High repetition rate transient recorder with automatic integration |
US4645348A (en) * | 1983-09-01 | 1987-02-24 | Perceptron, Inc. | Sensor-illumination system for use in three-dimensional measurement of objects and assemblies of objects |
EP0552873A1 (fr) | 1992-01-20 | 1993-07-28 | International Business Machines Corporation | Modification de la configuration système dans un système d'ordinateur |
FR2692701A1 (fr) | 1992-06-18 | 1993-12-24 | Aerospatiale | Procédé de contrôle de configuration d'une installation complexe et dispositif pour la mise en Óoeuvre de ce procédé. |
US5301122A (en) * | 1992-02-12 | 1994-04-05 | Measuring And Monitoring, Inc. | Measuring and monitoring system |
US5347460A (en) | 1992-08-25 | 1994-09-13 | International Business Machines Corporation | Method and system employing optical emission spectroscopy for monitoring and controlling semiconductor fabrication |
US5403621A (en) | 1991-12-12 | 1995-04-04 | Hughes Aircraft Company | Coating process using dense phase gas |
US5450205A (en) | 1993-05-28 | 1995-09-12 | Massachusetts Institute Of Technology | Apparatus and method for real-time measurement of thin film layer thickness and changes thereof |
EP0677737A2 (fr) | 1994-04-12 | 1995-10-18 | International Business Machines Corporation | Procédé et dispositif d'analyse de données de plasma |
US5664066A (en) | 1992-11-09 | 1997-09-02 | The United States Of America As Represented By The United States Department Of Energy | Intelligent system for automatic feature detection and selection or identification |
US5715051A (en) | 1996-10-21 | 1998-02-03 | Medar, Inc. | Method and system for detecting defects in optically transmissive coatings formed on optical media substrates |
US5757483A (en) | 1997-08-06 | 1998-05-26 | Stellarnet, Inc. | Dual beam optical spectrograph |
US5831851A (en) * | 1995-03-21 | 1998-11-03 | Seagate Technology, Inc. | Apparatus and method for controlling high throughput sputtering |
WO1999008168A2 (fr) | 1997-08-07 | 1999-02-18 | Schrijver Stefaan A De | Systeme de commande micro-electro-mecanique integre |
US5937365A (en) * | 1993-08-25 | 1999-08-10 | Hunter Engineering Company | Communications system for vehicle wheel alignment apparatus |
US5977913A (en) * | 1997-02-07 | 1999-11-02 | Dominion Wireless | Method and apparatus for tracking and locating personnel |
US6013108A (en) * | 1997-03-18 | 2000-01-11 | Endevco Corporation | Intelligent sensor system with network bus |
US6032109A (en) * | 1996-10-21 | 2000-02-29 | Telemonitor, Inc. | Smart sensor module |
US6077386A (en) | 1998-04-23 | 2000-06-20 | Sandia Corporation | Method and apparatus for monitoring plasma processing operations |
US6090302A (en) | 1998-04-23 | 2000-07-18 | Sandia | Method and apparatus for monitoring plasma processing operations |
US6091749A (en) | 1998-02-26 | 2000-07-18 | Trw Inc. | Laser system controller |
US6138241A (en) * | 1998-03-20 | 2000-10-24 | Leviton Manufacturing Co., Inc. | Apparatus for and method of inhibiting and overriding an electrical control device |
US6157867A (en) * | 1998-02-27 | 2000-12-05 | Taiwan Semiconductor Manufacturing Company | Method and system for on-line monitoring plasma chamber condition by comparing intensity of certain wavelength |
US6204768B1 (en) * | 1998-10-30 | 2001-03-20 | Hochiki Corporation | Fire monitoring system and fire sensor |
US6225901B1 (en) * | 1997-03-07 | 2001-05-01 | Cardionet, Inc. | Reprogrammable remote sensor monitoring system |
US6233492B1 (en) * | 1997-05-02 | 2001-05-15 | Tokyo Electron Limited | Process control system and method for transferring process data therefor |
US6243738B1 (en) | 1998-04-06 | 2001-06-05 | National Instruments Corporation | Data acquisition system which includes remote access to data acquisition devices |
