US7268391B2 - Semiconductor device having an under stepped gate for preventing gate failure and method of manufacturing the same - Google Patents
Semiconductor device having an under stepped gate for preventing gate failure and method of manufacturing the same Download PDFInfo
- Publication number
- US7268391B2 US7268391B2 US11/251,700 US25170005A US7268391B2 US 7268391 B2 US7268391 B2 US 7268391B2 US 25170005 A US25170005 A US 25170005A US 7268391 B2 US7268391 B2 US 7268391B2
- Authority
- US
- United States
- Prior art keywords
- semiconductor substrate
- gate
- forming
- recess
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000010410 layer Substances 0.000 claims abstract description 99
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000011229 interlayer Substances 0.000 claims abstract description 11
- 238000005530 etching Methods 0.000 claims abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 238000002955 isolation Methods 0.000 claims description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 9
- 229920005591 polysilicon Polymers 0.000 claims description 9
- 238000005468 ion implantation Methods 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
- H10B12/053—Making the transistor the transistor being at least partially in a trench in the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66659—Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66651—Lateral single gate silicon transistors with a single crystalline channel formed on the silicon substrate after insulating device isolation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/34—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
Definitions
- the present invention relates to a semiconductor device. More particularly, the present invention relates to a semiconductor device having an under stepped gate for preventing a “not open fail” of a landing plug contact by preventing a gate from leaning and a method of manufacturing the same.
- the STAR cell structure is achieved by recessing a part of an active area of a substrate 1 defined by an isolation layer 2 . That is, the STAR cell structure is achieved by recessing both longitudinal edge portions of the active area such that the active area has a stepped structure and forming a gate 6 on the stepped portion of the active area to increase an effective channel length of a MOSFET device.
- the STAR cell structure can reduce a short channel effect so that it can obtain a desired threshold voltage at a relatively low threshold voltage dose.
- the STAR cell structure can reduce an electric field applied to a MOSFET device, thereby lengthening the refresh time above three times as compared with that of the conventional flat type cell structure.
- the STAR cell structure can be obtained by adding a simple process to conventional processes or changing the conventional processes, so that the STAR cell structure is easily applicable. For this reason, the STAR cell structure has recently been spotlighted as an effective solution for ensuring the threshold voltage and refresh characteristics adaptable for highly integrated semiconductor memory devices.
- the gate 6 is formed on the stepped portion of the active area, causing the leaning of the gate 6 .
- LPC landing plug contact
- reference numerals 1 to 5 represent a semiconductor substrate, an isolation layer, a gate insulation layer, a gate conductive layer and a hard mask layer, respectively.
- an object of the present invention is to provide a semiconductor device capable of preventing a gate from leaning and a method of manufacturing the same.
- Another object of the present invention is to provide a semiconductor device for preventing a “not open fail” of a landing plug contact (LPC) by preventing a gate from leaning and a method of manufacturing the same.
- LPC landing plug contact
- a semiconductor device comprising: a semiconductor substrate having an active area defined by an isolation layer and formed at a longitudinal center portion thereof with a recess; under stepped gates formed over both sidewalls of the recess, an upper surface of the semiconductor substrate adjacent to the recess and a predetermined inner portion of the semiconductor substrate formed below the upper surface of the semiconductor substrate; a gate insulating layer formed on the under stepped gates; a channel layer formed on the gate insulating layer provided at upper portions of the under stepped gates; source/drain areas formed in the semiconductor substrate corresponding to both sides of the under stepped gates; an interlayer insulating film formed on an entire surface of the semiconductor substrate including the channel layer; and a landing plug formed in the interlayer insulating film such that the landing plug makes contact with the source/drain areas, respectively.
- the under stepped gates have “ ⁇ ” and “ ⁇ ” shapes, respectively and the channel layer includes a silicon epitaxial layer.
- a method of manufacturing a semiconductor device comprising the steps of: preparing a semiconductor substrate having an active area defined by an isolation layer; forming first recesses by etching a predetermined part of the active area where a gate is formed later; filling a conductive layer in the first recesses; forming a second recess by etching a predetermined part of the active area, where a drain area is formed later, and a predetermined portion of a polysilicon layer filled in the first recesses, and forming under stepped gates over both sidewalls of the second recess, an upper surface of the semiconductor substrate adjacent to the second recess and a predetermined inner portion of the semiconductor substrate formed below the upper surface of the semiconductor substrate; forming a gate insulating layer on a surface of the semiconductor substrate including the under stepped gates; forming a channel layer on the gate insulating layer provided at upper portions of the under stepped gates; forming source/drain areas in the semiconductor substrate corresponding to
- the conductive layer includes a polysilicon layer.
