US7059454B2 - One-way braking device - Google Patents
One-way braking device Download PDFInfo
- Publication number
- US7059454B2 US7059454B2 US11/030,198 US3019805A US7059454B2 US 7059454 B2 US7059454 B2 US 7059454B2 US 3019805 A US3019805 A US 3019805A US 7059454 B2 US7059454 B2 US 7059454B2
- Authority
- US
- United States
- Prior art keywords
- housing
- braking
- chamber
- locking portion
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/10—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
- F16F9/12—Devices with one or more rotary vanes turning in the fluid any throttling effect being immaterial, i.e. damping by viscous shear effect only
Definitions
- the invention relates to a one-way braking device, more particularly, to rotary attenuators.
- Rotary attenuators usually have a braking rotor which is rotatably supported in a housing. There is a viscous fluid in the housing, e.g. silicone oil. When the rotor rotates a respective resistance is produced which makes itself felt as a braking torque. An interaction with a toothed rod or toothed segment which is mounted on the component to be braked becomes possible via a shaft led out of the housing. The shaft has mostly seated thereon a pinion.
- Such rotary attenuators exist in most varied embodiments. They are employed, above all, in automobiles, electronic devices and the like. They have relatively small dimensions.
- the freewheel is formed between the housing of the rotary braking device and another housing which receives the first housing.
- the first housing is floatingly received in the chamber of the second housing and the circumference of the first housing and a portion of the wall of the second chamber are formed such that a positive interengagement takes place between these portions if they are moved against each other because of a linear force component acting between these portions.
- a force acting on the pinion of the braking device is braked by means of the braking rotor.
- the first and second housings are acted on in a way that they get under a force opposed to the first force component the first housing can freely rotate in the second chamber of the second housing. Freewheeling is established for this case.
- the positive interengagement between the first and second housings allows to transmit a large torque. In contrast, the torque is approximately zero in the freewheel direction.
- a circumference of the first housing has a toothing and the second chamber has a toothed segment, the toothing and the toothed segment getting in engagement with each other in a braking operation and getting out of engagement in a freewheeling operation.
- the locking portion is defined by spaced locking edges which cooperate with the preferably cup-shaped or grooveshaped recesses at the circular circumference of the first casing.
- the circumference of the first housing is a polygon in section and the locking portion is shaped as a complementary polygonal portion.
- a positive interengagement is obtained also here when the first and second housings are pulled towards each other in such a way that the first housing gets into engagement with the locking portion of the second housing.
- the attenuator of the invention is symmetric freewheeling may be obtained in either direction in different mounting situations.
- a braking device is provided which is independent on the direction in which a braking torque or freewheeling is to be produced.
- All of the parts of the inventive braking device are preferably made of a plastic material preferably by molding.
- Another advantage is that the assembly of the braking device may be fully automatic. This makes unnecessary any manual preassembly as has been required for former one-way rotary brakes.
- the size of construction of the inventive braking device is random and, in particular, may be built to be very small.
- the material for the braking rotor and casing may be the same and preferably is a plastic. This also reduces the expenditure for the inventive braking device.
- FIG. 1 schematically shows a first embodiment of a braking device according to the invention.
- FIG. 2 schematically shows a second embodiment of a braking device according to the invention.
- FIG. 3 Schematically shows a third embodiment of a braking device according to the invention.
- FIG. 4 shows a section through the representation of FIG. 3 along line 4 — 4 .
- FIGS. 5–8 show the braking device of FIG. 4 at different stages of assembly.
- FIGS. 1 through 3 schematically show three rotary attenuators which respectively have a housing 10 a , 10 b , 10 c with diametrically opposed flanges 12 , 14 to be fixed to a substrate.
- the housings 10 a through 10 c respectively have an internal chamber 16 a , 16 b , 16 c .
- the chamber respectively has disposed therein a second housing 18 a , 18 b , 18 c.
- the outer circumference of the housing 18 a is configured as a polygon.
- the outer circumference of the housing 18 b is circular and is formed with groove-shaped indentations 20 at the circumference.
- the circumference of the housing 18 c is circular and is provided with a toothing 22 .
- the wall of the chamber 16 a is formed with a complementary polygon of the housing 18 a over a certain area at 24 .
- the chamber 16 b in the area of the upper flange 12 , the chamber 16 b has an extension 26 by which two locking edges 28 and 30 are defined at the ends of the extension 26 , as viewed in a circumferential direction.
