US6755543B1 - Coordinating pivoting and extending vehicle mirror - Google Patents

Coordinating pivoting and extending vehicle mirror Download PDF

Info

Publication number
US6755543B1
US6755543B1 US09/830,999 US83099901A US6755543B1 US 6755543 B1 US6755543 B1 US 6755543B1 US 83099901 A US83099901 A US 83099901A US 6755543 B1 US6755543 B1 US 6755543B1
Authority
US
United States
Prior art keywords
assembly
mirror
power mechanism
mirror housing
swingable structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/830,999
Inventor
Keith D. Foote
Ian Boddy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna Mirrors of America Inc
Original Assignee
Magna Mirror Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/830,999 priority Critical patent/US6755543B1/en
Application filed by Magna Mirror Systems Inc filed Critical Magna Mirror Systems Inc
Priority claimed from PCT/US1999/025614 external-priority patent/WO2000026700A1/en
Assigned to MAGNA MIRROR SYSTEMS INC. reassignment MAGNA MIRROR SYSTEMS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOOTE, KEITH D., BODDY, IAN
Priority to US10/361,077 priority patent/US6799856B2/en
Publication of US6755543B1 publication Critical patent/US6755543B1/en
Application granted granted Critical
Priority to US10/711,276 priority patent/US6896385B2/en
Priority to US10/908,603 priority patent/US7159992B2/en
Priority to US11/621,374 priority patent/US7293887B2/en
Priority to US11/935,531 priority patent/US7530700B2/en
Assigned to MAGNA MIRRORS OF AMERICA, INC. reassignment MAGNA MIRRORS OF AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAGNA DONNELLY MIRRORS NORTH AMERICA, LLC
Priority to US12/414,148 priority patent/US7810939B2/en
Priority to US12/435,650 priority patent/US7699478B2/en
Priority to US12/760,706 priority patent/US20100195225A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/062Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position
    • B60R1/07Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators
    • B60R1/072Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators for adjusting the mirror relative to its housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/062Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position
    • B60R1/07Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators
    • B60R1/074Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators for retracting the mirror arrangements to a non-use position alongside the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/078Rear-view mirror arrangements mounted on vehicle exterior easily removable; mounted for bodily outward movement, e.g. when towing