US6265831B1 (en) | 1999-03-31 | 2001-07-24 | Lam Research Corporation | Plasma processing method and apparatus with control of rf bias |
US6292108B1 (en) * | 1997-09-04 | 2001-09-18 | The Board Of Trustees Of The Leland Standford Junior University | Modular, wireless damage monitoring system for structures |
US6360362B1 (en) * | 1998-02-20 | 2002-03-19 | Intel Corporation | Automatic update of camera firmware |
US6370454B1 (en) * | 2000-02-25 | 2002-04-09 | Edwin S. Moore Iii | Apparatus and method for monitoring and maintaining mechanized equipment |
US6411994B2 (en) * | 1997-10-07 | 2002-06-25 | Interval Research Corporation | Interface system for providing content using context hotspots |
US6425006B1 (en) * | 1997-05-13 | 2002-07-23 | Micron Technology, Inc. | Alert configurator and manager |
US6446192B1 (en) * | 1999-06-04 | 2002-09-03 | Embrace Networks, Inc. | Remote monitoring and control of equipment over computer networks using a single web interfacing chip |
US6493756B1 (en) * | 1999-10-28 | 2002-12-10 | Networks Associates, Inc. | System and method for dynamically sensing an asynchronous network event within a modular framework for network event processing |
US6501377B2 (en) * | 1998-08-31 | 2002-12-31 | Hitachi, Ltd. | Surveillance system and network system |
US6510350B1 (en) * | 1999-04-09 | 2003-01-21 | Steen, Iii Henry B. | Remote data access and system control |
US6515586B1 (en) * | 1998-12-18 | 2003-02-04 | Intel Corporation | Tactile tracking systems and methods |
US6529236B1 (en) * | 1996-09-20 | 2003-03-04 | Fuji Photo Film Co., Ltd. | Digital camera for outputting digital image signals and image reproducing device connectable thereof |
US6535123B2 (en) * | 1999-01-09 | 2003-03-18 | Heat - Timer Corporation | Electronic message delivery system |
US6553336B1 (en) * | 1999-06-25 | 2003-04-22 | Telemonitor, Inc. | Smart remote monitoring system and method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58223840A (ja) * | 1982-06-23 | 1983-12-26 | Fujitsu Ltd | 計測・制御システム用デ−タベ−ス制御方式 |
JPH03266100A (ja) * | 1990-03-16 | 1991-11-27 | Fujitsu Ltd | 複数条件設定アラーム監視システム |
DE69516541T2 (de) * | 1995-01-19 | 2000-11-23 | International Business Machines Corp., Armonk | Steuernetzwerk und gestaltungsverfahren dafür |
US5883944A (en) * | 1997-02-28 | 1999-03-16 | Lucent Technologies Inc. | "Plug and play" telephone system |
JPH11145994A (ja) * | 1997-11-06 | 1999-05-28 | Toshiba Corp | 通信方法および通信装置 |
JPH11308678A (ja) * | 1998-04-20 | 1999-11-05 | Toyo Commun Equip Co Ltd | 監視情報モニタ装置 |
-
2000
- 2000-03-30 US US09/539,313 patent/US7356580B1/en not_active Expired - Fee Related
-
2001
- 2001-03-19 CN CNB018105696A patent/CN1210658C/zh not_active Expired - Lifetime
- 2001-03-19 EP EP01918818A patent/EP1269276B1/fr not_active Expired - Lifetime
- 2001-03-19 WO PCT/US2001/008719 patent/WO2001075617A2/fr active Application Filing
- 2001-03-19 JP JP2001573229A patent/JP5420131B2/ja not_active Expired - Lifetime
- 2001-03-19 KR KR1020027013084A patent/KR100806559B1/ko active IP Right Grant
- 2001-03-19 AU AU2001245853A patent/AU2001245853A1/en not_active Abandoned
- 2001-03-23 TW TW090106905A patent/TW495670B/zh not_active IP Right Cessation
-
2012
- 2012-11-30 JP JP2012261914A patent/JP2013065880A/ja not_active Withdrawn
Patent Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4267572A (en) | 1978-04-08 | 1981-05-12 | Bodenseewerk Perkin-Elmer & Co. | Apparatus for determining the concentration of the components of a sample |
US4365303A (en) | 1980-02-07 | 1982-12-21 | The Perkin-Elmer Corporation | Method and apparatus for determining the nature of an unknown chemical substance |