- the wall of the chamber 16 c has a toothed portion 32 .
- FIG. 4 is intended to be a section through the representation of FIG. 3 , but could also represent a section through FIGS. 1 and 2 .
- the flange portions 12 , 14 form part of a component 34 of the housing 10 c which has a lower plate 36 and an annular portion 38 .
- Plate 36 and annular portion 38 define the chamber 16 c .
- the annular portion 38 has put thereon a cap 40 which forms a snapping connection along with the outer side of the annular portion as can be seen at 42 .
- the top wall of the cap 40 has a central aperture 44 .
- the housing 18 c has a first portion 46 and a second portion 48 which are introduced into each other and are appropriately connected to each other.
- the housing 18 c has formed therein a chamber 49 which accommodates a braking rotor 50 which is rotatably and sealedly supported by a shaft butt end 52 in the housing portion 46 .
- the shaft butt end 52 extends to the outside of the housing 10 c through an opening 44 and the outer portion of the shaft butt end 52 has seated thereon a pinion 54 .
- a braking action appears if the chamber 38 is filled with a viscous liquid, e.g. silicone oil. This action is generally known for rotary attenuators up to this point.
- the whole rotary attenuator can be molded of plastic material.
- FIGS. 1 through 3 It is evident from FIGS. 1 through 3 that a positive interengagement can be established, for instance, between the housings 10 a and 18 a in FIG. 1 and prevents a relative rotation between the housings when the housing 18 a is moved towards portion 24 . In this case, a torque applied to the pinion 54 is braked in a known manner. On the contrary, if the housing 18 a is moved to the opposite direction a free rotation may occur between housings 10 a and 18 a , which results in freewheeling if a torque is applied to the pinion 54 .
- the rotary attenuator of FIG. 2 reacts similarly.
- the positive interengagement is established with the indentations 20 by the locking edges 28 and 30 .
- the positive interengagement is established between the toothing 22 of the housing 18 c and the toothed portion 32 of the housing 10 c.
- the effect described presupposes that, apart from a torque applied to the pinion, a linear force component will act on the housing I 8 a to 1 8 c which either establishes or eliminates the positive interengagement described. This is the case, for instance, if a toothed rod engages the pinion 54 as is described in the context of FIGS. 5 through 8 . It further presupposes that the housing 18 a , 18 b , and 18 c is floatingly received each in the chamber 16 a , 16 b , and 16 c of the housing 10 a , 10 b , 10 c , respectively.
- FIGS. 5 through 8 illustrate the rotary brake 30 d in a way approximately similar to that of FIG. 2 in different positions.
- a toothed rod 22 d is disposed below a pinion 54 and a braking effect will result when the toothed rod 22 d moves to the right (arrow B), and a freewheeling effect will result when it moves to the left (arrow F).
- the housing of FIG. 6 is disposed as that of FIG. 5 , but the toothed rod 22 d is disposed above the pinion 54 .
- a rightward movement of the toothed rod 22 d again results in braking and a leftward movement results in freewheeling.
- the housing 32 d is turned through 180 degree.
- a rightward movement of the toothed rod 22 d of FIG. 7 which is disposed above results in freewheeling (arrow F) and a leftward movement results in braking (arrow B).
- the toothed rod 22 d of FIG. 8 which is disposed below causes a freewheeling effect when moved to the right and causes braking when moved to the left.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Braking Arrangements (AREA)
- Fluid-Damping Devices (AREA)
Abstract
A one way braking device has a first sealed chamber filled with a viscous fluid, a braking rotor being rotably supported within the chamber, a housing or the braking rotor, respectively, coacting with a pinion which in turn cooperates with a tooth rod or a gear or the like. The first housing is floatingly supported in a second chamber of a second housing. The circumference of the first housing and a locking portion of the wall of the second chamber are formed such that a positive interengagement between the first and second housings takes place if by a linear first force component the first housing and the locking portion are moved against each other. A free running between the first and second housings is effected when a second force component opposite to the first component effects between the first and second housings.
Description
The referenced application is a continuation application of U.S. patent application Ser. No. 10/383,610, filed Mar. 10, 2003, now abandoned.
The invention relates to a one-way braking device, more particularly, to rotary attenuators.
