JP5085396B2 - Simulation method and program - Google Patents

Simulation method and program Download PDF

Info

Publication number
JP5085396B2
JP5085396B2 JP2008101730A JP2008101730A JP5085396B2 JP 5085396 B2 JP5085396 B2 JP 5085396B2 JP 2008101730 A JP2008101730 A JP 2008101730A JP 2008101730 A JP2008101730 A JP 2008101730A JP 5085396 B2 JP5085396 B2 JP 5085396B2
Authority
JP
Japan
Prior art keywords
mask
phase difference
thin
diffracted light
order diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008101730A
Other languages
Japanese (ja)
Other versions
JP2009251460A (en
Inventor
晶子 三本木
聡 田中
省次 三本木
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008101730A priority Critical patent/JP5085396B2/en
Priority to US12/395,481 priority patent/US8230369B2/en
Publication of JP2009251460A publication Critical patent/JP2009251460A/en
Application granted granted Critical
Publication of JP5085396B2 publication Critical patent/JP5085396B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体装置の製造に用いるリソグラフィシミュレーション技術に係わり、特にリソグラフィプロセスにおいて基板上での光強度をシミュレーションするためのシミュレーション方法に関する。さらに、このシミュレーション方法をコンピュータにより実施するためのプログラムに関する。   The present invention relates to a lithography simulation technique used for manufacturing a semiconductor device, and more particularly to a simulation method for simulating light intensity on a substrate in a lithography process. Furthermore, the present invention relates to a program for executing this simulation method by a computer.

45nmノードの半導体装置の製造において、ArF光の液浸、高NAによるリソグラフィプロセスを用いる場合、マスク上のパターンのサイズはArF光の波長とほぼ同じになる。この場合、マスクトポグラフィによる導波路効果や、斜入射光による遮蔽の影響は無視できないものになる。   In the manufacture of a 45 nm node semiconductor device, when a lithography process using ArF light immersion and high NA is used, the size of the pattern on the mask is almost the same as the wavelength of ArF light. In this case, the waveguide effect by mask topography and the influence of shielding by oblique incident light cannot be ignored.

そこで、LSIの設計に向けたリソグラフィシミュレーションにおいて、例えばマスクを通して基板表面上に照射される光の強度分布をシミュレーションする際には、マスクの厚みや、光の入射角度を厳密に考慮しなくてはならない。即ち、マスク立体構造を考慮したマクスウェル方程式の厳密解計算が必須となる。しかし、この場合、従来の厚みがないものと仮定した薄膜マスクで行っていたシミュレーション(薄膜マスク近似計算)よりも10倍〜100倍のオーダーで時間がかかってしまう。実際の開発においては設計の速度が重要であり、このような計算時間の増大は大きな問題となる。   Therefore, in lithography simulation for LSI design, for example, when simulating the intensity distribution of light irradiated onto the substrate surface through the mask, the thickness of the mask and the incident angle of light must be strictly considered. Don't be. That is, exact solution calculation of Maxwell's equations considering the mask three-dimensional structure is essential. However, in this case, it takes time on the order of 10 times to 100 times that of a simulation (thin film mask approximate calculation) performed with a thin film mask that is assumed to have no conventional thickness. In actual development, the speed of design is important, and such an increase in calculation time is a serious problem.

この問題を回避するために、光源から立体のマスクパターンを見込んだときの、半透過部分と透過部分の大きさを幾何的に考慮し、平面型マスクパターン(薄膜マスク)として新たに定義し直し、短時間に厳密考慮計算とほぼ同じ光学像を得る方法が提案されている(例えば、特許文献1参照)。しかし、この種の方法では、薄膜マスク近似計算での半透過部分の位相差は、照明光入射角度によらず一定で、フォーカスずれの予測精度の低いおそれがあった。   In order to avoid this problem, the size of the translucent part and the transparent part when a three-dimensional mask pattern is expected from the light source is geometrically taken into consideration, and the plane mask pattern (thin film mask) is newly redefined. A method has been proposed in which an optical image that is almost the same as the strict consideration calculation is obtained in a short time (see, for example, Patent Document 1). However, in this type of method, the phase difference of the semi-transmissive part in the thin film mask approximate calculation is constant regardless of the incident angle of the illumination light, and there is a possibility that the prediction accuracy of the focus shift is low.

このように、マスクを通して基板表面上に照射される光の強度分布を測定する光強度分布シミュレーション方法においては、マスク立体構造を考慮したマクスウェル方程式の厳密解計算では、正確な測定は可能であるが、膨大な計算時間が必要になる問題があった。一方、特許文献1のように、立体のマスクパターンを平面型マスクパターンとして新たに定義し直した薄膜マスク近似計算では、計算時間は短縮できるものの、半透過部分の影響により正確な測定ができない問題があった。
特開2007−273560号公報
As described above, in the light intensity distribution simulation method for measuring the intensity distribution of light irradiated on the substrate surface through the mask, accurate measurement is possible with the exact solution calculation of the Maxwell equation considering the mask three-dimensional structure. There was a problem that enormous calculation time was required. On the other hand, as in Patent Document 1, in the thin film mask approximate calculation in which a three-dimensional mask pattern is newly redefined as a planar mask pattern, the calculation time can be shortened, but accurate measurement cannot be performed due to the influence of the semi-transmissive portion. was there.
JP 2007-273560 A

本発明は、上記事情を考慮してなされたもので、その目的とするところは、リソグラフィシミュレーションにおいて、マスクを通して基板表面上に照射される光の強度分布を、薄膜マスク近似計算と同様に短時間で測定することができ、且つ薄膜マスク近似計算よりも正確に測定することのできるシミュレーション方法を提供することにある。   The present invention has been made in consideration of the above circumstances, and the object of the present invention is to calculate the intensity distribution of light irradiated onto the substrate surface through a mask in a lithography simulation in a short time as in the thin film mask approximate calculation. It is an object of the present invention to provide a simulation method which can be measured by the above-described method and can be measured more accurately than the thin film mask approximate calculation.

