JP2009204823A - Simulation method and program for simulation - Google Patents

Simulation method and program for simulation Download PDF

Info

Publication number
JP2009204823A
JP2009204823A JP2008046179A JP2008046179A JP2009204823A JP 2009204823 A JP2009204823 A JP 2009204823A JP 2008046179 A JP2008046179 A JP 2008046179A JP 2008046179 A JP2008046179 A JP 2008046179A JP 2009204823 A JP2009204823 A JP 2009204823A
Authority
JP
Japan
Prior art keywords
mask
diffracted light
order diffracted
light
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008046179A
Other languages
Japanese (ja)
Inventor
Akiko Sanhongi
晶子 三本木
Takashi Sato
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008046179A priority Critical patent/JP2009204823A/en
Priority to US12/395,481 priority patent/US8230369B2/en
Publication of JP2009204823A publication Critical patent/JP2009204823A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable measuring an intensity distribution of light radiated to a substrate surface through a mask in a short time similarly to a thin film mask approximation calculation and more accurately measured than the thin film mask approximation calculation. <P>SOLUTION: The simulation method to be used for manufacturing a semiconductor device includes the following steps. A virtual mask is set (S52), the mask having no thickness but having a transmittance and a phase distribution, in which a transmissive part where propagation of light is not inhibited by a side face of a shielding part due to a three-dimensional structure is regarded as a new opening, when the mask is viewed from a point light source of oblique illumination; a phase difference is set (S54) between the zero-order diffracted light and the first-order diffracted light, which are determined, with respect to the diffracted light on a pupil plane in a projection optical system when the virtual mask is used, by the relationship depending on the distance between the zero-order diffracted light and the first-order diffracted light on the pupil plane, the thickness of the shielding part, the angle between the incident light from the light source to the mask and the optical axis; and the intensity of light on the substrate surface where the pattern of the mask is transferred is simulated (S55) based on the set virtual mask and the phase difference. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置の製造に用いるリソグラフィシミュレーション技術に係わり、特にリソグラフィプロセスの設計において基板上での光強度をシミュレーションするためのシミュレーション方法に関する。さらに、このシミュレーション方法をコンピュータにより実施するためのプログラムに関する。   The present invention relates to a lithography simulation technique used for manufacturing a semiconductor device, and more particularly to a simulation method for simulating light intensity on a substrate in designing a lithography process. Furthermore, the present invention relates to a program for executing this simulation method by a computer.

45nmノードの半導体装置の製造において、ArF光の液浸、高NAによるリソグラフィプロセスを用いる場合、マスク上のパターンのサイズはArF光の波長とほぼ同じになる。この場合、マスクトポグラフィによる導波路効果や、斜入射光による遮蔽の影響は無視できないものになる。   In the manufacture of a 45 nm node semiconductor device, when a lithography process using ArF light immersion and high NA is used, the size of the pattern on the mask is almost the same as the wavelength of ArF light. In this case, the waveguide effect by mask topography and the influence of shielding by oblique incident light cannot be ignored.

そこで、LSIの設計に向けたリソグラフィシミュレーションにおいて、例えばマスクを通して基板表面上に照射される光の強度分布をシミュレーションする際には、マスクの厚みや、光の入射角度を厳密に考慮しなくてはならない。即ち、マスク立体構造を考慮したマクスウェル方程式の厳密解計算が必須となる。しかし、この場合、従来の厚みなしのマスクで行っていたシミュレーション(薄膜マスク近似計算)よりも10倍〜100倍のオーダーで時間がかかってしまう。実際の開発においては設計の速度が重要であり、このような計算時間の増大は大きな問題となる。   Therefore, in lithography simulation for LSI design, for example, when simulating the intensity distribution of light irradiated onto the substrate surface through the mask, the thickness of the mask and the incident angle of light must be strictly considered. Don't be. That is, exact solution calculation of Maxwell's equations considering the mask three-dimensional structure is essential. However, in this case, it takes time on the order of 10 times to 100 times that of the simulation (thin film mask approximate calculation) performed with the conventional mask without thickness. In actual development, the speed of design is important, and such an increase in calculation time is a serious problem.

この問題を回避するために、光源から立体のマスクパターンを見込んだときの、半透過部分と透過部分の大きさを幾何的に考慮し、平面型マスクパターン(薄膜マスク)として新たに定義し直し、短時間に厳密考慮計算とほぼ同じ光学像を得る方法が提案されている(例えば、特許文献1参照)。しかし、この種の方法では、薄膜マスク近似計算での半透過部分の位相差は、照明光入射角度によらず一定で、フォーカスずれの予測精度の低いおそれがあった。   In order to avoid this problem, the size of the translucent part and the transparent part when a three-dimensional mask pattern is expected from the light source is geometrically taken into consideration, and the plane mask pattern (thin film mask) is newly redefined. A method has been proposed in which an optical image that is almost the same as the strict consideration calculation is obtained in a short time (see, for example, Patent Document 1). However, in this type of method, the phase difference of the semi-transmissive part in the thin film mask approximate calculation is constant regardless of the incident angle of the illumination light, and there is a possibility that the prediction accuracy of the focus shift is low.

このように、マスクを通して基板表面上に照射される光の強度分布を測定する光強度分布シミュレーション方法においては、マスク立体構造を考慮したマクスウェル方程式の厳密解計算では、正確な測定は可能であるが、膨大な計算時間が必要になる問題があった。一方、特許文献1のように、立体のマスクパターンを平面型マスクパターンとして新たに定義し直した薄膜マスク近似計算では、計算時間は短縮できるものの、半透過部分の影響により正確な測定ができない問題があった。
特開2007−273560号公報
As described above, in the light intensity distribution simulation method for measuring the intensity distribution of light irradiated on the substrate surface through the mask, accurate measurement is possible with the exact solution calculation of the Maxwell equation considering the mask three-dimensional structure. There was a problem that enormous calculation time was required. On the other hand, as in Patent Document 1, in the thin film mask approximate calculation in which a three-dimensional mask pattern is newly redefined as a planar mask pattern, the calculation time can be shortened, but accurate measurement cannot be performed due to the influence of the semi-transmissive portion. was there.
JP 2007-273560 A

本発明は、リソグラフィシミュレーションにおいて、マスクを通して基板表面上に照射される光の強度分布を、薄膜マスク近似計算と同様に短時間で測定することができ、且つ薄膜マスク近似計算よりも正確に測定することのできるシミュレーション方法を提供することを目的とする。   In the lithography simulation, the present invention can measure the intensity distribution of light irradiated on the substrate surface through the mask in a short time as in the thin film mask approximate calculation, and more accurately than the thin film mask approximate calculation. It is an object of the present invention to provide a simulation method capable of performing the above.

本発明の一態様に係わるシミュレーション方法は、マスク平面に対して斜めから照明光を照射して、前記マスクに形成されたパターンを、投影光学系を介して基板上に転写するシミュレーション方法であって、前記投影光学系の瞳面上での0次回折光と1次回折光との距離、前記マスクに形成される遮蔽部の厚さ、前記照射光の光軸方向と前記マスクへの入射方向とによって規定される角度、及び、前記マスクパターンが周期パターンである場合の前記マスクパターンサイズと前記マスクパターンの半周期サイズの差分量の少なくとも一つに応じた関係で決められた0次回折光と1次回折光との位相差を設定する工程と、前記設定された位相差に基づいてシミュレーションを実行する工程と、を含むことを特徴とする。   A simulation method according to an aspect of the present invention is a simulation method in which illumination light is obliquely applied to a mask plane, and a pattern formed on the mask is transferred onto a substrate via a projection optical system. The distance between the 0th-order diffracted light and the 1st-order diffracted light on the pupil plane of the projection optical system, the thickness of the shielding part formed on the mask, the optical axis direction of the irradiation light and the incident direction on the mask The zero-order diffracted light and the first order determined in accordance with at least one of a specified angle and a difference amount between the mask pattern size and the half-cycle size of the mask pattern when the mask pattern is a periodic pattern. The method includes a step of setting a phase difference with the folded light, and a step of executing a simulation based on the set phase difference.

本発明の一態様に係わるプログラムは、マスク平面に対して斜めから照明光を照射して、前記マスクに形成されたパターンを、投影光学系を介して基板上に転写するシミュレーションを実行するためのプログラムであって、前記投影光学系の瞳面上での0次回折光と1次回折光との距離、前記マスクに形成される遮蔽部の厚さ、前記照射光の光軸方向と前記マスクへの入射方向とによって規定される角度、及び、前記マスクパターンが周期パターンである場合の前記マスクパターンサイズと前記マスクパターンの半周期サイズの差分量の少なくとも一つに応じた関係で決められた0次回折光と1次回折光との位相差を設定する手段と、前記設定された位相差に基づいてシミュレーションを実行する手段と、をコンピュータに実行させることを特徴とする   A program according to an aspect of the present invention is for executing a simulation of irradiating illumination light obliquely on a mask plane and transferring a pattern formed on the mask onto a substrate via a projection optical system. A distance between 0th-order diffracted light and 1st-order diffracted light on the pupil plane of the projection optical system, a thickness of a shielding portion formed on the mask, an optical axis direction of the irradiation light, and the mask The next time determined in accordance with an angle defined by the incident direction and at least one of a difference amount between the mask pattern size and the half cycle size of the mask pattern when the mask pattern is a periodic pattern. Causing the computer to execute means for setting a phase difference between the folded light and the first-order diffracted light, and means for executing a simulation based on the set phase difference. And Features

本発明によれば、マスクを通して基板表面上に照射される光の強度分布を、薄膜マスク近似計算と同様に短時間で測定することができ、且つ薄膜マスク近似計算よりも正確に測定することができる。   According to the present invention, the intensity distribution of light irradiated on the substrate surface through the mask can be measured in a short time as in the thin film mask approximate calculation, and more accurately than the thin film mask approximate calculation. it can.

発明の実施形態を説明する前に、本発明の基本原理について説明する。   Before describing the embodiments of the invention, the basic principle of the present invention will be described.

図1は、本発明に使用する投影露光装置の一例を示す概略構成図であり、11は光源、12はマスク、13は投影光学系、14はウエハ(基板)を示している。この例は、光源11として2つ目照明などを用いた斜め入射照明方式である。このため、光源11(点光源A)からの光はマスク平面に対して斜めに照射され、マスク12からの0次回折光及び1次回折光は、投影光学系13により集束され、ウエハ14上に結像されるようになっている。ここで、投影光学系13の瞳面における0次回折光と1次回折光との位置は、マスク上のパターンピッチに応じた距離だけ離れて位置し、その距離xは、パターンピッチの半分をHP、露光光の波長をλとすると
x=λ/(2・HP)
で表される。
FIG. 1 is a schematic block diagram showing an example of a projection exposure apparatus used in the present invention. 11 is a light source, 12 is a mask, 13 is a projection optical system, and 14 is a wafer (substrate). This example is an oblique illumination method using second illumination as the light source 11. For this reason, the light from the light source 11 (point light source A) is irradiated obliquely with respect to the mask plane, and the 0th-order diffracted light and the 1st-order diffracted light from the mask 12 are converged by the projection optical system 13 and connected to the wafer 14. It has come to be imaged. Here, the positions of the zero-order diffracted light and the first-order diffracted light on the pupil plane of the projection optical system 13 are separated by a distance corresponding to the pattern pitch on the mask, and the distance x is HP, If the wavelength of the exposure light is λ, x = λ / (2 · HP)
It is represented by

このような投影露光装置を用いた場合における、ウエハ14上で光強度の分布をシミュレーションにより求める。そして、このシミュレーション結果に基づきマスク12のパターンを補正することにより、ウエハ14上に所望パターンを形成することができる。   When such a projection exposure apparatus is used, the light intensity distribution on the wafer 14 is obtained by simulation. A desired pattern can be formed on the wafer 14 by correcting the pattern of the mask 12 based on the simulation result.

先に説明したように、マスク立体構造を考慮した計算では、正確な測定はできるものの、多大な時間がかかる。そこで、(特許文献1)のように、影モデルによる薄膜マスク定義が検討されている。   As described above, the calculation considering the mask three-dimensional structure can be measured accurately but takes a lot of time. Therefore, as in (Patent Document 1), a thin film mask definition using a shadow model has been studied.

まず、図2に示すように、立体構造を有するマスク21を、斜入射による影効果(Shadowing effect)のみを考えて、新たに平面型マスク31として定義する。なお、図中のθは露光光の入射角(照射光の光軸方向とマスクへの照射光の入射方向とのなす角)、dは遮光部(半透明部を含む)22の厚さである。   First, as shown in FIG. 2, a mask 21 having a three-dimensional structure is newly defined as a planar mask 31 in consideration of only a shadow effect due to oblique incidence. In the figure, θ is the incident angle of the exposure light (angle formed by the optical axis direction of the irradiated light and the incident direction of the irradiated light on the mask), and d is the thickness of the light shielding portion (including the translucent portion) 22. is there.

例えば、ピッチ100nmの1:1コンタクトホールパターンを解像させるため、照明条件を1.3NA、四つ目照明、光軸から四つ目照明の目の中心までの距離σ=0.8、露光装置の縮小率Mag=4とすると、四つ目照明の各目の中心の点光源からマスクへの光入射角度は次のように決まる。   For example, in order to resolve a 1: 1 contact hole pattern with a pitch of 100 nm, the illumination condition is 1.3 NA, the fourth illumination, the distance σ = 0.8 from the optical axis to the center of the fourth illumination eye, the exposure Assuming that the reduction ratio of the apparatus is Mag = 4, the light incident angle from the point light source at the center of each eye of the fourth illumination to the mask is determined as follows.

sinθ=NA×σ/Mag=0.26 ∴θ=15.07deg
単純化のため、光軸からθだけ傾いた方向からの光照射に対して影となる部分32は、照明光が透過できないものと仮定する。
sinθ = NA × σ / Mag = 0.26 ∴θ = 15.07deg
For simplification, it is assumed that the portion 32 which is shaded by light irradiation from a direction inclined by θ from the optical axis cannot transmit illumination light.

新たに設定した開口(マスクパターンの)の大きさw’は、マスクパターンのもとの開口の大きさwを70nmとすると,tanθ=0.269260であることから、
w’=w−d・tanθ=65.29nm
となる。
The newly set size w ′ of the opening (mask pattern) is tan θ = 0.269260 when the size w of the original opening of the mask pattern is 70 nm.
w ′ = w−d · tan θ = 65.29 nm
It becomes.

ここで、開口部の周囲の影となる部分32における位相差を考慮するために、図3に示すように、影となる部分32(フリンジ)に、一定の透過率・位相を与えて計算する手法が提案されている。しかし、このようなマスク計算では、フリンジ32を透過する回折光の位相分布は一意に決まる。   Here, in order to consider the phase difference in the shadow portion 32 around the opening, as shown in FIG. 3, calculation is performed by giving a certain transmittance / phase to the shadow portion 32 (fringe). A method has been proposed. However, in such mask calculation, the phase distribution of the diffracted light transmitted through the fringe 32 is uniquely determined.

図4に、1:1の周期パターンの0次回折光と1次回折光との位相差のハーフピッチ(HP)依存性を示す。この図から、HPが大きくなるに伴い、0次回折光−1次回折光の位相差が小さくなっているのが分かる。   FIG. 4 shows the half-pitch (HP) dependence of the phase difference between the 0th-order diffracted light and the 1st-order diffracted light with a 1: 1 periodic pattern. From this figure, it can be seen that as HP increases, the phase difference between the 0th order diffracted light and the 1st order diffracted light becomes smaller.

回折光の位相差は、シミュレーション精度に大きな影響を与える。   The phase difference of the diffracted light greatly affects the simulation accuracy.

従って、従来方法では不十分であり、精度良いシミュレーションを行うには、回折光間の位相差分布の効果を正しく入れる必要がある。この点を考慮してフリンジにおける位相を固定するのではなく、各種のパラメータに応じた回折光間の位相差分布を考慮する特徴とする。   Therefore, the conventional method is insufficient, and it is necessary to correctly incorporate the effect of the phase difference distribution between the diffracted lights in order to perform accurate simulation. In consideration of this point, the phase in the fringe is not fixed, but the phase difference distribution between diffracted lights according to various parameters is considered.

図5は投影光学系の瞳面上の0次回折光と1次回折光を表した模式図である。回折光を矢印で表し、矢印の大きさが回折光の振幅を、光軸の光源方向を正として矢印となす角度が位相を、それぞれ表している。3つの1次回折光は、異なるHPをHP1、HP2、HP3を持つパターンを光軸上の点光源から照明した場合に異なる位置に回折光が現われることを示している。ここで、それぞれのHPの関係は、HP1<HP2<HP3である。図4からHPが小さいほど、0次回折光と1次回折光の位相差は大きくなる。さらに、それぞれのパターンに対応する0次回折光と1次回折光との距離x1、x2、x3は
x=λ/(2・HP)
に従い、x1>x2>x3の関係になる。
FIG. 5 is a schematic diagram showing the 0th-order diffracted light and the 1st-order diffracted light on the pupil plane of the projection optical system. The diffracted light is represented by an arrow, the magnitude of the arrow represents the amplitude of the diffracted light, and the angle formed by the arrow with the light source direction of the optical axis being positive represents the phase. The three first-order diffracted lights indicate that diffracted lights appear at different positions when patterns having different HPs HP1, HP2, and HP3 are illuminated from a point light source on the optical axis. Here, the relationship of each HP is HP1 <HP2 <HP3. From FIG. 4, the smaller the HP is, the larger the phase difference between the 0th order diffracted light and the 1st order diffracted light. Further, the distances x1, x2, and x3 between the 0th-order diffracted light and the 1st-order diffracted light corresponding to each pattern are x = λ / (2 · HP)
Accordingly, the relationship of x1>x2> x3 is established.

したがって、位相差Δφを、瞳面上での、0次回折光−1次回折光間隔xを変数とする量として与えることが可能である。   Therefore, it is possible to give the phase difference Δφ as a variable having the 0th-order diffracted light-1st-order diffracted light interval x on the pupil plane as a variable.

図6は、瞳面上位置における0次−1次位相差Δφを示す図である。位相差Δφは、
Δφ=f(x,bias,θinc,d)
x:瞳面での0次回折光と1次回折光との距離
bias:周期マスクパターンのパターンサイズとHPとの差分量
θinc:照明光の入射角度
d:マスク遮蔽部の膜厚
として表され、bias,θinc,dの条件の違いにより異なる値を取るため、条件ごとに異なるグラフになっている。これらの条件により異なる位相差を計算するには多大な時間がかかり、シミュレーション時に計算するのはシミュレーションの速度を低下させる要因となる。
FIG. 6 is a diagram showing the 0th-first order phase difference Δφ at the position on the pupil plane. The phase difference Δφ is
Δφ = f (x, bias, θinc, d)
x: Distance between 0th-order diffracted light and 1st-order diffracted light on the pupil plane
bias: difference amount between the pattern size of the periodic mask pattern and HP θinc: incident angle of illumination light d: expressed as the film thickness of the mask shielding part, and takes different values depending on the difference of bias, θinc, d. Each graph is different. It takes a lot of time to calculate different phase differences depending on these conditions, and calculating at the time of simulation causes a reduction in the speed of the simulation.

そこで、様々なリソグラフィ条件下での位相差を予め計算しておき、その結果をDBに格納又は関数化しておく。このとき、格納又は関数化するのは、位相差の絶対値でも良いし、マスク立体構造考慮計算(厳密計算)の位相と薄膜マスク近似計算での位相との差分であっても良い。そして、シミュレーション時には、必要な位相差をDBから取り出して使う。   Therefore, the phase difference under various lithography conditions is calculated in advance, and the result is stored in the DB or converted into a function. At this time, the absolute value of the phase difference may be stored or functioned, or the difference between the phase of the mask three-dimensional structure consideration calculation (exact calculation) and the phase of the thin film mask approximation calculation may be stored. At the time of simulation, a necessary phase difference is extracted from the DB and used.

また、全ての条件で初回の厳密計算を行うのではなく、既にDBに存在する近接した2つの条件の組み合わせの中間条件にあたる時は、それらを補間した位相差を利用する。或いは、既にDBに存在する条件から関数モデルを作成し、関数モデルに基づき位相差を計算する。   Also, instead of performing the first exact calculation under all conditions, when it is an intermediate condition of a combination of two adjacent conditions that already exist in the DB, a phase difference obtained by interpolating them is used. Alternatively, a function model is created from conditions that already exist in the DB, and the phase difference is calculated based on the function model.

さらに、シミュレーション内では、薄膜マスク近似計算による回折光の位相を次の方法で入力する、
・瞳での収差としてシミュレーションに入力する。
Furthermore, in the simulation, the phase of the diffracted light by the thin film mask approximate calculation is input by the following method.
・ Input aberrations in the simulation as aberrations in the pupil.

・直接回折光の位相項に入力(薄膜マスク近似計算時にフーリエ変換した結果(瞳上の分布に相当)を置換。)
このような方法を利用することにより、薄膜マスク近似計算の速さと同程度で、マスク立体構造考慮近似計算が可能になる。以下、上記の考えを適用した本発明の実施形態を、図面を参照して説明する。
-Input into the phase term of direct diffracted light (replaces the result of Fourier transform (equivalent to distribution on the pupil) during thin film mask approximation calculation)
By using such a method, the approximate calculation considering the mask three-dimensional structure can be performed at the same speed as the approximate calculation of the thin film mask. Hereinafter, an embodiment of the present invention to which the above idea is applied will be described with reference to the drawings.

(実施形態)
半導体装置の製造におけるリソグラフィプロセスの設計において、感光性膜を塗布したウエハ基板上に図7に示すようなコンタクトホールパターン41を所望の寸法の範囲内で転写できるように、マスク上の対応するコンタクトホールパターン寸法設計を行う例を示す。
(Embodiment)
In the design of a lithography process in the manufacture of a semiconductor device, the corresponding contact on the mask so that the contact hole pattern 41 as shown in FIG. 7 can be transferred within a desired dimension onto the wafer substrate coated with a photosensitive film. An example of hole pattern dimension design is shown.

露光装置としては前記図1に示す構成のものを用い、更に図8に示すように、4つ目照明が可能な光源42を用いることを想定した。また、NA=1.3、光軸から目の中心までの距離はσ=0.85で、それぞれの目の大きさはσ=0.05、投影露光装置のマスク倍率は4である。   It was assumed that the exposure apparatus having the configuration shown in FIG. 1 was used and a light source 42 capable of fourth illumination was used as shown in FIG. The distance from the optical axis to the center of the eye is σ = 0.85, the size of each eye is σ = 0.05, and the mask magnification of the projection exposure apparatus is 4.

コンタクトホール41のピッチは200nmで、開口サイズは70nm□とした。なお、寸法はウエハ上に換算した数値で示している。   The pitch of the contact holes 41 was 200 nm, and the opening size was 70 nm □. The dimensions are shown as numerical values converted on the wafer.

図9は、本実施形態における光学像計算部の動作を説明するためのフローチャートである。   FIG. 9 is a flowchart for explaining the operation of the optical image calculation unit in the present embodiment.

まず、上記に示したような照明条件、マスク条件、パターン種、パターンピッチ、パターン寸法、光入射角度などを、初期値として設定した(ステップS51)。   First, illumination conditions, mask conditions, pattern types, pattern pitches, pattern dimensions, light incident angles, and the like as described above were set as initial values (step S51).

次に、ArF液浸露光装置で、減衰型位相シフトマスク(Attenuated 位相シフトマスク)上に設けた1:3コンタクトホールを感光性膜を塗布したウエハ基板上に結像させるときの転写特性を検討するため、光学像計算を以下の手順で行った。   Next, consider the transfer characteristics when forming an image of a 1: 3 contact hole provided on an attenuated phase shift mask (Attenuated phase shift mask) on a wafer substrate coated with a photosensitive film using an ArF immersion exposure apparatus. Therefore, the optical image calculation was performed according to the following procedure.

このとき、図7のx方向に並ぶ図8に示された2つ目の照明からマスクへの光入射角度θは、
sinθ=NA×σ/Mag
∴θ=16.04deg
従って、開口部の大きさw=70nmに入る入射光のうち、遮蔽部によって反射されない領域は、
w’=w−d・tanθ=65.0nm
である。
At this time, the light incident angle θ from the second illumination shown in FIG. 8 arranged in the x direction of FIG.
sinθ = NA × σ / Mag
∴θ = 16.04deg
Therefore, of the incident light that falls within the size w = 70 nm of the opening, the region that is not reflected by the shielding part is
w ′ = wd · tan θ = 65.0 nm
It is.

そこで、前記2つ目の照明光に対し、65.0nm×70nmの開口部を新たな開口部とし、見込んだ角度から想定されるパターンの重心位置ずれも入れて平面型マスクを定義し(ステップS52)、瞳上での回折光分布を計算した(ステップS53)。このとき、回折光の位相は実際には斜入射の角度依存性を持つにも拘わらず、平面型マスクとして計算を行ったため、斜入射の角度によらず一定になっている。   Therefore, a 65.0 nm × 70 nm opening is defined as a new opening with respect to the second illumination light, and a plane mask is defined with a shift of the center of gravity position of the pattern assumed from the expected angle (step). S52), the diffracted light distribution on the pupil was calculated (step S53). At this time, the phase of the diffracted light is constant regardless of the angle of oblique incidence because it is calculated as a planar mask, although it actually has an angle dependency of oblique incidence.

続いて、立体考慮マスクを用いた厳密計算を行って得られた0次回折光と1次回折光との位相差をDBから呼び出した(ステップS54)。ここで、DBから呼び出した位相差は、予め必要な条件で立体考慮マスクを用いた厳密計算を行い、パターン種、パターンピッチ、パターンバイアス、照明光の入射角度をパラメータとしてDBに格納したものである。   Subsequently, the phase difference between the 0th-order diffracted light and the 1st-order diffracted light obtained by performing rigorous calculation using the three-dimensional consideration mask is called from the DB (step S54). Here, the phase difference called from the DB is obtained by performing a strict calculation using a three-dimensional consideration mask under necessary conditions in advance and storing the pattern type, pattern pitch, pattern bias, and incident angle of illumination light in the DB as parameters. is there.

次いで、前記薄膜マスク計算で得られた瞳上の0次回折光の位相と、DBから呼び出した位相差を元に、新たに1次回折光の位相を計算し、薄膜マスク計算による1次回折光の位相と置換した(ステップS55)。次に、この0次回折光と1次回折光を逆フーリエ変換させ、ウエハ基板上の感光性膜中の光強度分布シミュレーション結果として出力する(ステップS56)。本実施形態では4つ目照明であるため、さらに、図7のy方向に並ぶ図8に示された2つ目照明による光強度分布についても同様の方法で出力し、両者の結果を合わせて最終的な光強度分布を得た。こうして、結像させたときに得られるコンタクトホールパターン寸法を得た。   Next, based on the phase of the 0th order diffracted light on the pupil obtained by the thin film mask calculation and the phase difference called from the DB, the phase of the first order diffracted light is newly calculated, and the phase of the first order diffracted light by the thin film mask calculation is calculated. (Step S55). Next, the 0th-order diffracted light and the 1st-order diffracted light are subjected to inverse Fourier transform, and output as a light intensity distribution simulation result in the photosensitive film on the wafer substrate (step S56). In the present embodiment, since the fourth illumination is used, the light intensity distribution by the second illumination shown in FIG. 8 arranged in the y direction in FIG. 7 is also output in the same manner, and the results of both are combined. A final light intensity distribution was obtained. Thus, the contact hole pattern dimensions obtained when the image was formed were obtained.

このように本実施形態によれば、薄膜マスク近似計算と同様の計算を行うと共に、半透過部分の位相差を入射角度に応じて変化させることにより、マスクを通して基板表面上に照射される光の強度分布を、薄膜マスク近似計算と同様に短時間で測定することができ、且つ薄膜マスク近似計算よりも正確に測定することができる。   As described above, according to the present embodiment, the same calculation as the thin film mask approximate calculation is performed, and the phase difference of the semi-transmissive portion is changed according to the incident angle, so that the light irradiated on the substrate surface through the mask can be changed. The intensity distribution can be measured in a short time similarly to the thin film mask approximate calculation and can be measured more accurately than the thin film mask approximate calculation.

次に、コンタクトホールを所望の寸法の範囲内で転写できるよう、OPCといったマスクのバイアスの調整を入れるなどの処理をしてから、上記手順を繰り返し、対応するマスク上のコンタクトホール寸法を設計した。   Next, processing such as adjusting the bias of the mask such as OPC is performed so that the contact hole can be transferred within a desired size range, and then the above procedure is repeated to design the contact hole size on the corresponding mask. .

このときのフローチャートを、図10に示す。まず、マスクの仕上がり寸法許容範囲、照明条件などを初期化し(ステップS61)、これに応じてマスクの初期寸法を設定する(ステップS62)。次いで、前記図9に示すフローチャートに基づくシミュレーションにより光学像を計算する(ステップS63)。そして、光学像から予測したパターン寸法が所望の寸法の範囲内か否かを判定する(ステップS64)。予測パターン寸法が所望寸法の範囲外であれば、マスク寸法を変更し(ステップS65)、前記S63に戻り再度の計算を行う。予測パターン寸法が所望寸法の範囲内であれば、このときのマスク寸法を設計値として固定する(ステップS66)。   The flowchart at this time is shown in FIG. First, a mask finished dimension allowable range, illumination conditions, etc. are initialized (step S61), and an initial mask dimension is set accordingly (step S62). Next, an optical image is calculated by simulation based on the flowchart shown in FIG. 9 (step S63). Then, it is determined whether or not the pattern dimension predicted from the optical image is within a desired dimension range (step S64). If the predicted pattern dimension is outside the range of the desired dimension, the mask dimension is changed (step S65), and the process returns to S63 to perform another calculation. If the predicted pattern dimension is within the range of the desired dimension, the mask dimension at this time is fixed as a design value (step S66).

上記の手順で得られたマスク上のコンタクトホールパターン設計値を用いて作製したマスクを、投影露光装置を用いてウエハ基板上感光性膜中で結像させ、ウエハ上の感光性膜を現像した結果、所望値通りのレジストパターンを得ることができた。このとき、厳密に斜入射光の角度とマスク立体構造を考慮した計算を行うのに比べ、パターン設計のためのシミュレーションの時間を〜1/102 程度に低減することができ、かつ斜入射光角度とマスク立体構造厳密考慮したのと同程度の精度を持つ設計ができた。 The mask produced using the contact hole pattern design value on the mask obtained by the above procedure was imaged in the photosensitive film on the wafer substrate using the projection exposure apparatus, and the photosensitive film on the wafer was developed. As a result, a resist pattern as desired was obtained. At this time, the simulation time for pattern design can be reduced to about 1/10 2 compared to the calculation that strictly considers the angle of the oblique incident light and the mask three-dimensional structure, and the oblique incident light. A design with the same accuracy as the angle and mask steric structure was considered.

図11は、本実施形態における光学像計算結果を、厳密計算結果と比較して示す図である。実線が厳密計算、破線が本実施形態による薄膜マスク近似計算である。この図から、本実施形態による近似計算が、厳密に斜入射光の角度とマスク立体構造を考慮した計算結果と良く一致しているのが分かる。   FIG. 11 is a diagram showing an optical image calculation result in the present embodiment in comparison with a strict calculation result. The solid line is the exact calculation, and the broken line is the thin film mask approximate calculation according to the present embodiment. From this figure, it can be seen that the approximate calculation according to the present embodiment exactly agrees with the calculation result in consideration of the angle of oblique incident light and the mask three-dimensional structure.

このように本実施形態によれば、マスク立体構造の厳密計算を都度行うことなく、露光光の斜入射及び立体マスク効果を取入れた高速な光強度分布のシミュレーションを行うことが可能である。また、DBに格納しておいた計算結果を用いることで、更に高速な計算を可能にする。また、様々なリソグラフィ条件下での立体構造マスクを用いた厳密計算により得られた位相差を関数化しておくことにより、関数として位相差を与えることができ、DBのアクセスより高速に光学像を求めることも可能となる。   As described above, according to the present embodiment, it is possible to perform a high-speed light intensity distribution simulation that incorporates the oblique incidence of exposure light and the three-dimensional mask effect without performing exact calculation of the three-dimensional mask structure each time. Further, by using the calculation result stored in the DB, it is possible to perform calculation at higher speed. In addition, by making the phase difference obtained by rigorous calculation using a three-dimensional structure mask under various lithography conditions into a function, the phase difference can be given as a function, and an optical image can be obtained at higher speed than DB access. It can also be requested.

また、DBとほぼ同じだが、0次回折光と1次回折光との位相差を、投影光学系の瞳をグリッドに分割したマップ上の分布として表示しておく、即ち瞳上にマッピングすることで視認性を向上させ、シミュレーションを簡単にすることも可能となる。   Although it is almost the same as DB, the phase difference between the 0th-order diffracted light and the 1st-order diffracted light is displayed as a distribution on a map in which the pupil of the projection optical system is divided into grids, that is, visually recognized by mapping on the pupil. It is also possible to improve the performance and simplify the simulation.

(変形例)
なお、本発明は上述した実施形態に限定されるものではない。実施形態では、コンタクトホールについてのパターン寸法設計の例を示したが、他のパターン(LS、孤立ライン、孤立スペース、孤立したホール、LS周期端)であっても同様の方法で、短時間での設計を行うことができる。
(Modification)
In addition, this invention is not limited to embodiment mentioned above. In the embodiment, the example of the pattern dimension design for the contact hole is shown, but other patterns (LS, isolated line, isolated space, isolated hole, LS periodic end) can be performed in a similar manner in a short time. Can be designed.

周期的でないパターンの計算に関しては、図12に示すフローチャートのように、照明条件、マスク条件、パターン種、パターンピッチ、パターン寸法、光入射角度などを、初期値として設定したのち(ステップS71)、計算領域のパターンMを単純なパーツM1,M2,M3…に分割し(ステップS72)、各パーツに、影モデルを適用して仮想マスクを設定した後、回折光振幅を計算する(ステップS73)。ここで、各パーツによる回折光振幅は、データベースから位相を呼び出し(ステップS74)、呼び出した位相差を元に、新たに1次回折光の位相を計算する(ステップS75)。そして、各パーツから得られる光学像をマージし、最初のパターンMの光学像を得るようにすればよい(ステップS77)。   Regarding the calculation of the non-periodic pattern, as shown in the flowchart of FIG. 12, after setting the illumination condition, mask condition, pattern type, pattern pitch, pattern dimension, light incident angle, etc. as initial values (step S71), The pattern M in the calculation area is divided into simple parts M1, M2, M3,... (Step S72), a shadow model is applied to each part to set a virtual mask, and the diffracted light amplitude is calculated (step S73). . Here, for the diffracted light amplitude by each part, the phase is called from the database (step S74), and the phase of the first-order diffracted light is newly calculated based on the called phase difference (step S75). Then, the optical images obtained from the parts are merged to obtain an optical image of the first pattern M (step S77).

また、1次回折光の位相に対する処理に限定されるものでなく、例えば着目パターンサイズが大きく、瞳に入る回折光次数が1より大きいものを含む場合でも、その次数の回折光に応じた位相差を用意すればよい。   Further, the present invention is not limited to the processing for the phase of the first-order diffracted light. For example, even when the pattern size of interest is large and the diffracted light order entering the pupil is larger than 1, the phase difference corresponding to the diffracted light of that order Should be prepared.

また、複数のパターンが同一マスク上にある場合も、マスク上の全てのパターンが所望の寸法の範囲内でウエハ上に転写されるように、上述の方法を同時に適用して設計を行うことができるのは言うまでもない。   In addition, even when a plurality of patterns are on the same mask, the above method can be applied at the same time so that all the patterns on the mask are transferred onto the wafer within a desired size range. Needless to say, you can.

また、0次回折光と1次回折光の位相差を瞳上の間隔を変数として数点求めておき、必要な条件が、それらの中間の条件である時は、補間を行うことで、位相差分布を近似的に求め利用することもできる。   In addition, the phase difference between the 0th-order diffracted light and the 1st-order diffracted light is obtained several times using the interval on the pupil as a variable, and when the necessary condition is an intermediate condition, interpolation is performed to obtain the phase difference distribution. Can be obtained approximately and used.

その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。   In addition, various modifications can be made without departing from the scope of the present invention.

本発明に使用する投影露光装置の一例を示す概略構成図。1 is a schematic block diagram showing an example of a projection exposure apparatus used in the present invention. 立体構造のマスクを、斜入射による影効果のみを考えて、新たに平面構造のマスクとして定義した例を示す図。The figure which shows the example which defined the mask of a solid structure as a mask of a planar structure newly considering only the shadow effect by oblique incidence. 開口部の周囲の影となる部分(フリンジ)に、固定の透過率・位相を与えて計算する手法を示す図。The figure which shows the method of giving a fixed transmittance | permeability and a phase to the part (fringe) used as the shadow around an opening part, and calculating. 1:1のL/Sパターンの0次回折光と1次回折光との位相差のHP依存性を示す図。The figure which shows HP dependence of the phase difference of the 0th-order diffracted light of a L / S pattern of 1: 1, and a 1st-order diffracted light. 投影レンズの瞳面における0次回折光と1次回折光との位相差を示す図。The figure which shows the phase difference of the 0th-order diffracted light and the 1st-order diffracted light in the pupil plane of a projection lens. 投影レンズの瞳上位置における0次−1次位相差Δφを示す図。The figure which shows 0th-1st phase difference (DELTA) phi in the position on the pupil of a projection lens. 本発明の実施形態において対象とするコンタクトホールパターンを示す図。The figure which shows the contact hole pattern made into object in embodiment of this invention. 同実施形態において用いた4つ目照明を示す図。The figure which shows the 4th illumination used in the embodiment. 同実施形態における光学像計算部の動作を説明するためのフローチャート。The flowchart for demonstrating operation | movement of the optical image calculation part in the embodiment. 同実施形態のシミュレーション方法を利用してマスク設計値を決める手順を示すフローチャート。5 is a flowchart showing a procedure for determining a mask design value using the simulation method of the embodiment. 同実施形態のシミュレーション方法による光学像計算結果を示す図。The figure which shows the optical image calculation result by the simulation method of the embodiment. 本発明の変形例を説明するためのもので、周期的でないパターンに対する光学像計算部の動作を説明するためのフローチャート。The flowchart for demonstrating the operation | movement of the optical image calculation part with respect to the pattern which is for demonstrating the modification of this invention and is not a periodic.

符号の説明Explanation of symbols

11…光源
12…マスク
13…投影光学系
14…ウエハ(基板)
21…立体構造マスク
22…遮光部
31…平面構造マスク
32…開口部周辺の影となる部分(フリンジ)
41…コンタクトホールパターン
42…光源
DESCRIPTION OF SYMBOLS 11 ... Light source 12 ... Mask 13 ... Projection optical system 14 ... Wafer (substrate)
DESCRIPTION OF SYMBOLS 21 ... Three-dimensional structure mask 22 ... Light-shielding part 31 ... Planar structure mask 32 ... The part used as the shadow around an opening part (fringe)
41 ... Contact hole pattern 42 ... Light source

Claims (5)

マスク平面に対して斜めから照明光を照射して、前記マスクに形成されたパターンを、投影光学系を介して基板上に転写するシミュレーション方法であって、
前記投影光学系の瞳面上での0次回折光と1次回折光との距離、前記マスクに形成される遮蔽部の厚さ、前記照射光の光軸方向と前記マスクへの入射方向とによって規定される角度、及び、前記マスクパターンが周期パターンである場合の前記マスクパターンサイズと前記マスクパターンの半周期サイズの差分量の少なくとも一つに応じた関係で決められた0次回折光と1次回折光との位相差を設定する工程と、
前記設定された位相差に基づいてシミュレーションを実行する工程と、
を含むことを特徴とするシミュレーション方法。
A simulation method of irradiating illumination light obliquely with respect to a mask plane and transferring a pattern formed on the mask onto a substrate via a projection optical system,
Defined by the distance between the 0th-order diffracted light and the 1st-order diffracted light on the pupil plane of the projection optical system, the thickness of the shielding part formed on the mask, the optical axis direction of the irradiation light and the incident direction on the mask 0th-order diffracted light and first-order diffracted light determined by a relationship corresponding to at least one of the angle of the difference between the mask pattern size and the half-cycle size of the mask pattern when the mask pattern is a periodic pattern A step of setting a phase difference between and
Executing a simulation based on the set phase difference;
A simulation method comprising:
前記遮蔽部に進行が妨げられない前記照射光の透過するマスク部分をマスクパターンとして設定したマスクを用いてシミュレーションを実行することを特徴とする請求項1記載のシミュレーション方法。   The simulation method according to claim 1, wherein the simulation is performed using a mask in which a mask portion through which the irradiation light is transmitted is not hindered by the shielding portion is set as a mask pattern. 前記0次回折光と1次回折光との間の位相差を設定する工程は、立体構造マスクに形成されたパターンが投影光学系を介して基板上に転写されるときの前記投影光学系の瞳面上での0次回折光と1次回折光との位相差と前記距離、前記厚さ、前記角度、及び前記バイアス量の少なくとも一つとの関係を格納したデータベースから読み出す、又は前記関係を表す関数に基づいて計算することを特徴とする請求項1記載のシミュレーション方法。   The step of setting the phase difference between the 0th-order diffracted light and the 1st-order diffracted light includes the step of setting the pupil plane of the projection optical system when the pattern formed on the three-dimensional structure mask is transferred onto the substrate via the projection optical system Based on a function that reads or stores the relationship between the phase difference between the zero-order diffracted light and the first-order diffracted light and at least one of the distance, the thickness, the angle, and the bias amount. The simulation method according to claim 1, wherein the calculation is performed. 前記0次回折光と1次回折光との位相差を、前記投影光学系の瞳をグリッドに分割したマップ上の分布として表示しておくことを特徴とする請求項1記載のシミュレーション方法。   The simulation method according to claim 1, wherein the phase difference between the 0th-order diffracted light and the 1st-order diffracted light is displayed as a distribution on a map obtained by dividing the pupil of the projection optical system into grids. マスク平面に対して斜めから照明光を照射して、前記マスクに形成されたパターンを、投影光学系を介して基板上に転写するシミュレーションを実行するためのプログラムであって、
前記投影光学系の瞳面上での0次回折光と1次回折光との距離、前記マスクに形成される遮蔽部の厚さ、前記照射光の光軸方向と前記マスクへの入射方向とによって規定される角度、及び、前記マスクパターンが周期パターンである場合の前記マスクパターンサイズと前記マスクパターンの半周期サイズの差分量の少なくとも一つに応じた関係で決められた0次回折光と1次回折光との位相差を設定する手段と、
前記設定された位相差に基づいてシミュレーションを実行する手段と、
をコンピュータに実行させることを特徴とするコンピュータ読み取り可能なプログラム。
A program for executing a simulation of irradiating illumination light obliquely with respect to a mask plane and transferring a pattern formed on the mask onto a substrate via a projection optical system,
Defined by the distance between the 0th-order diffracted light and the 1st-order diffracted light on the pupil plane of the projection optical system, the thickness of the shielding part formed on the mask, the optical axis direction of the irradiation light and the incident direction on the mask 0th-order diffracted light and first-order diffracted light determined by a relationship corresponding to at least one of the angle of the difference between the mask pattern size and the half-cycle size of the mask pattern when the mask pattern is a periodic pattern Means for setting the phase difference between and
Means for executing a simulation based on the set phase difference;
A computer-readable program characterized by causing a computer to execute.
JP2008046179A 2008-02-27 2008-02-27 Simulation method and program for simulation Pending JP2009204823A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008046179A JP2009204823A (en) 2008-02-27 2008-02-27 Simulation method and program for simulation
US12/395,481 US8230369B2 (en) 2008-02-27 2009-02-27 Simulation method and simulation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046179A JP2009204823A (en) 2008-02-27 2008-02-27 Simulation method and program for simulation

Publications (1)

Publication Number Publication Date
JP2009204823A true JP2009204823A (en) 2009-09-10