Rotary attenuators usually have a braking rotor which is rotatably supported in a housing. There is a viscous fluid in the housing, e.g. silicone oil. When the rotor rotates a respective resistance is produced which makes itself felt as a braking torque. An interaction with a toothed rod or toothed segment which is mounted on the component to be braked becomes possible via a shaft led out of the housing. The shaft has mostly seated thereon a pinion. Such rotary attenuators exist in most varied embodiments. They are employed, above all, in automobiles, electronic devices and the like. They have relatively small dimensions.
Unless particular provisions are made the braking action of such rotary brakes is symmetric. The braking torque obtained in either sense of rotation is approximately the same. However, a one-sided braking effect is desirable in some applications so that freewheeling is intended to act in the inverse direction. Known freewheeling systems require a wrap spring, a bipartite axle as well as an extra metallic bushing with a lubrication to transmit forces. The wrap spring cannot be mounted by automatic machines so that mounting one-way rotary attenuators of this type involves relatively great expenditure.
It is the object of the invention to improve a braking device of the aforementioned type in such a way that this reduces the mounting expenditure and allows to realize a small size of construction.
In the inventive braking device, the freewheel is formed between the housing of the rotary braking device and another housing which receives the first housing. The first housing is floatingly received in the chamber of the second housing and the circumference of the first housing and a portion of the wall of the second chamber are formed such that a positive interengagement takes place between these portions if they are moved against each other because of a linear force component acting between these portions. In such a case, a force acting on the pinion of the braking device is braked by means of the braking rotor. On the contrary, if the first and second housings are acted on in a way that they get under a force opposed to the first force component the first housing can freely rotate in the second chamber of the second housing. Freewheeling is established for this case. The positive interengagement between the first and second housings allows to transmit a large torque. In contrast, the torque is approximately zero in the freewheel direction.
According to an aspect of the invention, a circumference of the first housing has a toothing and the second chamber has a toothed segment, the toothing and the toothed segment getting in engagement with each other in a braking operation and getting out of engagement in a freewheeling operation.
According to another aspect of the invention, the locking portion is defined by spaced locking edges which cooperate with the preferably cup-shaped or grooveshaped recesses at the circular circumference of the first casing.
According to another aspect of the invention, the circumference of the first housing is a polygon in section and the locking portion is shaped as a complementary polygonal portion. A positive interengagement is obtained also here when the first and second housings are pulled towards each other in such a way that the first housing gets into engagement with the locking portion of the second housing.
Since the attenuator of the invention is symmetric freewheeling may be obtained in either direction in different mounting situations. Thus, a braking device is provided which is independent on the direction in which a braking torque or freewheeling is to be produced. Thus, only one series of tools needs to be manufactured to produce the parts of the inventive braking device. All of the parts of the inventive braking device are preferably made of a plastic material preferably by molding.
Another advantage is that the assembly of the braking device may be fully automatic. This makes unnecessary any manual preassembly as has been required for former one-way rotary brakes.
The size of construction of the inventive braking device is random and, in particular, may be built to be very small.
The material for the braking rotor and casing may be the same and preferably is a plastic. This also reduces the expenditure for the inventive braking device.
The invention will now be described in more detail with reference to embodiments.
The outer circumference of the housing 18 a is configured as a polygon. The outer circumference of the housing 18 b is circular and is formed with groove-shaped indentations 20 at the circumference. The circumference of the housing 18 c is circular and is provided with a toothing 22. It can be seen that the wall of the chamber 16 a is formed with a complementary polygon of the housing 18 a over a certain area at 24. In FIG. 2 , in the area of the upper flange 12, the chamber 16 b has an extension 26 by which two locking edges 28 and 30 are defined at the ends of the extension 26, as viewed in a circumferential direction. In the embodiment of FIG. 3 , the wall of the chamber 16 c has a toothed portion 32.
The internal structure of the rotary attenuators illustrated in FIGS. 1 through 3 is apparent from FIG. 4 . FIG. 4 is intended to be a section through the representation of FIG. 3 , but could also represent a section through FIGS. 1 and 2 .
The flange portions 12, 14 form part of a component 34 of the housing 10 c which has a lower plate 36 and an annular portion 38. Plate 36 and annular portion 38 define the chamber 16 c. The annular portion 38 has put thereon a cap 40 which forms a snapping connection along with the outer side of the annular portion as can be seen at 42. The top wall of the cap 40 has a central aperture 44.