Definitions

  • the subject invention relates to a mirror assembly for attachment to the side of an automotive vehicle and which may be adjusted to various positions.
  • Automobiles and trucks are provided with side-mounted rear view mirrors for providing the driver with a desired field of view extending behind and along the side of the vehicle.
  • Some vehicles, such as trucks and vehicles with trailers have side-mounted rear view mirrors with enhanced fields of view.
  • vehicles with trailers have side-mounted rear view mirrors which extend out further than those of a typical automobile.
  • These laterally “extended” mirrors provide the driver with a field of view which covers an area reaching behind and alongside the trailer and which is unobstructed by the trailer.
  • the angular position of the mirror is adjusted to accommodate the requirements of different drivers and to accommodate changing requirements of the same driver as the size of the truck trailer changes.
  • a truck driver may also encounter obstacles such as tollgates, loading/unloading docks, narrow driveways, and so on.
  • the mirror's lateral position may either limit the driver's ability to maneuver around the obstacle or require the driver to manually move the mirror beforehand. It is often necessary to move the mirror to a position next adjacent the vehicle to clear obstacles.
  • the subject invention provides a vehicle mirror assembly which can be remotely controlled by power to both be extended and retracted as well as be rotated or pivoted to a folded position adjacent the vehicle.
  • the improved mirror assembly comprises a fixed support adapted to be mounted on a vehicle.
  • a swingable structure is pivotally supported by and extends laterally from the fixed support to a distal end for pivotal movement about a generally upright axis between an operative position extending laterally and a folded position extending transversely to the extended position.
  • a mirror housing is supported at the distal end of the swingable structure.
  • a first power mechanism pivots the swingable structure about the upright axis between the operative and the folded positions.
  • a second power mechanism operatively interconnects the swingable structure and the mirror housing for moving the mirror housing relative to the fixed support to various positions of adjustment between inner and outer limiting positions.
  • the subject invention provides a mirror assembly that can be remotely controlled by power to be both extended and retracted as well as rotated or pivoted to a folded position adjacent the vehicle.
  • FIG. 1 is a perspective view showing the mirror assembly in an extended position relative to a vehicle
  • FIG. 2 is a perspective view of certain components of the mirror assembly in a retracted position relative to the vehicle;
  • FIG. 3 is an exploded view of the components shown in FIG. 2;
  • FIG. 4 is a front view of the components shown in FIG. 2;
  • FIG. 5 is a cross-sectional view taken along the line 5 — 5 of FIG. 4;
  • FIG. 6 is a perspective view of an alternative arrangement of the components shown in FIG. 2;
  • FIG. 8 is a sectional view taken along the line 8 — 8 of FIG. 7;
  • FIG. 9 is a sectional view taken along the line 9 — 9 of FIG. 7;
  • FIG. 10 is an enlarged fragmentary sectional view of the pivot assembly as shown in FIG. 9;
  • FIG. 11 is a view similar to FIG. 10 showing the position of the components during the movement of the housing assembly from its operative position to the rear fold position;
  • FIG. 12 is a view similar to FIG. 10 showing the position of the components during the movement of the housing assembly from its operative position to the forward fold position;
  • FIG. 13 is a block diagram of a control system for controlling the operation of the various illustrated power mechanisms.
  • FIG. 1 illustrates a vehicle mirror assembly 10 , which includes a mirror housing 12 supported by a swingable structure 16 .
  • a fixed support 18 is constructed and arranged to be fixedly mounted on a vehicle 19 and supports swingable structure 16 in an operative position extending laterally outwardly from the vehicle.
  • Mirror housing 12 is provided with, among other elements, a mirror unit 14 , which serves as an exterior rear view mirror for the vehicle's driver.
  • a first power mechanism 20 is provided in association with the fixed support 18 and with swingable structure 16 , and is arranged to enable swingable structure 16 to be pivoted with respect to fixed support 18 about a generally upright axis defined by the axis of rotation of first power mechanism 20 . Swingable structure 16 may then be pivoted ( 1 ) between its operative position (extending laterally outwardly from the vehicle to allow the driver of the vehicle to utilize mirror unit 14 as an exterior rear view mirror) and a folded position in response to power operation of first power mechanism 20 .
  • the first power mechanism 20 further allows swingable structure 16 to be pivoted from its operative position in either direction in response to an unwanted impact below applied in either direction to either swingable structure 16 or to mirror housing 12 .
  • the folded position of swingable structure 16 in response to power operation of first power mechanism 20 is the position at which the face of mirror unit 14 is put in close proximity or next adjacent to the vehicle; for example, almost touching the side panel of the vehicle's door (not shown).
  • a second power mechanism 24 is operatively associated with a swingable structure 16 and mirror housing 12 to move mirror housing 12 between inner or retracted (see FIG. 2) and outer or extended (see FIG. 1) limiting positions into a desired position of adjustment upon the power operation of the second power mechanism 24 .
  • the mirror holder 26 comprises an electrically powered third power mechanism 28 operatively associated with mirror housing 12 and mirror holder 26 to move mirror unit 14 into a desired adjusted position about horizontal and vertical axes.
  • FIG. 2 shows main housing portion 40 in the inner limiting position with respect to upper support arm 32 and lower support arm 34 .
  • the second power mechanism 24 is shown having a cover 42 , which serves as a mirror holder support for carrying mirror holder 26 .
  • the first power mechanism 20 has an upper casing 44 secured to a lower casing 46 .
  • Upper support 32 comprises an upper mating portion 48 for mating with a cylindrical drive member of first power mechanism 20 and a lower mating portion 49 inserted within a cylindrical recess provided in a lower portion of first power mechanism 20 .
  • FIG. 3 shows an exploded view of the components shown in FIG. 2 .
  • the second power mechanism 24 comprises a clutch assembly 58 , a motor 62 , a primary shaft 64 , an intermediate shaft 66 , and an upper drive pinion gear 54 .
  • the upper drive pinion gear 54 is mountable on an upper shaft 56
  • clutch assembly 58 is mountable within a recess 60 provided at a mid-portion of mounting structure 52 .
  • a worm 74 Also included are a worm 74 , a shaft 76 , a lower pinion 78 , a worm gear 80 , a spring 82 , and a push nut 84 .
  • FIGS. 4 and 5 further illustrate the manner in which the various components of the second power mechanism 24 are assembled and interoperate to move mirror housing 12 between inner and outer limiting positions in relation to swingable structure 16 , which comprises upper and lower support arms 32 , 34 in the illustrated embodiment.
  • upper pinion gear 54 mates with lower pinion gear 78 .
  • Lower pinion gear 78 is driven by worm gear 80 which interfaces with worm 74 of intermediate shaft 66 .
  • Intermediate shaft 66 is set into rotation by a gear 68 of primary shaft 64 interfacing with gear 72 of intermediate shaft 66 .
  • Motor worm drive shaft 63 of motor 62 interfaces with gear 70 to cause primary shaft 64 to rotate.
  • FIG. 5 shows a cross-section of the assembly shown in FIG. 4 taken along the line 5 — 5 .
  • Each of upper and lower support arms 32 , 34 includes a respective lower rack 50 and upper rack 51 , each of which runs longitudinally along opposing lower and upper surfaces of the support arms 32 and 34 .
  • the rack 51 interfaces with the upper pinion 54 .
  • the lower rack 50 of lower support arm 34 interfaces with the lower pinion 78 .
  • the upper pinion 54 is mounted on a shaft 56 , which in the illustrated embodiment is integrally formed with mounting structure 52 .
  • Clutch assembly 58 is mounted on a shaft 76 , which is provided within a recess 60 of mounting structure 52 .
  • clutch assembly 58 includes the lower pinion 78 , a worm gear 80 , a spring 82 , and a push nut 84 .
  • the worm gear 80 comprises an extending portion 83 and a first clutch face 81 .
  • the lower pinion 78 comprises a second clutch face 79 .
  • the upper pinion 54 is disposed so that it extends through upper gear opening 86 in a manner to allow interfacing with rack 51 of upper support arm 32 .
  • worm gear 80 and lower pinion 78 are disposed in lower gear opening 88
  • lower pinion 78 extends through lower gear opening 88 in a manner so that lower pinion 78 can interface with rack 50 of lower support arm 34 .
  • the assembly shown in FIG. 6 includes the same basic components, just arranged in a different orientation relative to one another.
  • the illustrated vehicle mirror assembly is assembled by coupling upper mating portion 48 with cylindrical drive portion 90 of the first power mechanism 20 and concurrently inserting lower mating portion 49 into cylindrical opening 92 provided in the bottom portion of the first power mechanism 20 .
  • the upper and lower support arms 32 and 34 are then inserted into sleeves 36 and 38 .
  • the various gears and moving components are then assembled within mounting structure 52 .
  • the resulting assembly is then secured to an inner portion of main housing portion 40 , and the upper and lower support arms 32 , 34 fit within voids located behind mounting structure 52 in a manner so that racks 51 , 50 of upper and lower support arms 32 , 34 mesh with the upper and lower pinions 54 , 78 .
  • the cover 42 of the second power mechanism 24 is then secured to the open face of mounting structure 52 .
  • Mirror holder 26 and mirror unit 14 are then to be mounted to form a resulting mirror housing 12 as shown in FIG. 1 .
  • the first power mechanism 20 is operable to pivot swingable structure 16 , comprising upper and lower support arms 32 , 34 in the illustrated embodiment, between an operative position, as shown in FIG. 1, and a folded position whereby mirror unit 14 is moved toward the direction at which it is proximate to and faces the side of vehicle 19 .
  • the first power mechanism 20 is further structured and arranged to enable swingable structure 16 to be pivoted from its operative position, as shown in FIG. 1, toward either direction—either in a counterclockwise or clockwise direction—in response to an unwanted impact below applied in either direction to swingable structure 16 or to mirror housing 12 .
  • an electronic control system may be provided for controlling the operation of the first power mechanism 20 and the second power mechanism 24 to control the powered pivoting of swingable structure 16 and to control the generally horizontal movement of mirror housing 12 to various positions located between inner and outer limiting positions.
  • Such a control mechanism may be configured to control the operation of the first power mechanism 20 independently of the operation of the second power mechanism 24 , or the relative operations can be synchronized or otherwise dependent upon each other.
  • Such a control system would also control the adjustment of the mirror about vertical and horizontal axes by the third power mechanism 26 .
  • the control system includes a switch or switches 94 for manually actuating each of the power mechanisms 20 , 24 and 28 .
  • the control system includes a microprocessor 96 for memorizing adjusted positions of the power mechanisms 20 , 24 and 28 .
  • the second power mechanism 24 is operatively associated with swingable structure 16 and housing assembly 12 to move mirror housing 12 between an inner limiting position as shown in FIG. 2 and an outer limiting position as shown in FIG. 1 into any desired position of adjustment along the continuum between the inner and outer limiting positions.
  • the first power mechanism 20 is made up of a series of components constructed and arranged to be assembled with respect to a fixed structure 100 in a predetermined sequence of downward movements into a predetermined cooperation relative to one another.
  • the components include an inner fixed tubular member 102 and an outer fixed tubular member 104 which are fixed to fixed structures 100 and 101 concentric with the upright pivotal axis provided by the first power mechanism 20 .
  • a reversible electric motor 110 disposed within inner tubular member 102 and a speed reducing motion transmitting assembly, generally indicated at 106 , between an output shaft 108 of electric motor 110 and swingable structure 16 .
  • Inner fixed tubular member 102 is preferably made of cast iron, steel, or similar metal so as to constitute a flux yoke for electric motor 110 .
  • the outer fixed tubular member is also preferably made of metal such as steel or the like.
  • Motion transmitting assembly 106 includes an elongated shaft 112 and a stub shaft 115 which are the first components to be assembled by downward movements into an upwardly opening bearing groove (not shown) and an upwardly opening bore (not shown) respectively formed in fixed structure 101 .
  • Motion transmitting assembly 106 also includes a drive gear 116 , which, as shown, preferably is either a worm gear fixed on motor output shaft 108 and a driven gear 114 in the form of a worm wheel on elongated shaft 112 disposed in meshing relation with worm gear 116 .
  • Fixed on elongated shaft 112 is a secondary drive gear 118 , which also is preferably a worm gear.
  • a secondary drive gear in the form of a worm wheel 120 is fixed on stub shaft 114 in meshing relation with secondary worm gear 118 .
  • Fixed to stub shaft 114 above gear 120 is a pinion gear 122 which meshes with a ring gear 124 having teeth 126 on its interior periphery for meshing, with pinion gear 122 .
  • Ring gear 124 rests on an exterior annular flange 128 formed on the lower end of inner tubular member 102 .
  • Speed reducing motion transmitting assembly 106 is a non-self-reversing assembly in the sense that the first worm gear set 114 , 116 as well as the second worm gear set 118 , 120 , while capable of being driven in either direction by reversible motor 110 , will prevent movement in either direction against that of motor 110 .
  • the bearing groove provided for elongated shaft 112 is enlarged in the area of the first worm gear set 114 , 116 and the second worm gear set 118 , 120 in that elongated shaft 112 and stub shaft 115 can be moved downwardly together during assembly of one after the other.
  • electric motor 110 is fixedly mounted within inner tubular member 102 which is the next component to be assembled by moving an exterior flange 128 on the lower end thereof into engagement with fixed structure 101 .
  • the inner tubular member has an L-shaped wall portion 130 in one side thereof, the horizontal lug of which is apertured to receive a bearing 132 within which the upper end of stub shaft 115 is journalled.
  • flange 128 may be suitably pinned to the fixed structure 100 / 101 or otherwise prevent it from turning about its axis.
  • Inner tubular member 102 with electric motor 110 fixed thereto are assembled in such a way as to bring worm gear 116 into meshing relation with worm wheel 114 .
  • suitable grooves can be formed in fixed structure 101 to accommodate electrical control wires (not shown) for motor 110 .
  • Ring gear 66 forms part of a sub-assembly which is mounted within a movable tubular member 134 .
  • Movable tubular member 134 is preferably molded of a suitable plastic material.
  • the sub-assembly including movable tubular member 134 may be regarded as a component of the first power mechanism 20 .
  • the sub-assembly includes a spring biased indexing system, generally indicated at 136 mounted between gear 124 and movable tubular member 134 .
  • indexing system 136 includes an indexing ring 138 which is keyed to the interior periphery of movable tubular member 134 , as by key elements 140 , so that it can move axially with respect to movable tubular member 134 but must move with movable member 134 as it turns about its vertical axis.
  • Movable tubular member 134 includes a radially extending portion 142 and its upper midsection which provides a downwardly facing surface on the interior periphery of movable tubular member 134 .
  • a coil spring 144 for biasing indexing system 136 has its upper end seated on the downwardly facing surface of portion 142 and its lower end seated on indexing ring 138 .
  • Indexing ring 138 has four annularly spaced downwardly opening recesses 146 formed therein, the arcuate extent of which are defined by opposite inclined surfaces.
  • Ringer 124 has four annularly spaced indexing projections 148 which are shaped to be received in recesses 146 .
  • the sub-assembly pieces comprising coil spring 144 , indexing 138 , and ring gear 124 are moved respectively into the interior periphery of movable tubular member 134 and retained therein with the spring in stressed condition by a conventional C clip 150 .
  • Movable tubular member 134 with its contained sub-assembly is assembled next by being moved downwardly over inner tubular member 102 to mesh ring gear 124 with pinion gear 122 until the lower end of movable tubular member 134 rests on fixed structure 101 .
  • Outer tubular member 104 is the last component of first power mechanism 20 to be assembled.
  • Outer tubular member 104 has an exteriorly extended flange 152 at its lower end and an interiorly directed flange 154 at its upper end.
  • the axial extent of the outer tubular member 104 is greater than the axial extent of the movable tubular member 134 below radial portion 142 but less than the full axial extent thereof.
  • the relative axial sizes are such that, when outer tubular member 104 is assembled over movable tubular member 134 with lower flange 152 engaging fixed structure 101 , annular space is left between the lower surface of upper flange 154 and the upper surface of radial portion 142 .
  • a spring biased control system generally indicated at 156 , is mounted.
  • spring biased control system 156 includes a biasing spring 158 in the form of a wavy ring of spring steel mounted over the upper periphery of movable tubular member 134 until it is seated on the upper surface of radial portion 142 .
  • Control system 156 also includes a control ring 160 which is mounted over the upper periphery of the movable tubular member until it is seated on wavy ring spring 158 .
  • Control ring 160 is keyed to the upper exterior periphery of movable tubular member 134 by key elements 162 so that it must move with movable tubular member 134 when it turns about its axis but may have axial movement against spring 158 with respect to movable tubular member 134 .
  • Control ring 160 constitutes a movable control structure which is connected through motion transmitting assembly 106 and spring-biased indexing system 136 to move with swingable structure 16 .
  • Upper flange 154 of outer tubular member 104 constitutes a fixed control structure which is fixed with respect to fixed structures 100 , 101 .
  • Control structures 154 and 160 provide interengaging control surfaces which may take any desired form capable of achieving the functions hereinafter specified. However, as shown, the control surfaces include a flat radially disposed inner upwardly facing annular surface 164 formed on control ring 100 and a mating flat radially disposed inner downwardly facing annular surface 166 on flange 154 . It will be noted that annular control surface 164 may be divided into discrete arcuate surface portions by the recesses provided which receive key elements 162 .
  • Control ring 160 includes a pair of annularly spaced relatively large arcuate projections 168 disposed outwardly of the annular control surface 164 thereof. Projections 168 define control surfaces which for each projection 168 include a flat radially disposed upwardly facing arcuate surface 170 having an inclined surface 172 extending downwardly and arcuately away from each end thereof.
  • the annular flange 154 includes a pair of annularly spaced relatively small arcuate projections 174 disposed outwardly of annular control surface 166 .
  • Projections 174 define control surfaces which for each projection 174 includes a flat radially disposed downwardly facing arcuate surface 176 having an inclined surface 278 extending upwardly and arcuately away from each end thereof.
  • final assembly of pivot assembly is completed by extending fasteners 180 through recesses provided and lower flanged portions of fixed structure 100 and securing fasteners 180 into corresponding recesses provided within fixed structure 101 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)