本発明の一態様は、厚みを有する立体マスクの表面に対して斜め方向から露光光を照射し、該マスクに形成されたパターンを投影光学系により基板上に転写する際の光強度分布を、立体マスクを厚みのない薄型マスクと仮定してシミュレーションする方法であって、所定の面積比(所定のマスク領域内における開口部の割合)を有する薄型マスクを用いた場合と、前記薄型マスクと同一の面積比を有する立体マスクを用いた場合とで、前記転写プロセスにおける前記投影光学系の瞳面上での0次回折光と1次回折光との位相差及び振幅比を計算し、該計算結果から薄型マスクから立体マスクへの位相差及び振幅比のシフト量をそれぞれ予め取得しておき、任意の面積比を有する薄型マスクを用いた前記転写プロセスにおける前記投影光学系の瞳面上での0次回折光と1次回折光との位相差及び振幅比を計算し、計算した前記位相差及び振幅比に前記シフト量を追加することで得られる新たな位相差及び振幅比を設定した前記任意の面積比を有する薄型マスクを用いた転写プロセスのシミュレーションを行うことを特徴とする。 One aspect of the present invention is to irradiate exposure light from an oblique direction on the surface of a three-dimensional mask having a thickness, and to calculate a light intensity distribution when a pattern formed on the mask is transferred onto a substrate by a projection optical system. This is a simulation method on the assumption that the three-dimensional mask is a thin thin mask, and is the same as the thin mask when a thin mask having a predetermined area ratio (ratio of openings in a predetermined mask region) is used. And a phase difference and an amplitude ratio between the 0th-order diffracted light and the 1st-order diffracted light on the pupil plane of the projection optical system in the transfer process in the case of using a three-dimensional mask having an area ratio of the shift amount of the phase difference and amplitude ratio from a thin mask to the three-dimensional mask advance acquired in advance respectively, of the projection optical system in the transfer process using the thin mask having an arbitrary area ratio Setting the phase difference and the amplitude ratio is calculated, the new phase difference obtained by adding the shift amount to the calculated the phase difference and the amplitude ratio and the amplitude ratio of the 0-order diffracted light and 1-order diffracted light on the surface The transfer process using the thin mask having the arbitrary area ratio is simulated.

また、本発明の別の一態様は、厚みを有する立体マスクの表面に対して斜め方向から露光光を照射し、該マスクに形成されたパターンを投影光学系により基板上に転写する際の光強度分布を、立体マスクを厚みのない薄型マスクと仮定してシミュレーションする方法を、コンピュータを用いて実行するためのコンピュータ読み取り可能なプログラムであって、所定の面積比(所定のマスク領域内における開口部の割合)を有する薄型マスクを用いた場合と、前記薄型マスクと同一の面積比を有する立体マスクを用いた場合とで、前記転写プロセスにおける前記投影光学系の瞳面上での0次回折光と1次回折光との位相差及び振幅比を計算し、該計算結果から薄型マスクから立体マスクへの位相差及び振幅比のシフト量をそれぞれ読み出す手順と、任意の面積比を有する薄型マスクを用いた前記転写プロセスにおける前記投影光学系の瞳面上での0次回折光と1次回折光との位相差及び振幅比を計算する手順と、計算した前記位相差及び振幅比に前記シフト量を追加することで得られる新たな位相差及び振幅比を設定した前記任意の面積比を有する薄型マスクを用いた転写プロセスのシミュレーションを行う手順と、をコンピュータに実行させることを特徴とする。 In another aspect of the present invention, light is emitted when the surface of a three-dimensional mask having a thickness is irradiated with exposure light from an oblique direction and a pattern formed on the mask is transferred onto a substrate by a projection optical system. A computer-readable program for executing, using a computer, a method for simulating an intensity distribution on the assumption that a three-dimensional mask is a thin mask having no thickness, and having a predetermined area ratio (opening in a predetermined mask region) 0th order diffracted light on the pupil plane of the projection optical system in the transfer process , when a thin mask having a ratio of a portion) is used and when a three-dimensional mask having the same area ratio as the thin mask is used. When one procedure to calculate the phase difference and amplitude ratio of the diffracted light, reads each shift amount of the phase difference and amplitude ratio from a thin mask from the calculation result to the three-dimensional mask A procedure for calculating a phase difference and an amplitude ratio between the 0th-order diffracted light and the 1st-order diffracted light on the pupil plane of the projection optical system in the transfer process using a thin mask having an arbitrary area ratio; The computer executes a procedure for simulating a transfer process using the thin mask having the arbitrary area ratio in which a new phase difference and amplitude ratio obtained by adding the shift amount to the phase difference and amplitude ratio is set. It is characterized by making it.

本発明によれば、マスクを通して基板表面上に照射される光の強度分布を、薄膜マスク近似計算と同様に短時間で測定することができ、且つ薄膜マスク近似計算よりも正確に測定することができる。   According to the present invention, the intensity distribution of light irradiated on the substrate surface through the mask can be measured in a short time as in the thin film mask approximate calculation, and more accurately than the thin film mask approximate calculation. it can.

以下、本発明の詳細を図示の実施形態によって説明する。   The details of the present invention will be described below with reference to the illustrated embodiments.

図1は、本発明の一実施形態に使用した投影露光装置の一例を示す概略構成図であり、11は光源、12はマスク、13は投影光学系、14はウエハ(基板)を示している。   FIG. 1 is a schematic block diagram showing an example of a projection exposure apparatus used in an embodiment of the present invention. 11 is a light source, 12 is a mask, 13 is a projection optical system, and 14 is a wafer (substrate). .