US4490806A (en) | 1982-06-04 | 1984-12-25 | Research Corporation | High repetition rate transient recorder with automatic integration |
US4645348A (en) * | 1983-09-01 | 1987-02-24 | Perceptron, Inc. | Sensor-illumination system for use in three-dimensional measurement of objects and assemblies of objects |
US5403621A (en) | 1991-12-12 | 1995-04-04 | Hughes Aircraft Company | Coating process using dense phase gas |
EP0552873A1 (fr) | 1992-01-20 | 1993-07-28 | International Business Machines Corporation | Modification de la configuration système dans un système d'ordinateur |
US5301122A (en) * | 1992-02-12 | 1994-04-05 | Measuring And Monitoring, Inc. | Measuring and monitoring system |
FR2692701A1 (fr) | 1992-06-18 | 1993-12-24 | Aerospatiale | Procédé de contrôle de configuration d'une installation complexe et dispositif pour la mise en Óoeuvre de ce procédé. |
US5347460A (en) | 1992-08-25 | 1994-09-13 | International Business Machines Corporation | Method and system employing optical emission spectroscopy for monitoring and controlling semiconductor fabrication |
US5664066A (en) | 1992-11-09 | 1997-09-02 | The United States Of America As Represented By The United States Department Of Energy | Intelligent system for automatic feature detection and selection or identification |
US5450205A (en) | 1993-05-28 | 1995-09-12 | Massachusetts Institute Of Technology | Apparatus and method for real-time measurement of thin film layer thickness and changes thereof |
US5937365A (en) * | 1993-08-25 | 1999-08-10 | Hunter Engineering Company | Communications system for vehicle wheel alignment apparatus |
US5546322A (en) | 1994-04-12 | 1996-08-13 | International Business Machines Corporation | Method and system for analyzing plasma data |
EP0677737A2 (fr) | 1994-04-12 | 1995-10-18 | International Business Machines Corporation | Procédé et dispositif d'analyse de données de plasma |
US5831851A (en) * | 1995-03-21 | 1998-11-03 | Seagate Technology, Inc. | Apparatus and method for controlling high throughput sputtering |
US6529236B1 (en) * | 1996-09-20 | 2003-03-04 | Fuji Photo Film Co., Ltd. | Digital camera for outputting digital image signals and image reproducing device connectable thereof |
US6032109A (en) * | 1996-10-21 | 2000-02-29 | Telemonitor, Inc. | Smart sensor module |
US5715051A (en) | 1996-10-21 | 1998-02-03 | Medar, Inc. | Method and system for detecting defects in optically transmissive coatings formed on optical media substrates |
US5977913A (en) * | 1997-02-07 | 1999-11-02 | Dominion Wireless | Method and apparatus for tracking and locating personnel |
US6225901B1 (en) * | 1997-03-07 | 2001-05-01 | Cardionet, Inc. | Reprogrammable remote sensor monitoring system |
US6013108A (en) * | 1997-03-18 | 2000-01-11 | Endevco Corporation | Intelligent sensor system with network bus |
US6233492B1 (en) * | 1997-05-02 | 2001-05-15 | Tokyo Electron Limited | Process control system and method for transferring process data therefor |
US6425006B1 (en) * | 1997-05-13 | 2002-07-23 | Micron Technology, Inc. | Alert configurator and manager |
US5757483A (en) | 1997-08-06 | 1998-05-26 | Stellarnet, Inc. | Dual beam optical spectrograph |
WO1999008168A2 (fr) | 1997-08-07 | 1999-02-18 | Schrijver Stefaan A De | Systeme de commande micro-electro-mecanique integre |
US6292108B1 (en) * | 1997-09-04 | 2001-09-18 | The Board Of Trustees Of The Leland Standford Junior University | Modular, wireless damage monitoring system for structures |
US6411994B2 (en) * | 1997-10-07 | 2002-06-25 | Interval Research Corporation | Interface system for providing content using context hotspots |
US6360362B1 (en) * | 1998-02-20 | 2002-03-19 | Intel Corporation | Automatic update of camera firmware |
US6091749A (en) | 1998-02-26 | 2000-07-18 | Trw Inc. | Laser system controller |