- the under stepped gates have “ ⁇ ” and “ ⁇ ” shapes, respectively.
- the step of forming the channel layer includes the substeps of growing a silicon epitaxial layer on the gate insulating layer through a selective epitaxial growing process and etching the silicon epitaxial layer. At this time, the gate insulating layer remains on the source/drain areas when the silicon epitaxial layer has been etched and the gate insulating layer remaining on the source/drain areas is used as a buffer layer when an ion implantation process is performed to form the source/drain areas.
- FIG. 1 is a sectional view illustrating a structure of a conventional STAR (Step-gated asymmetry recess) cell
- FIGS. 2A to 2F are sectional views illustrating the procedure for manufacturing a semiconductor device according to one embodiment of the present invention.
- FIGS. 2A to 2F are sectional views illustrating the procedure for manufacturing a semiconductor device according to one embodiment of the present invention.
- a semiconductor substrate 21 having a trench type isolation layer 22 which defines an active area and is formed through an STI (shallow trench isolation) process generally known in the art, is prepared. Then, a recess mask (not shown) for exposing gate parts of the active area is formed in the semiconductor substrate 21 . After that, the exposed gate parts are etched in a predetermined depth so that first recesses 23 are formed.
- STI shallow trench isolation
- the recess mask is a stacked layer consisting of a buffer oxide layer and a polysilicon layer.
- the recess mask can be made from a photoresist film or a material having a high etching selectivity with respect to silicon.
- a gate conductive layer preferably, a polysilicon layer 24 is deposited on an entire surface of the semiconductor substrate 21 including the isolation layer 22 such that the first recesses 23 are filled with the polysilicon layer 24 .
- the polysilicon layer 24 is subject to the etch-back process or the CMP (chemical mechanical polishing) process until the surface of the semiconductor substrate 21 is exposed.
- a predetermined part of the active area of the semiconductor substrate, where a drain area is formed later, and a predetermined portion of the polysilicon layer 24 filled in the first recesses 23 are etched by a predetermined depth, thereby forming a second recess 25 .
- stepped gates 26 having “ ⁇ ” and “ ⁇ ” shapes are formed over both sidewalls of the second recess 25 , an upper surface of the semiconductor substrate adjacent to the second recess 25 and a predetermined inner portion of the semiconductor substrate formed below the upper surface of the semiconductor substrate.
- the gates 26 have stepped structures to increase a channel length, since the gates 26 are formed in the semiconductor substrate 21 with the under stepped structures, the under stepped gates 26 may not lean. Therefore, the present invention does not cause the “LPC not open fail” in the following LCP process.
- a gate oxide process is performed with respect to the resultant substrate, thereby forming a gate oxide layer 27 on an upper surface of the semiconductor substrate 21 including the under stepped gates 26 .
- the gate oxide layer can be formed through a deposition process, instead of the gate oxide process.
- not only a silicon oxide layer, but also an oxide layer having a high dielectric constant can be used as an oxide material.
- the oxide layer is preferably used for a gate insulating layer, a nitride layer or a stacked layer consisting of an oxide layer and a nitride layer can be used instead of the oxide layer.
- a silicon epitaxial layer is formed on the gate oxide layer 27 through a selective epitaxial growing process. After that, a channel layer 28 is formed on the gate oxide layer provided on an upper portion of the under stepped gates 26 by etching the silicon epitaxial layer.
- the gate oxide layer preferably remains at both sides of the under stepped gates 26 .
- a source/drain ion implantation process is performed with respect to the resultant substrate by using the remaining gate oxide layer as a buffer layer, thereby forming a source area 29 a and a drain area 29 b on the surface of the active area of the semiconductor substrate formed at both sides of the under stepped gates 26 .
- an interlayer insulating film 30 including a nitride layer is formed on the resultant substrate.
- the interlayer insulating film 30 and the remaining gate oxide layer 27 are etched through the LPC process, thereby forming contact holes for exposing the source and drain areas 29 a and 29 b .
- a conductive layer, for instance, a polysilicon layer is filled in the contact holes, thereby forming a landing plug 31 .
- the gates 26 have under stepped structures so that the gates 26 may not lean.
- the “LPC not open fail” may not occur when forming the contact holes, that is, when forming the LPC. Therefore, according to the present invention, the landing plug 31 can be stably formed.
- the semiconductor device according to the present invention includes gates having under stepped structures so that the leaning of the gates may not occur.