この例は、光源11として2つ目照明などを用いた斜め入射照明方式である。このため、光源11(点光源A)からの光はマスク平面に対して斜めに照射され、マスク12からの0次回折光及び1次回折光は、投影光学系13により集束され、ウエハ14上に結像されるようになっている。ここで、投影光学系13の瞳面における0次回折光と1次回折光との位置は、マスク上のパターンピッチに応じた距離だけ離れて位置し、その距離xは、パターンピッチの半分をHP、露光光の波長をλとすると
x=λ/(2・HP)
で表される。
This example is an oblique illumination method using second illumination as the light source 11. For this reason, the light from the light source 11 (point light source A) is irradiated obliquely with respect to the mask plane, and the 0th-order diffracted light and the 1st-order diffracted light from the mask 12 are converged by the projection optical system 13 and connected to the wafer 14. It has come to be imaged. Here, the positions of the zero-order diffracted light and the first-order diffracted light on the pupil plane of the projection optical system 13 are separated by a distance corresponding to the pattern pitch on the mask, and the distance x is HP, If the wavelength of the exposure light is λ, x = λ / (2 · HP)
It is represented by

このような投影露光装置を用いた場合における、ウエハ14上で光強度の分布をシミュレーションにより求める。そして、このシミュレーション結果に基づきマスク12のパターンを補正することにより、ウエハ14上に所望パターンを形成することができる。   When such a projection exposure apparatus is used, the light intensity distribution on the wafer 14 is obtained by simulation. A desired pattern can be formed on the wafer 14 by correcting the pattern of the mask 12 based on the simulation result.

先に説明したように、マスク立体構造を考慮した計算では、正確な測定はできるものの、多大な時間がかかる。そこで、(特許文献1)のように、影モデルによる薄膜マスク定義が検討されている。   As described above, the calculation considering the mask three-dimensional structure can be measured accurately but takes a lot of time. Therefore, as in (Patent Document 1), a thin film mask definition using a shadow model has been studied.

まず、図2に示すように、立体構造を有するマスク21を、斜入射による影効果(Shadowing effect)のみを考えて、新たに平面型マスク31として定義する。なお、図中のθは露光光の入射角(照射光の光軸方向とマスクへの照射光の入射方向とのなす角)、dは遮光部(半透明部を含む)22の厚さである。   First, as shown in FIG. 2, a mask 21 having a three-dimensional structure is newly defined as a planar mask 31 in consideration of only a shadow effect due to oblique incidence. In the figure, θ is the incident angle of the exposure light (angle formed by the optical axis direction of the irradiated light and the incident direction of the irradiated light on the mask), and d is the thickness of the light shielding portion (including the translucent portion) 22. is there.

例えば、ピッチ100nmの1:1コンタクトホールパターンを解像させるため、照明条件を1.3NA、四つ目照明、光軸から四つ目照明の目の中心までの距離σ=0.8、露光装置の縮小率Mag=4とすると、四つ目照明の各目の中心の点光源からマスクへの光入射角度は次のように決まる。   For example, in order to resolve a 1: 1 contact hole pattern with a pitch of 100 nm, the illumination condition is 1.3 NA, the fourth illumination, the distance σ = 0.8 from the optical axis to the center of the fourth illumination eye, the exposure Assuming that the reduction ratio of the apparatus is Mag = 4, the light incident angle from the point light source at the center of each eye of the fourth illumination to the mask is determined as follows.

sinθ=NA×σ/Mag=0.26 ∴θ=15.07deg
単純化のため、光軸からθだけ傾いた方向からの光照射に対して影となる部分は、照明光を遮光(半透過を含む)するものと仮定する。
sinθ = NA × σ / Mag = 0.26 ∴θ = 15.07deg
For simplification, it is assumed that a portion that is shaded by light irradiation from a direction inclined by θ from the optical axis shields illumination light (including semi-transmission).

新たに設定した開口(マスクパターンの)の大きさw’は、マスクパターンのもとの開口の大きさwを70nmとすると,tanθ=0.269260であることから、
w’=w−d・tanθ=65.29nm
となる。
The newly set size w ′ of the opening (mask pattern) is tan θ = 0.269260 when the size w of the original opening of the mask pattern is 70 nm.
w ′ = w−d · tan θ = 65.29 nm
It becomes.

ここで、四つ目照明の各目からの照射光がマスク側面により遮光(半透過を含む)されて影となるマスク開口周辺部32における位相差を考慮するために、図3に示すように、影となる部分32(フリンジ)に、一定の透過率・位相を与えて計算する手法が提案されている。しかし、このようなマスク計算では、フリンジ32を透過する回折光の位相分布は一意に決まる。   Here, in order to consider the phase difference in the mask opening peripheral portion 32 where the irradiation light from each eye of the fourth illumination is shaded (including transflective) by the mask side surface and becomes a shadow, as shown in FIG. A method has been proposed in which a constant transmittance / phase is given to the shadowed portion 32 (fringe) for calculation. However, in such mask calculation, the phase distribution of the diffracted light transmitted through the fringe 32 is uniquely determined.

図4に、1:1の周期パターンの0次回折光と1次回折光との位相差のハーフピッチ(HP)依存性を示す。この図から、HPが大きくなるに伴い、0次回折光−1次回折光の位相差が小さくなっているのが分かる。このような回折光の位相差は、シミュレーション精度に大きな影響を与える。   FIG. 4 shows the half-pitch (HP) dependence of the phase difference between the 0th-order diffracted light and the 1st-order diffracted light with a 1: 1 periodic pattern. From this figure, it can be seen that as HP increases, the phase difference between the 0th order diffracted light and the 1st order diffracted light becomes smaller. Such a phase difference of diffracted light greatly affects the simulation accuracy.

従って、従来方法では不十分であり、精度良いシミュレーションを行うには、回折光間の位相差分布の効果を正しく入れる必要がある。この点を考慮してフリンジにおける位相を固定するのではなく、各種のパラメータに応じた回折光間の位相差分布を考慮する必要がある。   Therefore, the conventional method is insufficient, and it is necessary to correctly incorporate the effect of the phase difference distribution between the diffracted lights in order to perform accurate simulation. Considering this point, it is necessary not to fix the phase in the fringe but to consider the phase difference distribution between the diffracted lights according to various parameters.

図5は、異なるHPであるHP1、HP2、HP3を持つパターンを光軸上の点光源から照明した場合の、投影光学系の瞳面上の0次回折光と1次回折光を表した模式図である。回折光を矢印で表し、矢印の大きさが回折光の振幅を、光軸の光源方向を正として矢印となす角度が位相を、それぞれ表している。3つの1次回折光は、異なるHPをHP1、HP2、HP3を持つパターンを光軸上の点光源から照明した場合に異なる位置に回折光が現われることを示している。ここで、それぞれのHPの関係は、HP1<HP2<HP3である。図4からHPが小さいほど、0次回折光と1次回折光の位相差は大きくなる。さらに、それぞれのパターンに対応する0次回折光と1次回折光との距離x1、x2、x3は
x=λ/(2・HP)
に従い、x1>x2>x3の関係になる。
FIG. 5 is a schematic diagram showing the 0th-order diffracted light and the 1st-order diffracted light on the pupil plane of the projection optical system when a pattern having different HPs HP1, HP2, and HP3 is illuminated from a point light source on the optical axis. is there. The diffracted light is represented by an arrow, the magnitude of the arrow represents the amplitude of the diffracted light, and the angle formed by the arrow with the light source direction of the optical axis being positive represents the phase. The three first-order diffracted lights indicate that diffracted lights appear at different positions when patterns having different HPs HP1, HP2, and HP3 are illuminated from a point light source on the optical axis. Here, the relationship of each HP is HP1 <HP2 <HP3. From FIG. 4, the smaller the HP is, the larger the phase difference between the 0th order diffracted light and the 1st order diffracted light. Further, the distances x1, x2, and x3 between the 0th-order diffracted light and the 1st-order diffracted light corresponding to each pattern are x = λ / (2 · HP)
Accordingly, the relationship of x1>x2> x3 is established.

したがって、位相差Δφを、瞳面上での、0次回折光−1次回折光間隔xを変数とする量として与えることが可能である。   Therefore, it is possible to give the phase difference Δφ as a variable having the 0th-order diffracted light-1st-order diffracted light interval x on the pupil plane as a variable.

図6は、瞳面上位置における0次−1次位相差Δφを示す図である。位相差Δφは、
Δφ=f(x,bias,θinc,d)
x:瞳面での0次回折光と1次回折光との距離
bias:周期マスクパターンのパターンサイズとHPとの差分量
θinc:照明光の入射角度
d:マスク遮蔽部の膜厚
として表され、bias,θinc,dの条件の違いにより異なる値を取るため、条件毎に異なるグラフになっている。これらの条件により異なる位相差を計算するには多大な時間がかかり、シミュレーション時に計算するのはシミュレーションの速度を低下させる要因となる。
FIG. 6 is a diagram showing the 0th-first order phase difference Δφ at the position on the pupil plane. The phase difference Δφ is
Δφ = f (x, bias, θinc, d)
x: Distance between 0th-order diffracted light and 1st-order diffracted light on the pupil plane
bias: difference amount between the pattern size of the periodic mask pattern and HP θinc: incident angle of illumination light d: expressed as the film thickness of the mask shielding part, and takes different values depending on the difference of bias, θinc, d. Each graph is different. It takes a lot of time to calculate different phase differences depending on these conditions, and calculating at the time of simulation causes a reduction in the speed of the simulation.

そこで、様々なリソグラフィ条件下での位相差を予め計算しておき、その結果をデータベース(DB)に格納又は関数化しておけば、シミュレーション時に必要な位相差をDBから取り出すことができる。しかし、この方法では、DBを作成するのに多大な時間がかかってしまう。   Therefore, if the phase difference under various lithography conditions is calculated in advance and the result is stored in a database (DB) or converted into a function, the phase difference required at the time of simulation can be extracted from the DB. However, with this method, it takes a long time to create the DB.

そこで本実施形態では、1つのリソグラフィ条件において薄型マスクに対応する立体マスクの0次回折光と1次回折光との位相差及び振幅比を予め計算しておき、異なるリソグラフィ条件のマスクに対しては、上記の計算により得られる関係を基に位相差及び振幅比を設定する。このときのリソグラフィ条件としては、周期パターンにおける面積比(周期パターンにおける開口部の割合)であるバイアス値を用いる。   Therefore, in the present embodiment, the phase difference and the amplitude ratio between the 0th-order diffracted light and the 1st-order diffracted light of the three-dimensional mask corresponding to the thin mask under one lithography condition are calculated in advance, and for masks with different lithography conditions, The phase difference and the amplitude ratio are set based on the relationship obtained by the above calculation. As a lithography condition at this time, a bias value that is an area ratio in the periodic pattern (ratio of openings in the periodic pattern) is used.

図7は、1:1のL/Sパターンを用いた場合のマスク立体効果による回折光バランスの変動を示す図である。薄型マスク(TMA)に対し立体マスク(TOI)は0次の回折光の振幅が大きく変化し、1次の回折光の振幅はあまり変わっていない。さらに、0次の回折光の位相は変化せず、1次の回折光の位相は僅かに変化している。このような振幅と位相の変動は、導波路の効果と照明光の斜入射効果によるものである。   FIG. 7 is a diagram showing fluctuations in the diffracted light balance due to the mask stereo effect when a 1: 1 L / S pattern is used. In contrast to the thin mask (TMA), the amplitude of the 0th-order diffracted light changes greatly in the three-dimensional mask (TOI), and the amplitude of the 1st-order diffracted light does not change much. Further, the phase of the 0th-order diffracted light does not change, and the phase of the 1st-order diffracted light slightly changes. Such fluctuations in amplitude and phase are due to the effect of the waveguide and the oblique incidence effect of the illumination light.

図8は、図7に示す関係を基にバイアス依存性を計算した結果を示す図である。なお、図8の計算結果は、バイアス以外の条件であるパターンの膜厚やピッチ等の条件は一定とした。縦軸は、1次回折光と0次回折光との位相差であり、横軸は1次回折光と0次回折光との振幅比であり、横軸は対数目盛となっている。   FIG. 8 is a diagram showing the result of calculating the bias dependence based on the relationship shown in FIG. In the calculation results of FIG. 8, the conditions such as the film thickness and pitch of the pattern, which are conditions other than the bias, are constant. The vertical axis represents the phase difference between the 1st order diffracted light and the 0th order diffracted light, the horizontal axis represents the amplitude ratio between the 1st order diffracted light and the 0th order diffracted light, and the horizontal axis represents a logarithmic scale.

ここで、L/Sパターンは、図9に示すように、例えばマスク上で80nmピッチのパターンであり、薄型マスクの複数個はバイアス値が異なるパターンである。バイアス値とは、周期パターンにおける開口の割合(面積比)である。図9(a)〜(c)は何れも同一ピッチLのL/Sパターンであり、例えば図9(a)は面積比0.8のL/Sパターン、図9(b)は面積比1(1:1のL/Sパターン)、図9(c)は面積比1.2のL/Sパターンである。なお、図8では、バイアス値が異なることをパターンのライン寸法で示している。   Here, as shown in FIG. 9, the L / S pattern is, for example, a pattern with a pitch of 80 nm on the mask, and a plurality of thin masks are patterns having different bias values. The bias value is a ratio (area ratio) of openings in the periodic pattern. FIGS. 9A to 9C are L / S patterns having the same pitch L. For example, FIG. 9A shows an L / S pattern with an area ratio of 0.8, and FIG. (1: 1 L / S pattern), FIG. 9C is an L / S pattern with an area ratio of 1.2. In FIG. 8, the difference in bias value is indicated by the line size of the pattern.

図8に示すように、薄型マスク(TMA)に対し立体マスク(TOI)は0次回折光と1次回折光との位相差及び強度比共に大きくなっている。このとき、異なるバイアスに対して位相差及び強度比の変化の仕方は極めて似ており、TMAからTOIへの変化の直線をバイアスの違いによる分だけ平行にシフトしたものとなっている。   As shown in FIG. 8, the three-dimensional mask (TOI) has a larger phase difference and intensity ratio between the 0th-order diffracted light and the 1st-order diffracted light than the thin mask (TMA). At this time, the method of changing the phase difference and the intensity ratio is very similar for different biases, and the straight line of change from TMA to TOI is shifted in parallel by the difference of the bias.

従って、図8中に○で示した同じピッチとライン寸法を持つTMA(薄膜近似計算)とTOI(斜入射光とマスク立体構造厳密計算)との瞳上での回折光振幅比(1次回折光振幅/0次回折光振幅)及び位相差(1次回折光位相−0次回折光位相)の散布図上での位置関係が分かれば、バイアスを変更したときも、TMA計算の対応するポイントさえ分かれば、実際にTOI計算すること無く、最初の位置関係から回折光の振幅比と位相差を予測可能である。   Accordingly, the diffracted light amplitude ratio (first-order diffracted light) on the pupil of TMA (thin film approximate calculation) and TOI (accurate calculation of oblique incident light and mask three-dimensional structure) having the same pitch and line dimensions indicated by ◯ in FIG. Amplitude / 0th order diffracted light amplitude) and phase difference (1st order diffracted light phase−0th order diffracted light phase) on the scatter diagram, if the bias is changed, even if the corresponding point in the TMA calculation is known, Without actually performing TOI calculation, the amplitude ratio and phase difference of diffracted light can be predicted from the initial positional relationship.

即ち、パターンの膜厚やピッチ等の条件が同じであれば、上記の関係を1つだけ計算しておくことにより、異なるバイアスのパターンに対して薄型マスクに対応する立体マスクの振幅比及び位相差を簡易に求めることができる。   That is, if the conditions such as the film thickness and the pitch of the pattern are the same, by calculating only one of the above relationships, the amplitude ratio and level of the three-dimensional mask corresponding to the thin mask with respect to the different bias patterns are calculated. The phase difference can be easily obtained.

具体的には、あるバイアスを有する薄型マスクを用いた場合と同一バイアスを有する立体マスクを用いた場合のそれぞれの0次回折光と1次回折光との位相差及び振幅比を予め計算する。そして、この計算結果により、薄型マスクから立体マスクへの位相差及び振幅比のシフト量を求めておく。そして、本実施例におけるリソグラフィシミュレーションに用いる所定のバイアスを有する立体マスクを薄型マスクと仮定し、該薄型マスクを用いた0次回折光と1次回折光との位相差及び振幅比を算出し、算出した位相差及び振幅比に対して予め求めておいた位相差及び振幅比のシフト量をシフトさせることにより、薄型マスクに対応する立体マスクの位相差及び振幅比を設定する。この設定された位相差及び振幅比を基に薄型マスクを用いてシミュレーションを行うことにより、正確なシミュレーションが可能となる。また、立体マスクを用いた厳密計算を実行する必要がなく、薄膜マスク近似計算とほぼ同様に短時間で測定することができる。ここで、シミュレーションに適用する立体マスクとシフト量の算出のために用いた立体マスクの膜厚やピッチを同一に設定する必要はないが、膜厚やピッチを同一に設定することで、より精度の高いシミュレーションを行うことができる場合がある。   Specifically, the phase difference and amplitude ratio between the 0th-order diffracted light and the 1st-order diffracted light are calculated in advance when a thin mask having a certain bias is used and when a three-dimensional mask having the same bias is used. Then, based on the calculation result, the phase difference and the shift amount of the amplitude ratio from the thin mask to the three-dimensional mask are obtained. Then, assuming that the three-dimensional mask having a predetermined bias used in the lithography simulation in this embodiment is a thin mask, the phase difference and the amplitude ratio between the 0th-order diffracted light and the first-order diffracted light using the thin mask are calculated and calculated. The phase difference and amplitude ratio of the three-dimensional mask corresponding to the thin mask are set by shifting the shift amount of the phase difference and amplitude ratio obtained in advance with respect to the phase difference and amplitude ratio. By performing a simulation using a thin mask based on the set phase difference and amplitude ratio, an accurate simulation can be performed. In addition, it is not necessary to perform strict calculation using a three-dimensional mask, and measurement can be performed in a short time as in the thin film mask approximate calculation. Here, it is not necessary to set the film thickness and pitch of the 3D mask applied to the simulation and the 3D mask used to calculate the shift amount, but it is more accurate by setting the film thickness and pitch to the same. Simulation may be possible.