US6157867A (en) * | 1998-02-27 | 2000-12-05 | Taiwan Semiconductor Manufacturing Company | Method and system for on-line monitoring plasma chamber condition by comparing intensity of certain wavelength |
US6138241A (en) * | 1998-03-20 | 2000-10-24 | Leviton Manufacturing Co., Inc. | Apparatus for and method of inhibiting and overriding an electrical control device |
US6243738B1 (en) | 1998-04-06 | 2001-06-05 | National Instruments Corporation | Data acquisition system which includes remote access to data acquisition devices |
US6090302A (en) | 1998-04-23 | 2000-07-18 | Sandia | Method and apparatus for monitoring plasma processing operations |
US6077386A (en) | 1998-04-23 | 2000-06-20 | Sandia Corporation | Method and apparatus for monitoring plasma processing operations |
US6501377B2 (en) * | 1998-08-31 | 2002-12-31 | Hitachi, Ltd. | Surveillance system and network system |
US6204768B1 (en) * | 1998-10-30 | 2001-03-20 | Hochiki Corporation | Fire monitoring system and fire sensor |
US6515586B1 (en) * | 1998-12-18 | 2003-02-04 | Intel Corporation | Tactile tracking systems and methods |
US6535123B2 (en) * | 1999-01-09 | 2003-03-18 | Heat - Timer Corporation | Electronic message delivery system |
US6265831B1 (en) | 1999-03-31 | 2001-07-24 | Lam Research Corporation | Plasma processing method and apparatus with control of rf bias |
US6510350B1 (en) * | 1999-04-09 | 2003-01-21 | Steen, Iii Henry B. | Remote data access and system control |
US6446192B1 (en) * | 1999-06-04 | 2002-09-03 | Embrace Networks, Inc. | Remote monitoring and control of equipment over computer networks using a single web interfacing chip |
US6553336B1 (en) * | 1999-06-25 | 2003-04-22 | Telemonitor, Inc. | Smart remote monitoring system and method |
US6493756B1 (en) * | 1999-10-28 | 2002-12-10 | Networks Associates, Inc. | System and method for dynamically sensing an asynchronous network event within a modular framework for network event processing |
US6370454B1 (en) * | 2000-02-25 | 2002-04-09 | Edwin S. Moore Iii | Apparatus and method for monitoring and maintaining mechanized equipment |
Non-Patent Citations (5)
Title |
---|
IEEE Standards Board, IEEE Standard for a Smart Transducer Interface for Sensors and Actuators-Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS) Format, Sep. 16, 1997, The Institure of Electrical and Electronics Engineers, Inc., IEEE Std 1451.2-1997, 1-114. * |
International Search Report, date mailed Apr. 19, 2002. |
International Search Report, date mailed Mar. 6, 2002. |
Kang B. Lee and Richard D. Schneeman, "Internet-Based Distributed Measurement and Control Applications", IEEE Instrumentation & Measurement Magazine, Jun. 1999, p. 23-27. |
U.S. Appl. No. 09/539,312, filed Mar. 30, 2000, entitled: "Integrated Full Wavelength Spectrometer for Wafer Processing". |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080243988A1 (en) * | 2000-03-30 | 2008-10-02 | Chung-Ho Huang | Recipe-and-component control module and methods thereof |
US7672747B2 (en) | 2000-03-30 | 2010-03-02 | Lam Research Corporation | Recipe-and-component control module and methods thereof |
US20070282939A1 (en) * | 2004-11-17 | 2007-12-06 | Yokogawa Electric Corporation | Field Device and System Employing the Same |
US8321493B2 (en) * | 2004-11-17 | 2012-11-27 | Yokogawa Electric Corporation | Field device and system employing the same |
US7565220B2 (en) | 2006-09-28 | 2009-07-21 | Lam Research Corporation | Targeted data collection architecture |
US20080082653A1 (en) * | 2006-09-28 | 2008-04-03 | Chung-Ho Huang | Targeted data collection architecture |
US20080082579A1 (en) * | 2006-09-29 | 2008-04-03 | Chung-Ho Huang | Dynamic component-tracking system and methods therefor |