The housing 18 c has a first portion 46 and a second portion 48 which are introduced into each other and are appropriately connected to each other. The housing 18 c has formed therein a chamber 49 which accommodates a braking rotor 50 which is rotatably and sealedly supported by a shaft butt end 52 in the housing portion 46. The shaft butt end 52 extends to the outside of the housing 10 c through an opening 44 and the outer portion of the shaft butt end 52 has seated thereon a pinion 54. While the braking rotor 50 rotates relative to the housing 18 c in the chamber 48 a braking action appears if the chamber 38 is filled with a viscous liquid, e.g. silicone oil. This action is generally known for rotary attenuators up to this point. The whole rotary attenuator can be molded of plastic material.
It is evident from FIGS. 1 through 3 that a positive interengagement can be established, for instance, between the housings 10 a and 18 a in FIG. 1 and prevents a relative rotation between the housings when the housing 18 a is moved towards portion 24. In this case, a torque applied to the pinion 54 is braked in a known manner. On the contrary, if the housing 18 a is moved to the opposite direction a free rotation may occur between housings 10 a and 18 a, which results in freewheeling if a torque is applied to the pinion 54.
The rotary attenuator of FIG. 2 reacts similarly. In this case, the positive interengagement is established with the indentations 20 by the locking edges 28 and 30. In the embodiment of FIG. 3 , the positive interengagement is established between the toothing 22 of the housing 18 c and the toothed portion 32 of the housing 10 c.
The effect described presupposes that, apart from a torque applied to the pinion, a linear force component will act on the housing I 8a to 1 8c which either establishes or eliminates the positive interengagement described. This is the case, for instance, if a toothed rod engages the pinion 54 as is described in the context of FIGS. 5 through 8 . It further presupposes that the housing 18 a, 18 b, and 18 c is floatingly received each in the chamber 16 a, 16 b, and 16 c of the housing 10 a, 10 b, 10 c, respectively.
In the embodiment of FIGS. 7 and 8 , the housing 32 d is turned through 180 degree. A rightward movement of the toothed rod 22 d of FIG. 7 which is disposed above results in freewheeling (arrow F) and a leftward movement results in braking (arrow B). The toothed rod 22 d of FIG. 8 which is disposed below causes a freewheeling effect when moved to the right and causes braking when moved to the left.
Claims (20)
1. A one way braking device, comprising:
a first housing having a first sealed chamber filled with a viscous fluid and a first locking portion on a circumference of said first housing;
a braking rotor being rotatably supported within the first chamber;
a pinion attached to said braking rotor and adapted to mesh with a gear; and
a second housing having a second chamber which has a second locking portion on a wall thereof;
wherein
the first housing is floating in the second chamber;
the first and second locking portions are engaged when the first housing is moved relative to the second housing in a first direction, wherein, when said first and second locking portions are engaged, rotational movement of said first housing about the rotational axis of the braking rotor and relative to said second housing is limited in both clockwise and counterclockwise directions; and
the first and second locking portions are disengaged to allow a free running between the first and second housings when the first housing is moved relative to the second housing in a second direction opposite to the first direction, wherein, when said first and second locking portions are disengaged, said first housing is rotatable about the rotational axis of the braking rotor and relative to said second housing in both said clockwise and counterclockwise directions.
2. The braking device, of claim 1 , wherein the first and second locking portions include matching toothed segments.
3. The braking device of claim 1 , wherein the second locking portion has two spaced apart locking edges which cooperate with the first locking portion which includes spaced apart projections on said circumference of the first housing.
4. The braking device of claim 1 , wherein the first locking portion on the circumference of the first housing is a polygon in cross section and the second locking portion is shaped as a complementary polygonal portion.
5. The braking device of claim 1 , wherein the second chamber of the second housing is defined within an annular portion, and an open side of the annular portion is covered by a cap which overgrips the annular portion.
6. The braking device of claim 5 , wherein the cap forms a snapping connection with the annular portion.
7. The braking device of claim 1 , wherein the whole said device is molded of plastic material.
8. The device of claim 1 , wherein the second locking portion includes first and second stop elements which, when the first and second locking portions are engaged, define limits for rotational movements of said first housing clockwise and counterclockwise, respectively.
9. The device of claim 1 , wherein, when the first and second locking portions are disengaged, the first housing is free to rotate about the rotational axis, both clockwise and counterclockwise, for full 360°.