また、多数・多種のバイアスを有するマスクに対して計算を行ってデータベースを作成するのと異なり、1つのバイアスに対して計算を行っておけば良いだけなので、シミュレーション準備のための前処理が極めて簡単に済む利点がある。   Also, unlike creating a database by performing calculations for a large number of masks with various biases, it is only necessary to perform calculations for one bias, so pre-processing for simulation preparation is extremely difficult. There is an advantage of being easy.

なお、本発明は上述した実施形態に限定されるものではない。実施形態では、L/Sパターンについてのパターン寸法設計の例を示したが、コンタクトホールであっても同様の方法で、短時間での設計を行うことができる。   In addition, this invention is not limited to embodiment mentioned above. In the embodiment, the example of the pattern dimension design for the L / S pattern has been shown, but even a contact hole can be designed in a short time by the same method.

また、マスク上にピッチが異なるパターンが存在する場合、異なるピッチ毎に1つのバイアスに対して薄型マスクに対応する立体マスクにおける0次回折光と1次回折光との位相差及び振幅比を予め計算すればよい。つまり、バイアス以外の異なる条件に対して、各条件毎に1つのバイアスに対する計算を行うだけで良い。   If there are patterns with different pitches on the mask, the phase difference and amplitude ratio between the 0th-order diffracted light and the 1st-order diffracted light in the three-dimensional mask corresponding to the thin mask are calculated in advance for each different pitch. That's fine. That is, for different conditions other than the bias, it is only necessary to perform calculation for one bias for each condition.

また、本実施形態では、周期パターンを有するマスクを用いたシミュレーションを行ったが、必ずしも周期パターンを有するマスクを用いる必要はない。例えば、所定の面積比(バイアス、即ち所定のマスク面領域内における開口部の割合)を有する薄型マスクと薄型マスクと同一の面積比を有する立体マスクを用いた転写プロセスにおける投影光学系の瞳面上での0次回折光と1次回折光との位相差及び振幅比のシフト量を取得し、任意の面積比(前記所定のマスク面領域と同一面積のマスク面領域内における開口部の割合でもよく、前記所定のマスク面領域と異なる面積のマスク面領域内における開口部の割合でもよい)を有する薄型マスクを用いた転写プロセスにおける投影光学系の瞳面上での0次回折光と1次回折光との位相差及び振幅比を計算し、計算した位相差及び振幅比にシフト量を追加することで設定した位相差及び振幅比を基に、任意の面積比を有する薄型マスクを用いた転写プロセスのシミュレーションを行うことが可能である。   In this embodiment, a simulation using a mask having a periodic pattern is performed. However, it is not always necessary to use a mask having a periodic pattern. For example, the pupil plane of the projection optical system in a transfer process using a thin mask having a predetermined area ratio (bias, that is, a ratio of openings in a predetermined mask surface area) and a three-dimensional mask having the same area ratio as the thin mask. The phase difference between the 0th-order diffracted light and the 1st-order diffracted light and the shift amount of the amplitude ratio are acquired, and an arbitrary area ratio (the ratio of the opening in the mask surface area having the same area as the predetermined mask surface area may be used. The zero-order diffracted light and the first-order diffracted light on the pupil plane of the projection optical system in a transfer process using a thin mask having a mask surface region having an area different from the predetermined mask surface region may be used. Based on the phase difference and amplitude ratio set by calculating the phase difference and amplitude ratio, and adding the shift amount to the calculated phase difference and amplitude ratio, the transfer using a thin mask having an arbitrary area ratio is performed. It is possible to simulate the process.

また、本実施形態では、薄膜近似計算(TMA)と、斜入射光を用いたマスク立体構造厳密計算(TOI)との間の位相差及び振幅比のシフト量を求めたが、それらの計算の間にマスク立体構造のみ厳密に考慮し、マスクへの垂直入射光による瞳面上回折光の位相差と振幅比を求めるステップを設けることもできる。すなわち、シフト量を、薄膜近似計算で求めた位相差及び振幅比からの垂直入射光によるマスク立体構造考慮計算で求めた位相差及び振幅比へのシフト量と、垂直入射光によるマスク立体構造考慮計算で求めた位相差及び振幅比からの斜入射光を用いたマスク立体構造厳密計算で求めた位相差及び振幅比へのシフト量とに分解して、それらのシフト量を順に適用し、薄膜近似計算による回折光の位相差と振幅比から斜入射光とマスク立体構造厳密計算による位相差と振幅比を求めてもよい。   In this embodiment, the phase difference and the amplitude ratio shift amount between the thin film approximate calculation (TMA) and the mask three-dimensional structure exact calculation (TOI) using obliquely incident light are obtained. It is also possible to provide a step of obtaining the phase difference and the amplitude ratio of the diffracted light on the pupil plane due to the vertically incident light on the mask while strictly considering only the mask three-dimensional structure. That is, the shift amount is determined by considering the mask three-dimensional structure by the phase difference and amplitude ratio calculated by the normal incident light from the phase difference and amplitude ratio obtained by the thin film approximate calculation and the mask three-dimensional structure by the normal incident light. The phase difference and amplitude ratio obtained by calculation are decomposed into the phase difference and amplitude ratio shift amount obtained by rigorous calculation of the mask three-dimensional structure using obliquely incident light, and these shift amounts are applied in order, and the thin film You may obtain | require the phase difference and amplitude ratio by oblique incidence light and mask three-dimensional structure exact calculation from the phase difference and amplitude ratio of diffracted light by approximate calculation.

これによって、例えばマスクパターンは不変で、照明形状の変更に伴い光入射角度が変わった場合に、垂直入射光によるマスク立体構造考慮計算から、斜入射光によるマスク立体構造厳密計算への位相差と振幅比のシフト量のみを再計算するだけでよく、斜入射光によるマスク立体構造厳密計算の位相差と振幅比の解析が容易になる。   Thus, for example, when the mask pattern is not changed and the light incident angle changes with the change of the illumination shape, the phase difference from the mask three-dimensional structure consideration calculation by the normal incident light to the mask three-dimensional structure exact calculation by the oblique incident light It is only necessary to recalculate only the shift amount of the amplitude ratio, and the analysis of the phase difference and the amplitude ratio in the exact calculation of the mask three-dimensional structure by the oblique incident light becomes easy.

その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。   In addition, various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態に使用した投影露光装置の一例を示す概略構成図。The schematic block diagram which shows an example of the projection exposure apparatus used for one Embodiment of this invention. 立体構造のマスクを、斜入射による影効果のみを考えて、新たに平面構造のマスクとして定義した例を示す図。The figure which shows the example which defined the mask of a solid structure as a mask of a planar structure newly considering only the shadow effect by oblique incidence. 開口部の周囲の影となる部分(フリンジ)に、固定の透過率・位相を与えて計算する手法を示す図。The figure which shows the method of giving a fixed transmittance | permeability and a phase to the part (fringe) used as the shadow around an opening part, and calculating. 1:1のL/Sパターンの0次回折光と1次回折光との位相差のHP依存性を示す図。The figure which shows HP dependence of the phase difference of the 0th-order diffracted light of a L / S pattern of 1: 1, and a 1st-order diffracted light. 投影レンズの瞳面における0次回折光と1次回折光との位相差を示す図。The figure which shows the phase difference of the 0th-order diffracted light and the 1st-order diffracted light in the pupil plane of a projection lens. 投影レンズの瞳上位置における0次−1次位相差Δφを示す図。The figure which shows 0th-1st phase difference (DELTA) phi in the position on the pupil of a projection lens. マスク立体効果による回折光バランスの変動を示す図。The figure which shows the fluctuation | variation of the diffracted light balance by a mask three-dimensional effect. マスク立体効果による回折光バランスのバイアス依存性を示す図。The figure which shows the bias dependence of the diffracted light balance by a mask three-dimensional effect. L/Sパターンにおけるバイアス(面積比)の違いを示す図。The figure which shows the difference in the bias (area ratio) in a L / S pattern.

符号の説明Explanation of symbols

11…光源
12…マスク
13…投影光学系
14…ウエハ(基板)
21…立体構造マスク
22…遮光部
31…平面構造マスク
32…開口部周辺の影となる部分(フリンジ)
DESCRIPTION OF SYMBOLS 11 ... Light source 12 ... Mask 13 ... Projection optical system 14 ... Wafer (substrate)
DESCRIPTION OF SYMBOLS 21 ... Three-dimensional structure mask 22 ... Light-shielding part 31 ... Planar structure mask 32 ... The part used as the shadow around an opening part (fringe)

Claims (5)

厚みを有する立体マスクの表面に対して斜め方向から露光光を照射し、該マスクに形成されたパターンを投影光学系により基板上に転写する際の光強度分布を、立体マスクを厚みのない薄型マスクと仮定してシミュレーションする方法であって、
所定の面積比(所定のマスク領域内における開口部の割合)を有する薄型マスクを用いた場合と、前記薄型マスクと同一の面積比を有する立体マスクを用いた場合とで、前記転写プロセスにおける前記投影光学系の瞳面上での0次回折光と1次回折光との位相差及び振幅比を計算し、該計算結果から薄型マスクから立体マスクへの位相差及び振幅比のシフト量をそれぞれ予め取得しておき、
任意の面積比を有する薄型マスクを用いた前記転写プロセスにおける前記投影光学系の瞳面上での0次回折光と1次回折光との位相差及び振幅比を計算し、
計算した前記位相差及び振幅比に前記シフト量を追加することで得られる新たな位相差及び振幅比を設定した前記任意の面積比を有する薄型マスクを用いた転写プロセスのシミュレーションを行うことを特徴とするシミュレーション方法。
Light intensity distribution when irradiating exposure light from the oblique direction to the surface of a three-dimensional mask having a thickness and transferring a pattern formed on the mask onto a substrate by a projection optical system, a thin three-dimensional mask with no thickness A simulation method assuming a mask,
In the case of using a thin mask having a predetermined area ratio (ratio of openings in a predetermined mask region) and in the case of using a three-dimensional mask having the same area ratio as the thin mask , the transfer process The phase difference and amplitude ratio between the 0th order diffracted light and the 1st order diffracted light on the pupil plane of the projection optical system are calculated, and the phase difference and the shift amount of the amplitude ratio from the thin mask to the three-dimensional mask are obtained in advance from the calculation results , respectively. Aside,
Calculating a phase difference and an amplitude ratio between the 0th-order diffracted light and the 1st-order diffracted light on the pupil plane of the projection optical system in the transfer process using a thin mask having an arbitrary area ratio;
A simulation of a transfer process using a thin mask having the arbitrary area ratio set with a new phase difference and amplitude ratio obtained by adding the shift amount to the calculated phase difference and amplitude ratio is performed. Simulation method.
前記面積比は、周期パターンにおける開口部の割合であることを特徴とする請求項1記載のシミュレーション方法。   The simulation method according to claim 1, wherein the area ratio is a ratio of openings in the periodic pattern. 前記シフト量を取得するために用いられる薄型マスク及び立体マスクと、前記シミュレーションに用いられる薄型マスクは、同一ピッチの周期パターンを有することを特徴とする請求項2記載のシミュレーション方法。   The simulation method according to claim 2, wherein the thin mask and the three-dimensional mask used for acquiring the shift amount and the thin mask used for the simulation have a periodic pattern with the same pitch. 前記シミュレーションは、前記シフト量を取得するために用いられる立体マスクと同一の厚みを有する立体マスクを用いた転写プロセスの光強度分布のシミュレーションであることを特徴とする請求項1乃至3の何れかに記載のシミュレーション方法。   4. The simulation according to claim 1, wherein the simulation is a simulation of a light intensity distribution of a transfer process using a three-dimensional mask having the same thickness as the three-dimensional mask used for acquiring the shift amount. The simulation method described in 1. 厚みを有する立体マスクの表面に対して斜め方向から露光光を照射し、該マスクに形成されたパターンを投影光学系により基板上に転写する際の光強度分布を、立体マスクを厚みのない薄型マスクと仮定してシミュレーションする方法を、コンピュータを用いて実行するためのコンピュータ読み取り可能なプログラムであって、
所定の面積比(所定のマスク領域内における開口部の割合)を有する薄型マスクを用いた場合と、前記薄型マスクと同一の面積比を有する立体マスクを用いた場合とで、前記転写プロセスにおける前記投影光学系の瞳面上での0次回折光と1次回折光との位相差及び振幅比を計算し、該計算結果から薄型マスクから立体マスクへの位相差及び振幅比のシフト量をそれぞれ読み出す手順と、
任意の面積比を有する薄型マスクを用いた前記転写プロセスにおける前記投影光学系の瞳面上での0次回折光と1次回折光との位相差及び振幅比を計算する手順と、
計算した前記位相差及び振幅比に前記シフト量を追加することで得られる新たな位相差及び振幅比を設定した前記任意の面積比を有する薄型マスクを用いた転写プロセスのシミュレーションを行う手順と、
をコンピュータに実行させることを特徴とするプログラム。
Light intensity distribution when irradiating exposure light from the oblique direction to the surface of a three-dimensional mask having a thickness and transferring a pattern formed on the mask onto a substrate by a projection optical system, a thin three-dimensional mask with no thickness A computer readable program for executing a simulation method assuming a mask using a computer,
In the case of using a thin mask having a predetermined area ratio (ratio of openings in a predetermined mask region) and in the case of using a three-dimensional mask having the same area ratio as the thin mask , the transfer process A procedure for calculating the phase difference and amplitude ratio between the 0th-order diffracted light and the 1st-order diffracted light on the pupil plane of the projection optical system , and reading out the phase difference and the shift amount of the amplitude ratio from the thin mask to the three-dimensional mask from the calculation results , respectively. When,
A procedure for calculating a phase difference and an amplitude ratio between the zero-order diffracted light and the first-order diffracted light on the pupil plane of the projection optical system in the transfer process using a thin mask having an arbitrary area ratio;
A procedure for performing a simulation of a transfer process using a thin mask having the arbitrary area ratio set with a new phase difference and amplitude ratio obtained by adding the shift amount to the calculated phase difference and amplitude ratio;
A program that causes a computer to execute.
JP2008101730A 2008-02-27 2008-04-09 Simulation method and program Expired - Fee Related JP5085396B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008101730A JP5085396B2 (en) 2008-04-09 2008-04-09 Simulation method and program
US12/395,481 US8230369B2 (en) 2008-02-27 2009-02-27 Simulation method and simulation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101730A JP5085396B2 (en) 2008-04-09 2008-04-09 Simulation method and program

Publications (2)

Publication Number Publication Date
JP2009251460A JP2009251460A (en) 2009-10-29
JP5085396B2 true JP5085396B2 (en) 2012-11-28

Family

ID=41312212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101730A Expired - Fee Related JP5085396B2 (en) 2008-02-27 2008-04-09 Simulation method and program

Country Status (1)

Country Link
JP (1) JP5085396B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809894B (en) * 2012-08-16 2014-06-04 北京理工大学 Method for computing diffraction of masks of contact holes of multiple absorbing layers
WO2016096365A1 (en) * 2014-12-17 2016-06-23 Asml Netherlands B.V. Method and apparatus for using patterning device topography induced phase

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4099567B2 (en) * 2002-02-27 2008-06-11 ソニー株式会社 Method for correcting mask pattern for extreme ultraviolet light
JP2005340493A (en) * 2004-05-27 2005-12-08 Sony Corp Method for correcting mask pattern, mask for exposure to light, and mask-manufacturing method
JP4843241B2 (en) * 2005-03-28 2011-12-21 株式会社東芝 Light intensity distribution simulation system, light intensity distribution simulation method, mask pattern correction method, and light intensity distribution simulation program
JP2007273560A (en) * 2006-03-30 2007-10-18 Toshiba Corp Light intensity distribution simulation method
JP5023589B2 (en) * 2006-07-21 2012-09-12 大日本印刷株式会社 Photomask and method for designing the photomask

Also Published As

Publication number Publication date
JP2009251460A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
TWI317080B (en)
KR100889124B1 (en) Original data producing method and original data producing program
JP4538021B2 (en) Optical proximity correction method
KR101711699B1 (en) Mask pattern generating method, recording medium, and information processing apparatus
JP5300354B2 (en) Generation method, original plate creation method, exposure method, device manufacturing method, and program
JP4804294B2 (en) Master data creation program, master data creation method, master creation method, exposure method, and device manufacturing method
KR101124919B1 (en) Method of determining exposure parameter, exposure method, method of manufacturing device and recording medium
US20090148780A1 (en) Method for correcting mask pattern, and exposure mask
US8271910B2 (en) EMF correction model calibration using asymmetry factor data obtained from aerial images or a patterned layer
JP2007025034A (en) Lithography simulation method, mask pattern forming method and method for manufacturing semiconductor device
JP7110327B2 (en) Metrology method and apparatus
US8230369B2 (en) Simulation method and simulation program
TWI240307B (en) Correction method and verification method for pattern size using OPC, mask and semiconductor device made by using the correction method, and system and recording medium executing the correction method
JP2005037598A (en) Reticle, inspection system for aligner, inspection method for aligner, and method for manufacturing reticle
JP2008219004A (en) Uv lithographic system and method
JP2007305972A (en) Method of setting exposure conditions and method of manufacturing semiconductor device
JP5085396B2 (en) Simulation method and program
JP2010087166A (en) Inspection method of exposure device
JP2009204823A (en) Simulation method and program for simulation
KR100809710B1 (en) Compensating mask, multi-optical system using the same mask, and method of compensating 3-d mask effect using the same mask
US20100304279A1 (en) Manufacturing method of phase shift mask, creating method of mask data of phase shift mask, and manufacturing method of semiconductor device
CN109164678B (en) Method for improving high depth-to-width ratio figure inconsistency and improving photoresist appearance gradient
US20090210851A1 (en) Lithography simulation method and computer program product
CN106707684B (en) Focal plane position testing mask and method for determining focal plane position
JP2013083759A (en) Phase shift mask, method for forming asymmetric pattern, method for manufacturing diffraction grating, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees