US6738859B2 - Method and apparatus for fast aerial image simulation - Google Patents

Method and apparatus for fast aerial image simulation Download PDF

Info

Publication number
US6738859B2
US6738859B2 US09948697 US94869701A US6738859B2 US 6738859 B2 US6738859 B2 US 6738859B2 US 09948697 US09948697 US 09948697 US 94869701 A US94869701 A US 94869701A US 6738859 B2 US6738859 B2 US 6738859B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
optical system
step
mask
parameters
pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US09948697
Other versions
US20020062206A1 (en )
Inventor
Armin Liebchen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML MaskTools Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70483Information management, control, testing, and wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management and control, including software
    • G03F7/705Modelling and simulation from physical phenomena up to complete wafer process or whole workflow in wafer fabrication

Abstract

The present invention provides a method and apparatus for simulating an aerial image projected from an optical system, wherein the optical system includes a pupil and a mask. In general, the method comprises the steps of obtaining parameters for the optical system, calculating a kernel based on an orthogonal pupil projection of the parameters of the optical system onto a basis set, obtaining parameters of the mask, calculating a vector based on an orthogonal mask projection of the parameters of the mask onto a basis set, calculating a field intensity distribution using the kernel and the vector, and obtaining aerial image data from the field intensity distribution.

Description

This application claims the benefit of provisional application Ser. No. 60/231,953 filed Sep. 12, 2000.

BACKGROUND OF THE INVENTION

In lithography, an exposure energy, such as ultraviolet light that is generated in an optical system, is passed from an aperture of the system through a mask (or reticle) and onto a target such as a silicon substrate. The mask typically may contain opaque and transparent regions formed in a predetermined pattern. The exposure energy exposes the mask pattern, thereby forming an aerial image of the mask. The aerial image is then used to form an image onto a layer of resist formed on the target. The resist is then developed for removing either the exposed portions of resist for a positive resist or the unexposed portions of resist for a negative resist. This forms a patterned substrate. A mask typically may comprise a transparent plate such as fused silica having opaque (chrome) elements on the plate used to define a pattern. A radiation source illuminates the mask according to well-known methods. The radiation transmitted through the mask and exposure tool projection optics forms a diffraction-limited latent image of the mask features on the photoresist. The patterned substrate can then be used in subsequent fabrication processes. In semiconductor manufacturing, such a patterned substrate can be used in deposition, etching, or ion implantation processes, to form integrated circuits having very small features.

In a manufacturing process using a lithographic projection apparatus, a pattern in a mask is imaged onto a substrate, which is at least partially covered by a layer of radiation-sensitive material (resist). Generally, lithographic patterning processes are understood by those who practice the profession. Information regarding exemplary processes may be obtained, for example, from the book “Microchip Fabrication: A Practical Guide to Semiconductor Processing”, Third Edition, by Peter van Zant, McGraw Hill Publishing Co., 1997 ISBN 0-07-067250-4.

As the size of lithographically fabricated structures decreases, and the density of the structures increases, the cost and complexity of designing masks additionally increases. One method of reducing costs of lithographic fabrication is by optimizing the lithographic design with a lithographic simulation step prior to the actual manufacturing step. One specific method of lithographic simulation is drawn to simulating the aerial image of the mask. The aerial image is defined as an intensity distribution of light just prior to reaching the resist on a surface of a substrate, when the substrate is exposed via the mask in an exposure apparatus. In order to simulate the aerial image, a layout of a mask and exposure conditions (non-limiting examples include NA: Numerical Aperture, σ (sigma): Partial Coherence Factor) of the lithographic apparatus are typically required as input parameters.

Lithographic apparatus may employ various types of projection radiation, non-limiting examples of which include light, ultra-violet (“UV”) radiation (including extreme UV (“EUV”), deep UV (“DUV”), and vacuum UV (“VUV”)), X-rays, ion beams or electron beams. The following have been considered exemplary exposure sources. Light may generally refer to certain mercury emissions, i.e., wavelengths of 550 nm for the f-line, 436 nm for the g-line, and 405 mn for the h-line. Near-UV or UV generally typically refer to other mercury emissions, i.e., 365 nm for the i-line. DUV generally refers to excimer laser emissions, such as KrF (248 nm) and ArF (193 nm). VUV may refer to excimer laser F2, i.e., 157 nm, Ar2, i.e., 126 nm, etc. EUV may refer to 10-15 nm. This last portion of the electromagnetic spectrum is very close to “soft X-rays” but has been named as “EUV”, possibly to avoid the bad reputation of X-ray patterning. Soft X-rays may refer to 1-15 nm, which may typically be used in X-ray lithography.

Depending on the type of radiation used and the particular design requirements of the apparatus, the projection system may be for example, refractive, reflective or catadioptric, and may comprise vitreous components, grazing-incidence mirrors, selective multi-layer coatings, magnetic and/or electrostatic field lenses, etc; for simplicity, such components may be loosely referred to in this text, either singly or collectively, as a “lens”.

When the resist is exposed by the aerial image, there is an additional variable in that some of the exposure light is reflected back by the surface of the substrate, and then absorbed by the resist. Accordingly, not only the resist characteristics (regarding, for example, refractive index: Dill's A,B,C) but also parameters regarding the characteristics of the substrate (e.g., refractive index) should be included as input parameters for simulating the latent image.

The so-called Hopkins model treats the electric field forming the image typically as a scalar and assumes the object being imaged is sufficiently thin so that its effect on the incident field is represented by a multiplicative function. It is advantageous to perform the image formation analysis in the Fourier domain (frequency space) in order to deal with the pupil function of the imaging system rather than the amplitude response function, and with the angular distribution or “effective source” rather than with the mutual intensity.

There are several computer programs commercially available that calculate aerial images based on the Hopkins model. For example, the University of California at Berkeley, Department of Electrical Engineering and Computer Science, Berkeley, Calif., 94720, offers a program called SPLAT.

The Hopkins model is used to model the imaging of drawn design features under partially coherent illumination. A major problem in modeling aerial images under partially coherent illumination is the necessity to superimpose and add the effect of each individual illumination source that makes up the partially coherent source. In the Hopkins model, a two-dimensional by two-dimensional transmission cross-coefficient function (“TCC”) is pre-calculated, which captures all the effects of the lithographic projection apparatus, including NA, sigma, etc. As taught, for example in Born & Wolf, p. 603, once a TCC is known, systems with partially coherent illumination can be modeled by integrating the TCC over the Fourier transform of the transmission function for the geometrical layout feature under illumination.

Fundamentally, the TCC is a two-dimensional by two-dimensional correlation function with a continuous set of arguments. In practice, an assumption can be made that the feature patterns to be imaged are periodic in space. For such periodic patterns, the TCC has a large, but discrete, set of arguments. The TCC can then be represented as a matrix, with discrete columns and rows. For typical features interesting to the lithographer the size of this matrix is tremendous and restricts the scale and size of features that can be simulated. It is a purpose of any simulation algorithm based on the Hopkins model to reduce the size of this matrix by approximation, while retaining a reasonable degree of accuracy.

An exemplary projection lithography system is illustrated in FIGS. 1A and 1B. In FIG. 1A, light from illumination source 102 is focussed by condenser 104. The condensed light passes through the mask 106, then through the pupil 108 and onto the substrate 110. As shown in FIG. 1B, substrate 110 may comprise a top anti-reflective coating 112, a resist 118, a bottom anti-reflective coating 117, a top substrate layer 114 and a plurality of other substrate layers. As indicated in FIG. 1B, the focal plane may lie within the resist 118.

In the past, several numerical techniques have been applied to reduce the size of the TCC to reasonable scales. In one instance singular value decomposition has been applied to decompose the TCC into its eigenspectrum, sort the resulting eigenvectors in decreasing magnitude of their eigenvalues, and only retain a finite number of eigenvectors in order to approximate the TCC. An exemplary method for optical simulation for the system of FIG. 1A, that uses the Hopkins model, is illustrated in FIG. 2. As illustrated in FIG. 2, at step S202, the lithographic projection apparatus and mask parameters are input in the system. At step S204, the TCC is approximated by an eigenvector diagonalization. At step S206, a two-dimensional table of convolution integrals of the eigenfunctions with a discrete set of normalized rectangles is calculated and tabulated. The article, “Fast, Low-Complexity Mask Design”, by N. Cobb et al., SPIE Vol. 2440, pgs. 313-326, the entire disclosure of which is incorporated by reference, teaches an exemplary method for completing step S206. Since the resulting table is on a discrete grid of possible layout-features, to attain an acceptable resolution, the table must be large. At step S208, since the TCC has been approximated, the illumination system can be modeled, i.e. the aerial image can be simulated by combining each two-dimensional convolution integral corresponding to each respective rectangle in a given proximity window.

This method has two drawbacks. First, an eigenvector diagonalization is a numerically expensive operation. Thus, for a user to change lithographic projection apparatus conditions, such as NA, sigma, illumination type or lens-aberration, an expensive recalculation of the TCC approximation that limits the use of the simulation tool is required. Second, the eigenspectrum of the TCC is a two-dimensional function. Representing the associated field vectors of the geometrical pattern under illumination requires a two-dimensional lookup table that limits the speed of the field calculation in the Hopkins algorithm. Specifically, since the field vectors are a two-dimensional table, two pointers are needed to access any respective address of data, which increases access time. Further, since the field vectors are a two-dimensional table, they are stored in a portion of the cache. Using a look-up table from a DRAM in a present day CPU is more expensive than performing multiplication because the cache miss penalty is larger than the time to perform the multiplication.

Accordingly, there is needed a method and apparatus for simulating a projection lithography system using the Hopkins model, that does not use a numerically expensive eigenvector diagonalization operation. What is further needed is a method and apparatus for simulating a projection lithography system using the Hopkins model that permits a user to change lithographic projection apparatus conditions, such as NA, sigma, illumination type or lens-aberration without requiring an expensive recalculation of the TCC approximation.

BRIEF DESCRIPTION OF THE INVENTION

It is an object of the present invention to provide a method and apparatus for simulating a projection lithography system using the Hopkins model that does not use a numerically expensive eigenvector diagonalization operation.

It is another object of the present invention to provide a method and apparatus for simulating a projection lithography system using the Hopkins model that permits a user to change lithographic projection apparatus conditions without requiring an expensive recalculation of the TCC approximation.

It is still another object of the present invention to provide a method and apparatus for predicting the intensity field distribution (“aerial image”) at the surface and throughout the resist film of a substrate being irradiated in a lithographic imaging process.

In accordance with the foregoing objectives, the present invention writes the TCC as T(q′q), where q and q′ each are continuous frequencies in two-dimensional Fourier space, q=(qx, qy), q′=(q′x, q′y). The present invention approximates the TCC extremely well as a bilinear form of a basis function with kernel A[ij]. Furthermore, the present invention utilizes a set of orthogonal polynomials. The kernel A[ij] represents a small matrix that efficiently approximates the TCC for a broad range of illumination conditions used in modern lithographic processing. The present invention uses a lower number of arithmetic operations as a result of the use of a one-dimensional look-up table as opposed to the two-dimensional look-up table in the prior art. Furthermore, the one-dimensional look-up table achieves a higher cache hit ratio than a two-dimensional look-up table of the same resolution, thereby providing a more efficient system.

In general, in one embodiment, the invention features a method of simulating an aerial image projected from an optical system, the optical system including a pupil and a mask plane, the method comprising the steps of providing a mask to the mask plane, obtaining parameters for the optical system, calculating a kernel based on an orthogonal pupil projection of the parameters of the optical system onto a basis set, obtaining parameters of the mask, calculating a vector based on an orthogonal mask projection of the parameters of the mask onto a basis set, calculating a field intensity distribution using the kernel and the vector, and obtaining an aerial image from the field intensity distribution.

In one embodiment of the invention, the parameters for the optical system include aberrations.

In another embodiment of the invention, the step of calculating a kernel corresponding to the parameters of the optical system includes the step of generating a table of indefinite integrals based on a recurrence over a seed array of incomplete gamma functions.

In yet another embodiment of the invention, the step of calculating a kernel corresponding to the parameters of the optical system further includes the step of tabulating an array of orthogonal pupil projection coefficients corresponding to respective points in the pupil of the optical system, wherein the optical system is in-focus. More particularly, it further comprises the step of combining sample weights of an illuminator profile of the optical system with the array of orthogonal pupil projection coefficients.

In still another embodiment of the invention, the step of calculating a kernel corresponding to the parameters of the optical system further includes the step of tabulating an array of orthogonal pupil projection coefficients corresponding to respective points in the pupil of the optical system, wherein the optical system is either not in-focus or has aberrations. More particularly, it further comprises the step of combining sample weights of an illuminator profile of the optical system with the array of orthogonal pupil projection coefficients.