- the present invention can improve the process reliability and can obtain the highly integrated semiconductor memory device having desired device characteristics.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Semiconductor Memories (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/833,353 US7514330B2 (en) | 2005-08-30 | 2007-08-03 | Semiconductor device having an under stepped gate for preventing gate failure and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2005-0079941 | 2005-08-30 | ||
KR1020050079941A KR100701701B1 (en) | 2005-08-30 | 2005-08-30 | Semiconductor device and method of manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/833,353 Division US7514330B2 (en) | 2005-08-30 | 2007-08-03 | Semiconductor device having an under stepped gate for preventing gate failure and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070045723A1 US20070045723A1 (en) | 2007-03-01 |
US7268391B2 true US7268391B2 (en) | 2007-09-11 |
Family
ID=37802866
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/251,700 Expired - Fee Related US7268391B2 (en) | 2005-08-30 | 2005-10-17 | Semiconductor device having an under stepped gate for preventing gate failure and method of manufacturing the same |
US11/833,353 Expired - Fee Related US7514330B2 (en) | 2005-08-30 | 2007-08-03 | Semiconductor device having an under stepped gate for preventing gate failure and method of manufacturing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/833,353 Expired - Fee Related US7514330B2 (en) | 2005-08-30 | 2007-08-03 | Semiconductor device having an under stepped gate for preventing gate failure and method of manufacturing the same |
Country Status (3)
Country | Link |
---|---|
US (2) | US7268391B2 (en) |
JP (1) | JP2007067357A (en) |
KR (1) | KR100701701B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070215915A1 (en) * | 2006-03-15 | 2007-09-20 | Promos Technologies Inc. | Multi-step gate structure and method for preparing the same |
US20080044993A1 (en) * | 2005-03-15 | 2008-02-21 | Kim Hyun J | Semiconductor device and method of manufacturing the same |
US20090173996A1 (en) * | 2005-12-29 | 2009-07-09 | Hynix Semiconductor Inc. | Recess Gate Type Transistor |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100549010B1 (en) * | 2004-06-17 | 2006-02-02 | 삼성전자주식회사 | Methods Of Forming Transistor Having A Channel Region At A Predetermined Sidewall Of A Channel-Portion Hole |
KR100905830B1 (en) * | 2007-11-16 | 2009-07-02 | 주식회사 하이닉스반도체 | Semiconductor device and manufacturing method thereof |
KR101814576B1 (en) | 2011-04-20 | 2018-01-05 | 삼성전자 주식회사 | Semiconductor device |
CN105977301B (en) * | 2016-07-06 | 2018-10-26 | 电子科技大学 | A kind of internal grid-type MOS |
CN110880508B (en) * | 2018-09-05 | 2024-08-09 | 长鑫存储技术有限公司 | Transistor combination structure of integrated circuit memory and forming method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59159658A (en) | 1983-02-28 | 1984-09-10 | Toshiba Corp | Voice coil motor |
JPS6136974A (en) | 1984-07-30 | 1986-02-21 | Matsushita Electronics Corp | Manufacture of mos semiconductor device |
KR960005249B1 (en) | 1992-10-24 | 1996-04-23 | 현대전자산업주식회사 | Dram manufacture method |
KR100250978B1 (en) | 1997-09-22 | 2000-04-15 | 이계철 | Method for converting autocad drawing to infomap drawing |
KR100259078B1 (en) | 1997-08-14 | 2000-06-15 | 김영환 | Thin film transistor and method fabricating the same |
KR20040002009A (en) | 2002-06-29 | 2004-01-07 | 주식회사 하이닉스반도체 | Transistor in a semiconductor device and method of manufacturing the same |
US20050093058A1 (en) * | 2003-10-30 | 2005-05-05 | Samsung Electronics Co., Ltd | Sonos device and methods of manufacturing the same |
US7102187B2 (en) * | 2004-12-30 | 2006-09-05 | Hynix Semiconductor Inc. | Gate structure of a semiconductor device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475865B1 (en) * | 1997-08-21 | 2002-11-05 | United Microelectronics Corp. | Method of fabricating semiconductor device |
-
2005
- 2005-08-30 KR KR1020050079941A patent/KR100701701B1/en not_active IP Right Cessation
- 2005-10-17 US US11/251,700 patent/US7268391B2/en not_active Expired - Fee Related
- 2005-10-31 JP JP2005315779A patent/JP2007067357A/en active Pending
-
2007
- 2007-08-03 US US11/833,353 patent/US7514330B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59159658A (en) | 1983-02-28 | 1984-09-10 | Toshiba Corp | Voice coil motor |
JPS6136974A (en) | 1984-07-30 | 1986-02-21 | Matsushita Electronics Corp | Manufacture of mos semiconductor device |
KR960005249B1 (en) | 1992-10-24 | 1996-04-23 | 현대전자산업주식회사 | Dram manufacture method |