Abstract

A first power mechanism is provided in association with a fixed support and with a swingable structure, and pivots the swingable structure relative to the fixed support between an extended position and a folded position adjacent the vehicle. A second power mechanism is operatively associated with a swingable structure and a mirror housing to move the mirror housing between inner and outer extended positions. A third mechanism moves the mirror unit into desired adjusted position about horizontal and vertical axes. An electronic control controls the operation of the first power mechanism, the second power mechanism and third power mechanism to control the powered pivoting of swingable structure.

Description

This application claims the benefit of provisional application No. 60/106,674, filed Nov. 2, 1998.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The subject invention relates to a mirror assembly for attachment to the side of an automotive vehicle and which may be adjusted to various positions.
2. Description of the Prior Art
Automobiles and trucks are provided with side-mounted rear view mirrors for providing the driver with a desired field of view extending behind and along the side of the vehicle. Some vehicles, such as trucks and vehicles with trailers, have side-mounted rear view mirrors with enhanced fields of view. For example, vehicles with trailers have side-mounted rear view mirrors which extend out further than those of a typical automobile. These laterally “extended” mirrors provide the driver with a field of view which covers an area reaching behind and alongside the trailer and which is unobstructed by the trailer.
However, a driver of a vehicle carrying a large trailer will encounter various situations in which it will be necessary to adjust the position of an extended rear view mirror. For example, the angular position of the mirror is adjusted to accommodate the requirements of different drivers and to accommodate changing requirements of the same driver as the size of the truck trailer changes. A truck driver may also encounter obstacles such as tollgates, loading/unloading docks, narrow driveways, and so on. When those obstacles are encountered, the mirror's lateral position may either limit the driver's ability to maneuver around the obstacle or require the driver to manually move the mirror beforehand. It is often necessary to move the mirror to a position next adjacent the vehicle to clear obstacles. In addition, there is a need to control the movement of the mirror remotely from with in the vehicle.
Various assemblies are known in the prior art for adjusting a mirror assembly between inner and outer extended positions, as exemplified in U.S. Pat. No. 4,911,545 to Miller and U.S. Pat. No. 5,572,376 to Pace, while others disclose assemblies for rotating the mirror assembly to a folded position adjacent the vehicle, as exemplified in U.S. Pat. No. 4,363,534 to Covert, U.S. Pat. No. 5,375,014 to Fujie et al and U.S. pat. No. 5,703,732 to Boddy et al. However, there remains a need for a mirror assembly which can be remotely controlled by power to both be extended and retracted as well as be rotated or pivoted to a folded position adjacent the vehicle.
SUMMARY OF THE INVENTION AND ADVANTAGES
The subject invention provides a vehicle mirror assembly which can be remotely controlled by power to both be extended and retracted as well as be rotated or pivoted to a folded position adjacent the vehicle. The improved mirror assembly comprises a fixed support adapted to be mounted on a vehicle. A swingable structure is pivotally supported by and extends laterally from the fixed support to a distal end for pivotal movement about a generally upright axis between an operative position extending laterally and a folded position extending transversely to the extended position. A mirror housing is supported at the distal end of the swingable structure. A first power mechanism pivots the swingable structure about the upright axis between the operative and the folded positions. And a second power mechanism operatively interconnects the swingable structure and the mirror housing for moving the mirror housing relative to the fixed support to various positions of adjustment between inner and outer limiting positions.
Accordingly, the subject invention provides a mirror assembly that can be remotely controlled by power to be both extended and retracted as well as rotated or pivoted to a folded position adjacent the vehicle.
BRIEF DESCRIPTION OF THE DRAWINGS
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
FIG. 1 is a perspective view showing the mirror assembly in an extended position relative to a vehicle;
FIG. 2 is a perspective view of certain components of the mirror assembly in a retracted position relative to the vehicle;
FIG. 3 is an exploded view of the components shown in FIG. 2;
FIG. 4 is a front view of the components shown in FIG. 2;
FIG. 5 is a cross-sectional view taken along the line 55 of FIG. 4;
FIG. 6 is a perspective view of an alternative arrangement of the components shown in FIG. 2;
FIG. 7 is an enlarged cross-sectional side view of the fixed support assembly;
FIG. 8 is a sectional view taken along the line 88 of FIG. 7;
FIG. 9 is a sectional view taken along the line 99 of FIG. 7;
FIG. 10 is an enlarged fragmentary sectional view of the pivot assembly as shown in FIG. 9;
FIG. 11 is a view similar to FIG. 10 showing the position of the components during the movement of the housing assembly from its operative position to the rear fold position;
FIG. 12 is a view similar to FIG. 10 showing the position of the components during the movement of the housing assembly from its operative position to the forward fold position; and
FIG. 13 is a block diagram of a control system for controlling the operation of the various illustrated power mechanisms.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the drawings in greater detail, FIG. 1 illustrates a vehicle mirror assembly 10, which includes a mirror housing 12 supported by a swingable structure 16. A fixed support 18 is constructed and arranged to be fixedly mounted on a vehicle 19 and supports swingable structure 16 in an operative position extending laterally outwardly from the vehicle. Mirror housing 12 is provided with, among other elements, a mirror unit 14, which serves as an exterior rear view mirror for the vehicle's driver.
A first power mechanism 20 is provided in association with the fixed support 18 and with swingable structure 16, and is arranged to enable swingable structure 16 to be pivoted with respect to fixed support 18 about a generally upright axis defined by the axis of rotation of first power mechanism 20. Swingable structure 16 may then be pivoted (1) between its operative position (extending laterally outwardly from the vehicle to allow the driver of the vehicle to utilize mirror unit 14 as an exterior rear view mirror) and a folded position in response to power operation of first power mechanism 20. The first power mechanism 20 further allows swingable structure 16 to be pivoted from its operative position in either direction in response to an unwanted impact below applied in either direction to either swingable structure 16 or to mirror housing 12. In the illustrated embodiment, the folded position of swingable structure 16 in response to power operation of first power mechanism 20 is the position at which the face of mirror unit 14 is put in close proximity or next adjacent to the vehicle; for example, almost touching the side panel of the vehicle's door (not shown).
A second power mechanism 24, as shown in FIGS. 2 and 3, is operatively associated with a swingable structure 16 and mirror housing 12 to move mirror housing 12 between inner or retracted (see FIG. 2) and outer or extended (see FIG. 1) limiting positions into a desired position of adjustment upon the power operation of the second power mechanism 24. The mirror holder 26 comprises an electrically powered third power mechanism 28 operatively associated with mirror housing 12 and mirror holder 26 to move mirror unit 14 into a desired adjusted position about horizontal and vertical axes.
FIG. 2 shows main housing portion 40 in the inner limiting position with respect to upper support arm 32 and lower support arm 34. The second power mechanism 24 is shown having a cover 42, which serves as a mirror holder support for carrying mirror holder 26. The first power mechanism 20 has an upper casing 44 secured to a lower casing 46. Upper support 32 comprises an upper mating portion 48 for mating with a cylindrical drive member of first power mechanism 20 and a lower mating portion 49 inserted within a cylindrical recess provided in a lower portion of first power mechanism 20.
FIG. 3 shows an exploded view of the components shown in FIG. 2. As illustrated in FIG. 3, the second power mechanism 24 comprises a clutch assembly 58, a motor 62, a primary shaft 64, an intermediate shaft 66, and an upper drive pinion gear 54. The upper drive pinion gear 54 is mountable on an upper shaft 56, while clutch assembly 58 is mountable within a recess 60 provided at a mid-portion of mounting structure 52. Also included are a worm 74, a shaft 76, a lower pinion 78, a worm gear 80, a spring 82, and a push nut 84.
FIGS. 4 and 5 further illustrate the manner in which the various components of the second power mechanism 24 are assembled and interoperate to move mirror housing 12 between inner and outer limiting positions in relation to swingable structure 16, which comprises upper and lower support arms 32, 34 in the illustrated embodiment.
In their assembled states, upper pinion gear 54 mates with lower pinion gear 78. Lower pinion gear 78 is driven by worm gear 80 which interfaces with worm 74 of intermediate shaft 66. Intermediate shaft 66 is set into rotation by a gear 68 of primary shaft 64 interfacing with gear 72 of intermediate shaft 66. Motor worm drive shaft 63 of motor 62 interfaces with gear 70 to cause primary shaft 64 to rotate.
FIG. 5 shows a cross-section of the assembly shown in FIG. 4 taken along the line 55. Each of upper and lower support arms 32, 34 includes a respective lower rack 50 and upper rack 51, each of which runs longitudinally along opposing lower and upper surfaces of the support arms 32 and 34. The rack 51 interfaces with the upper pinion 54. The lower rack 50 of lower support arm 34 interfaces with the lower pinion 78. The upper pinion 54 is mounted on a shaft 56, which in the illustrated embodiment is integrally formed with mounting structure 52. Clutch assembly 58 is mounted on a shaft 76, which is provided within a recess 60 of mounting structure 52. As described previously, in the illustrated embodiment, clutch assembly 58 includes the lower pinion 78, a worm gear 80, a spring 82, and a push nut 84. The worm gear 80 comprises an extending portion 83 and a first clutch face 81. The lower pinion 78 comprises a second clutch face 79. When clutch assembly 58 is assembled as shown in FIG. 5, first clutch face 81 comes into contact with second clutch face 79.
The upper pinion 54 is disposed so that it extends through upper gear opening 86 in a manner to allow interfacing with rack 51 of upper support arm 32. Similarly, worm gear 80 and lower pinion 78 are disposed in lower gear opening 88, and lower pinion 78 extends through lower gear opening 88 in a manner so that lower pinion 78 can interface with rack 50 of lower support arm 34.
The assembly shown in FIG. 6 includes the same basic components, just arranged in a different orientation relative to one another.
Referring to FIGS. 3 and 7, the illustrated vehicle mirror assembly is assembled by coupling upper mating portion 48 with cylindrical drive portion 90 of the first power mechanism 20 and concurrently inserting lower mating portion 49 into cylindrical opening 92 provided in the bottom portion of the first power mechanism 20. The upper and lower support arms 32 and 34 are then inserted into sleeves 36 and 38. The various gears and moving components are then assembled within mounting structure 52. Once the various components are mounted within mounting structure 52, the resulting assembly is then secured to an inner portion of main housing portion 40, and the upper and lower support arms 32, 34 fit within voids located behind mounting structure 52 in a manner so that racks 51, 50 of upper and lower support arms 32, 34 mesh with the upper and lower pinions 54, 78. The cover 42 of the second power mechanism 24 is then secured to the open face of mounting structure 52. Mirror holder 26 and mirror unit 14 are then to be mounted to form a resulting mirror housing 12 as shown in FIG. 1.