In still yet another embodiment of the invention, the step of calculating a kernel corresponding to the parameters of the optical system further includes the step of: tabulating an array of orthogonal pupil projection coefficients corresponding to respective points in the pupil of the optical system, wherein the optical system accounts for effects of diffusion of photoactive compounds in the resist. More particularly, it further comprises the step of combining sample weights of an illuminator profile of the optical system with the array of orthogonal pupil projection coefficients.

In a further embodiment of the invention, the step of calculating a vector corresponding to the parameters of the mask further includes the step of specifying a proximity window within the mask for geometric sampling.

In still a further embodiment of the invention, the step of calculating a vector corresponding to the parameters of the mask further includes the step of decomposing a geometric pattern of the mask into a disjoint set of rectangles and tabulating an array of projections of the rectangles within a proximity window. More particularly, the step of calculating a vector corresponding to the parameters of the mask further includes the step of correcting the array of projections of the rectangles based on the type of mask.

In general, in another aspect, the invention features a method for simulating an aerial image projected from an optical system, the optical system including a pupil and a mask plane, the method comprising the steps of: providing a mask to the mask plane, obtaining parameters for the optical system, obtaining parameters of the mask, projecting the components of electric field vectors to an orthogonal polynomial basis as described in further detail below, the polynomials including polynomials associated with the parameters of the optical system, and approximating the transmission cross-correlation function associated with the optical system based on the orthogonal projection of polynomials.

In general, in still another aspect, the invention features a simulation device operable to simulate an aerial image projected from an optical system, the optical system including a pupil and a mask plane, the simulation device comprising a first parameter obtainer for obtaining parameters of the optical system, a first calculator for calculating a kernel based on an orthogonal pupil projection of the parameters of the optical system onto a basis set, a second parameter obtainer for obtaining parameters of a mask provided to the mask plane, a second calculator for calculating a vector based on an orthogonal mask projection of the parameters of the mask onto a basis set, a third calculator for calculating a field intensity distribution using the kernel and the vector, and an aerial image obtainer for obtaining aerial image data from the field intensity distribution.

In one embodiment of the invention, the first, second, and third calculators are the same calculator.

In another embodiment of the invention, the parameters for the optical system include aberrations.

In yet another embodiment of the invention, the first calculator is operable to generate a table of indefinite integrals based on a fast recurrence over a seed array of incomplete gamma functions.

In still another embodiment of the invention, the first calculator is operable to tabulate an array of orthogonal pupil projection coefficients corresponding to respective points in the pupil of the optical system, wherein the optical system is in-focus.

In still yet another embodiment of the invention, the first calculator is operable to tabulate an array of orthogonal pupil projection coefficients corresponding to respective points in the pupil of the optical system, wherein the optical system is either not in-focus or has aberrations.

In a further embodiment of the invention, the first calculator is operable to tabulate an array of orthogonal pupil projection coefficients corresponding to respective points in the pupil of the optical system, wherein the optical system accounts for effects of photoactive compound diffusion in the resist.

In still a further embodiment of the invention, the second calculator is operable to specify a proximity window within the mask for geometric sampling.

In yet a further embodiment of the invention, the second calculator is operable to decompose a geometric pattern of the mask into a disjoint set of rectangles and tabulate an array of projections of the rectangles within a proximity window. More particularly the second calculator is operable to correct the array of projections of the rectangles based on the type of mask.

In general, in yet another aspect, the invention features a simulation device operable to simulate all aerial image projected from an optical system, the optical system including a pupil and a mask plane, the simulation device comprising a first parameter obtainer for obtaining parameters of the optical system, a second parameter obtainer for obtaining parameters of a mask provided to the mask plane, a first calculator for orthogonally projecting polynomials, the polynomials including polynomials associated with the parameters of the optical system, and a second calculator for approximating the transmission cross-coefficient associated with the optical system based on the orthogonal projection of polynomials.

Additional advantages of the present invention will become apparent to those skilled in the art from the following detailed description of exemplary embodiments of the present invention. The invention itself, together with further objects and advantages, can be better understood by reference to the following detailed description and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate embodiments of the present invention and, together with the description, serve to explain the principles of the invention.

In the drawings:

FIGS. 1A and 1B illustrate a conventional optical lithographic system.

FIG. 2 illustrates a conventional method for simulating an aerial image projected from an optical system.

FIG. 3 illustrates a conventional method for dividing a pupil area into a discrete areas.

FIG. 4 illustrates the method for simulating an aerial image projected from an optical system in accordance with an exemplary embodiment of the present invention.

FIG. 5 illustrates an exemplary method for generating a kernel in accordance with the present invention.

FIG. 6 illustrates an exemplary method for generating a vector in accordance with the present invention.

FIG. 7 illustrates an exemplary method for generating a table of indefinite integrals based on a fast recurrence over a seed array of incomplete gamma functions in accordance with the present invention.

FIG. 8 illustrates an exemplary mask plane used in conjunction with the present invention.

FIG. 9 illustrates an exemplary method for calculating an intensity profile and intensity gradient in accordance with the present invention.

FIG. 10 illustrates an efficient algorithm in accordance with the present invention.

FIG. 11A illustrates the coefficient matrix Aij in accordance with the present invention. FIG. 11B illustrates an exemplary representation of the coefficient matrix Aij in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a more thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without these specific details.

The present invention circumvents the above-described problems of the prior art systems by applying a fundamentally different technique for the approximation of the TCC. Specifically, the present invention closely and efficiently approximates the TCC as a bilinear form of a basis function with kernel A[ij].

A general overview of the operation of the simulation system in accordance with the exemplary embodiment of the present invention is illustrated in FIG. 4. As illustrated in FIG. 4 of the present invention, in step S402, the lithographic projection apparatus parameters are entered. In step S404, a kernel A[ij] is calculated. In step S406, the mask parameters are entered. In step S408, vectors corresponding to mask parameters are calculated. In step S410 the intensity profile of the pupil is calculated using the kernel A[ij] and the vectors corresponding to the mask parameters. In step S412, a simulated aerial image of the mask is produced.

Prior to discussing the operation of a simulation system in accordance with the exemplary embodiment of the present invention in further detail, a brief but concise discussion of the mathematical underpinnings will be provided. Specifically, the spectral basis, including its analytical representation, its basic properties, and its application with regards to an indefinite integral will be discussed. Further, the Fourier transform (“FT”) of the basis, including its analytical representation, and its application with regards to an indefinite integral will be discussed. Still further, miscellaneous provisions including orthogonality under a FT will be discussed.

SPECTRAL BASIS

Analytical Representation

A mathematical function provides a mapping of a continuous set of input values to a continuous set of output values. This mapping may be generated in a number of ways. One way is the use of an analytical expression, such as sin(x), or log(x). Another way is by tabulation and interpolation of intermediate values. Yet another way is to represent a function in terms of a linear superposition of a set of known basis functions. For an orthogonal set of basis functions such a representation is called a spectral representation.

The spectral basis considered in the following discussion is represented as: η [ a ] r = ( α / π ) ( - 1 2 ) λ a exp [ r _ 2 / 2 ] a x r x a y r y exp [ - r _ 2 ] ( 1 )

Figure US06738859-20040518-M00001

which may be factored into one-dimensional contributions. In equation (1), {overscore (r)}=α(r−r0) for sampling at a point r0, and λa=ax+ay The one-dimensional basis along the x-dimension follows as: η [ a x ] x = ( α / π ) 1 2 ( - 1 2 ) a x exp [ x _ 2 / 2 ] a x r x exp [ - x _ 2 ] ( 2 )

Figure US06738859-20040518-M00002

Basic Properties

1. Recurrence η [ a + 1 i ] r = r _ η [ a ] r - 1 2 a i η [ a - 1 i ] r ( 3 )

Figure US06738859-20040518-M00003

2. Derivative r _ η [ a ] r = 1 2 a i η [ a - 1 i ] r - η [ a + 1 i ] r ( 4 )

Figure US06738859-20040518-M00004

3. Normalization

The basis is orthogonal with normalization constants: ( η a ( r ) · η a ( r ) ) = a x ! · a y ! 2 a x + a y with a = ( a x , a y ) ( 5 )

Figure US06738859-20040518-M00005

Indefinite Integral

The indefinite integral over the spectral basis may be related to an incomplete Gamma function. For Manhattan-style layout designs, the integration boundaries are along the Cartesian coordinate axes and permit a factorization into independent one-dimensional integrations. The following definition of the incomplete Gamma-function γ(α,x) is used: γ ( a , x ) := 0 x t a - 1 e - t t ( 6 )

Figure US06738859-20040518-M00006

Let [ a x ] ( x 0 , x 1 ) := x 0 x 1 x η [ a x ] x ( 7 )

Figure US06738859-20040518-M00007

Recurrence

Let x=α{overscore (x)} and J [ a x , m ] ( x _ ) := ( 1 α π ) 1 2 ( - 1 2 ) a 0 x _ t t m exp [ t 2 / 2 ] t a exp [ - t 2 ] ( 8 )

Figure US06738859-20040518-M00008

Note that J [ a x , m ] ( - x _ ) = ( - 1 ) m + a J [ a x , m ] ( x _ ) .

Figure US06738859-20040518-M00009

The above integral may then be evaluated as [ a ] ( x 0 , x 1 ) = J [ a , 0 ] ( x _ 1 ) - J [ a , 0 ] ( x _ 0 ) ( 9 ) J [ a + 1 , m ] = 1 2 [ J [ a x , m + 1 ] + mJ [ a x , m - 1 ] - x _ m α η [ a x ] x + δ m , 0 1 α η [ a x ] 0 ] ( 10 ) J [ 0 , m ] = ( 2 m - 1 α π ) 1 2 γ ( m + 1 2 , x _ 2 2 ) ( 11 )

Figure US06738859-20040518-M00010

The Fourier transform of the spectral basis may be expressed as: η [ a ] q _ = 1 α π ( i 2 ) λ a exp [ q _ 2 / 2 ] a x q x a y q y exp [ - q _ 2 ] ( 12 )

Figure US06738859-20040518-M00011

Indefinite Integral

Similar to equation (3), the indefinite integral over the FT of the spectral basis may also be related to an incomplete Gamma function. Due to the circular aperture of the pupil however the two-dimensional integration cannot be simply factorized into one-dimensional products. The present invention uses a hybrid approach, whereby the one-dimensional integration along one axis, for example the x-axis, is performed analytically similar to equation (3). On the other hand, the integration along the other axis, for example the y-axis, is performed numerically. The following considers the one-dimensional analytical integration of the FT of the spectral basis. Let I [ a ] k ( k 0 , k 1 ) := k 0 k 1 q η [ a ] q ( 13 ) = α k 0 α k 1 α q _ η [ a ] q ( 14 ) = α 0 k _ 1 q _ η [ a ] q - α 0 k _ 0 q _ η [ a ] q ( 15 )

Figure US06738859-20040518-M00012

Recurrence

Let {overscore (k)}=k/α and J [ a , m ] k ( k ) := ( α π ) 1 2 ( i 2 ) a o k _ t t m exp [ t 2 / 2 ] t a exp [ - t 2 ] ( 16 )

Figure US06738859-20040518-M00013

then the above integral may be evaluated as I [ a ] k ( k 0 , k 1 ) = J [ a , 0 ] k ( k 1 ) - J [ a , 0 ] k ( k 0 ) ( 17 )

Figure US06738859-20040518-M00014

A recurrence for J[α,m] k(k) follows via J [ a + 1 , m ] k := ( α π ) 1 2 ( i 2 ) a + 1 0 k _ t ( t ) m exp [ t 2 / 2 ] t t a exp [ - t 2 ] as : ( 18 ) J [ a + 1 , m ] k = ( - i ) 1 2 [ J [ a , m + 1 ] k + mJ [ a , m - 1 ] k - β k _ m η [ a ] k + δ m , 0 β η [ a ] 0 ] ( 19 )

Figure US06738859-20040518-M00015

This relation is identical to equation (10), with β=1/α and an additional factor of (−i) per recurrence step.

Initialization

The above seed-elements J [ 0 , m ] k

Figure US06738859-20040518-M00016

are similar to the previous section and may be evaluated similar to equation (11): J [ 0 , m ] k = ( 2 m - 1 α π ) 1 2 γ ( m + 1 2 , k _ 2 2 ) = α J [ 0 , m ] ( 20 )

Figure US06738859-20040518-M00017

With the above refreshing review, the operation of a simulation system in accordance with the exemplary embodiment of the present invention will now be provided in further detail. Table 1, below, provides notations for symbols and their respective descriptions that are used throughout the description of the present invention.