US8010483B2 (en) | 2006-09-29 | 2011-08-30 | Lam Research Corporation | Component-tracking system and methods therefor |
US7814046B2 (en) | 2006-09-29 | 2010-10-12 | Lam Research Corporation | Dynamic component-tracking system and methods therefor |
US20100325084A1 (en) * | 2006-09-29 | 2010-12-23 | Chung-Ho Huang | Component-tracking system and methods therefor |
US20100125360A1 (en) * | 2007-03-29 | 2010-05-20 | Chung-Ho Huang | Methods for performing data management for a recipe-and-component control module |
US8295963B2 (en) | 2007-03-29 | 2012-10-23 | Lam Research Corporation | Methods for performing data management for a recipe-and-component control module |
US20090319569A1 (en) * | 2008-06-24 | 2009-12-24 | Microsoft Corporation | Context platform |
US20090320143A1 (en) * | 2008-06-24 | 2009-12-24 | Microsoft Corporation | Sensor interface |
US8516001B2 (en) | 2008-06-24 | 2013-08-20 | Microsoft Corporation | Context platform |
US20100249976A1 (en) * | 2009-03-31 | 2010-09-30 | International Business Machines Corporation | Method and system for evaluating a machine tool operating characteristics |
US8285414B2 (en) * | 2009-03-31 | 2012-10-09 | International Business Machines Corporation | Method and system for evaluating a machine tool operating characteristics |
US8594826B2 (en) | 2009-03-31 | 2013-11-26 | International Business Machines Corporation | Method and system for evaluating a machine tool operating characteristics |
US20100330710A1 (en) * | 2009-06-30 | 2010-12-30 | Jiangxin Wang | Methods for constructing an optimal endpoint algorithm |
US8271121B2 (en) | 2009-06-30 | 2012-09-18 | Lam Research Corporation | Methods and arrangements for in-situ process monitoring and control for plasma processing tools |
US20100332012A1 (en) * | 2009-06-30 | 2010-12-30 | Chung-Ho Huang | Arrangement for identifying uncontrolled events at the process module level and methods thereof |
US20100332014A1 (en) * | 2009-06-30 | 2010-12-30 | Luc Albarede | Arrangement for identifying uncontrolled events at the process module level and methods thereof |
US20100332011A1 (en) * | 2009-06-30 | 2010-12-30 | Venugopal Vijayakumar C | Methods and arrangements for in-situ process monitoring and control for plasma processing tools |
US8295966B2 (en) | 2009-06-30 | 2012-10-23 | Lam Research Corporation | Methods and apparatus to predict etch rate uniformity for qualification of a plasma chamber |
US8618807B2 (en) | 2009-06-30 | 2013-12-31 | Lam Research Corporation | Arrangement for identifying uncontrolled events at the process module level and methods thereof |
US8983631B2 (en) * | 2009-06-30 | 2015-03-17 | Lam Research Corporation | Arrangement for identifying uncontrolled events at the process module level and methods thereof |
US8473089B2 (en) | 2009-06-30 | 2013-06-25 | Lam Research Corporation | Methods and apparatus for predictive preventive maintenance of processing chambers |
US20100332201A1 (en) * | 2009-06-30 | 2010-12-30 | Luc Albarede | Methods and apparatus for predictive preventive maintenance of processing chambers |
US8538572B2 (en) | 2009-06-30 | 2013-09-17 | Lam Research Corporation | Methods for constructing an optimal endpoint algorithm |
US20100332013A1 (en) * | 2009-06-30 | 2010-12-30 | Choi Brian D | Methods and apparatus to predict etch rate uniformity for qualification of a plasma chamber |
US20110276738A1 (en) * | 2010-04-29 | 2011-11-10 | Electronics And Telecommunications Research Institute | Sensor node including general-purpose interface port and plug and play function, sensor board including general-purpose interface port and sensor device driver, general-purpose interface port, and operation method of sensor node, sensor board, and general-purpose interface port |
US20120254487A1 (en) * | 2011-04-01 | 2012-10-04 | Seiko Epson Corporation | Data writing method and data writing device |
US9442740B2 (en) * | 2011-04-01 | 2016-09-13 | Seiko Epson Corporation | Data writing method and data writing device |
US20130007316A1 (en) * | 2011-06-30 | 2013-01-03 | Hannam University Institute For Industry-Academia Cooperation | Plug and play sensor module, sensor node, and plug and play connection method |
CN107181810A (zh) * | 2017-06-06 | 2017-09-19 | 刘爽 | 多用途可扩展式安全监测预警系统及方法 |
US20230076507A1 (en) * | 2021-09-03 | 2023-03-09 | Apple Inc. | Controller for Multiple Sensor Types in an SoC |
US11868109B2 (en) * | 2021-09-03 | 2024-01-09 | Apple Inc. | Sensor interface circuit controller for multiple sensor types in an integrated circuit device |
Also Published As
Publication number | Publication date |
---|---|
KR20020092410A (ko) | 2002-12-11 |
JP5420131B2 (ja) | 2014-02-19 |
EP1269276A2 (fr) | 2003-01-02 |
JP2003529927A (ja) | 2003-10-07 |
WO2001075617A2 (fr) | 2001-10-11 |
CN1210658C (zh) | 2005-07-13 |
JP2013065880A (ja) | 2013-04-11 |
TW495670B (en) | 2002-07-21 |
AU2001245853A1 (en) | 2001-10-15 |
KR100806559B1 (ko) | 2008-02-27 |
EP1269276B1 (fr) | 2012-11-14 |
WO2001075617A3 (fr) | 2002-06-27 |
CN1432146A (zh) | 2003-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7356580B1 (en) | Plug and play sensor integration for a process module | |
AU2002322624B2 (en) | Block data storage within a computer network | |
US7127517B2 (en) | Protocol adapter framework for integrating non-IIOP applications into an object server container | |
US7672747B2 (en) | Recipe-and-component control module and methods thereof | |
JP2004510219A (ja) | 分散型シミュレーション | |
AU2002322624A1 (en) | Block data storage within a computer network | |
US8483095B2 (en) | Configurable network socket retransmission timeout parameters | |
WO1997023974A1 (fr) | Procede et appareil permettant de determiner l'etat d'un dispositif dans un reseau de communications | |
WO1997023974A9 (fr) | Procede et appareil permettant de determiner l'etat d'un dispositif dans un reseau de communications | |
US7921177B2 (en) | Method and computer system for providing remote direct memory access | |
TWI467378B (zh) | 有關網路設備選擇性暫停的方法 | |
US20150371327A1 (en) | System for dynamically selecting a communications fabric | |
US7299264B2 (en) | System and method for monitoring a connection between a server and a passive client device | |
US5946465A (en) | Method and system for recovering system resources used by an inactive Telnet client | |
EP1195942B1 (fr) | Système et méthode de détection de dispositif | |
US7120837B1 (en) | System and method for delayed error handling | |
US6826761B1 (en) | Efficient timer management system | |
US6810438B1 (en) | Method for enabling value-added feature on hardware devices using a confidential mechanism to access hardware registers in a batch manner | |
WO2023030275A1 (fr) | Procédé et appareil de gestion d'adresse de dispositif de surveillance, contrôleur de gestion de carte de base, et dispositif | |
US7614058B2 (en) | System and method for virtual media command filtering | |
US6957361B2 (en) | Method, system, and program for error handling in a dual adaptor system | |
US20030188070A1 (en) | Method and apparatus for detecting I/O timeouts | |
US10348592B2 (en) | Systems and methods for dynamic availability of executable endpoints | |
JP2010541042A (ja) | 食い違い取り消しプロトコル | |
US7029929B1 (en) | Method of manufacturing semiconductor devices using a bond program verification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LAM RESEARCH CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUANG, CHUNG-HO;LUI, ANDREW;HEMKER, DAVID J.;REEL/FRAME:010718/0291 Effective date: 20000328 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200408 |