In operation, the first power mechanism 20 is operable to pivot swingable structure 16, comprising upper and lower support arms 32, 34 in the illustrated embodiment, between an operative position, as shown in FIG. 1, and a folded position whereby mirror unit 14 is moved toward the direction at which it is proximate to and faces the side of vehicle 19. The first power mechanism 20 is further structured and arranged to enable swingable structure 16 to be pivoted from its operative position, as shown in FIG. 1, toward either direction—either in a counterclockwise or clockwise direction—in response to an unwanted impact below applied in either direction to swingable structure 16 or to mirror housing 12.
All of the power mechanisms 20, 24 and 28 are electrically operated. As illustrated in FIG. 13, an electronic control system may be provided for controlling the operation of the first power mechanism 20 and the second power mechanism 24 to control the powered pivoting of swingable structure 16 and to control the generally horizontal movement of mirror housing 12 to various positions located between inner and outer limiting positions. Such a control mechanism may be configured to control the operation of the first power mechanism 20 independently of the operation of the second power mechanism 24, or the relative operations can be synchronized or otherwise dependent upon each other. Such a control system would also control the adjustment of the mirror about vertical and horizontal axes by the third power mechanism 26. The control system includes a switch or switches 94 for manually actuating each of the power mechanisms 20, 24 and 28. The control system includes a microprocessor 96 for memorizing adjusted positions of the power mechanisms 20, 24 and 28.
The second power mechanism 24 is operatively associated with swingable structure 16 and housing assembly 12 to move mirror housing 12 between an inner limiting position as shown in FIG. 2 and an outer limiting position as shown in FIG. 1 into any desired position of adjustment along the continuum between the inner and outer limiting positions.
As illustrated in FIG. 7, the first power mechanism 20 is made up of a series of components constructed and arranged to be assembled with respect to a fixed structure 100 in a predetermined sequence of downward movements into a predetermined cooperation relative to one another. The components include an inner fixed tubular member 102 and an outer fixed tubular member 104 which are fixed to fixed structures 100 and 101 concentric with the upright pivotal axis provided by the first power mechanism 20. Also provided are a reversible electric motor 110 disposed within inner tubular member 102 and a speed reducing motion transmitting assembly, generally indicated at 106, between an output shaft 108 of electric motor 110 and swingable structure 16. Inner fixed tubular member 102 is preferably made of cast iron, steel, or similar metal so as to constitute a flux yoke for electric motor 110. The outer fixed tubular member is also preferably made of metal such as steel or the like.
Motion transmitting assembly 106 includes an elongated shaft 112 and a stub shaft 115 which are the first components to be assembled by downward movements into an upwardly opening bearing groove (not shown) and an upwardly opening bore (not shown) respectively formed in fixed structure 101. Motion transmitting assembly 106 also includes a drive gear 116, which, as shown, preferably is either a worm gear fixed on motor output shaft 108 and a driven gear 114 in the form of a worm wheel on elongated shaft 112 disposed in meshing relation with worm gear 116. Fixed on elongated shaft 112 is a secondary drive gear 118, which also is preferably a worm gear. A secondary drive gear in the form of a worm wheel 120 is fixed on stub shaft 114 in meshing relation with secondary worm gear 118. Fixed to stub shaft 114 above gear 120 is a pinion gear 122 which meshes with a ring gear 124 having teeth 126 on its interior periphery for meshing, with pinion gear 122. Ring gear 124 rests on an exterior annular flange 128 formed on the lower end of inner tubular member 102.
Speed reducing motion transmitting assembly 106 is a non-self-reversing assembly in the sense that the first worm gear set 114, 116 as well as the second worm gear set 118, 120, while capable of being driven in either direction by reversible motor 110, will prevent movement in either direction against that of motor 110.
The bearing groove provided for elongated shaft 112 is enlarged in the area of the first worm gear set 114, 116 and the second worm gear set 118, 120 in that elongated shaft 112 and stub shaft 115 can be moved downwardly together during assembly of one after the other. In the illustrated embodiment, electric motor 110 is fixedly mounted within inner tubular member 102 which is the next component to be assembled by moving an exterior flange 128 on the lower end thereof into engagement with fixed structure 101. The inner tubular member has an L-shaped wall portion 130 in one side thereof, the horizontal lug of which is apertured to receive a bearing 132 within which the upper end of stub shaft 115 is journalled.
In order to positively prevent movement of inner tubular member 102 about its axis which is concentric to the pivotal axis, flange 128 may be suitably pinned to the fixed structure 100/101 or otherwise prevent it from turning about its axis. Inner tubular member 102 with electric motor 110 fixed thereto are assembled in such a way as to bring worm gear 116 into meshing relation with worm wheel 114. Moreover, since motor 110 is fixed on fixed structure 100/101, suitable grooves (not shown) can be formed in fixed structure 101 to accommodate electrical control wires (not shown) for motor 110.
Ring gear 66 forms part of a sub-assembly which is mounted within a movable tubular member 134. Movable tubular member 134 is preferably molded of a suitable plastic material. The sub-assembly including movable tubular member 134 may be regarded as a component of the first power mechanism 20.
The sub-assembly includes a spring biased indexing system, generally indicated at 136 mounted between gear 124 and movable tubular member 134. As best shown in FIGS. 7 and 8, indexing system 136 includes an indexing ring 138 which is keyed to the interior periphery of movable tubular member 134, as by key elements 140, so that it can move axially with respect to movable tubular member 134 but must move with movable member 134 as it turns about its vertical axis. Movable tubular member 134 includes a radially extending portion 142 and its upper midsection which provides a downwardly facing surface on the interior periphery of movable tubular member 134. A coil spring 144 for biasing indexing system 136 has its upper end seated on the downwardly facing surface of portion 142 and its lower end seated on indexing ring 138. Indexing ring 138 has four annularly spaced downwardly opening recesses 146 formed therein, the arcuate extent of which are defined by opposite inclined surfaces. Ringer 124 has four annularly spaced indexing projections 148 which are shaped to be received in recesses 146. The sub-assembly pieces comprising coil spring 144, indexing 138, and ring gear 124, are moved respectively into the interior periphery of movable tubular member 134 and retained therein with the spring in stressed condition by a conventional C clip 150.
Movable tubular member 134 with its contained sub-assembly is assembled next by being moved downwardly over inner tubular member 102 to mesh ring gear 124 with pinion gear 122 until the lower end of movable tubular member 134 rests on fixed structure 101.
Outer tubular member 104 is the last component of first power mechanism 20 to be assembled. Outer tubular member 104 has an exteriorly extended flange 152 at its lower end and an interiorly directed flange 154 at its upper end. The axial extent of the outer tubular member 104 is greater than the axial extent of the movable tubular member 134 below radial portion 142 but less than the full axial extent thereof. The relative axial sizes are such that, when outer tubular member 104 is assembled over movable tubular member 134 with lower flange 152 engaging fixed structure 101, annular space is left between the lower surface of upper flange 154 and the upper surface of radial portion 142. Within this annular space, a spring biased control system, generally indicated at 156, is mounted.
As best shown in FIGS. 9-12, spring biased control system 156 includes a biasing spring 158 in the form of a wavy ring of spring steel mounted over the upper periphery of movable tubular member 134 until it is seated on the upper surface of radial portion 142. Control system 156 also includes a control ring 160 which is mounted over the upper periphery of the movable tubular member until it is seated on wavy ring spring 158. Control ring 160 is keyed to the upper exterior periphery of movable tubular member 134 by key elements 162 so that it must move with movable tubular member 134 when it turns about its axis but may have axial movement against spring 158 with respect to movable tubular member 134.
Control ring 160 constitutes a movable control structure which is connected through motion transmitting assembly 106 and spring-biased indexing system 136 to move with swingable structure 16. Upper flange 154 of outer tubular member 104 constitutes a fixed control structure which is fixed with respect to fixed structures 100, 101.
Control structures 154 and 160 provide interengaging control surfaces which may take any desired form capable of achieving the functions hereinafter specified. However, as shown, the control surfaces include a flat radially disposed inner upwardly facing annular surface 164 formed on control ring 100 and a mating flat radially disposed inner downwardly facing annular surface 166 on flange 154. It will be noted that annular control surface 164 may be divided into discrete arcuate surface portions by the recesses provided which receive key elements 162. Control ring 160 includes a pair of annularly spaced relatively large arcuate projections 168 disposed outwardly of the annular control surface 164 thereof. Projections 168 define control surfaces which for each projection 168 include a flat radially disposed upwardly facing arcuate surface 170 having an inclined surface 172 extending downwardly and arcuately away from each end thereof.
The annular flange 154 includes a pair of annularly spaced relatively small arcuate projections 174 disposed outwardly of annular control surface 166. Projections 174 define control surfaces which for each projection 174 includes a flat radially disposed downwardly facing arcuate surface 176 having an inclined surface 278 extending upwardly and arcuately away from each end thereof.
Referring again to FIG. 7, final assembly of pivot assembly is completed by extending fasteners 180 through recesses provided and lower flanged portions of fixed structure 100 and securing fasteners 180 into corresponding recesses provided within fixed structure 101.
Further details concerning the structure of first power mechanism 20 may be implemented in accordance with the description provided in commonly-assigned U.S. Pat. No. 5,703,732.
While the invention has been described with reference to a preferred embodiment, it is understood that the words that have been used herein are words of description, rather than words of limitation. Changes may be made, within the purview of the appended claims, without departing from the scope and spirit of the invention in its aspects. Although the invention has been described herein in reference to particular elements, materials and embodiments, it is understood that the invention is not to be limited to the particulars disclosed herein, and that the invention extends to all equivalent structures, methods, and uses, such as are within the scope of the appended claims.

Claims (6)

What is claimed is:
1. A vehicle mirror assembly comprising;
a fixed support adapted to be mounted on a vehicle,
a swingable structure pivotally supported by and extending laterally from said fixed support to a distal end for pivotal movement about a generally upright axis between an operative position extending laterally and a folded position extending transversely to said extended position,
a mirror housing supported at said distal end of said swingable structure,
a first power mechanism for pivoting said swingable structure about said upright axis between said operative and said folded positions,
a second power mechanism operatively interconnecting said swingable structure and said mirror housing for moving said mirror housing relative to said fixed support to various positions of adjustment between inner and outer limiting positions, said second power mechanism including a rack disposed on said swingable structure and a pinion rotatably supported on said mirror housing, and
said swingable structure including a pair of parallel and spaced apart support arms, each of said support arms including one of said racks, a pair of said pinions rotatably supported by said mirror housing and with one pinon in meshing engagement with one of said racks and said other pinion in meshing engagement with the other of said racks.
2. An assembly as set forth in claim 1 including a mirror unit, a third power mechanism movably supporting said mirror unit in said mirror housing for adjusting the position of said mirror unit relative to said mirror housing about horizontal and vertical axes.
3. An assembly as set forth in claim 1 wherein said pinions are in meshing engagement with one another, a worm gear in driving relationship with one of said pinions and a worm in meshing engagement with said worm gear, and a motor in driving relationship with said worm.
4. An assembly as set forth in claim 2 an electronic control system for controlling power to said power mechanisms.
5. An assembly as set forth in claim 4 wherein said control system includes a switch for actuating each of said power mechanisms.
6. An assembly as set forth in claim 4 wherein said controls system includes a microprocessor for memorizing adjusted positions of said power mechanisms.
US09/830,999 1998-11-02 1999-11-01 Coordinating pivoting and extending vehicle mirror Expired - Fee Related US6755543B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US09/830,999 US6755543B1 (en) 1998-11-02 1999-11-01 Coordinating pivoting and extending vehicle mirror
US10/361,077 US6799856B2 (en) 2001-05-02 2003-02-07 Coordinated pivoting and extending vehicle mirror
US10/711,276 US6896385B2 (en) 1998-11-02 2004-09-07 Coordinated pivoting and extending vehicle mirror
US10/908,603 US7159992B2 (en) 1998-11-02 2005-05-18 Coordinated pivoting and extending vehicle mirror
US11/621,374 US7293887B2 (en) 1998-11-02 2007-01-09 Coordinated pivoting and extending vehicle mirror
US11/935,531 US7530700B2 (en) 1998-11-02 2007-11-06 Coordinated pivoting and extending vehicle mirror
US12/414,148 US7810939B2 (en) 1998-11-02 2009-03-30 Coordinated pivoting and extending vehicle mirror
US12/435,650 US7699478B2 (en) 1998-11-02 2009-05-05 Coordinated pivoting and extending vehicle mirror
US12/760,706 US20100195225A1 (en) 1998-11-02 2010-04-15 Coordinated pivoting and extending vehicle mirror

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10667498P 1998-11-02 1998-11-02
US09/830,999 US6755543B1 (en) 1998-11-02 1999-11-01 Coordinating pivoting and extending vehicle mirror
PCT/US1999/025614 WO2000026700A1 (en) 1998-11-02 1999-11-01 Coordinated pivoting and extending vehicle mirror

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/025614 A-371-Of-International WO2000026700A1 (en) 1998-11-02 1999-11-01 Coordinated pivoting and extending vehicle mirror

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/361,077 Division US6799856B2 (en) 1998-11-02 2003-02-07 Coordinated pivoting and extending vehicle mirror

Publications (1)

Publication Number Publication Date
US6755543B1 true US6755543B1 (en) 2004-06-29

Family

ID=32510838

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/830,999 Expired - Fee Related US6755543B1 (en) 1998-11-02 1999-11-01 Coordinating pivoting and extending vehicle mirror

Country Status (1)

Country Link
US (1) US6755543B1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075921A1 (en) * 2000-09-29 2004-04-22 Rob Evans Extendable foldable mirror
US20040174043A1 (en) * 2003-03-06 2004-09-09 Ross Bradsen Motorized rack and pinion assembly
US20040240092A1 (en) * 2001-09-07 2004-12-02 Olijnyk Mark Leonid Powered telescoping trailer tow mirror
US20040246608A1 (en) * 2001-10-30 2004-12-09 Wellington Jason Kingsley Power telescoping vehicle mirror assembly
US20050105299A1 (en) * 2000-02-11 2005-05-19 Schefenacker Vision Systems Australia Pty Ltd Exterior mirror
US20050243448A1 (en) * 2001-04-27 2005-11-03 Schefenacker Vision Systems Australia Pty Ltd Power fold mechanism for double arm mirrors
US7172298B2 (en) 2001-04-27 2007-02-06 Schefenacker Vision Systems Australia Pty Ltd Power fold mechanism for vehicle mirrors
US7178925B1 (en) * 2004-06-25 2007-02-20 Tidwell Donald R Retractable side view mirror for a tractor trailer
US20070208865A1 (en) * 1999-08-04 2007-09-06 Aol Llc, A Delaware Limited Liability Company Facilitating negotiations between users of a computer network through messaging communications enabling user interaction
US20080024891A1 (en) * 2004-02-20 2008-01-31 Magna Donnelly Mirrors North America L.L.C. Twin-Arm Vehicle Mirror System with Support Bracket Bearings
US20080179485A1 (en) * 2007-01-30 2008-07-31 Kun-Shan Yang Vehicular side mirror
US20090080096A1 (en) * 2004-01-28 2009-03-26 Schefenacker Vision Systems Australia Pty Ltd Powered telescoping vehicle external mirror
US20100264289A1 (en) * 2009-04-20 2010-10-21 SMR Patents S.a.r.I. Screws as bracket mounting element
US9676336B2 (en) 2013-06-25 2017-06-13 Magna Mirrors Of America, Inc. Exterior rearview mirror assembly for vehicle
US9919652B2 (en) 2016-05-04 2018-03-20 Ford Global Technologies, Llc Auto-adjusting side-view mirrors
US9969333B2 (en) * 2016-05-13 2018-05-15 Deere & Company Extendable mirror assembly for a vehicle
IT201900006993A1 (en) * 2019-05-20 2020-11-20 New Barrac Mirrors S R L Side rear view mirror equipped with a reversibly extendable anchor arm
US20210291741A1 (en) * 2020-03-20 2021-09-23 Motherson Innovations Company Limited Pivotable power telescoping mirror assembly
CN114466770A (en) * 2019-08-08 2022-05-10 S·迈尔斯 Vehicle rear-view mirror
US11383645B2 (en) 2019-05-13 2022-07-12 Magna Mirrors Of America, Inc. Exterior rearview mirror with power extending mechanism
US11465562B2 (en) * 2019-10-31 2022-10-11 Nissan North America, Inc. Vehicle side mirror assembly
US20220324384A1 (en) * 2021-04-13 2022-10-13 Magna Mirrors of America,Inc. Exterior rearview mirror with power extending mechanism

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624818A (en) 1970-10-09 1971-11-30 Bradford O Stanfield Remote-controlled truck mirror
US3820877A (en) 1973-03-19 1974-06-28 J Moyer Extendable and retractable motor vehicle mirror arms
US3937563A (en) 1974-03-21 1976-02-10 Frabe Donald A Remote controlled mirror assembly for vehicle
US4165156A (en) 1978-07-03 1979-08-21 Delbar Products, Inc. Outside mounted vehicle mirror with multiple rotation axes
US4363534A (en) 1979-10-05 1982-12-14 Covert Stanley R Retractable mirror and lock therefor
US4466594A (en) 1981-07-09 1984-08-21 Parker-Hannifin Corporation Impact-displaceable rear view mirror mounting
US4558930A (en) 1984-04-04 1985-12-17 Deedrick Harold Truck mirror adjustable in the horizontal direction
US4678295A (en) * 1985-04-05 1987-07-07 Magna International Inc Memory positioning system for remote control rear-view mirror
US4758078A (en) 1986-12-12 1988-07-19 Bracamonte Raul V Periscoping rear and side vision mirror assembly for motor vehicles
US4832477A (en) 1986-09-30 1989-05-23 Aisin Seiki Kabushiki Kaisha Door mirror assembly for automotive vehicles
US4911545A (en) 1988-06-16 1990-03-27 Miller George A Extendible and pivotable mirrors for vehicles
US4919526A (en) 1987-10-27 1990-04-24 Ichikoh Industries Ltd. Electrically swingable door mirror
US4921337A (en) 1989-04-21 1990-05-01 Hou Mei Wen H Telescopic side mirror
US4936670A (en) 1988-06-03 1990-06-26 Yoo Jae P Automatic rearview mirror for vehicle
US5007724A (en) 1990-05-30 1991-04-16 Hou Mei Wen H Auxiliary mirror angle changing device for a main and auxiliary rearview mirror
US5052792A (en) 1990-04-16 1991-10-01 Mcdonough Michael J Selectively positionable rear view mirror system for vehicles with two mirror segments and control circuit cooperating with turn signal system
US5148325A (en) 1991-12-11 1992-09-15 Wang Min Chih Vehicular external mirror assembly
US5375014A (en) 1991-09-30 1994-12-20 Aisin Seiki Kabushiki Kaisha Vehicle retractable mirror device
US5572376A (en) 1994-08-31 1996-11-05 Power Vision Llc Extensible vehicle mirror
US5640281A (en) * 1993-10-12 1997-06-17 Cho; Sung Ho Outside foldable rearview mirror for vehicle
US6234637B1 (en) * 1996-06-05 2001-05-22 Magna Reflex Holding Gmbh Device for adjusting the position of a side mirror

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624818A (en) 1970-10-09 1971-11-30 Bradford O Stanfield Remote-controlled truck mirror
US3820877A (en) 1973-03-19 1974-06-28 J Moyer Extendable and retractable motor vehicle mirror arms
US3937563A (en) 1974-03-21 1976-02-10 Frabe Donald A Remote controlled mirror assembly for vehicle
US4165156A (en) 1978-07-03 1979-08-21 Delbar Products, Inc. Outside mounted vehicle mirror with multiple rotation axes
US4363534A (en) 1979-10-05 1982-12-14 Covert Stanley R Retractable mirror and lock therefor
US4466594A (en) 1981-07-09 1984-08-21 Parker-Hannifin Corporation Impact-displaceable rear view mirror mounting
US4558930A (en) 1984-04-04 1985-12-17 Deedrick Harold Truck mirror adjustable in the horizontal direction
US4678295A (en) * 1985-04-05 1987-07-07 Magna International Inc Memory positioning system for remote control rear-view mirror
US4832477A (en) 1986-09-30 1989-05-23 Aisin Seiki Kabushiki Kaisha Door mirror assembly for automotive vehicles
US4758078A (en) 1986-12-12 1988-07-19 Bracamonte Raul V Periscoping rear and side vision mirror assembly for motor vehicles
US4919526A (en) 1987-10-27 1990-04-24 Ichikoh Industries Ltd. Electrically swingable door mirror
US4936670A (en) 1988-06-03 1990-06-26 Yoo Jae P Automatic rearview mirror for vehicle
US4911545A (en) 1988-06-16 1990-03-27 Miller George A Extendible and pivotable mirrors for vehicles
US4921337A (en) 1989-04-21 1990-05-01 Hou Mei Wen H Telescopic side mirror
US5052792A (en) 1990-04-16 1991-10-01 Mcdonough Michael J Selectively positionable rear view mirror system for vehicles with two mirror segments and control circuit cooperating with turn signal system
US5007724A (en) 1990-05-30 1991-04-16 Hou Mei Wen H Auxiliary mirror angle changing device for a main and auxiliary rearview mirror
US5375014A (en) 1991-09-30 1994-12-20 Aisin Seiki Kabushiki Kaisha Vehicle retractable mirror device
US5148325A (en) 1991-12-11 1992-09-15 Wang Min Chih Vehicular external mirror assembly
US5640281A (en) * 1993-10-12 1997-06-17 Cho; Sung Ho Outside foldable rearview mirror for vehicle
US5572376A (en) 1994-08-31 1996-11-05 Power Vision Llc Extensible vehicle mirror
US5864438A (en) * 1994-08-31 1999-01-26 Power Vision, Llc Extensible vehicle mirror
US6234637B1 (en) * 1996-06-05 2001-05-22 Magna Reflex Holding Gmbh Device for adjusting the position of a side mirror

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070208865A1 (en) * 1999-08-04 2007-09-06 Aol Llc, A Delaware Limited Liability Company Facilitating negotiations between users of a computer network through messaging communications enabling user interaction
US7415500B2 (en) * 1999-08-04 2008-08-19 Aol Llc Facilitating negotiations between users of a computer network through messaging communications enabling user interaction
US20050105299A1 (en) * 2000-02-11 2005-05-19 Schefenacker Vision Systems Australia Pty Ltd Exterior mirror
US7165853B2 (en) * 2000-02-11 2007-01-23 Schefenacker Vision Systems Australia Pty Ltd Exterior mirror
US20040075921A1 (en) * 2000-09-29 2004-04-22 Rob Evans Extendable foldable mirror
US7114817B2 (en) * 2000-09-29 2006-10-03 Schefenacker Vision Systems Uk Ltd. Extendable foldable mirror
US7163300B2 (en) * 2001-04-27 2007-01-16 Schefenacker Vision Systems Australia Pty Ltd. Power fold mechanism for double arm mirrors
US7172298B2 (en) 2001-04-27 2007-02-06 Schefenacker Vision Systems Australia Pty Ltd Power fold mechanism for vehicle mirrors
US20050243448A1 (en) * 2001-04-27 2005-11-03 Schefenacker Vision Systems Australia Pty Ltd Power fold mechanism for double arm mirrors
US6877868B2 (en) * 2001-09-07 2005-04-12 Schefenacker Vision Systems Australia Pty Ltd. Powered telescoping trailer tow mirror
US20040240092A1 (en) * 2001-09-07 2004-12-02 Olijnyk Mark Leonid Powered telescoping trailer tow mirror
US7270430B2 (en) 2001-09-07 2007-09-18 Schefenacker Vision Systems Australia Pty Ltd. Powered telescoping trailer tow mirror
US20040246608A1 (en) * 2001-10-30 2004-12-09 Wellington Jason Kingsley Power telescoping vehicle mirror assembly
US7287867B2 (en) * 2001-10-30 2007-10-30 Schefenacker Vision Systems Australia Pty Ltd. Power telescoping vehicle mirror assembly
US20060181099A1 (en) * 2003-03-06 2006-08-17 Algonquin Automotive Motorized rack and pinion assembly
US20040174043A1 (en) * 2003-03-06 2004-09-09 Ross Bradsen Motorized rack and pinion assembly
US7748857B2 (en) * 2004-01-28 2010-07-06 Smr Patents S.A.R.L. Powered telescoping vehicle external mirror
US20090080096A1 (en) * 2004-01-28 2009-03-26 Schefenacker Vision Systems Australia Pty Ltd Powered telescoping vehicle external mirror
US7441911B2 (en) * 2004-02-20 2008-10-28 Magna Mirrors Of America, Inc. Twin-arm vehicle mirror system with support bracket bearings
US20080024892A1 (en) * 2004-02-20 2008-01-31 Magna Donnelly Mirrors North America L.L.C. Twin-Arm Vehicle Mirror System with Support Bracket Bearings
US20080024891A1 (en) * 2004-02-20 2008-01-31 Magna Donnelly Mirrors North America L.L.C. Twin-Arm Vehicle Mirror System with Support Bracket Bearings
US7178925B1 (en) * 2004-06-25 2007-02-20 Tidwell Donald R Retractable side view mirror for a tractor trailer
US20080179485A1 (en) * 2007-01-30 2008-07-31 Kun-Shan Yang Vehicular side mirror
US20100264289A1 (en) * 2009-04-20 2010-10-21 SMR Patents S.a.r.I. Screws as bracket mounting element
US8696148B2 (en) * 2009-04-20 2014-04-15 Smr Patents S.A.R.L. Screws as bracket mounting element
US10220788B2 (en) 2013-06-25 2019-03-05 Magna Mirrors Of America, Inc. Exterior rearview mirror assembly for vehicle
US10053015B2 (en) 2013-06-25 2018-08-21 Magna Mirrors Of America, Inc. Exterior rearview mirror assembly for vehicle
US9676336B2 (en) 2013-06-25 2017-06-13 Magna Mirrors Of America, Inc. Exterior rearview mirror assembly for vehicle
US9919652B2 (en) 2016-05-04 2018-03-20 Ford Global Technologies, Llc Auto-adjusting side-view mirrors
US9969333B2 (en) * 2016-05-13 2018-05-15 Deere & Company Extendable mirror assembly for a vehicle
US11383645B2 (en) 2019-05-13 2022-07-12 Magna Mirrors Of America, Inc. Exterior rearview mirror with power extending mechanism
IT201900006993A1 (en) * 2019-05-20 2020-11-20 New Barrac Mirrors S R L Side rear view mirror equipped with a reversibly extendable anchor arm
CN114466770A (en) * 2019-08-08 2022-05-10 S·迈尔斯 Vehicle rear-view mirror
US20220396206A1 (en) * 2019-08-08 2022-12-15 Shane MILES Motorised Vehicle Mirrors
US11465562B2 (en) * 2019-10-31 2022-10-11 Nissan North America, Inc. Vehicle side mirror assembly
US20210291741A1 (en) * 2020-03-20 2021-09-23 Motherson Innovations Company Limited Pivotable power telescoping mirror assembly
US11708027B2 (en) * 2020-03-20 2023-07-25 Motherson Innovations Company Limited Pivotable power telescoping mirror assembly
US20220324384A1 (en) * 2021-04-13 2022-10-13 Magna Mirrors of America,Inc. Exterior rearview mirror with power extending mechanism
US11845383B2 (en) * 2021-04-13 2023-12-19 Magna Mirrors Of America, Inc. Exterior rearview mirror with power extending mechanism
US20240116444A1 (en) * 2021-04-13 2024-04-11 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly

Similar Documents

Publication Publication Date Title
US6799856B2 (en) Coordinated pivoting and extending vehicle mirror
US6755543B1 (en) Coordinating pivoting and extending vehicle mirror
CA2345032C (en) Coordinated pivoting and extending vehicle mirror
KR100668007B1 (en) An extendable and pivotal rearview mirror assembly
US6672731B2 (en) Vehicular rearview mirror with blind spot viewing system
US20040097318A1 (en) Drvie comprising a motor and at least one gear assembly connected downstream of said motor
AU689021B2 (en) Exterior mirror with single pivot power fold
US5703731A (en) Exterior mirror with indexing and control pivoting
EP3735362B1 (en) Side mirror assembly for a ground vehicle
US5532876A (en) Remotely controlled, day/night mirror apparatus
JPH0223375B2 (en)
US5926331A (en) Power pack for controlling the angular position of a vehicle rearview mirror
JPS60148740A (en) Back mirror for vehicle
JPH0431145A (en) Automobile rear view mirror device
JP2001322485A (en) Automobile outside mirror device with built-in lamp
JP4283023B2 (en) Vehicle rear-view mirror
JP2624836B2 (en) Outside mirror device
KR920005583Y1 (en) Rear-view mirror
JPH09202176A (en) Vehicular corner pole
KR19980045136U (en) Outside mirror structure of car
JPH04119736U (en) vehicle side mirror device
JPH0668994U (en) Electric storage rear under mirror
JPH0723077B2 (en) Rearview mirror device for vehicle
JPH0450045A (en) Outside mirror fitting structure for vehicle
JP2000318524A (en) Mirror stay driving device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAGNA MIRROR SYSTEMS INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOOTE, KEITH D.;BODDY, IAN;REEL/FRAME:011881/0232;SIGNING DATES FROM 20010501 TO 20010502

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: MAGNA MIRRORS OF AMERICA, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAGNA DONNELLY MIRRORS NORTH AMERICA, LLC;REEL/FRAME:021640/0290

Effective date: 20080930

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20160629