Symbol Description
r = (x, y) 2-D position vector fixed z-plane
k = (kx, ky) 2-D wave vector fixed z-plane
φ[S] m, i plane wave entering mask
φ[D] m, x scalar field at mask exit plane at normal incidence,  = 0
φ[s] p, i scalar field at pupil entrance plane, general incidence angle
φ[s] p, x scalar field at pupil exit plane, general incidence angle
φ[s] p, i scalar field at wafer entrance plane, general incidence angle
T Mask transfer matrix
P Pupil transfer matrix
M Magnification factor (0.2, 0.25, etc)
{circumflex over (r)}w Scaled coordinate system at wafer plane
Ŝ Scaled coordinate system at pupil plane
σ Partial Coherence

The following discussion uses Dirac notation for a basis-independent representation of field vectors. In this notation, scalar fields in their dual spaces are written as φ|, |φ. The following are useful identities:

φ|r=φ(r)  (21)

φ|k=φ(k)  (22)

r k = 1 2 π - kr ( 23 )

Figure US06738859-20040518-M00018
k|r=r|k*  (24)

r|k*=r|−k  (25)

r|k−k′=k′|r r|k  (26)

Completeness of an orthogonal normalized basis ξ implies

dξ|ξξ|=1  (27)

Spectral expansions used in the following satisfy the above completeness relation.

Lens Model

When modeling a lens, monochromatic illumination at wavelength λ is assumed. In the following the refractive index in vacuum ηi =1 is assumed. The wave-vector may be defined as: k 0 := 2 π λ ( 28 )

Figure US06738859-20040518-M00019

Further, the apertures may be defined as (w=substrate, s=Source):

NA w =n i sin αw ≅sin αw  (29)

NA s =n i sin αs ≅sin αs  (30)

σ := NA s NA w ( 31 )

Figure US06738859-20040518-M00020

The maximum wave-vector transmitted by a pupil of aperture NA thus follows as

k NA =d 1 sin αw =d 1 NA  (32)

A magnification factor M may be defined as the ratio of the back-vs. the front-focal length of the objective lens: M := d 1 d 0 ( 33 )

Figure US06738859-20040518-M00021

where d0 and d1 correspond to the focal lengths identified in FIG. 1A. The substrate plane d1 may be adjusted such that it lies in the focal plane of the lens, thereby providing: 1 f = 1 d 0 + 1 d 1 ( 34 )

Figure US06738859-20040518-M00022

The mathematical model is expressed in terms of coordinates ks, r, k, rw. The numerical model however utilizes re-scaled coordinates indicated by “hat” notation. The scaled coordinates relate to the normalized coordinates via

{circumflex over (r)} m ≈−Mr m Mask plane  (35)

s ^ p := k 0 sin ϑ = k 0 d 1 s p Pupil plane ( 36 )

Figure US06738859-20040518-M00023
k {circumflex over (N)}A =k 0 NA  (37)

s ^ s := - k s M = - k 0 sin θ s M Source plane ( 38 )

Figure US06738859-20040518-M00024

The current lens model in accordance with the present invention assumes ds=d0.

Diffractive Elements and Lenses

The propagation of light from the exit plane of a diffraction element, such as for example a mask, φx |rto a subsequent input plane φi |kat distance d z may be expressed in terms of the free-space Greens function of the Helmoholtz equation r|G|r′ (r=(x,y,z) in three dimensions) as

r ,i =ik 0 ∫drr|G|rr′ ,x =ik 0 r|G|φ ,x  (39)

with r _ G r _ = - k 0 r _ - r _ 4 π r _ - r _ ( 40 )

Figure US06738859-20040518-M00025

Let z and z′ be on fixed planes separated by a distance di and r=(x,y) a two-dimensional position vector on each respective plane. A two dimensional approximation follows via

k 0 |rr′|b =k 0 {square root over (di 2+(r−r′)2)}  (41)

Assume a far-field approximation |r−r′|<<di and approximate by keeping to first order of a Taylor expansion k 0 r _ - r _ k 0 d i [ 1 + 1 2 ( r - r d i ) 2 ] ( 42 )

Figure US06738859-20040518-M00026

The first term yields an irrelevant constant phase shift and will be ignored in the following. The two-dimensional field propagator in the far-field regime then follows as r G r = - k 0 2 d i ( r - r ) 2 4 π d i ( 43 )

Figure US06738859-20040518-M00027

Lens Element

The propagation of light from the input plane to the exit plane of a lens element may be expressed in terms of the lens propagator L as

r|φ ,i =∫dr′r|L|r′r′|φ ,x =r|L|φ ,x  (44)

where the lens-propagator in the paraxial approximation may be expressed as: r L r k 0 2 f r 2 δ ( r - r ) P ( r ) ( 45 )

Figure US06738859-20040518-M00028

Returning back to FIG. 4, the simulation method of the present invention may be implemented using any processor or dedicated circuit that is operable to manipulate data. Non-limiting examples include programmable logic arrays, microprocessors used in conjunction with a memory, or computers. Step S402 may be performed by any device operable to input lithographic projection apparatus parameters. Non-limiting examples include stepper/scanners, mask inspection tools, and external memories containing the appropriate data. Step S406 may be performed by any device operable to input the mask parameters. Similar to step S402, non-limiting examples include stepper/scanners, mask inspection tools, and external memories containing the appropriate data. Further, a single device may be used to input both the lithographic projection apparatus parameters of step S402 and the mask parameters of step S406. Still further, steps S402 and S406 may be performed at the same time. Similarly, steps S404 and S408 may be performed at the same time.

Step S404 will now be further described with respect to FIG. 5. At step S502, an area of the pupil of the illuminator is sampled and broken up into a discrete grid. At step S504, the illumination profile of each discrete point corresponding to the sample area is determined, and given a numerical weight according to the relative intensity of the source at the sampled location. At step S506, an array of seed-elements for the semi-indefinite integrals calculated in equation (16) of each discrete point within a pupil grid corresponding to the sample area is tabulated. Each seed-element is an incomplete gamma function J[0,m], such as is described above with respect to equation (19) and equation (20). At step S508, the pupil model is determined for the simulation method. If the pupil model is for a zero defocus pupil, i.e., for a lens having no aberration, is perfectly in focus, and/or has no phase distortion in the pupil plane, then step S510 zero may be performed. If the pupil model has optical path differences, has aberrations, is not perfectly in focus, and/or has phase distortion in the pupil plane, then step S510 opd may be performed. Further, if the pupil model accounts for diffusion of the photoactive compound in the resist after image exposure, then step S510 diff may be performed. In each one of steps S510 zero, S510 opd, and S510 diff, an array in ‘i’, shifted by si, of pa(si) is calculated, wherein each entry is the value of orthogonal projection of the pupil onto the basis set indexed by ‘a’. At step S512, the weights of each respective discrete point in the illuminator profile from step S504 are combined with the corresponding orthogonal projection on the basis set as calculated in any one of steps S510 zero, S510 opd, and S510 diff. The solution to the combination performed at step S512 renders the kernel A[ij] at step S514.

The imaging of a simulation system in accordance with the exemplary embodiment of the present invention will now be described with respect to coherent imaging, incoherent imaging with the Hopkins model, and with respect to the basis set decomposition.

COHERENT IMAGING

Pupil Plane

The field at the mask exit plane φ [ s ] m , x

Figure US06738859-20040518-M00029

is given as the modulation of the incident field φ [ s ] m , i

Figure US06738859-20040518-M00030

by the mask transfer matrix T. For an infinitesimally thin mask layer, T is effectively diagonal (For a basis that satisfies r|−η=η|r a diagonal matrix r|T|rimplies that η|T|η′=f(η−η′)): φ [ s ] m , x r = r φ [ s ] m , i r r T r δ ( r , r ) = φ [ s ] m , i T r ( 46 )

Figure US06738859-20040518-M00031

The field at the pupil entrance plane follows via equation (39) as

φ [ s ] p , i s p = ik 0 φ [ s ] m , x G 0 s p ( 47 ) = ik 0 φ [ s ] m , i TG 0 s p ( 48 )

Figure US06738859-20040518-M00032

Substrate Plane

The propagated image at the substrate plane follows according to equation (44) as the field propagated through vacuum segment 1 from the pupil-plane exit field φ [ s ] p , x

Figure US06738859-20040518-M00033
φ [ s ] w , i r w = ik 0 φ [ s ] p , x G 1 r w ( 49 )
Figure US06738859-20040518-M00034

The pupil-plane exit field itself is the pupil plane entrance field φ[s] p,i propagated by the lens transfer matrix k|L1|k′. The substrate plane field thus follows as φ [ s ] w , i r w = ik 0 φ [ s ] p , i L 1 G 1 r w ( 50 )

Figure US06738859-20040518-M00035

The lens transfer matrix is assumed to be diagonal in Fourier space, k|L 1|k′=k|L 1|kδ(k,k′). Using equation (47) the substrate plane field may be expressed as a function of the field at the mask input plane as φ [ s ] w , i r w = - k 0 2 φ [ s ] m , i TG 0 L 1 G 1 r w ( 51 )

Figure US06738859-20040518-M00036

Source Plane

Coherent imaging assumes a plane wave incident at the mask at incidence angle s. Illumination at this angle is equivalent to illumination at normal incidence with a phase modulation of the mask plane amplitude by ks=k0 sin s=k0ŝs. The scalar field at the mask exit plane for arbitrary incidence angle can thus be expressed in terms of normal incidence as: φ [ s ] m , i r = φ [ 0 ] m , i r k s r ( 52 )

Figure US06738859-20040518-M00037

Under Köhler illumination the field φ [ 0 ] m , i r

Figure US06738859-20040518-M00038

reflects a plane wave of normal incidence. The imaginary part of such a plane wave is a globally uniform phase factor and may be factored out. What remains is the real part of φ [ 0 ] m , i r

Figure US06738859-20040518-M00039

reflecting the weight of the originating source point in the illumination aperture: φ [ 0 ] m , i r = w ( ϑ s ) , ( 53 )

Figure US06738859-20040518-M00040

Using the above illumination, the substrate plane field for point source located at ks then follows as: φ [ s ] w , i r w = - w ( ϑ s ) k 0 2 r m k s r m r m TG 0 L 1 G 1 r w ( 54 )

Figure US06738859-20040518-M00041

Fraunhofer approximation

The above model expresses a Fresnel approximation of the lens system and is non-linear. Several approximations follow to linearize the above imaging system. Expanding equation (54) into its spectral components yields φ [ s ] w , i r w = - w ( ϑ s ) k 0 2 r m s p k s r m r m T r m r m G 0 s p s p L 1 s p s p G 1 r w ( 55 ) = - w ( ϑ s ) k 0 2 ( 4 π ) 2 d 0 d 1 r m s p exp [ k s r m ] r m T r m P ( s p ) ( 56 ) x exp [ - k 0 ( ( r m - s p ) 2 2 d 0 - s p 2 2 f 1 + ( s p - r w ) 2 2 d 1 ) ] ( 57 )

Figure US06738859-20040518-M00042

The argument of the exponential may be evaluated via: In A = i k 0 s p ( r m d 0 + r w d 1 ) - i k 0 s p 2 2 ( 1 d 0 + 1 d 1 - 1 f ) - i k 0 1 2 ( r m 2 d 0 + r w 2 d 1 ) ( 58 )

Figure US06738859-20040518-M00043

In the last term, the sub-term associated with k 0 r w 2 2 d 1

Figure US06738859-20040518-M00044

will fall out when squaring the field to obtain the intensity of the field at the substrate plane. Under the assumption that the image at the substrate plane approximately mirrors the image at the mask plane, rw˜−Mrm, the sub-term k 0 r m 2 2 d 0

Figure US06738859-20040518-M00045

can be eliminated for the same argument.