KR100259078B1 (en) | 1997-08-14 | 2000-06-15 | 김영환 | Thin film transistor and method fabricating the same |
KR100250978B1 (en) | 1997-09-22 | 2000-04-15 | 이계철 | Method for converting autocad drawing to infomap drawing |
KR20040002009A (en) | 2002-06-29 | 2004-01-07 | 주식회사 하이닉스반도체 | Transistor in a semiconductor device and method of manufacturing the same |
US20050093058A1 (en) * | 2003-10-30 | 2005-05-05 | Samsung Electronics Co., Ltd | Sonos device and methods of manufacturing the same |
US7102187B2 (en) * | 2004-12-30 | 2006-09-05 | Hynix Semiconductor Inc. | Gate structure of a semiconductor device |
Non-Patent Citations (1)
Title |
---|
Korean Patent Gazette, published Mar. 29, 2007. |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080044993A1 (en) * | 2005-03-15 | 2008-02-21 | Kim Hyun J | Semiconductor device and method of manufacturing the same |
US7498246B2 (en) * | 2005-03-15 | 2009-03-03 | Hynix Semiconductor Inc. | Method of manufacturing a semiconductor device having a stepped gate structure |
US20090173996A1 (en) * | 2005-12-29 | 2009-07-09 | Hynix Semiconductor Inc. | Recess Gate Type Transistor |
US7687852B2 (en) * | 2005-12-29 | 2010-03-30 | Hynix Semiconductor Inc. | Recess gate type transistor |
US20070215915A1 (en) * | 2006-03-15 | 2007-09-20 | Promos Technologies Inc. | Multi-step gate structure and method for preparing the same |
US7622352B2 (en) * | 2006-03-15 | 2009-11-24 | Promos Technologies Inc. | Multi-step gate structure and method for preparing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20070027951A (en) | 2007-03-12 |
US20080038892A1 (en) | 2008-02-14 |
JP2007067357A (en) | 2007-03-15 |
KR100701701B1 (en) | 2007-03-29 |
US20070045723A1 (en) | 2007-03-01 |
US7514330B2 (en) | 2009-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9472461B2 (en) | Double gated 4F2 dram CHC cell and methods of fabricating the same | |
US7045413B2 (en) | Method of manufacturing a semiconductor integrated circuit using a selective disposable spacer technique and semiconductor integrated circuit manufactured thereby | |
US8053307B2 (en) | Method of fabricating semiconductor device with cell epitaxial layers partially overlap buried cell gate electrode | |
KR101412906B1 (en) | Structure and method for a field effect transistor | |
KR101116359B1 (en) | Semiconductor device with buried gate and method for manufacturing | |
US7491603B2 (en) | Transistors of semiconductor device having channel region in a channel-portion hole and methods of forming the same | |
US7514330B2 (en) | Semiconductor device having an under stepped gate for preventing gate failure and method of manufacturing the same | |
JP2004530300A (en) | Depressed GATDRAM transistors and methods | |
US20140061742A1 (en) | Semiconductor device | |
US7504296B2 (en) | Semiconductor memory device and method for fabricating the same | |
US20110127611A1 (en) | Semiconductor device and method for manufacturing the same | |
US20080073708A1 (en) | Semiconductor device and method of forming the same | |
US7498246B2 (en) | Method of manufacturing a semiconductor device having a stepped gate structure | |
US8013373B2 (en) | Semiconductor device having MOS-transistor formed on semiconductor substrate and method for manufacturing thereof | |
KR20190013402A (en) | Semiconductor device and method of manufacturing | |
US20150214234A1 (en) | Semiconductor device and method for fabricating the same | |
US20080048253A1 (en) | Semiconductor device having a recess channel structure and method for manufacturing the same | |
CN113130492A (en) | Semiconductor structure and device | |
KR100586553B1 (en) | Gate of semiconductor device and method thereof | |
KR100951568B1 (en) | Transistor in semiconductor device and method for forming the same | |
KR20050052027A (en) | Semiconductor device having a recessed gate electrode and fabrication method thereof | |
KR20020015818A (en) | semiconductor device and method for manufacturing the same | |
US7652323B2 (en) | Semiconductor device having step gates and method of manufacturing the same | |
KR20010109677A (en) | Fabrication method of MOS transistor in semiconductor device and MOS transistor fabricated thereby | |
KR20060062525A (en) | Method of manufacturing semiconducter with gate of recess gate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HYNIX SEMICONDUCTOR INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARK, SEUNG PYO;REEL/FRAME:017118/0335 Effective date: 20051007 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20190911 |