Family

ID=41147171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046179A Pending JP2009204823A (en) 2008-02-27 2008-02-27 Simulation method and program for simulation

Country Status (1)

Country Link
JP (1) JP2009204823A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251761A (en) * 2009-04-16 2010-11-04 Asml Netherlands Bv Device manufacturing method, and lithographic apparatus
CN102540698A (en) * 2012-02-24 2012-07-04 北京理工大学 Method for computing double absorption layer alternating phase shift mask diffraction field
CN102809894A (en) * 2012-08-16 2012-12-05 北京理工大学 Method for computing diffraction of masks of contact holes of multiple absorbing layers
CN111213090A (en) * 2017-10-11 2020-05-29 Asml荷兰有限公司 Optimization flow of patterning process

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737769A (en) * 1993-07-16 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Simulating method for image in projection optical system
JP2002184688A (en) * 2000-09-12 2002-06-28 Asml Masktools Netherlands Bv Method and apparatus for high-speed aerial image simulation
JP2005128558A (en) * 2003-10-27 2005-05-19 Internatl Business Mach Corp <Ibm> Incorporation of phase map into fast model-based optical proximity correction simulation kernel to account for short and middle-range flare
JP2006196555A (en) * 2005-01-11 2006-07-27 Nikon Corp Method and apparatus of measuring aberration and of exposure
JP2006237184A (en) * 2005-02-24 2006-09-07 Sony Corp Mask correction method and mask for exposure
JP2006259699A (en) * 2005-02-03 2006-09-28 Asml Netherlands Bv Method for producing photolithography patterning device, computer program, patterning device, method for determining position of target image on or near substrate, measuring device, and lithography device
JP2006332168A (en) * 2005-05-24 2006-12-07 Nikon Corp Measuring method, exposing method and exposing device
JP2007165894A (en) * 2005-12-09 2007-06-28 Interuniv Micro Electronica Centrum Vzw Method and device for lithography using electromagnetic radiation with short wavelengths
JP2008209663A (en) * 2007-02-27 2008-09-11 Dainippon Printing Co Ltd Method for correcting optical proximity effect

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737769A (en) * 1993-07-16 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Simulating method for image in projection optical system
JP2002184688A (en) * 2000-09-12 2002-06-28 Asml Masktools Netherlands Bv Method and apparatus for high-speed aerial image simulation
JP2005128558A (en) * 2003-10-27 2005-05-19 Internatl Business Mach Corp <Ibm> Incorporation of phase map into fast model-based optical proximity correction simulation kernel to account for short and middle-range flare
JP2006196555A (en) * 2005-01-11 2006-07-27 Nikon Corp Method and apparatus of measuring aberration and of exposure
JP2006259699A (en) * 2005-02-03 2006-09-28 Asml Netherlands Bv Method for producing photolithography patterning device, computer program, patterning device, method for determining position of target image on or near substrate, measuring device, and lithography device
JP2006237184A (en) * 2005-02-24 2006-09-07 Sony Corp Mask correction method and mask for exposure
JP2006332168A (en) * 2005-05-24 2006-12-07 Nikon Corp Measuring method, exposing method and exposing device
JP2007165894A (en) * 2005-12-09 2007-06-28 Interuniv Micro Electronica Centrum Vzw Method and device for lithography using electromagnetic radiation with short wavelengths
JP2008209663A (en) * 2007-02-27 2008-09-11 Dainippon Printing Co Ltd Method for correcting optical proximity effect

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251761A (en) * 2009-04-16 2010-11-04 Asml Netherlands Bv Device manufacturing method, and lithographic apparatus
CN102540698A (en) * 2012-02-24 2012-07-04 北京理工大学 Method for computing double absorption layer alternating phase shift mask diffraction field
CN102540698B (en) * 2012-02-24 2014-07-30 北京理工大学 Method for computing double absorption layer alternating phase shift mask diffraction field
CN102809894A (en) * 2012-08-16 2012-12-05 北京理工大学 Method for computing diffraction of masks of contact holes of multiple absorbing layers
CN111213090A (en) * 2017-10-11 2020-05-29 Asml荷兰有限公司 Optimization flow of patterning process
US11886124B2 (en) 2017-10-11 2024-01-30 Asml Netherlands B.V. Flows of optimization for patterning processes
CN111213090B (en) * 2017-10-11 2024-04-09 Asml荷兰有限公司 Optimization flow of patterning process

Similar Documents

Publication Publication Date Title
JP5960953B2 (en) A system for generating a single process window model
JP5235322B2 (en) Original data creation method and original data creation program
KR100993851B1 (en) Original plate data generation method, original plate generation method, exposure method, device manufacturing method, and computer-readable storage medium for generating original plate data
JP5008681B2 (en) Equipment for lithography simulation
JP5685371B2 (en) Method for simulating aspects of a lithographic process
US8122385B2 (en) Mask pattern correcting method
TWI661266B (en) Method and appliance for predicting the imaging result obtained with a mask when a lithography process is carried out
US20110222739A1 (en) Determining Calibration Parameters for a Lithographic Process
JP4843649B2 (en) Evaluation pattern creation method, evaluation pattern creation program, and pattern verification method
JP5300354B2 (en) Generation method, original plate creation method, exposure method, device manufacturing method, and program
TW202010995A (en) Method for determining an etch profile of a layer of a wafer for a simulation system
JP2005234485A (en) Mask data correction method, photomask, mask data correction program, optical image prediction method, shape prediction method for resist pattern, optical image prediction program, and shape prediction program for resist pattern
JP2009139632A (en) Mask pattern correction method and exposure mask
JP2022164702A (en) Apparatus and methods for inspecting reticle
JP2008076682A (en) Mask data generation program, mask data generation method, mask fabrication method, exposure method and device manufacturing method
US8230369B2 (en) Simulation method and simulation program
JP2010128279A (en) Pattern forming method and pattern verification program
US7966580B2 (en) Process-model generation method, computer program product, and pattern correction method
JP2009204823A (en) Simulation method and program for simulation
KR100843228B1 (en) Method of solving mask photography and image forming method using the same
TW200828411A (en) Compensating masks, multi-optical systems using the masks, and methods of compensating for 3-D mask effect using the same
JP5085396B2 (en) Simulation method and program
JP2008233686A (en) Lithography simulation method and program
JP5607327B2 (en) Determination method, exposure method, device manufacturing method, and program
JP2005049460A (en) Method and apparatus for forming resist pattern, method for designing photomask, and photomask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109