Defocus Term

The center term in the above described exponential relates to the focus condition of the system. For a perfectly focused system, this term disappears according to equation (34). For a system under small defocus of magnitude ζ, a Taylor expansion yields: 1 d 1 + 1 d 1 - 1 d 1 2 ( 59 )

Figure US06738859-20040518-M00046

wherein a phase term accounting for defocus thus follows as: φ def = k 0 s p 2 2 d 1 2 ( 60 )

Figure US06738859-20040518-M00047

A more accurate defocus model follows by calculating the true optical path difference (“OPD”) of the Gaussian reference sphere: φ def ( ) = k 0 ( 1 - σ x ) ( 61 ) = k 0 2 - s ^ p 2 ( 62 )

Figure US06738859-20040518-M00048

Rest of Terms

The first term in equation (58) contains the main imaging information and corresponds to a Fourier transformation of the system. Introducing the scaled coordinates equation (35) this term follows as: X = i k 0 s p ( r w d 1 + r m d 0 ) ( 63 ) = i k 0 s p ( r w d 1 - r ^ m d 1 ) ( 64 ) = i s ^ p ( r w - r ^ m ) ( 65 )

Figure US06738859-20040518-M00049

Defining P ( s p ) = P ( s p ) exp [ k 0 s p 2 2 d 1 2 ] ς = P ( s p ) exp [ s ^ p 2 2 k 0 ] ς ( 66 )

Figure US06738859-20040518-M00050

the lens system equation (55) then follows as φ [ s ] w , i r w = - w ( ϑ s ) k 0 2 d 0 d 1 r m s p s p exp [ k s r m ] r m T r m r ^ m s ^ p s p P s p s ^ p r w δ ( s p - s p ) ( 67 )

Figure US06738859-20040518-M00051
Define r ^ m T ^ r ^ m = r m T r m , s ^ p P ^ s ^ p = s p P s p , then φ [ s ] w , i r w = w ( ϑ s ) s ^ s T ^ P ^ r w ( 68 )
Figure US06738859-20040518-M00052

INCOHERENT IMAGING: HOPKINS MODEL

In the following, the “hat” notation is dropped and scaled coordinates according to equation (35) are assumed throughout. For incoherent imaging the intensity at the substrate plane follows as a weighted summation over all independent point sources ŝs: I ( r w ) = k s φ [ s ] w , i r w 2 ( 69 ) = k s r w PT s ^ s w ( s ^ s ) 2 s ^ s TP r w ( 70 ) = k s r w P k k T s ^ s w ( s ^ s ) 2 s ^ s T k k P r w k k ( 71 )

Figure US06738859-20040518-M00053

Let

t(k′−k)=k′|T|kq′=k′−ŝ s q=k−ŝ s  (72)

then

I(rw)=∫dqdq′dk s r w |P|q′+ŝ s z,901 t(q′)w(ŝ s)2 t*(q)q+ŝs |P|r w  (73)

=∫dqdq′t(q′)t*(q)∫dk s r w |P|q′+ŝ s w (ŝ s)2 q+ŝ s |P|r wz,901   (74)

since (k′|P|k is diagonal define P(k):=k|P|k:

I(r w)=∫dqdq′t(q′)t*(q)∫dk s r w |q′+ŝ s P*(q′+ŝ s)w(ŝ s)2 q+ŝ s)  (75)

=∫dqdq′t(q′)t*(q)r w |q′−q∫dk s P*(q′+ŝ s)w(ŝ s)2 P(q+ŝ s)  (76)

Define the Transmission Cross Coefficient (TCC) function T(q′,q)

T(q′,q)=∫dk s P*(q′+ŝ s)w(ŝ s)2 P(q+ŝ s)  (77)

then

I(r w)=∫dqdq′r w |q′t(q′)C(q′,q)t*(q)q|rw  (78)

Assume a factorization exists such that T ( q , q ) = ij η i * ( q ) A ij η j ( q ) ( 79 )

Figure US06738859-20040518-M00054

where ηi(q) forms an orthogonal basis. Combine equation (77) and equation (79): ij η i * ( q ) A ij η j ( q ) = k s P * ( q + s ^ s ) w ( s ^ s ) 2 P ( q + s ^ s ) ( 80 )

Figure US06738859-20040518-M00055

Let Ni=(ηiηi) be L2-norm of ηi. Left- and right multiply equation (80) with the orthogonal basis ηij followed by an integration over the arguments: A ij = 1 N i N j q q k s η i ( q ) P * ( q + s ^ s ) w ( s ^ s ) 2 P ( q + s ^ s ) η j * ( q ) ( 81 )

Figure US06738859-20040518-M00056

An orthogonal pupil projection coefficient pi(k) may then be defined as: Pi ( k -> ) = 1 N i q -> P ( q -> + k -> ) η i * ( q -> ) ( 82 ) 1 N i q -> P ( q -> ) η i * ( q -> - k -> ) ( 83 )

Figure US06738859-20040518-M00057

In accordance with the present invention, pi(k) may be pre-calculated for any possible pupil configuration, i.e., considering non-limiting parameters such as NA, focus, aberration, etc. The radial part of the P(k) is typically a circular aperture. The phase part describes aberrations of the lens field.

Using the orthogonal pupil projection, the coefficient matrix, or kernel, Aij of equation (82) follows as:

A ij =∫dkw(k)p i*(k)p j(k)  (84)

Note that Aij is Hermitean.

Step S506 may be performed in accordance with above-described equations (20) and (19), and as illustrated with respect to FIG. 7. In a first step S702, the column a=0 is initialized in accordance with equations (11) or (20), wherein each entry in the column is seeded with an incomplete gamma function. In the next step S704, the values of column a=0 are propagated to the column to the right in accordance with equations (10) or (19), wherein each entry in the column is filled according to recurrence. After repeating step S704 until row m=0 is fall, the resulting indefinite integrals, values for J[a](ki) or J[a](xi), may be determined. As such, the present invention generates a table of indefinite integrals based on a recurrence over a seed array of incomplete gamma functions.

Steps S508-S514 will now be described in more detail.

Algorithms: Aerial Image

a. Pupil

Combining equation (82) and equation (66), the orthogonal pupil projection coefficient follows as p a ( s ^ s ) = 1 N i q ^ P ( q ^ ) exp [ q ^ 2 2 k 0 ς ] η a * ( q ^ - s ^ s ) ( 85 )

Figure US06738859-20040518-M00058

Approximation 1: Aberration Model

An aberration model is obtained by modulating the phase distortion over the pupil opening. Normalize the pupil coordinates with respect to NA=1: f = q ^ k 0 ( 86 )

Figure US06738859-20040518-M00059

using Z4=2ƒ2−1 the phase error K caused by defocus can be expressed as: Φ 4 ( f , ς ) = q ^ 2 2 k 0 ς = 1 4 k 0 ς ( Z 4 + Z 1 ) ( 87 )

Figure US06738859-20040518-M00060

The constant phase term Z1 may be ignored. Higher order terms of the phase error may be loaded externally from a lens aberration map via a coefficient set αn. (Φn:=anZn).

Define Φ ( f , ς ) = i = 4 N Φ i ( 88 )

Figure US06738859-20040518-M00061

The orthogonal pupil projection coefficient then follows by numerical integration of p a ( s ^ s , ς ) = 1 N i 0 q ^ exp [ Φ ( f , ς ) ] η a * ( q ^ - s ^ s ) ( 89 )

Figure US06738859-20040518-M00062

For terms that have only radial dependence (q:=|{circumflex over (q)}|) the integration may be simplified as: p a ( s ^ s , ς ) = 1 N i 0 k NA q q exp [ Φ ( f , ς ) ] 0 2 π φη a * ( q ^ - s ^ s ) ( 90 )

Figure US06738859-20040518-M00063

Approximation 2: Zero Defocus

For lenses without aberrations, the pupil function is one over the domain of the aperture and zero outside. The pupil aperture may then be expressed as a finite circular integration: p a ( s ^ s , ς ) = 1 N i 0 q ^ exp [ q ^ 2 2 k 0 ς ] η a * ( q ^ - s ^ s ) ( 91 )

Figure US06738859-20040518-M00064

For a lens system that is in-focus (ζ=0) equation (85) reduces to a convolution of the pupil aperture with the spectral basis and pi 0({circumflex over (q)}i, ŝs) p a ( s ^ s ) = 1 N i 0 q ^ η a * ( q ^ - s ^ s ) ( 92 )

Figure US06738859-20040518-M00065

The circular aperture may be approximated by a superposition of rectangular domains β, as illustrated in FIG. 3. FIG. 10, on the other hand, illustrates the improved method of the present invention, wherein for each domain β, the pupil convolution evaluates to p a B ( s ^ s ) = p a χ B χ ( s ^ s , x ) p a y B y ( s ^ s , y ) ( 93 ) p a x B x ( s ^ s , x ) = 1 Na x b x0 b x1 q ^ x η 1 D * a x ( q ^ x - s ^ s , x ) ( 94 )

Figure US06738859-20040518-M00066

An efficient method for evaluating the above one-dimensional integral, will now be described with respect to FIG. 11.

From equation (17) the zero defocus case may be expressed as

p α(ŝ s)=I α x k(dq x 0 ,dq x 1I α y k(dq y 0 ,dq y 1)  (95)

Sampling over a finite grid ks, a finite approximation to Aij follows as: A ij = Δ 2 s ^ s s w ( s ^ s ) p i * ( s ^ s ) p j ( s ^ s ) ( 96 )

Figure US06738859-20040518-M00067

Note that ηi*(k), and thus pi 0s), are purely real for even indices and purely imaginary for odd indices. The image amplitude is evaluated using only the terms 2Re{Aij}. Thus, for in-focus conditions all entries in Aij that are purely imaginary may be disregarded, as illustrated in FIG. 11A, as sub-block ‘D’. The remaining diagonal A and sub-blocks B and C may be organized in software as illustrated in FIG. 11B.

Approximation 3: First Order Defocus

A first order approximation towards defocus aberration follows by calculating a series expansion of Pa(ŝs) around ζ=0 up to the first order term: p a ( s ^ s , ς ) p a ( s ^ s , 0 ) + ς p a ( s ^ s , ς ) ς ς = 0 ( 97 )

Figure US06738859-20040518-M00068

The first term is given in equation (95). The second term may be evaluated as: ς p a ( s ^ s , ς ) = i 2 k 0 N i 0 q ^ q ^ 2 exp [ i q ^ 2 2 k 0 ς ] η a * ( q ^ - s ^ s ) ( 98 )

Figure US06738859-20040518-M00069

For ζ=0 this term follows as: ς p a ( s ^ s , ς = 0 ) = i 2 k 0 N i o q ^ q ^ 2 η a * ( q ^ - s ^ s ) ( 99 )

Figure US06738859-20040518-M00070

A first and second order correction to the image kernel follow as A ij ( 1 ) = Δ 2 s ^ s s w ( s ^ s ) [ P i * ( s ^ s ) ζ P j ( s ^ s ) + ( ζ P i * ( s ^ s ) ) P j ( s ^ s ) ] ( 100 ) A ij ( 2 ) = Δ 2 s ^ s s w ( s ^ s ) ζ p i * ( s ^ s ) ζ p j * ( s ^ s ) ( 101 )

Figure US06738859-20040518-M00071

Note that Aij (1) is Hermitean with even-even and odd-odd elements purely imaginary entries while Aij (2) is Hermitean with even-odd elements purely imaginary. Calculation of the image intensity yields a bilinear form with a coherent vector . For binary, as well as 180° phase shift masks, all entries iε are real. For Aij (1) thus only the even-odd and odd-even elements are of relevance while for Aij (2) only the even-even and odd-odd elements contribute to the image intensity.

The first order correction to the image intensity then takes the form: I ( r , ζ ) nm r g n A nm g m r + r g n A nm ( 1 + 2 ) g m r ζ ( 102 )

Figure US06738859-20040518-M00072

The first order defocus model can be utilized to rapidly calculate a number of image planes throughout the thickness of the resist profile. As long as the focus deviation over the resist thickness is small (comparing the phase distortion in the outer pupil ring vs 2π), the first order approximation gives a sufficiently accurate model of the defocus behavior through a resist film of finite thickness.

Algorithm 4: Improved OPD integration scheme

For a general solution of equation (91), the following steps may be used:

1. Discretize the domain of the pupil over a finite grid with indices kx, ky, sx, sy.

2. Build a matrix of OPD values in the pupil plane MP(kx,ky,ζ):=circ(k)exp[iΦ(kx,ky,ζ)]

3. Build vector of basis function values in first dimension: A(ax, qx):=η*a x a (qx)

4. Calculate the following vector: C ( k x , a y ) [ s y ] = k y M P ( k x , k y , ζ ) A ( k y - s y , a y ) ( 103 )

Figure US06738859-20040518-M00073

5. Use the above matrix of vectors to combine all calculations in the second dimension: Pa ( s x , s y , a x , a y ) = 1 N i k a A ( k x - s x , a x ) C ( k x , a y ) [ s y ] ( 104 )

Figure US06738859-20040518-M00074

Incoherent Imaging: Hopkins Model with Diffusion

In the discussion immediately below, the Hopkins model is modified to include the effects of photoactive compound diffusion in the resist. An isotropic Gaussian diffusion model is assumed. Diffusion is modeled as convolution with a Gaussian kernel: r Z 2 r = 1 2 πσ 2 - ( r - r ) 2 2 σ 2 ( 105 )

Figure US06738859-20040518-M00075

with

σ={square root over (2Dt)}  (106)

Assuming the photoactive compound concentration is linear in I(r), diffusion may be approximated by replacing equation (73) with:

r ω |→r ω |Z|  (107)

Comparing the above to equation (70), this is equivalent to substitute

P→ZP  (108)

The intensity in equation (74) then follows as:

I(rw)=∫dqdq′t(q′)t*(q)∫dk s r w |ZP|q′+ŝ s w(ŝ s)2 q+ŝ s |PZ|r w  (109)

The bracketed term inside evaluates to: r w Z P q + s ^ s = k k r w k k Z k k P q + s ^ s ( 110 ) = k r w k k Z q + s ^ s P ( q + s ^ s ) ( 111 )

Figure US06738859-20040518-M00076

If r|Z|r′=ƒ(r−r′), then z is diagonal in k-space. Thus:

r w |ZP|q′+ŝ s =r w |q′+ŝ s Z(q′+ŝ s)P(q′+ŝ s)  (112)

Therefore, diffusion can be modeled by including the Fourier transform of the Gaussian kernel equation (105) into the calculation of the orthogonal pupil projection coefficient (c.f. equation (82)): P i ( k ) = 1 N i q Z ( q + k ) P ( q + k ) η t * ( q ) ( 113 )

Figure US06738859-20040518-M00077

As relating to FIG. 6:

Point Decomposition

Define:

r w | i =∫dkr w |kt|kk|η i   (114)

Then equation (78) can be expressed as: I ( r w ) = ij A ij r w g i g j r w ( 115 )

Figure US06738859-20040518-M00078

i|rw) amounts to a convolution integral in real space:

i |r=∫dr′η i |r−r′t|r′*  (116)

Decompose the mask transmission function into a disjoint set t r = p t p 1 p ( r ) ( 117 )

Figure US06738859-20040518-M00079

Where tp is the complex transmission of the layout structure indicated by p and 1p an indicator function of unit value over the support of p. For Manhattan geometry's 1p is rectangular and may be factored as

1p=1p x ·1p y   (118)

and thus g i r = p t p * r η i r - r 1 p ( r ) ( 119 )

Figure US06738859-20040518-M00080

Reduction of Field Integral

The above expressions reduce the mask transmission function to a summation over an indicator function 1p. Furthermore, for Manhattan geometry's, this indicator function factors into the Cartesian product 1p=1p x ·1p y . The next step is to simplify the integration in equation (117) utilizing the above reduction of the mask transmission function.

Factorization of the indicator function is matched by the choice of the spectral representation as discussed above with respect to basis set decomposition. The basis ηi itself also factors into a Cartesian product ηnn x x ·ηn y y. This permits decomposition of the two-demensional field integral of equation (117) into a product of two one-dimensional field integrals. Define: I n x ( p x 0 , p x 1 ) := x η n x x x - x 1 p x x ( 120 ) = p x , 0 p x , 1 x η n x x x - x ( 121 ) = x - p x , 0 x - p x , 1 x η n x x x Where ( 122 ) p x 0 := x - p x , 0 lower boundary ( 123 ) p x 1 := x - p x , 1 upper boundary ( 124 )

Figure US06738859-20040518-M00081

Using the Gamma-function factorization as discussed above with respect to the spectral basis, the above integration may be reduced to a recurrence over the semi-indefinite integrals Ja(x) via equations (4), (9) and (10).

The above expression equation (117) then simplifies to: g n r = p t p * I n x ( p x 0 , p x 1 ) · I n y ( p y 0 , p y 1 ) ( 125 )

Figure US06738859-20040518-M00082

A particular advantage of this representation follows when several layout features line up along a Cartesian dimension. Assume for example q ε Ω1 to be a subset of features that are vertically stacked up and have identical transmission tΩi. Then for all q the values of qx,0=c0 and qx,1 =c1 are constant. The above expression then reduces to: g n Ω i r = t Ω i * 1 n X ( c x 0 , c x 1 ) q Ω i 1 n y ( q y 0 , q y 1 ) ( 126 )

Figure US06738859-20040518-M00083

Intensity Calibration

For a fully transparent mask, Σp1p(r)=1, tp=1 and equation (117) yields: g I r = r η i r - r ( 127 ) = I n x x ( - , ) I n y y ( - , ) ( 128 )

Figure US06738859-20040518-M00084

Dark Field Reticle (binary)

A binary darkfield mask has no background transmission while features have a transmission of 1. For Manhattan geometry features factor according to:

1p=1p x ·1p y   (129)

Clear Field Reticle (binary)

For a binary clear field mask features have zero transmission (0p) while the background has unit transmission. Note that p 1 p + p 0 p = 1 ( 130 )

Figure US06738859-20040518-M00085

Thus:

i clear |r= i |r− i dark |r  (131)

Clear Field Mask (binary attenuated phase shift)

For an attenuated phase shift mask with 180° phase shift and attenuation factor α, the transmission of features is (−α) while the background transmission is +1. Thus t r = p 1 p + ( r ) - a p 1 p - ( 132 )

Figure US06738859-20040518-M00086

Note again that 1p +and 1p completely cover the simulation domain: p 1 p + + p 1 p - = 1 ( 133 )

Figure US06738859-20040518-M00087

Thus t r = 1 - p 1 p - - a p 1 p - ( 134 ) = 1 - ( a + 1 ) p 1 p - ( 135 )

Figure US06738859-20040518-M00088

Clear Field Reticle (ternary attenuated phase shift)

A ternary attPSM clear field reticle consists of three transmission domains: a 0° phase fully transmissive clear field region 1p +, a 180° phase shifted region 1p with transmission α, and a chrome blocking region 0p. A full partition of the mask area follows by the disjoint union of all three domains: p 1 p + + p 1 p - + q 0 q = 1 ( 136 )

Figure US06738859-20040518-M00089

The mask transmission function can be expressed as t r = p 1 p + ( r ) - a p 1 p - ( 137 ) = 1 - p 1 p - - a p 1 p - - q 0 q ( 138 ) = 1 - ( a + 1 ) p 1 p - - q 0 q ( 139 )

Figure US06738859-20040518-M00090

The coherent field vector follows as

i cattsm |r= i |r−(α+1)i psm |r− i chrome |r  (140)

Dark Field Reticle (ternary attenuated phase shift)

The domain partition of a ternary attPSM darkfield mask is identical to the domain partition of a ternary attPSM clearfield mask. The mask transmission function however is expressed in terms of 1 p + and 1 p - :

Figure US06738859-20040518-M00091

t / r = p 1 p + ( r ) - a p 1 p - ( 141 )

Figure US06738859-20040518-M00092

and thus the coherent field vectors follows as:

i dattpsmic |r= i + |r−α i |r  (142)

For an attPSM contact mask, the number of rectangles can be reduced through a different linear combination of 1+and 1. For a contact at index p define an ‘outer frame region’ 1ƒ that includes both the 0° and the 180° region as: 1 p f = 1 p + + 1 p - ( 143 )

Figure US06738859-20040518-M00093

the mask transmission function then follows as t r = p 1 p + ( r ) - a1 p - ( 144 ) = p 1 p + ( r ) - a ( 1 p f - 1 p + ) ( 145 ) = p ( 1 + a ) 1 p + ( r ) - a1 p f ( 146 )

Figure US06738859-20040518-M00094

the coherent field vector can then be expressed as

i dattpsm |r=(1+α)i + |r−α i ƒ |r  (147)

Fast Implementation of Zero and OPD Model

The present invention provides an efficient method for calculating orthogonal pupil projections in the zero-defocused models, as illustrated in FIG. 10. Equation (92) is used to calculate an integral over the circular pupil aperture in (x,y) space. As illustrated in FIG. 10, the center of the aperture is shifted by S s . The method for performing the algorithm as illustrated in FIG. 10 is as follows. First is an angular step-size of 45°, wherein the point at the circle arc intersecting a ray emanating from the center is located. Next is to find the three mirror points, across the center and across the x and y axis through the center of the circle. These points are connected to form the rectangle B0. Then the contribution of B0 to p[a] according to the equations (95) and (17) is determined.

The following steps are then performed until the resulting rectangle becomes smaller than a discrete increment of the pupil grid. The angular step-size is reduced by half. Again, the point at the circle arc intersecting a ray emanating from the center at the current angle is determined. Again the symmetrical point is determined and the new set of rectangles is determined. Then the contribution of the new rectangles to p[a] according to the equations (95) and (17) is determined.

The method of calculating the area within the pupil as described with reference to FIG. 10, is much more efficient than the prior art system of FIG. 3. This is because in the method of FIG. 10, every discrete portion of the pupil is not calculated, thus a large amount of calculation time is saved. Specifically, the method of FIG. 10 uses a smaller number of rectangles to approximate a circular pupil shape.

Step S408 will now be further described with respect to FIG. 6. The initialization step S602 comprises three steps, S604, S606, and S608. At step S604 a discrete grid of the mask is specified for the geometric sampling. Methods for performing this step are known in the art. Step S606, however, is performed contrary to that of the prior art.

As opposed to arranging the data of the geometry for discrete sampling points on the grind of the mask as in the prior art systems, the present invention tabulates a one-dimensional array. In other words, the prior art method uses a one-dimensional array for the spectral indices and a two-dimensional array for the geometrical indices, thereby resulting in an array of two-dimensional tables. On the other hand, the method of the present invention uses a one-dimensional array for the spectral indices and a one-dimensional array for the geometrical indices, thereby resulting in an array of one-dimensional tables.

Specifically, an array of seed-elements for the spectral basis of each discrete point within a mask grid corresponding to the sample area is tabulated. Each seed-element is an incomplete gamma function J[a], such as is described above with respect to equation (11) and equation (10). The final initialization step S608 calculates the clear-field exposure reference and saves the value for subsequent exposure dose calibration with equation (128) and equation (9).

Step S610 will now be described in more detail. In order for an aerial image of a mask pattern to be simulated, the geometry of the respective mask must be decomposed into non-overlapping rectangles. As further illustrated in FIG. 8, item 800 is a predetermined proximity window containing an image of item 802, a sample mask comprising a plurality of sample features 804-808. Each feature is decomposed into non-overlapping rectangles. For example, feature 804 is decomposed into non-overlapping rectangles 810 and 812.

A circular proximity window of radius r1,prox may be defined as the domain for which the normalized edge variation of the zero-order basis 0|r remains larger than or equal to εacc. The boundary of this domain follows as: ε acc ( r 1 , prox ) := η 0 x | r 1 , prox η 0 x | r = 0 = e - α 2 r 1 , prox 2 / 2 Thus ( 148 ) r 1 , prox = - 2 ln ε acc α ( 149 )

Figure US06738859-20040518-M00095

In essence, the proximity window defines the set of all rectangles that affect the sampled area. Specifically, in this example, as illustrated in FIG. 8, features 814-818 do not have an affect on the aerial image of features 804-808. Therefore, features 814-818 are not within the proximity window.

Step S612 will now be described in more detail. Once the features within the sampling window have been decomposed into non-overlapping rectangles, the corresponding orthogonal projections of the features of the mask onto the basis set are calculated in accordance with equation (125) and equation (9).

Step S614 will now be described in more detail. Once the orthogonal projections have been calculated in step S612, corrections may need to be applied, for example, depending on the mask. If the mask is a clear field mask, then equation (131) may be used to correct the orthogonal projections. Further, if the mask is an attenuated phase-shift mask, then equation (140) may be used to correct the orthogonal projections. Finally, if the mask is a ternary attenuated phase-shift mask, then equation (142) may be used to correct the orthogonal projections. Once the corrections have been applied in step S614, the final corrected orthogonal projection of the mask transmission function [i] is attained.

Intensity Summation

Returning back to FIG. 4, once steps S404 and S408 have been performed, the image intensity distribution may be calculated at step S410. Step S410 will now be further explained with respect to FIG. 9. As illustrated in FIG. 9, at step S906, the A[ij] from step S902 is multiplied with the [r] from step S904, in a bilinear form. This calculation provides the image intensity I(r) at point r. Furthermore, the intensity gradient at point r may be calculated at step S908. As illustrated in step S912, the intensity gradient may be measured with respect to the gradient in either the x or y coordinate axis.

Specifically, the image intensity I(r) at a particular sampling point, such as in step S906, can then be calculated as I ( r ) = nm r | g n A nm g m | r ( 150 ) i I ( r ) = 2 R e nm A nm r | g n ( m i 2 g [ m i - 1 i ] | r - g [ m i + 1 i ] | r ) ( 151 )

Figure US06738859-20040518-M00096

A numerical implementation may take advantage of the hermiticity of Anm. The basis η1(r) is real. For binary masks, as well as 180° phase shift masks, tp is additionally real. Thus, the number of summation terms may be cut approximately in half: I ( r ) = n A nm r | g n g n | r + n > m 2 ( R e { A nm } ) r | g n g m | r ( 152 )

Figure US06738859-20040518-M00097

Dose Calibration

For a computational implementation, a calibration may be used against a clear field area for absolute exposure calculations. For example, using equation (128), the intensity of the clear-field exposed area then follows according to equation (150) as: I = ij A ij r | g i g j | r ( 153 )

Figure US06738859-20040518-M00098

Therefore, given an exposure dose D, the local intensity sampled at point r can then be calculated as: D ( r ) = D I ij A ij r | g i g j | r ( 154 )

Figure US06738859-20040518-M00099

Equation (150) calculates I, which is the intensity calculated by the non-normalized algorithm for 100% exposure. Therefore, in order to calibrate the systems to give an exposure dose value D as specified by the user, a prefactor of D/I4 is applied in step S906.

The system and method of the present invention may be incorporated into many applications. Non-limiting examples include: core simulation engine as part of an Model OPC calculation; simulation engine for predicting and optimizing fabrication parameters, such as NA, illumination, etc., for drawn layout features; simulation engine for predicting and optimizing geometric assist features, such as serifs, scattering bars, etc, to enhance the printability and yield of drawn layout features; simulation engine to predict the printing of defects on a mask for a specified fabrication process; and simulation engine to predict and optimize the balance of lens aberration components to optimize the printability and yield of drawn layout features.

Although specific reference may be made in the text to the use of lithographic projection apparatus in the manufacture of integrated circuits, it should be explicitly understood that such apparatus has many other possible applications. For example, it may be employed in the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, liquid-crystal display panels, thin-film magnetic heads, etc. The skilled artisan will appreciated that, in the context of such alternative applications, any use of the terms “reticle” or “wafer” in this text should be considered as being replaced by the more general terms “mask” or “substrate”, respectively.

Furthermore, although this text has concentrated on lithographic apparatus and methods whereby a mask is used to pattern the radiation beam entering the projection system, it should be noted that the invention presented here should be seen in the broader context of lithographic apparatus and methods employing generic “patterning means” to pattern the said radiation beam. The term “patterning means” as here employed refers broadly to means that can be used to endow an incoming radiation beam with a patterned cross-section, corresponding to a pattern that is to be created in a target portion of the substrate; the term “light valve” has also been used in this context. Generally, the said pattern will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit or other device. Besides a mask (whether transmissive or reflective) on a mask table, such patterning means include the following exemplary embodiments:

(1) A programmable mirror array. One example of such a device is a matrix-addressable surface having a viscoelastic control layer and a reflective surface. The basic principle behind such an apparatus is that (for example) addressed areas of the reflective surface reflect incident light as diffracted light, whereas unaddressed areas reflect incident light as undiffracted light. Using an appropriate filter, the said undiffracted light can be filtered out of the reflected beam, leaving only the diffracted light behind; in this manner, the beam becomes patterned according to the addressing pattern of the matrix-adressable surface. An alternative embodiment of a programmable mirror array employs a matrix arrangement of tiny mirrors, each of which can be individually tilted about an axis by applying a suitable localized electric field or by employing piezoelectric means. Once again, the mirrors are matrix-addressable, such that addressed mirrors will reflect an incoming radiation beam in a different direction to unaddressed mirrors; in this manner, the reflected beam is patterned according to the addressing pattern of the matrix-adressable mirrors. The required matrix addressing can be performed using suitable electronic/computer means. More information on mirror arrays as here referred to can be gleaned, for example, from U.S. Pat. Nos. 5,296,891 and 5,523,193, and PCT patent applications WO 98/38597 and WO 98/33096, which are incorporated herein by reference.

(2) A programmable LCD array. An example of such a construction is given in U.S. Pat. No. 5,229,872, which is incorporated herein by reference.

Any reference to the term “mask” in the Claims and/or Description should be interpreted as encompassing the term “patterning means” as hereabove described.

In summary, although certain specific embodiments of the present invention have been disclosed, the present invention may be embodied in other forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefor to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (17)

What is claimed is:
1. A method for simulating an aerial image projected from an optical system, said optical system including a pupil and a mask plane, the method comprising the steps of:
providing a mask to the mask plane;
obtaining parameters for said optical system;
calculating a kernel based on an orthogonal pupil projection of said parameters of said optical system onto a first basis set;
obtaining parameters of said mask;
calculating a vector based on an orthogonal mask projection of said parameters of said mask onto a second basis set;
calculating a field intensity distribution using said kernel and said vector, and
obtaining aerial image data from said field intensity distribution.
2. The method of claim 1, wherein said parameters for said optical system include aberrations.
3. The method of claim 2, wherein said step of calculating a kernel corresponding to said parameters of said optical system includes the step of tabulating an array of incomplete gamma functions corresponding to respective points in said pupil of said optical system.
4. The method of claim 2, wherein said step of calculating a kernel corresponding to said parameters of said optical system further includes the step of tabulating an array of orthogonal pupil projection coefficients corresponding to respective points in said pupil of said optical system,
wherein said optical system is in-focus.
5. The method of claim 2, wherein said step of calculating a kernel corresponding to said parameters of said optical system further includes the step of tabulating an array of orthogonal pupil projection coefficients corresponding to respective points in said pupil of said optical system,
wherein said optical system is either not in-focus or has aberrations.
6. The method of claim 2, wherein said step of calculating a kernel corresponding to said parameters of said optical system further includes the step of tabulating an array of orthogonal pupil projection coefficients corresponding to respective points in said pupil of said optical system,
wherein said optical system accounts for effects of photoactive compound diffusion in a resist layer present on a substrate onto which an image of the mask is to be projected.
7. The method of claim 1, wherein said step of calculating a kernel corresponding to said parameters of said optical system includes the step of tabulating an array of incomplete gamma functions corresponding to respective points in said pupil of said optical system.
8. The method of claim 1, wherein said step of calculating a kernel corresponding to said parameters of said optical system further includes the step of tabulating an array of orthogonal pupil projection coefficients corresponding to respective points in said pupil of said optical system,
wherein said optical system is in-focus.
9. The method of claim 8, further comprising the step of combining sample weights of an illuminator profile of said optical system with said array of orthogonal pupil projection coefficients.
10. The method of claim 1, wherein said step of calculating a kernel corresponding to said parameters of said optical system further includes the step of tabulating an array of orthogonal pupil projection coefficients corresponding to respective points in said pupil of said optical system,
wherein said optical system is either not in-focus or has aberrations.
11. The method of claim 10, further comprising the step of combining sample weights of an illuminator profile of said optical system with said array of orthogonal pupil projection coefficients.
12. The method of claim 1, wherein said step of calculating a kernel corresponding to said parameters of said optical system further includes the step of tabulating an array of orthogonal pupil projection coefficients corresponding to respective points in said pupil of said optical system,
wherein said optical system accounts for effects of photoactive compound diffusion in a resist layer present on a substrate onto which an image of the mask is to be projected.
13. The method of claim 12, further comprising the step of combining sample weights of an illuminator profile of said optical system with said array of orthogonal pupil projection coefficients.
14. The method of claim 1, wherein said step of calculating a vector corresponding to said parameters of said mask further includes the step of specifying a proximity window within said mask for geometric sampling.
15. The method of claim 1, wherein said step of calculating a vector corresponding to said parameters of said mask further includes the step of decomposing a geometric pattern of said mask into a disjoint set of rectangles and tabulating an array of projections of the rectangles within a proximity window.
16. The method of claim 15, wherein said step of calculating a vector corresponding to said parameters of said mask further includes the step of correcting the array of projections of the rectangles based on the type of mask.
17. A device manufacturing method comprising the steps of:
(a) providing a substrate that is at least partially covered by a layer of radiation-sensitive material;
(b) providing a mask that contains a pattern;
(c) using a projection beam of radiation and an optical system to project an image of at least part of the mask onto a target portion of the layer of radiation-sensitive material,
whereby, prior to performing step (c), an aerial image to be projected from said optical system is simulated using a method comprising the steps of:
obtaining parameters for said optical system, which comprises a pupil and a mask plane;
calculating a kernel based on an orthogonal pupil projection of said parameters of said optical system onto a first basis set;
obtaining parameters of said mask, provided at said mask plane;
calculating a vector based on an orthogonal mask projection of said parameters of said mask onto a second basis set;
calculating a field intensity distribution using said kernel and said vector, and
obtaining aerial image data from said field intensity distribution.
US09948697 2000-09-12 2001-09-10 Method and apparatus for fast aerial image simulation Active 2022-08-01 US6738859B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US23195300 true 2000-09-12 2000-09-12
US09948697 US6738859B2 (en) 2000-09-12 2001-09-10 Method and apparatus for fast aerial image simulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09948697 US6738859B2 (en) 2000-09-12 2001-09-10 Method and apparatus for fast aerial image simulation

Publications (2)

Publication Number Publication Date
US20020062206A1 true US20020062206A1 (en) 2002-05-23
US6738859B2 true US6738859B2 (en) 2004-05-18

Family

ID=22871303

Family Applications (1)

Application Number Title Priority Date Filing Date
US09948697 Active 2022-08-01 US6738859B2 (en) 2000-09-12 2001-09-10 Method and apparatus for fast aerial image simulation

Country Status (5)

Country Link
US (1) US6738859B2 (en)
EP (1) EP1202119B1 (en)
JP (1) JP3636438B2 (en)
KR (1) KR100436831B1 (en)
DE (2) DE60110995D1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030061596A1 (en) * 2001-09-25 2003-03-27 Canon Kabushiki Kaisha Exposure apparatus, method of controlling same, and method of manufacturing devices
US20040122636A1 (en) * 2002-10-01 2004-06-24 Kostantinos Adam Rapid scattering simulation of objects in imaging using edge domain decomposition
US20050081178A1 (en) * 2003-10-08 2005-04-14 Sivakumar Swaminathan (Sam) Multiple exposure technique to pattern tight contact geometries
US20050132310A1 (en) * 2003-12-16 2005-06-16 International Business Machines Corporation Method for optimizing a number of kernels used in a sum of coherent sources for optical proximity correction in an optical microlithography process
US20050185159A1 (en) * 2004-02-20 2005-08-25 International Business Machines Corporation Fast model-based optical proximity correction
US20060048090A1 (en) * 2004-08-27 2006-03-02 Applied Materials Israel Ltd Simulation of aerial images
US20060048091A1 (en) * 2004-09-01 2006-03-02 Invarium, Inc. Method for correcting position-dependent distortions in patterning of integrated circuits
US20060215027A1 (en) * 2003-06-20 2006-09-28 Mitsubishi Denki Kabushiki Kaisha Picked-up image display method
US20070038585A1 (en) * 2005-08-15 2007-02-15 Thommes Family, Llc Method for simulating a response to a stimulus
US20070218176A1 (en) * 2006-03-08 2007-09-20 Mentor Graphics Corp. Sum of coherent systems (SOCS) approximation based on object information
US20070224526A1 (en) * 2006-03-17 2007-09-27 International Business Machines Corporation Fast method to model photoresist images using focus blur and resist blur
US20070253637A1 (en) * 2006-03-08 2007-11-01 Mentor Graphics Corp. Image intensity calculation using a sectored source map
US20070265725A1 (en) * 2006-05-15 2007-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Model Import for Electronic Design Automation
US7313777B1 (en) * 2005-08-01 2007-12-25 Advanced Micro Devices, Inc. Layout verification based on probability of printing fault
US20080275586A1 (en) * 2007-05-04 2008-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Novel Methodology To Realize Automatic Virtual Metrology
US20090027650A1 (en) * 2007-07-24 2009-01-29 Canon Kabushiki Kaisha Original plate data generation method, original plate generation method, exposure method, device manufacturing method, and computer-readable storage medium for generating original plate data
US20090053621A1 (en) * 2003-03-31 2009-02-26 Asml Masktools B.V. Source and Mask Optimization by Changing Intensity and Shape of the Illumination Source
US20090083693A1 (en) * 2007-09-25 2009-03-26 Synopsys, Inc. Flash-based updating techniques for high-accuracy high efficiency mask synthesis
US20090091736A1 (en) * 2007-10-03 2009-04-09 Canon Kabushiki Kaisha Calculation method, generation method, program, exposure method, and mask fabrication method
US20100037199A1 (en) * 2008-08-06 2010-02-11 Canon Kabushiki Kaisha Recording medium storing original data generation program, original data generation method, original fabricating method, exposure method, and device manufacturing method
US20100053580A1 (en) * 2008-07-15 2010-03-04 Canon Kabushiki Kaisha Computer readable medium and exposure method
US20100119961A1 (en) * 2008-11-06 2010-05-13 Jun Ye Methods and system for lithography calibration
US20100128969A1 (en) * 2008-11-24 2010-05-27 Brion Technologies Inc. Harmonic resist model for use in a lithographic apparatus and a device manufacturing method
US20100146475A1 (en) * 2008-11-10 2010-06-10 Yu Cao Methods and system for model-based generic matching and tuning
US20100157046A1 (en) * 2007-07-12 2010-06-24 Oliver Kienzle Method and apparatus for analyzing a group of photolithographic masks
US8339579B2 (en) 2005-07-15 2012-12-25 Canon Kabushiki Kaisha Exposure method
US20130010272A1 (en) * 2011-07-05 2013-01-10 Canon Kabushiki Kaisha Determination method, storage medium and information processing apparatus
US9091941B2 (en) 2011-02-21 2015-07-28 Nikon Corporation Fast illumination simulator based on a calibrated flexible point-spread function

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3867904B2 (en) * 2001-02-23 2007-01-17 エーエスエムエル ネザーランズ ビー.ブイ. Optimization of illumination for a specific mask pattern
US6906305B2 (en) * 2002-01-08 2005-06-14 Brion Technologies, Inc. System and method for aerial image sensing
US6828542B2 (en) 2002-06-07 2004-12-07 Brion Technologies, Inc. System and method for lithography process monitoring and control
US7053355B2 (en) 2003-03-18 2006-05-30 Brion Technologies, Inc. System and method for lithography process monitoring and control
US6782525B2 (en) * 2002-09-05 2004-08-24 Lsi Logic Corporation Wafer process critical dimension, alignment, and registration analysis simulation tool
US6807503B2 (en) 2002-11-04 2004-10-19 Brion Technologies, Inc. Method and apparatus for monitoring integrated circuit fabrication
JP4101770B2 (en) 2003-01-14 2008-06-18 エーエスエムエル マスクツールズ ビー.ブイ. Method and apparatus for providing optical proximity feature on reticle pattern for optical lithography in the deep sub-wavelength
US7594199B2 (en) 2003-01-14 2009-09-22 Asml Masktools B.V. Method of optical proximity correction design for contact hole mask
US7030966B2 (en) * 2003-02-11 2006-04-18 Asml Netherlands B.V. Lithographic apparatus and method for optimizing an illumination source using photolithographic simulations
US6839125B2 (en) * 2003-02-11 2005-01-04 Asml Netherlands B.V. Method for optimizing an illumination source using full resist simulation and process window response metric
US7180576B2 (en) * 2003-02-11 2007-02-20 Asml Netherlands B.V. Exposure with intensity balancing to mimic complex illuminator shape
US7245356B2 (en) * 2003-02-11 2007-07-17 Asml Netherlands B.V. Lithographic apparatus and method for optimizing illumination using a photolithographic simulation
US7471375B2 (en) * 2003-02-11 2008-12-30 Asml Netherlands B.V. Correction of optical proximity effects by intensity modulation of an illumination arrangement
US8027813B2 (en) * 2004-02-20 2011-09-27 Nikon Precision, Inc. Method and system for reconstructing aberrated image profiles through simulation
US7096452B2 (en) * 2003-06-24 2006-08-22 Micron Technology, Inc. Method and device for checking lithography data
US7376930B2 (en) 2003-06-30 2008-05-20 Asml Masktools B.V. Method, program product and apparatus for generating assist features utilizing an image field map
US20050015233A1 (en) * 2003-07-17 2005-01-20 International Business Machines Corporation Method for computing partially coherent aerial imagery
EP1513012B1 (en) 2003-09-05 2008-02-20 ASML MaskTools B.V. Method and apparatus for performing model based placement of phase-balanced scattering bars for sub-wavelength optical lithography
US7343271B2 (en) 2003-10-27 2008-03-11 International Business Machines Corporation Incorporation of a phase map into fast model-based optical proximity correction simulation kernels to account for near and mid-range flare
US7010776B2 (en) 2003-10-27 2006-03-07 International Business Machines Corporation Extending the range of lithographic simulation integrals
US7287239B2 (en) * 2003-10-27 2007-10-23 International Business Machines Corporation Performance in model-based OPC engine utilizing efficient polygon pinning method
US7366342B2 (en) * 2003-10-27 2008-04-29 International Business Machines Corporation Simultaneous computation of multiple points on one or multiple cut lines
US7055126B2 (en) 2003-10-27 2006-05-30 International Business Machines Corporation Renesting interaction map into design for efficient long range calculations
KR100927454B1 (en) 2003-10-31 2009-11-19 에이에스엠엘 마스크툴즈 비.브이. Using the improved mapping interference lithographic features optimized
KR20050043713A (en) * 2003-11-05 2005-05-11 에이에스엠엘 마스크툴즈 비.브이. Eigen decomposition based opc model
US7457838B2 (en) * 2003-12-03 2008-11-25 Marvell World Trade Ltd. Methods and apparatus for performing calculations using reduced-width data
KR100824031B1 (en) * 2004-01-30 2008-04-21 에이에스엠엘 마스크툴즈 비.브이. Method Of Predicting And Minimizing Model OPC Deviation Due To Mix/Match Of Exposure Tools Using A Calibrated Eigen Decomposition Model
US7620930B2 (en) 2004-08-24 2009-11-17 Asml Masktools B.V. Method, program product and apparatus for model based scattering bar placement for enhanced depth of focus in quarter-wavelength lithography
US7310796B2 (en) 2004-08-27 2007-12-18 Applied Materials, Israel, Ltd. System and method for simulating an aerial image
US7379170B2 (en) * 2005-05-02 2008-05-27 Invarium, Inc. Apparatus and method for characterizing an image system in lithography projection tool
DE602005019711D1 (en) 2005-07-15 2010-04-15 Imec Method and system for an improved lithographic process
JP4701030B2 (en) * 2005-07-22 2011-06-15 キヤノン株式会社 Exposure apparatus, setting method of setting the exposure parameters, an exposure method, a device manufacturing method, and program
US7788628B1 (en) * 2006-01-11 2010-08-31 Olambda, Inc. Computational efficiency in photolithographic process simulation
KR101315237B1 (en) * 2006-02-01 2013-10-07 어플라이드 머티리얼즈 이스라엘 리미티드 Method and system for evaluating a variation in a parameter of a pattern
JP5235322B2 (en) * 2006-07-12 2013-07-10 キヤノン株式会社 Mask data generation method and mask data generation program
KR100818999B1 (en) * 2006-10-09 2008-04-02 삼성전자주식회사 Manufacturing method of mask
US8576377B2 (en) * 2006-12-28 2013-11-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5038743B2 (en) * 2007-03-05 2012-10-03 株式会社東芝 Lithography simulation method and program
US7564545B2 (en) * 2007-03-15 2009-07-21 Kla-Tencor Technologies Corp. Inspection methods and systems for lithographic masks
US8975599B2 (en) * 2007-05-03 2015-03-10 Asml Netherlands B.V. Image sensor, lithographic apparatus comprising an image sensor and use of an image sensor in a lithographic apparatus
JP2009071125A (en) * 2007-09-14 2009-04-02 Canon Inc Method and program determining exposure condition
NL1036189A1 (en) 2007-12-05 2009-06-08 Brion Tech Inc Methods and System for Lithography Process Simulation Window.
JP2009192811A (en) * 2008-02-14 2009-08-27 Toshiba Corp Lithography simulation method and program
JP2009204823A (en) * 2008-02-27 2009-09-10 Toshiba Corp Simulation method and program for simulation
US8230369B2 (en) 2008-02-27 2012-07-24 Kabushiki Kaisha Toshiba Simulation method and simulation program
JP2010178047A (en) * 2009-01-29 2010-08-12 Brother Ind Ltd Image processing device, and program
JP4826637B2 (en) * 2009-01-29 2011-11-30 ブラザー工業株式会社 An image processing apparatus and program
US8479125B2 (en) * 2009-03-31 2013-07-02 Christophe Pierrat Lithography modeling and applications
DE102010045135A1 (en) * 2010-09-10 2012-03-15 Carl Zeiss Meditec Ag A method of characterizing a pattern on a mask and apparatus for carrying out the method
US8699003B2 (en) * 2011-06-07 2014-04-15 Nanya Technology Corp. Method for determining illumination source with optimized depth of focus
NL2009056A (en) * 2011-08-09 2013-02-12 Asml Netherlands Bv A lithographic model for 3d topographic wafers.
JP6238687B2 (en) * 2013-11-12 2017-11-29 キヤノン株式会社 Mask pattern creating method, a calculation method of an optical image
US9262820B2 (en) * 2014-05-19 2016-02-16 United Microelectronics Corporation Method and apparatus for integrated circuit design
US10001698B2 (en) * 2015-12-15 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd Layout hierachical structure defined in polar coordinate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644390A (en) 1994-01-31 1997-07-01 Nec Corporation Intensity distribution simulating method
US5922513A (en) 1995-12-08 1999-07-13 Hyundai Electronics Industries Co., Ltd. Illumination method and apparatus for the formation of micro patterns
EP0965823A2 (en) 1998-06-15 1999-12-22 Nec Corporation Method for analyzing light intensity distribution
US6052626A (en) 1997-01-16 2000-04-18 Nec Corporation Parametric analyzing method for calculating light intensity
JP2000243690A (en) 1999-02-22 2000-09-08 Nec Corp Light intensity distribution simulation system and method, and storage medium
US6171731B1 (en) * 1999-01-20 2001-01-09 Lsi Logic Corporation Hybrid aerial image simulation
US6223139B1 (en) * 1998-09-15 2001-04-24 International Business Machines Corporation Kernel-based fast aerial image computation for a large scale design of integrated circuit patterns
US20020041377A1 (en) * 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
US20030103189A1 (en) * 2001-09-11 2003-06-05 The Regents Of The University Of California Characterizing aberrations in an imaging lens and applications to visual testing and integrated circuit mask analysis

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644390A (en) 1994-01-31 1997-07-01 Nec Corporation Intensity distribution simulating method
US5922513A (en) 1995-12-08 1999-07-13 Hyundai Electronics Industries Co., Ltd. Illumination method and apparatus for the formation of micro patterns
US6052626A (en) 1997-01-16 2000-04-18 Nec Corporation Parametric analyzing method for calculating light intensity
EP0965823A2 (en) 1998-06-15 1999-12-22 Nec Corporation Method for analyzing light intensity distribution
US6223139B1 (en) * 1998-09-15 2001-04-24 International Business Machines Corporation Kernel-based fast aerial image computation for a large scale design of integrated circuit patterns
US6171731B1 (en) * 1999-01-20 2001-01-09 Lsi Logic Corporation Hybrid aerial image simulation
JP2000243690A (en) 1999-02-22 2000-09-08 Nec Corp Light intensity distribution simulation system and method, and storage medium
US20020041377A1 (en) * 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
US20030103189A1 (en) * 2001-09-11 2003-06-05 The Regents Of The University Of California Characterizing aberrations in an imaging lens and applications to visual testing and integrated circuit mask analysis

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Handbook of Epoxy Resin (Published Dec. 25, 1987) (separate English explanation).
Nick Cobb et al., "Fast, Low-Complexity Mask Design", SPIE vol. 2440, pp. 313-326, no date.
Pati, Y.C. et al "Exploiting Structure in Fast Aerila Image Computation for Integrated Circuit Paterns", IEEE Transactions on Semiconductor Manufacturing, vol. 10, No. 1, Feb. 1997, pp. 62-74.* *

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030061596A1 (en) * 2001-09-25 2003-03-27 Canon Kabushiki Kaisha Exposure apparatus, method of controlling same, and method of manufacturing devices
US7266480B2 (en) * 2002-10-01 2007-09-04 The Regents Of The University Of California Rapid scattering simulation of objects in imaging using edge domain decomposition
US20040122636A1 (en) * 2002-10-01 2004-06-24 Kostantinos Adam Rapid scattering simulation of objects in imaging using edge domain decomposition
US20070213962A1 (en) * 2002-10-01 2007-09-13 The Regents Of The University Of California Simulation of objects in imaging using edge domain decomposition
US7467072B2 (en) * 2002-10-01 2008-12-16 Kostantinos Adam Simulation of objects in imaging using edge domain decomposition
USRE44792E1 (en) * 2002-10-01 2014-03-04 The Regents Of The University Of California Rapid scattering simulation of objects in imaging using edge domain decomposition
US20090053621A1 (en) * 2003-03-31 2009-02-26 Asml Masktools B.V. Source and Mask Optimization by Changing Intensity and Shape of the Illumination Source
US8730452B2 (en) 2003-03-31 2014-05-20 Asml Masktools B.V. Source and mask optimization by changing intensity and shape of the illumination source and magnitude and phase of mask diffraction orders
US7864301B2 (en) 2003-03-31 2011-01-04 Asml Masktools B.V. Source and mask optimization by changing intensity and shape of the illumination source
US20110075124A1 (en) * 2003-03-31 2011-03-31 Asml Masktools B.V. Source and Mask Optimization By Changing Intensity and Shape of the Illumination Source
US20060215027A1 (en) * 2003-06-20 2006-09-28 Mitsubishi Denki Kabushiki Kaisha Picked-up image display method
US7800645B2 (en) * 2003-06-20 2010-09-21 Mitsubishi Denki Kabushiki Kaisha Image display method and image display apparatus
US6968532B2 (en) * 2003-10-08 2005-11-22 Intel Corporation Multiple exposure technique to pattern tight contact geometries
US20050081178A1 (en) * 2003-10-08 2005-04-14 Sivakumar Swaminathan (Sam) Multiple exposure technique to pattern tight contact geometries
US7127699B2 (en) * 2003-12-16 2006-10-24 International Business Machines Corporation Method for optimizing a number of kernels used in a sum of coherent sources for optical proximity correction in an optical microlithography process
US20050132310A1 (en) * 2003-12-16 2005-06-16 International Business Machines Corporation Method for optimizing a number of kernels used in a sum of coherent sources for optical proximity correction in an optical microlithography process
US7079223B2 (en) * 2004-02-20 2006-07-18 International Business Machines Corporation Fast model-based optical proximity correction
US20050185159A1 (en) * 2004-02-20 2005-08-25 International Business Machines Corporation Fast model-based optical proximity correction
US7634754B2 (en) * 2004-08-27 2009-12-15 Applied Materials, Israel, Ltd. Simulation of aerial images
US7620932B2 (en) * 2004-08-27 2009-11-17 Applied Materials, Israel, Ltd. Simulation of aerial images
US20060048090A1 (en) * 2004-08-27 2006-03-02 Applied Materials Israel Ltd Simulation of aerial images
US7331033B2 (en) * 2004-08-27 2008-02-12 Applied Materials, Israel, Ltd. Simulation of aerial images
US20080152234A1 (en) * 2004-08-27 2008-06-26 Haim Feldman Simulation of aerial images
US20080152212A1 (en) * 2004-08-27 2008-06-26 Haim Feldman Simulation of aerial images
US7246343B2 (en) * 2004-09-01 2007-07-17 Invarium, Inc. Method for correcting position-dependent distortions in patterning of integrated circuits
US20060048091A1 (en) * 2004-09-01 2006-03-02 Invarium, Inc. Method for correcting position-dependent distortions in patterning of integrated circuits
US8339579B2 (en) 2005-07-15 2012-12-25 Canon Kabushiki Kaisha Exposure method
US7313777B1 (en) * 2005-08-01 2007-12-25 Advanced Micro Devices, Inc. Layout verification based on probability of printing fault
US20070038585A1 (en) * 2005-08-15 2007-02-15 Thommes Family, Llc Method for simulating a response to a stimulus
US20110119643A1 (en) * 2006-03-08 2011-05-19 Mentor Graphics Corporation Sum of coherent systems (socs) approximation based on object information
US20070253637A1 (en) * 2006-03-08 2007-11-01 Mentor Graphics Corp. Image intensity calculation using a sectored source map
US20070218176A1 (en) * 2006-03-08 2007-09-20 Mentor Graphics Corp. Sum of coherent systems (SOCS) approximation based on object information
US7836423B2 (en) 2006-03-08 2010-11-16 Mentor Graphics Corporation Sum of coherent systems (SOCS) approximation based on object information
US8645880B2 (en) 2006-03-08 2014-02-04 Mentor Graphics Corporation Sum of coherent systems (SOCS) approximation based on object information
US20070224526A1 (en) * 2006-03-17 2007-09-27 International Business Machines Corporation Fast method to model photoresist images using focus blur and resist blur
US8238644B2 (en) * 2006-03-17 2012-08-07 International Business Machines Corporation Fast method to model photoresist images using focus blur and resist blur
US20110230998A1 (en) * 2006-05-15 2011-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Model import for electronic design automation
US8352888B2 (en) 2006-05-15 2013-01-08 Taiwan Semiconductor Manufacturing Company, Ltd. Model import for electronic design automation
US20070265725A1 (en) * 2006-05-15 2007-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Model Import for Electronic Design Automation
US8214772B2 (en) * 2006-05-15 2012-07-03 Taiwan Semiconductor Manufacturing Company, Ltd. Model import for electronic design automation
US7954072B2 (en) * 2006-05-15 2011-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Model import for electronic design automation
US20110231804A1 (en) * 2006-05-15 2011-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Model import for electronic design automation
US20080275586A1 (en) * 2007-05-04 2008-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Novel Methodology To Realize Automatic Virtual Metrology
US8682466B2 (en) 2007-05-04 2014-03-25 Taiwan Semiconductor Manufacturing Company, Ltd. Automatic virtual metrology for semiconductor wafer result prediction
US20100157046A1 (en) * 2007-07-12 2010-06-24 Oliver Kienzle Method and apparatus for analyzing a group of photolithographic masks
US8264535B2 (en) * 2007-07-12 2012-09-11 Carl Zeiss Sms Gmbh Method and apparatus for analyzing a group of photolithographic masks
US8239787B2 (en) * 2007-07-24 2012-08-07 Canon Kabushiki Kaisha Method of generating original plate data by repeatedly calculating approximate aerial image
US20090027650A1 (en) * 2007-07-24 2009-01-29 Canon Kabushiki Kaisha Original plate data generation method, original plate generation method, exposure method, device manufacturing method, and computer-readable storage medium for generating original plate data
US20090083693A1 (en) * 2007-09-25 2009-03-26 Synopsys, Inc. Flash-based updating techniques for high-accuracy high efficiency mask synthesis
US7831954B2 (en) * 2007-09-25 2010-11-09 Synopsys, Inc. Flash-based updating techniques for high-accuracy high efficiency mask synthesis
US20110016438A1 (en) * 2007-09-25 2011-01-20 Synopsys, Inc. Flash-based anti-aliasing techniques for high-accuracy high-efficiency mask synthesis
US8490032B2 (en) * 2007-09-25 2013-07-16 Synopsys, Inc. Flash-based anti-aliasing techniques for high-accuracy high-efficiency mask synthesis
US8059262B2 (en) 2007-10-03 2011-11-15 Canon Kabushiki Kaisha Calculation program, and exposure method for calculating light intensity distribution formed on image plane
US20090091736A1 (en) * 2007-10-03 2009-04-09 Canon Kabushiki Kaisha Calculation method, generation method, program, exposure method, and mask fabrication method
US20100053580A1 (en) * 2008-07-15 2010-03-04 Canon Kabushiki Kaisha Computer readable medium and exposure method
US8411253B2 (en) 2008-07-15 2013-04-02 Canon Kabushiki Kaisha Computer readable medium and exposure method
US20100037199A1 (en) * 2008-08-06 2010-02-11 Canon Kabushiki Kaisha Recording medium storing original data generation program, original data generation method, original fabricating method, exposure method, and device manufacturing method
US8321815B2 (en) * 2008-08-06 2012-11-27 Canon Kabushiki Kaisha Recording medium storing original data generation program, original data generation method, original fabricating method, exposure method, and device manufacturing method
US20100119961A1 (en) * 2008-11-06 2010-05-13 Jun Ye Methods and system for lithography calibration
US8418088B2 (en) 2008-11-06 2013-04-09 Asml Netherlands B.V. Methods and system for lithography calibration
US9009647B2 (en) 2008-11-06 2015-04-14 Asml Netherlands B.V. Methods and systems for lithography calibration using a mathematical model for a lithographic process
US8443307B2 (en) 2008-11-10 2013-05-14 Asml Netherlands B.V. Methods and system for model-based generic matching and tuning
US8893058B2 (en) 2008-11-10 2014-11-18 Asml Netherlands B.V. Methods and system for model-based generic matching and tuning
US20100146475A1 (en) * 2008-11-10 2010-06-10 Yu Cao Methods and system for model-based generic matching and tuning
US20100260427A1 (en) * 2008-11-10 2010-10-14 Yu Cao Delta tcc for fast sensitivity model computation
US8379991B2 (en) 2008-11-10 2013-02-19 Asml Netherlands B.V. Delta TCC for fast sensitivity model computation
US8682059B2 (en) * 2008-11-24 2014-03-25 Asml Netherlands B.V. Harmonic resist model for use in a lithographic apparatus and a device manufacturing method
US8942463B2 (en) 2008-11-24 2015-01-27 Asml Netherlands B.V. Harmonic resist model for use in a lithographic apparatus and a device manufacturing method
US8447095B2 (en) * 2008-11-24 2013-05-21 Asml Netherlands B.V. Harmonic resist model for use in a lithographic apparatus and a device manufacturing method
US20100128969A1 (en) * 2008-11-24 2010-05-27 Brion Technologies Inc. Harmonic resist model for use in a lithographic apparatus and a device manufacturing method
US9091941B2 (en) 2011-02-21 2015-07-28 Nikon Corporation Fast illumination simulator based on a calibrated flexible point-spread function
US9551926B2 (en) * 2011-07-05 2017-01-24 Canon Kabushiki Kaisha Determination method, storage medium and information processing apparatus
US20130010272A1 (en) * 2011-07-05 2013-01-10 Canon Kabushiki Kaisha Determination method, storage medium and information processing apparatus

Also Published As

Publication number Publication date Type
EP1202119B1 (en) 2005-05-25 grant
US20020062206A1 (en) 2002-05-23 application
EP1202119A1 (en) 2002-05-02 application
KR100436831B1 (en) 2004-06-23 grant
DE60110995T2 (en) 2006-04-27 grant
JP2002184688A (en) 2002-06-28 application
DE60110995D1 (en) 2005-06-30 grant
KR20020021018A (en) 2002-03-18 application
JP3636438B2 (en) 2005-04-06 grant

Similar Documents

Publication Publication Date Title
US7568174B2 (en) Method for checking printability of a lithography target
Granik Fast pixel-based mask optimization for inverse lithography
US6233044B1 (en) Methods and apparatus for integrating optical and interferometric lithography to produce complex patterns
US5644390A (en) Intensity distribution simulating method
US20100122225A1 (en) Pattern selection for lithographic model calibration
US20040229133A1 (en) Method of optical proximity correction design for contact hole mask
US7266800B2 (en) Method and system for designing manufacturable patterns that account for the pattern- and position-dependent nature of patterning processes
US7921383B1 (en) Photolithographic process simulation including efficient result computation for multiple process variation values
US6263299B1 (en) Geometric aerial image simulation
US20080301620A1 (en) System and method for model-based sub-resolution assist feature generation
US6171731B1 (en) Hybrid aerial image simulation
US7180576B2 (en) Exposure with intensity balancing to mimic complex illuminator shape
US20070121090A1 (en) Lithographic apparatus and device manufacturing method
US6880135B2 (en) Method of incorporating lens aberration information into various process flows
US20090307649A1 (en) System and method for modifying a data set of a photomask
US7245356B2 (en) Lithographic apparatus and method for optimizing illumination using a photolithographic simulation
US6223139B1 (en) Kernel-based fast aerial image computation for a large scale design of integrated circuit patterns
US7030966B2 (en) Lithographic apparatus and method for optimizing an illumination source using photolithographic simulations
EP1239331A2 (en) Illumination optimization for specific mask patterns
US5682323A (en) System and method for performing optical proximity correction on macrocell libraries
US20110116067A1 (en) Illumination Optimization
US20040265707A1 (en) Source and mask optimization
US20090148783A1 (en) Method, program product and apparatus for model based geometry decomposition for use in a multiple exposure process
WO2010059954A2 (en) Fast freeform source and mask co-optimization method
US7242459B2 (en) Method of predicting and minimizing model OPC deviation due to mix/match of exposure tools using a calibrated Eigen decomposition model

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASML MASKTOOLS NETHERLANDS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIEBCHEN, ARMIN;REEL/FRAME:012334/0038

Effective date: 20011105

AS Assignment

Owner name: ASML MASKTOOLS NETHERLANDS B.V., NETHERLANDS

Free format text: CORRECTED RECORDATION FORM COVER SHEET TO CORRECT THE ASSIGNEE S ADDRESS, PREVIOUSLY RECORDED AT REEL/FRAME 12334/0038 (ASSIGNMENT OF ASSIGNOR S INTEREST);ASSIGNOR:LIEBCHEN, ARMIN;REEL/FRAME:012636/0897

Effective date: 20011105

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: ASML NETHERLANDS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASML MASKTOOLS B.V.;REEL/FRAME:032170/0425

Effective date: 20131220

FPAY Fee payment

Year of fee payment: 12