10. The device of claim 1 , wherein said first housing is moveable in a straight line relative to said second housing between a braking position where the first and second locking portions are engaged and a free running position where the first and second locking portions are disengaged.
11. A one way braking device, comprising:
a first housing defining a first chamber containing a viscous liquid, said first housing having a first locking portion;
a braking rotor rotatably received in said first chamber;
a second housing defining a second chamber, said second chamber having a second locking portion engageable with the first locking portion, said first housing being retained in the second housing so as to be moveable relative to said second housing in at least two different straight axes located in a plane perpendicular to a rotational shaft of said braking rotor;
wherein
said first housing is moveable within said second housing between a braking position and a free running position;
in said braking position, said first and second locking portions are engaged, whereby rotational movement of said rotor will be braked by the viscous liquid; and
in said free running position, said first and second locking portions are disengaged, whereby rotational movement of said rotor will cause a free running between the first and second housings.
12. The braking device of claim 11 , wherein
an outer wall of the first housing has, in cross section, a convex polygonal portion as said first locking portion; and
an inner wall of said second chamber consists of, in cross section, (1) a single complementary convex polygonal portion as said second locking portion and (2) a circular portion.
13. The braking device of claim 12 , wherein an entirety of the outer wall of the first housing is, in cross section, a single convex polygon.
14. The braking device of claim 11 , wherein
an entirety of an outer wall of the first housing is, in cross section, a single convex polygon; and
the second chamber has an inner wall which is, in cross section, at least partially polygonal and complementary to the convex polygon of said first housing.
15. The device of claim 11 , further comprising a pinion attached to the rotational shaft of said braking rotor for transmitting an external rotational force to said braking rotor.
16. The device of claim 15 , further comprising a toothed rod meshing with said pinion.
17. The braking device of claim 11 , wherein
the second locking portion is a recess on an inner wall of said second chamber;
the first locking portion includes multiple projections on an outer wall of the first housing; and
in the braking position, said multiple projections are received in said recess.
18. A one way braking device, comprising:
a first housing defining a first chamber containing a viscous liquid, said first housing having an outer wall which includes a first locking portion;
a braking rotor rotatably received in said first chamber;
a second housing defining a second chamber, said second chamber having an inner wall which includes a second locking portion engageable with the first locking portion, said first housing being moveable within said second housing between a braking position and a free running position;
wherein
in said braking position, said first and second locking portions are engaged, whereby rotational movement of said rotor will be braked by the viscous liquid;
in said free running position, said first and second locking portions are disengaged, whereby rotational movement of said rotor will cause a free running between the first and second housings; and
said first housing is moveable relative to said second housing in a plane perpendicular to a rotational shaft of said braking rotor, and limits to movements of said first housing within said second housing in said plane are defined solely by sizes and shapes of cross sections of said inner and outer walls taken in said plane.
19. The device of claim 18 , wherein said first housing is moveable relative to said second housing in at least two different straight axes located in said plane.
20. A one way braking device, comprising:
a first housing defining a first chamber containing a fluid, said first housing having a first locking portion;
a second housing defining a second chamber, said second chamber receiving said first housing and having a second locking portion engageable with the first locking portion;
a braking rotor rotatably received in said first chamber;
wherein
said first housing is moveable in translational motion relative to said second housing between a braking position and a released position;
in said braking position, said first and second locking portions are engaged, whereby rotational movement of said rotor will be braked by the fluid; and
in said released position, said first and second locking portions are disengaged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/030,198 US7059454B2 (en) | 2002-03-13 | 2005-01-07 | One-way braking device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10210917.6 | 2002-03-13 | ||
DE10210917A DE10210917C1 (en) | 2002-03-13 | 2002-03-13 | Braking device with freewheel |
US10/383,610 US20030173165A1 (en) | 2002-03-13 | 2003-03-10 | One-way braking device |
US11/030,198 US7059454B2 (en) | 2002-03-13 | 2005-01-07 | One-way braking device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/383,610 Continuation US20030173165A1 (en) | 2002-03-13 | 2003-03-10 | One-way braking device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050115784A1 US20050115784A1 (en) | 2005-06-02 |
US7059454B2 true US7059454B2 (en) | 2006-06-13 |
Family
ID=27762888
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/383,610 Abandoned US20030173165A1 (en) | 2002-03-13 | 2003-03-10 | One-way braking device |
US11/030,198 Expired - Lifetime US7059454B2 (en) | 2002-03-13 | 2005-01-07 | One-way braking device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/383,610 Abandoned US20030173165A1 (en) | 2002-03-13 | 2003-03-10 | One-way braking device |
Country Status (6)
Country | Link |
---|---|
US (2) | US20030173165A1 (en) |
EP (1) | EP1344958B1 (en) |
JP (1) | JP4080921B2 (en) |
CA (1) | CA2421982C (en) |
DE (2) | DE10210917C1 (en) |
ES (1) | ES2283666T3 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060169960A1 (en) * | 2004-04-06 | 2006-08-03 | Shaohan Li | Safety buffer for guide rails |
US20090115115A1 (en) * | 2005-11-14 | 2009-05-07 | Zeilenga Chad K | Viscous strand damper assembly |
US20110120823A1 (en) * | 2009-11-20 | 2011-05-26 | Charles Hansen | Retracta Belt Brake System |
US9261158B2 (en) | 2009-02-23 | 2016-02-16 | Illinois Tool Works Inc. | Damper assembly and device utilizing the same |
US20170343073A1 (en) * | 2014-12-16 | 2017-11-30 | Nifco Inc. | Damper and method for manufacturing damper |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4391397B2 (en) * | 2004-07-14 | 2009-12-24 | 株式会社ニフコ | Rotating damper |
DE102005012652A1 (en) | 2005-03-18 | 2006-10-05 | Ejot Gmbh & Co. Kg | slip clutch |
DE102008027623A1 (en) | 2008-06-10 | 2009-12-24 | Itw Automotive Products Gmbh & Co. Kg | Damping device for damping translatory movement of component relative to stationary bearing component in automobile, has rotatable dampers that are dimensioned such that torques of different sizes are produced in respective directions |
DE202008011372U1 (en) | 2008-08-26 | 2008-12-24 | Orweko Ladenbau Und Service Gmbh & Co. Kg | damping device |
DE102011011580B3 (en) * | 2011-02-18 | 2012-07-19 | Kesseböhmer Warenpräsentation GmbH & Co.KG | Dispensing device for baked goods e.g. bread, in supermarket, has swivel unit braked and displaced around axis such that swivel unit cooperates with gearing profile in region of guide legs, where profile is connected with pinion of dampers |
USD669484S1 (en) * | 2011-03-02 | 2012-10-23 | Nifco Inc. | Damper |
USD669485S1 (en) * | 2011-04-27 | 2012-10-23 | Nifco Inc. | Damper |
JP5666376B2 (en) | 2011-05-16 | 2015-02-12 | 株式会社ニフコ | Rotating damper device with one-way clutch |
DE102011113617A1 (en) | 2011-09-16 | 2013-03-21 | Hörauf & Kohler Verwaltungs KG | Rotary damper with freewheel |
AT512300B1 (en) | 2012-01-25 | 2013-07-15 | Fulterer Gmbh | DEVICE FOR CONTROLLING MOVEMENT OF A MOVABLE COMPONENT |
AT512306B1 (en) | 2012-01-25 | 2013-07-15 | Fulterer Gmbh | DEVICE FOR CONTROLLING MOVEMENT OF A MOVABLE COMPONENT |
WO2013110102A1 (en) | 2012-01-25 | 2013-08-01 | Fulterer Gesellschaft Mbh | Pull-out device for at least two pull-out furniture parts |
AT512299B1 (en) | 2012-01-25 | 2013-07-15 | Fulterer Gmbh | FEEDING DEVICE FOR AT LEAST TWO EXTENDABLE FURNITURE PARTS |
AT512415B1 (en) | 2012-03-20 | 2013-08-15 | Fulterer Gmbh | Catching device for a movably mounted furniture part |
US9182004B2 (en) * | 2014-01-02 | 2015-11-10 | Horizon Hobby, LLC | Rotary damper |
DE102015100978B4 (en) * | 2015-01-23 | 2024-06-13 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Installation device for a tailgate of a motor vehicle |
JP1536916S (en) * | 2015-04-24 | 2015-11-02 | ||
JP1550670S (en) * | 2015-05-20 | 2016-05-30 | ||
KR101792922B1 (en) | 2015-12-28 | 2017-11-02 | 주식회사 한화 | One Way Brake Apparatus |
US20170227276A1 (en) * | 2016-02-04 | 2017-08-10 | Robertshaw Controls Company | Rotary damper |
DE102017128977A1 (en) | 2017-12-06 | 2019-06-06 | Illinois Tool Works Inc. | rotary damper |
WO2020241045A1 (en) * | 2019-05-28 | 2020-12-03 | 株式会社パイオラックス | Damper device |
DE102020117520A1 (en) | 2020-07-02 | 2022-01-05 | Illinois Tool Works Inc. | DEVICE AND METHOD FOR NOISE REDUCTION FROM A LINEAR DAMPER |
DE102024106523A1 (en) | 2023-04-04 | 2024-10-10 | Illinois Tool Works Inc. | DAMPER DEVICE FOR REDUCING AND IN PARTICULAR BRAKING A MOVEMENT OF A SECOND COMPONENT MOVABLE RELATIVE TO A FIRST COMPONENT |
DE102023109292A1 (en) | 2023-04-13 | 2024-10-17 | Illinois Tool Works Inc. | ROTATIONAL DAMPER FOR REDUCING AND IN PARTICULAR BRAKING A ROTARY OR PIVOT MOVEMENT OF A SECOND COMPONENT WHICH CAN ROTATE RELATIVELY TO A FIRST COMPONENT |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3126841A1 (en) | 1981-07-08 | 1983-02-03 | Richard Dr. 6700 Ludwigshafen Bung | Method for braking the revolving movements of doors |
US4415069A (en) | 1980-07-16 | 1983-11-15 | U.S. Philips Corporation | Braking device for the cover of a chamber in a recording and/or reproducing apparatus |
US4697673A (en) | 1984-07-16 | 1987-10-06 | Nifco Inc. | One-way damper |
DE3722114A1 (en) | 1986-07-05 | 1988-01-14 | Nifco Inc | Rotation-damping device |
DE3726031A1 (en) | 1986-08-05 | 1988-02-11 | Nifco Inc | Oil damper |
US4872239A (en) | 1988-08-10 | 1989-10-10 | The Chamberlain Group, Inc. | Door closure with mechanical braking means |
US5090521A (en) | 1990-05-18 | 1992-02-25 | Tok Bearing Co., Ltd. | One-way damper |
DE4135216A1 (en) | 1991-10-25 | 1993-04-29 | Fischer Artur Werke Gmbh | DAMPING ELEMENT FOR DAMPING A PUSH MOVEMENT |
DE29518173U1 (en) | 1995-11-16 | 1996-01-11 | Itw-Ateco Gmbh, 22844 Norderstedt | Device for damping the movement of a movably mounted component, in particular a flap in an automobile or the like. |
DE19729900C1 (en) | 1997-07-12 | 1998-10-01 | Daimler Benz Ag | Damping device e.g. for motor vehicle glove box |
US20020096405A1 (en) | 2001-01-25 | 2002-07-25 | Ingo Gasser | Damping device for movable furniture parts |
-
2002
- 2002-03-13 DE DE10210917A patent/DE10210917C1/en not_active Expired - Fee Related
-
2003
- 2003-02-20 ES ES03003796T patent/ES2283666T3/en not_active Expired - Lifetime
- 2003-02-20 EP EP03003796A patent/EP1344958B1/en not_active Expired - Lifetime
- 2003-02-20 DE DE60313070T patent/DE60313070T2/en not_active Expired - Lifetime
- 2003-03-10 US US10/383,610 patent/US20030173165A1/en not_active Abandoned
- 2003-03-12 JP JP2003066535A patent/JP4080921B2/en not_active Expired - Fee Related
- 2003-03-12 CA CA002421982A patent/CA2421982C/en not_active Expired - Fee Related
-
2005
- 2005-01-07 US US11/030,198 patent/US7059454B2/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4415069A (en) | 1980-07-16 | 1983-11-15 | U.S. Philips Corporation | Braking device for the cover of a chamber in a recording and/or reproducing apparatus |
DE3126841A1 (en) | 1981-07-08 | 1983-02-03 | Richard Dr. 6700 Ludwigshafen Bung | Method for braking the revolving movements of doors |
US4697673A (en) | 1984-07-16 | 1987-10-06 | Nifco Inc. | One-way damper |
DE3722114A1 (en) | 1986-07-05 | 1988-01-14 | Nifco Inc | Rotation-damping device |
DE3726031A1 (en) | 1986-08-05 | 1988-02-11 | Nifco Inc | Oil damper |
US4796733A (en) | 1986-08-05 | 1989-01-10 | Nifco, Inc. | Oil damper |
US4872239A (en) | 1988-08-10 | 1989-10-10 | The Chamberlain Group, Inc. | Door closure with mechanical braking means |
US5090521A (en) | 1990-05-18 | 1992-02-25 | Tok Bearing Co., Ltd. | One-way damper |
DE4135216A1 (en) | 1991-10-25 | 1993-04-29 | Fischer Artur Werke Gmbh | DAMPING ELEMENT FOR DAMPING A PUSH MOVEMENT |
DE29518173U1 (en) | 1995-11-16 | 1996-01-11 | Itw-Ateco Gmbh, 22844 Norderstedt | Device for damping the movement of a movably mounted component, in particular a flap in an automobile or the like. |
DE19729900C1 (en) | 1997-07-12 | 1998-10-01 | Daimler Benz Ag | Damping device e.g. for motor vehicle glove box |
US20020096405A1 (en) | 2001-01-25 | 2002-07-25 | Ingo Gasser | Damping device for movable furniture parts |
US6666306B2 (en) | 2001-01-25 | 2003-12-23 | Julius Blum Gesellschaft M.B.H. | Damping device for movable furniture parts |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060169960A1 (en) * | 2004-04-06 | 2006-08-03 | Shaohan Li | Safety buffer for guide rails |
US20090115115A1 (en) * | 2005-11-14 | 2009-05-07 | Zeilenga Chad K | Viscous strand damper assembly |
US8079450B2 (en) | 2005-11-14 | 2011-12-20 | Illinois Tool Works Inc. | Viscous strand damper assembly |
US9261158B2 (en) | 2009-02-23 | 2016-02-16 | Illinois Tool Works Inc. | Damper assembly and device utilizing the same |
US20110120823A1 (en) * | 2009-11-20 | 2011-05-26 | Charles Hansen | Retracta Belt Brake System |
US20170343073A1 (en) * | 2014-12-16 | 2017-11-30 | Nifco Inc. | Damper and method for manufacturing damper |
Also Published As
Publication number | Publication date |
---|---|
EP1344958B1 (en) | 2007-04-11 |
DE10210917C1 (en) | 2003-11-13 |
JP4080921B2 (en) | 2008-04-23 |
EP1344958A2 (en) | 2003-09-17 |
US20030173165A1 (en) | 2003-09-18 |
DE60313070T2 (en) | 2007-12-20 |
DE60313070D1 (en) | 2007-05-24 |
CA2421982A1 (en) | 2003-09-13 |
ES2283666T3 (en) | 2007-11-01 |
JP2003269500A (en) | 2003-09-25 |
US20050115784A1 (en) | 2005-06-02 |
CA2421982C (en) | 2008-12-09 |
EP1344958A3 (en) | 2004-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7059454B2 (en) | One-way braking device | |
US4796733A (en) | Oil damper | |
US5768946A (en) | Pedal with integrated position sensor | |
EP1083276A1 (en) | Damper for a door handle | |
KR101878009B1 (en) | Rotary damper device and method for producing same | |
JPH0668300B2 (en) | One-way damper | |
US4111062A (en) | Control mechanism for hydrostatic transmissions | |
GB1562630A (en) | Control means for a movement-transmission member | |
JPH06123332A (en) | Slow-acting device | |
US6336373B1 (en) | Rotary electromagnetic actuator | |
KR100457198B1 (en) | Rotary damper and Assist grip device | |
EP0347504B1 (en) | Infinitely variable positive mechanical transmission | |
KR101643768B1 (en) | Apparatus for rotating door | |
JP3485338B2 (en) | Rotary damper | |
US2830458A (en) | Driving mechanism for windshield wipers and the like | |
JPH10246304A (en) | Rotation transmission device which can rotate output shaft by input shaft | |
JPH07116084A (en) | Speed governing device for toilet stool or the like | |
CN101175932B (en) | Device for transmission of a torque | |
JPH0988395A (en) | Door lock device | |
JPH0452517Y2 (en) | ||
JPH0510837U (en) | Rotation damper device | |
CN118669501A (en) | Electric swing rod | |
JPH02125112A (en) | Unidirectional clutch | |
JP2538865Y2 (en) | Rotating connector | |
JPH03284455A (en) | Foot-operated parking brake device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |