US6710324B2 - Optoelectronic distance measuring device - Google Patents
Optoelectronic distance measuring device Download PDFInfo
- Publication number
- US6710324B2 US6710324B2 US10/281,288 US28128802A US6710324B2 US 6710324 B2 US6710324 B2 US 6710324B2 US 28128802 A US28128802 A US 28128802A US 6710324 B2 US6710324 B2 US 6710324B2
- Authority
- US
- United States
- Prior art keywords
- accordance
- pulse
- amplified
- subsidiary
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 8
- 238000011156 evaluation Methods 0.000 claims abstract description 24
- 230000005855 radiation Effects 0.000 claims abstract description 17
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 5
- 230000002238 attenuated effect Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 description 11
- 238000002310 reflectometry Methods 0.000 description 7
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/487—Extracting wanted echo signals, e.g. pulse detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4861—Circuits for detection, sampling, integration or read-out
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4868—Controlling received signal intensity or exposure of sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
Definitions
- the invention relates to an optoelectronic distance measuring device comprising at least one transmitter unit to transmit pulsed electromagnetic radiation, at least one receiver unit associated with the transmitter unit to receive the reflected radiation and an evaluation unit to determine at least the distance of objects reflecting the transmitted radiation.
- Such devices are generally known and are used, for example, in connection with vehicles to detect the surroundings of the vehicle during travel.
- a near object of high reflectivity such as a so-called cat's eye or a road boundary post, which is also termed a cooperative target, on the one hand
- a far object of low reflectivity such as a tree or a person in dark clothing, on the other hand
- a receiver unit which should cover such an extremely wide dynamic range will necessarily overmodulate at high intensities.
- the width of the received pulses decisive for a distance measurement using a pulse transit time process depends on the amplitude of the received radiation pulses. This relationship can be comparatively uncritical in the non-overmodulated or analog range, i.e. for radiation pulses not exceeding a specific intensity or amplitude, but can result in inaccuracies in the distance determination at high intensities, with such inaccuracies being able to lie in the range of some meters.
- This object is satisfied in that a series connection of load resistors is connected after the receiver unit and a separate amplifier is associated with each load resistor to amplify the subsidiary pulse produced at the respective load resistor from an incoming, successively attenuated received pulse.
- a plurality of signal pulses termed subsidiary pulses here, with a reducing signal level are produced from each receiver pulse produced at the receiver unit, with these signal pulses being amplified by an arrangement of parallel amplifiers, with a separate amplifier being associated with each subsidiary pulse. Consequently, a plurality of parallel measuring channels are available at the same time which differ in that the received pulses, that is the subsidiary pulses, are of different signal levels.
- a subsidiary pulse is produced at one of the load resistors which is not overmodulated subsequent to its amplification; that is, its signal level remains below an overmodulating threshold.
- the subsidiary pulses produced at the previous load resistors before this first, non-overmodulated, amplified subsidiary pulse are subjected to a pulse widening due to their amplification which results in overmodulation which would result in inaccuracies or at least in problems in a distance measurement taking place using a pulse transit time process.
- the invention allows these overmodulated amplified subsidiary pulses to be suppressed and to subject a non-overmodulated amplified subsidiary pulse to a subsequent evaluation.
- a measuring channel to exist for every signal level of an initial received pulse, that is, for every intensity of a reflected radiation pulse, in which an optimum evaluation of the received pulse is possible which is free of disturbing overmodulation effects, in that it is not the initial received pulse itself which is evaluated, but a subsidiary pulse produced from this which has a reduced signal level due to the attenuation by one or more load resistors, but which still contains the information required for a distance measurement using the transit time principle.
- the initial received pulse in a certain sense, and in dependence on its signal level, itself finds that measuring channel in which it can be evaluated without problem in the form of an attenuated subsidiary pulse which is, however, particularly not falsified with respect to the required information.
- the measuring device in accordance with the invention can consequently be used to particular advantage in connection with laser scanners, for example in the areas of traffic engineering, automobile sensor technology and industrial surveying, and in particular anywhere special target marks of high reflectivity should be measured, on the one hand, and normal objects or the surroundings should be measured simultaneously, on the other hand, and are scanned for this purpose.
- Possible applications are, for example, navigation and safety with automatic transport vehicles when reflectors of known location have to be identified for the part task “navigation” and objects with low reflectance must also not be overlooked for the part task “safety”.
- Possible further applications are, for example, measurements on liquid metals where bare metal surfaces and dark ash regions alternate in rapid succession.
- the invention moreover allows reflectivity measurements in that, with knowledge of the object distance, a conclusion is made on the intensity of the radiation pulse received, and thus on the reflectivity of the object in question, from the signal level of a non-overmodulated and therefore non-widened amplified subsidiary pulse, with the known properties of the measuring channel in question, that is, the degree of attenuation due to the respective load resistors and the characteristic values of the respective amplifier, allowing a conclusion on the signal level of the initial received pulse.
- the invention can be advantageously combined with a double pulse evaluation in which received pulses successively incoming in a short time interval of the same transmitted pulse transmitted by the transmitter unit are evaluated with regard to the transit time in order, for example, to measure the upper edge of a container standing on the floor separately from the floor itself. Widenings of the received pulse due to overmodulation are avoided by the invention such that even received pulses lying close to one another in time can be separated from one another and no problems occur due to deformations or suppressions of the later received pulses by widened earlier received pulses.
- the ratios of the resistance values of the load resistors to one another are preferably matched to the dynamic ranges of the amplifiers.
- the resistance values of the working resistors prefferably be selected such that the quotient of two sums of resistance values succeeding one another in each case corresponds to the dynamic range of the following amplifier.
- the dynamic range is preferably the same for all amplifiers.
- a comparator with a pre-determined reference voltage is connected after every amplifier, the reference voltage in particular corresponding to a respective reference threshold of a downstream selection unit to which the comparators are connected.
- a common selection unit is preferably connected after the amplifiers and at least one, preferably precisely one, amplified subsidiary pulse remaining below an overmodulation threshold can be selected by it from the incoming, in particular parallel incoming, amplified subsidiary pulses and forwarded by it to a downstream evaluation unit for evaluation in particular with respect to the transit time.
- the selection unit is made such that every amplified subsidiary pulse exceeding a respective reference threshold suppresses the evaluation of at least one larger subsidiary pulse, in particular the next larger amplified subsidiary pulse. It is hereby achieved that only the smallest of all amplified subsidiary pulses exceeding the respective reference threshold is left over.
- FIG. 1 is the circuit diagram for a receiver unit and an evaluation unit of an optoelectronic distance measuring device in accordance with an embodiment of the invention.
- FIG. 2 amplified subsidiary pulses of a received pulse of the optoelectronic distance measuring device of FIG. 1 .
- the optoelectronic distance measuring device in accordance with the invention is preferably a laser scanner which transmits pulsed electromagnetic radiation in one or more scanning planes into a monitored zone and receives radiation reflected from objects located in the monitored zone.
- a transmitter unit includes, as a radiation source, a laser diode and a radiation deflection device in the form of a rotating mirror. The sight range of such a scanner amounts up to 360°.
- a receiver unit includes a photodiode, in particular an avalanche photo diode (APD), for each scanning plane as a receiver.
- APD avalanche photo diode
- the scanner also measures the angle with respect to a predetermined axis in addition to the distance from one or more objects (which will be examined in more detail in the following) for every direction in which a transmitted pulse is transmitted, with the distance measurement taking place using a pulse transit time process.
- a transmitter unit 25 directs pulsed electromagnetic radiation 27 to an object (not shown) which causes reflected radiation 29 .
- a radiation pulse reflected from an object after the transmission of a transmitted pulse produces a received pulse at the photodiode 1 from which a subsidiary pulse is created at every load resistor 5 , 6 , 7 of a resistance series connection downstream of the photodiode 1 , the subsidiary pulse being amplified by means of a capacitively coupled amplifier 8 , 9 , 10 .
- a comparator 11 , 12 , 13 with an individually set reference voltage 17 is connected to each amplifier 8 , 9 , 10 , said reference voltage being selected according to the signal-to-noise ratio required in the measuring channel or measuring branch in question.
- the resistance values of the load resistors 5 , 6 , 7 reduce relative to the reference potential starting from the photodiode 1 and are matched to the dynamic ranges of the amplifiers 8 , 9 , 10 such that the quotient of succeeding sums of resistance values in each case corresponds to the dynamic range of the following amplifier.
- the resistance values are selected at a ratio of 1/10, with the larger resistance value, for example, amounting to 90 ohms and the smaller resistance value to 10 ohms.
- the amplified subsidiary pulses 21 , 22 , 23 are shown in FIG. 2, with the largest pulse 21 produced by means of the first amplifier 8 and the middle pulse 22 produced by means of the second amplifier 9 each exceeding an overmodulation threshold 18 and therefore being subjected to a widening.
- the smallest pulse 23 produced by means of the third amplifier 10 exceeds the reference voltage 17 , but remains below the overmodulation threshold 18 and therefore does not have any widening.
- the amplified subsidiary pulses 21 , 22 , 23 are delivered to a common selection unit 16 which is connected to the comparators 11 , 12 , 13 such that every amplified subsidiary pulse 22 , 23 exceeding the respective reference voltage 17 switches off the next larger pulse 21 , 22 and thereby prevents its further processing.
- a corresponding delay of the incoming pulses 21 , 22 , 23 takes place in the selection unit 16 .
- An evaluation of the overmodulated amplified subsidiary pulses 21 , 22 is hereby prevented and only the smallest amplified subsidiary pulse 23 exceeding the respective reference threshold 17 is subjected to an evaluation with respect to the transit time, whereby a distance measurement with high accuracy is achieved.
- the subsidiary pulse 23 selected in this way by means of the selection circuit 16 reaches an evaluation unit 4 via a line 20 , with the distance determination taking place from the pulse transit time in evaluation unit 4 .
- an individual offset value is determined for each amplifier 8 , 9 , 10 and stored in a memory to which the evaluation unit 4 has access.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10153270A DE10153270A1 (de) | 2001-10-29 | 2001-10-29 | Optoelektronische Entfernungsmesseinrichtung |
DE10153270 | 2001-10-29 | ||
DE10153270.9 | 2001-10-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030080285A1 US20030080285A1 (en) | 2003-05-01 |
US6710324B2 true US6710324B2 (en) | 2004-03-23 |
Family
ID=7704050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/281,288 Expired - Lifetime US6710324B2 (en) | 2001-10-29 | 2002-10-25 | Optoelectronic distance measuring device |
Country Status (4)
Country | Link |
---|---|
US (1) | US6710324B2 (de) |
EP (1) | EP1308693B1 (de) |
AT (1) | ATE348316T1 (de) |
DE (2) | DE10153270A1 (de) |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9470520B2 (en) | 2013-03-14 | 2016-10-18 | Apparate International C.V. | LiDAR scanner |
US9606228B1 (en) | 2014-02-20 | 2017-03-28 | Banner Engineering Corporation | High-precision digital time-of-flight measurement with coarse delay elements |
US9772399B2 (en) | 2013-11-22 | 2017-09-26 | Uber Technologies, Inc. | LiDAR scanner calibration |
US9804264B2 (en) | 2015-11-30 | 2017-10-31 | Luminar Technologies, Inc. | Lidar system with distributed laser and multiple sensor heads |
US9810786B1 (en) | 2017-03-16 | 2017-11-07 | Luminar Technologies, Inc. | Optical parametric oscillator for lidar system |
US9810775B1 (en) | 2017-03-16 | 2017-11-07 | Luminar Technologies, Inc. | Q-switched laser for LIDAR system |
US9823351B2 (en) | 2012-12-18 | 2017-11-21 | Uber Technologies, Inc. | Multi-clad fiber based optical apparatus and methods for light detection and ranging sensors |
US9841495B2 (en) | 2015-11-05 | 2017-12-12 | Luminar Technologies, Inc. | Lidar system with improved scanning speed for high-resolution depth mapping |
US9869754B1 (en) | 2017-03-22 | 2018-01-16 | Luminar Technologies, Inc. | Scan patterns for lidar systems |
US9905992B1 (en) | 2017-03-16 | 2018-02-27 | Luminar Technologies, Inc. | Self-Raman laser for lidar system |
US9989629B1 (en) | 2017-03-30 | 2018-06-05 | Luminar Technologies, Inc. | Cross-talk mitigation using wavelength switching |
US10003168B1 (en) | 2017-10-18 | 2018-06-19 | Luminar Technologies, Inc. | Fiber laser with free-space components |
US10007001B1 (en) | 2017-03-28 | 2018-06-26 | Luminar Technologies, Inc. | Active short-wave infrared four-dimensional camera |
US10061019B1 (en) | 2017-03-28 | 2018-08-28 | Luminar Technologies, Inc. | Diffractive optical element in a lidar system to correct for backscan |
US10088559B1 (en) | 2017-03-29 | 2018-10-02 | Luminar Technologies, Inc. | Controlling pulse timing to compensate for motor dynamics |
US10094925B1 (en) | 2017-03-31 | 2018-10-09 | Luminar Technologies, Inc. | Multispectral lidar system |
US10114111B2 (en) | 2017-03-28 | 2018-10-30 | Luminar Technologies, Inc. | Method for dynamically controlling laser power |
US10121813B2 (en) | 2017-03-28 | 2018-11-06 | Luminar Technologies, Inc. | Optical detector having a bandpass filter in a lidar system |
US10139478B2 (en) | 2017-03-28 | 2018-11-27 | Luminar Technologies, Inc. | Time varying gain in an optical detector operating in a lidar system |
US10191155B2 (en) | 2017-03-29 | 2019-01-29 | Luminar Technologies, Inc. | Optical resolution in front of a vehicle |
US10209359B2 (en) | 2017-03-28 | 2019-02-19 | Luminar Technologies, Inc. | Adaptive pulse rate in a lidar system |
US10241198B2 (en) | 2017-03-30 | 2019-03-26 | Luminar Technologies, Inc. | Lidar receiver calibration |
US10254388B2 (en) | 2017-03-28 | 2019-04-09 | Luminar Technologies, Inc. | Dynamically varying laser output in a vehicle in view of weather conditions |
US10254762B2 (en) | 2017-03-29 | 2019-04-09 | Luminar Technologies, Inc. | Compensating for the vibration of the vehicle |
US10267899B2 (en) | 2017-03-28 | 2019-04-23 | Luminar Technologies, Inc. | Pulse timing based on angle of view |
US10295668B2 (en) | 2017-03-30 | 2019-05-21 | Luminar Technologies, Inc. | Reducing the number of false detections in a lidar system |
US10310058B1 (en) | 2017-11-22 | 2019-06-04 | Luminar Technologies, Inc. | Concurrent scan of multiple pixels in a lidar system equipped with a polygon mirror |
US10324170B1 (en) | 2018-04-05 | 2019-06-18 | Luminar Technologies, Inc. | Multi-beam lidar system with polygon mirror |
US10340651B1 (en) | 2018-08-21 | 2019-07-02 | Luminar Technologies, Inc. | Lidar system with optical trigger |
US10348051B1 (en) | 2018-05-18 | 2019-07-09 | Luminar Technologies, Inc. | Fiber-optic amplifier |
US10401481B2 (en) | 2017-03-30 | 2019-09-03 | Luminar Technologies, Inc. | Non-uniform beam power distribution for a laser operating in a vehicle |
US10451716B2 (en) | 2017-11-22 | 2019-10-22 | Luminar Technologies, Inc. | Monitoring rotation of a mirror in a lidar system |
US10545240B2 (en) | 2017-03-28 | 2020-01-28 | Luminar Technologies, Inc. | LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity |
US10551501B1 (en) | 2018-08-09 | 2020-02-04 | Luminar Technologies, Inc. | Dual-mode lidar system |
US10557939B2 (en) | 2015-10-19 | 2020-02-11 | Luminar Technologies, Inc. | Lidar system with improved signal-to-noise ratio in the presence of solar background noise |
US10591601B2 (en) | 2018-07-10 | 2020-03-17 | Luminar Technologies, Inc. | Camera-gated lidar system |
US10627516B2 (en) | 2018-07-19 | 2020-04-21 | Luminar Technologies, Inc. | Adjustable pulse characteristics for ground detection in lidar systems |
US10641874B2 (en) | 2017-03-29 | 2020-05-05 | Luminar Technologies, Inc. | Sizing the field of view of a detector to improve operation of a lidar system |
US10663595B2 (en) | 2017-03-29 | 2020-05-26 | Luminar Technologies, Inc. | Synchronized multiple sensor head system for a vehicle |
US10677897B2 (en) | 2017-04-14 | 2020-06-09 | Luminar Technologies, Inc. | Combining lidar and camera data |
US10684360B2 (en) | 2017-03-30 | 2020-06-16 | Luminar Technologies, Inc. | Protecting detector in a lidar system using off-axis illumination |
US10732281B2 (en) | 2017-03-28 | 2020-08-04 | Luminar Technologies, Inc. | Lidar detector system having range walk compensation |
USRE48491E1 (en) | 2006-07-13 | 2021-03-30 | Velodyne Lidar Usa, Inc. | High definition lidar system |
US10969488B2 (en) | 2017-03-29 | 2021-04-06 | Luminar Holdco, Llc | Dynamically scanning a field of regard using a limited number of output beams |
US10976417B2 (en) | 2017-03-29 | 2021-04-13 | Luminar Holdco, Llc | Using detectors with different gains in a lidar system |
US10983218B2 (en) | 2016-06-01 | 2021-04-20 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning LIDAR |
US10983213B2 (en) | 2017-03-29 | 2021-04-20 | Luminar Holdco, Llc | Non-uniform separation of detector array elements in a lidar system |
US11002853B2 (en) | 2017-03-29 | 2021-05-11 | Luminar, Llc | Ultrasonic vibrations on a window in a lidar system |
US11022688B2 (en) | 2017-03-31 | 2021-06-01 | Luminar, Llc | Multi-eye lidar system |
US11029406B2 (en) | 2018-04-06 | 2021-06-08 | Luminar, Llc | Lidar system with AlInAsSb avalanche photodiode |
US11073617B2 (en) | 2016-03-19 | 2021-07-27 | Velodyne Lidar Usa, Inc. | Integrated illumination and detection for LIDAR based 3-D imaging |
US11082010B2 (en) | 2018-11-06 | 2021-08-03 | Velodyne Lidar Usa, Inc. | Systems and methods for TIA base current detection and compensation |
US11119198B2 (en) | 2017-03-28 | 2021-09-14 | Luminar, Llc | Increasing operational safety of a lidar system |
US11137480B2 (en) | 2016-01-31 | 2021-10-05 | Velodyne Lidar Usa, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US11181622B2 (en) | 2017-03-29 | 2021-11-23 | Luminar, Llc | Method for controlling peak and average power through laser receiver |
US11294041B2 (en) | 2017-12-08 | 2022-04-05 | Velodyne Lidar Usa, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
US11703569B2 (en) | 2017-05-08 | 2023-07-18 | Velodyne Lidar Usa, Inc. | LIDAR data acquisition and control |
US11774561B2 (en) | 2019-02-08 | 2023-10-03 | Luminar Technologies, Inc. | Amplifier input protection circuits |
US11796648B2 (en) | 2018-09-18 | 2023-10-24 | Velodyne Lidar Usa, Inc. | Multi-channel lidar illumination driver |
US11808891B2 (en) | 2017-03-31 | 2023-11-07 | Velodyne Lidar Usa, Inc. | Integrated LIDAR illumination power control |
US11885958B2 (en) | 2019-01-07 | 2024-01-30 | Velodyne Lidar Usa, Inc. | Systems and methods for a dual axis resonant scanning mirror |
US11906670B2 (en) | 2019-07-01 | 2024-02-20 | Velodyne Lidar Usa, Inc. | Interference mitigation for light detection and ranging |
US11971507B2 (en) | 2018-08-24 | 2024-04-30 | Velodyne Lidar Usa, Inc. | Systems and methods for mitigating optical crosstalk in a light ranging and detection system |
US12061263B2 (en) | 2019-01-07 | 2024-08-13 | Velodyne Lidar Usa, Inc. | Systems and methods for a configurable sensor system |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10262204B4 (de) * | 2002-08-09 | 2009-04-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zur berührungslosen Entfernungsmessung |
DE102008009250B4 (de) * | 2008-02-07 | 2009-10-22 | Balluff Gmbh | Distanzsensorvorrichtung und Verfahren zur Distanzmessung |
EP2182377B1 (de) * | 2008-10-30 | 2012-09-19 | Sick Ag | Entfernungsmessender Laserscanner |
DE102013100696B3 (de) * | 2013-01-24 | 2013-11-07 | Sick Ag | Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich |
DE202013100327U1 (de) | 2013-01-24 | 2014-04-29 | Sick Ag | Optoelektronischer Sensor zur Erfassung von Objekten in einem Überwachungsbereich |
DE102014102209A1 (de) * | 2014-02-20 | 2015-08-20 | Sick Ag | Entfernungsmessender Sensor und Verfahren zur Abstandsbestimmung von Objekten in einem Ueberwachungsbereich |
JP2016014535A (ja) * | 2014-06-30 | 2016-01-28 | 日本信号株式会社 | 測距装置 |
EP3059608B1 (de) * | 2015-02-20 | 2016-11-30 | Sick Ag | Optoelektronischer sensor und verfahren zur erfassung von objekten |
JP6700575B2 (ja) * | 2015-09-25 | 2020-05-27 | 株式会社リコー | 回路装置、光検出器、物体検出装置、センシング装置、移動体装置、光検出方法、及び物体検出方法 |
US10942257B2 (en) | 2016-12-31 | 2021-03-09 | Innovusion Ireland Limited | 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices |
US11493601B2 (en) | 2017-12-22 | 2022-11-08 | Innovusion, Inc. | High density LIDAR scanning |
WO2020013890A2 (en) | 2018-02-23 | 2020-01-16 | Innovusion Ireland Limited | Multi-wavelength pulse steering in lidar systems |
WO2019165294A1 (en) | 2018-02-23 | 2019-08-29 | Innovusion Ireland Limited | 2-dimensional steering system for lidar systems |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4613231A (en) * | 1983-03-19 | 1986-09-23 | Eltro Gmbh | Laser range finder with non-linearity compensation |
US4818099A (en) * | 1985-10-25 | 1989-04-04 | Preikschat F K | Optical radar system |
US4939476A (en) | 1988-12-27 | 1990-07-03 | Crawford Ian D | Laser Rangefinder receiver preamplifier |
US5003191A (en) | 1978-11-25 | 1991-03-26 | Emi Limited | Emission of pulsed energy |
DE4108376A1 (de) | 1991-03-15 | 1992-12-10 | Jenoptik Jena Gmbh | Verfahren und schaltungsanordnung zur erfassung und auswertung von signalen bei der entfernungsmessung |
DE4328553A1 (de) | 1993-04-30 | 1994-11-03 | Rudolf Prof Dr Ing Schwarte | Entfernungsmeßgerät nach dem Laufzeitprinzip |
DE19607345A1 (de) | 1996-02-27 | 1997-08-28 | Sick Ag | Laserabstandsermittlungsvorrichtung |
US6265725B1 (en) * | 1999-04-17 | 2001-07-24 | Leuze Electronic Gmbh & Co. | Optoelectronic device for detecting objects in a monitoring range with a distance sensor |
-
2001
- 2001-10-29 DE DE10153270A patent/DE10153270A1/de not_active Withdrawn
-
2002
- 2002-10-17 DE DE50208943T patent/DE50208943D1/de not_active Expired - Lifetime
- 2002-10-17 AT AT02023314T patent/ATE348316T1/de not_active IP Right Cessation
- 2002-10-17 EP EP02023314A patent/EP1308693B1/de not_active Expired - Lifetime
- 2002-10-25 US US10/281,288 patent/US6710324B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5003191A (en) | 1978-11-25 | 1991-03-26 | Emi Limited | Emission of pulsed energy |
US4613231A (en) * | 1983-03-19 | 1986-09-23 | Eltro Gmbh | Laser range finder with non-linearity compensation |
US4818099A (en) * | 1985-10-25 | 1989-04-04 | Preikschat F K | Optical radar system |
US4939476A (en) | 1988-12-27 | 1990-07-03 | Crawford Ian D | Laser Rangefinder receiver preamplifier |
DE4108376A1 (de) | 1991-03-15 | 1992-12-10 | Jenoptik Jena Gmbh | Verfahren und schaltungsanordnung zur erfassung und auswertung von signalen bei der entfernungsmessung |
DE4328553A1 (de) | 1993-04-30 | 1994-11-03 | Rudolf Prof Dr Ing Schwarte | Entfernungsmeßgerät nach dem Laufzeitprinzip |
DE19607345A1 (de) | 1996-02-27 | 1997-08-28 | Sick Ag | Laserabstandsermittlungsvorrichtung |
US5949530A (en) | 1996-02-27 | 1999-09-07 | Sick Ag | Laser range finding apparatus |
US6265725B1 (en) * | 1999-04-17 | 2001-07-24 | Leuze Electronic Gmbh & Co. | Optoelectronic device for detecting objects in a monitoring range with a distance sensor |
Cited By (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE48666E1 (en) | 2006-07-13 | 2021-08-03 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
USRE48688E1 (en) | 2006-07-13 | 2021-08-17 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
USRE48491E1 (en) | 2006-07-13 | 2021-03-30 | Velodyne Lidar Usa, Inc. | High definition lidar system |
USRE48490E1 (en) | 2006-07-13 | 2021-03-30 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
USRE48504E1 (en) | 2006-07-13 | 2021-04-06 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
USRE48503E1 (en) | 2006-07-13 | 2021-04-06 | Velodyne Lidar Usa, Inc. | High definition LiDAR system |
US10126426B2 (en) | 2012-12-18 | 2018-11-13 | Uber Technologies, Inc. | Multi-clad fiber-based light detection and ranging sensor |
US9823351B2 (en) | 2012-12-18 | 2017-11-21 | Uber Technologies, Inc. | Multi-clad fiber based optical apparatus and methods for light detection and ranging sensors |
US10473763B2 (en) | 2013-03-14 | 2019-11-12 | Uber Technologies, Inc. | LiDAR scanner |
US11650291B2 (en) | 2013-03-14 | 2023-05-16 | Uatc, Llc | LiDAR sensor |
US9470520B2 (en) | 2013-03-14 | 2016-10-18 | Apparate International C.V. | LiDAR scanner |
US9772399B2 (en) | 2013-11-22 | 2017-09-26 | Uber Technologies, Inc. | LiDAR scanner calibration |
US9971024B2 (en) | 2013-11-22 | 2018-05-15 | Uber Technologies, Inc. | Lidar scanner calibration |
US9606228B1 (en) | 2014-02-20 | 2017-03-28 | Banner Engineering Corporation | High-precision digital time-of-flight measurement with coarse delay elements |
US10557939B2 (en) | 2015-10-19 | 2020-02-11 | Luminar Technologies, Inc. | Lidar system with improved signal-to-noise ratio in the presence of solar background noise |
US9841495B2 (en) | 2015-11-05 | 2017-12-12 | Luminar Technologies, Inc. | Lidar system with improved scanning speed for high-resolution depth mapping |
US10488496B2 (en) | 2015-11-05 | 2019-11-26 | Luminar Technologies, Inc. | Lidar system with improved scanning speed for high-resolution depth mapping |
US9897687B1 (en) | 2015-11-05 | 2018-02-20 | Luminar Technologies, Inc. | Lidar system with improved scanning speed for high-resolution depth mapping |
US9958545B2 (en) | 2015-11-30 | 2018-05-01 | Luminar Technologies, Inc. | Lidar system |
US9857468B1 (en) | 2015-11-30 | 2018-01-02 | Luminar Technologies, Inc. | Lidar system |
US10012732B2 (en) | 2015-11-30 | 2018-07-03 | Luminar Technologies, Inc. | Lidar system |
US9804264B2 (en) | 2015-11-30 | 2017-10-31 | Luminar Technologies, Inc. | Lidar system with distributed laser and multiple sensor heads |
US9874635B1 (en) | 2015-11-30 | 2018-01-23 | Luminar Technologies, Inc. | Lidar system |
US10557940B2 (en) | 2015-11-30 | 2020-02-11 | Luminar Technologies, Inc. | Lidar system |
US11022689B2 (en) | 2015-11-30 | 2021-06-01 | Luminar, Llc | Pulsed laser for lidar system |
US9823353B2 (en) | 2015-11-30 | 2017-11-21 | Luminar Technologies, Inc. | Lidar system |
US9812838B2 (en) | 2015-11-30 | 2017-11-07 | Luminar Technologies, Inc. | Pulsed laser for lidar system |
US10591600B2 (en) | 2015-11-30 | 2020-03-17 | Luminar Technologies, Inc. | Lidar system with distributed laser and multiple sensor heads |
US10520602B2 (en) | 2015-11-30 | 2019-12-31 | Luminar Technologies, Inc. | Pulsed laser for lidar system |
US11550036B2 (en) | 2016-01-31 | 2023-01-10 | Velodyne Lidar Usa, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US11698443B2 (en) | 2016-01-31 | 2023-07-11 | Velodyne Lidar Usa, Inc. | Multiple pulse, lidar based 3-D imaging |
US11137480B2 (en) | 2016-01-31 | 2021-10-05 | Velodyne Lidar Usa, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US11822012B2 (en) | 2016-01-31 | 2023-11-21 | Velodyne Lidar Usa, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US11073617B2 (en) | 2016-03-19 | 2021-07-27 | Velodyne Lidar Usa, Inc. | Integrated illumination and detection for LIDAR based 3-D imaging |
US11550056B2 (en) | 2016-06-01 | 2023-01-10 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning lidar |
US10983218B2 (en) | 2016-06-01 | 2021-04-20 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning LIDAR |
US11561305B2 (en) | 2016-06-01 | 2023-01-24 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning LIDAR |
US11874377B2 (en) | 2016-06-01 | 2024-01-16 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning LIDAR |
US11808854B2 (en) | 2016-06-01 | 2023-11-07 | Velodyne Lidar Usa, Inc. | Multiple pixel scanning LIDAR |
US9810775B1 (en) | 2017-03-16 | 2017-11-07 | Luminar Technologies, Inc. | Q-switched laser for LIDAR system |
US9905992B1 (en) | 2017-03-16 | 2018-02-27 | Luminar Technologies, Inc. | Self-Raman laser for lidar system |
US9810786B1 (en) | 2017-03-16 | 2017-11-07 | Luminar Technologies, Inc. | Optical parametric oscillator for lidar system |
US20180269646A1 (en) | 2017-03-16 | 2018-09-20 | Luminar Technologies, Inc. | Solid-state laser for lidar system |
US10418776B2 (en) | 2017-03-16 | 2019-09-17 | Luminar Technologies, Inc. | Solid-state laser for lidar system |
US11686821B2 (en) | 2017-03-22 | 2023-06-27 | Luminar, Llc | Scan patterns for lidar systems |
US10267898B2 (en) | 2017-03-22 | 2019-04-23 | Luminar Technologies, Inc. | Scan patterns for lidar systems |
US9869754B1 (en) | 2017-03-22 | 2018-01-16 | Luminar Technologies, Inc. | Scan patterns for lidar systems |
US11802946B2 (en) | 2017-03-28 | 2023-10-31 | Luminar Technologies, Inc. | Method for dynamically controlling laser power |
US11119198B2 (en) | 2017-03-28 | 2021-09-14 | Luminar, Llc | Increasing operational safety of a lidar system |
US11346925B2 (en) | 2017-03-28 | 2022-05-31 | Luminar, Llc | Method for dynamically controlling laser power |
US11415677B2 (en) | 2017-03-28 | 2022-08-16 | Luminar, Llc | Pulse timing based on angle of view |
US10267899B2 (en) | 2017-03-28 | 2019-04-23 | Luminar Technologies, Inc. | Pulse timing based on angle of view |
US10545240B2 (en) | 2017-03-28 | 2020-01-28 | Luminar Technologies, Inc. | LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity |
US10267918B2 (en) | 2017-03-28 | 2019-04-23 | Luminar Technologies, Inc. | Lidar detector having a plurality of time to digital converters integrated onto a detector chip |
US10732281B2 (en) | 2017-03-28 | 2020-08-04 | Luminar Technologies, Inc. | Lidar detector system having range walk compensation |
US10254388B2 (en) | 2017-03-28 | 2019-04-09 | Luminar Technologies, Inc. | Dynamically varying laser output in a vehicle in view of weather conditions |
US10209359B2 (en) | 2017-03-28 | 2019-02-19 | Luminar Technologies, Inc. | Adaptive pulse rate in a lidar system |
US10007001B1 (en) | 2017-03-28 | 2018-06-26 | Luminar Technologies, Inc. | Active short-wave infrared four-dimensional camera |
US11874401B2 (en) | 2017-03-28 | 2024-01-16 | Luminar Technologies, Inc. | Adjusting receiver characteristics in view of weather conditions |
US10139478B2 (en) | 2017-03-28 | 2018-11-27 | Luminar Technologies, Inc. | Time varying gain in an optical detector operating in a lidar system |
US10121813B2 (en) | 2017-03-28 | 2018-11-06 | Luminar Technologies, Inc. | Optical detector having a bandpass filter in a lidar system |
US10627495B2 (en) | 2017-03-28 | 2020-04-21 | Luminar Technologies, Inc. | Time varying gain in an optical detector operating in a lidar system |
US10114111B2 (en) | 2017-03-28 | 2018-10-30 | Luminar Technologies, Inc. | Method for dynamically controlling laser power |
US10061019B1 (en) | 2017-03-28 | 2018-08-28 | Luminar Technologies, Inc. | Diffractive optical element in a lidar system to correct for backscan |
US10191155B2 (en) | 2017-03-29 | 2019-01-29 | Luminar Technologies, Inc. | Optical resolution in front of a vehicle |
US10983213B2 (en) | 2017-03-29 | 2021-04-20 | Luminar Holdco, Llc | Non-uniform separation of detector array elements in a lidar system |
US11378666B2 (en) | 2017-03-29 | 2022-07-05 | Luminar, Llc | Sizing the field of view of a detector to improve operation of a lidar system |
US11181622B2 (en) | 2017-03-29 | 2021-11-23 | Luminar, Llc | Method for controlling peak and average power through laser receiver |
US10088559B1 (en) | 2017-03-29 | 2018-10-02 | Luminar Technologies, Inc. | Controlling pulse timing to compensate for motor dynamics |
US11846707B2 (en) | 2017-03-29 | 2023-12-19 | Luminar Technologies, Inc. | Ultrasonic vibrations on a window in a lidar system |
US10663595B2 (en) | 2017-03-29 | 2020-05-26 | Luminar Technologies, Inc. | Synchronized multiple sensor head system for a vehicle |
US10641874B2 (en) | 2017-03-29 | 2020-05-05 | Luminar Technologies, Inc. | Sizing the field of view of a detector to improve operation of a lidar system |
US11002853B2 (en) | 2017-03-29 | 2021-05-11 | Luminar, Llc | Ultrasonic vibrations on a window in a lidar system |
US10254762B2 (en) | 2017-03-29 | 2019-04-09 | Luminar Technologies, Inc. | Compensating for the vibration of the vehicle |
US10969488B2 (en) | 2017-03-29 | 2021-04-06 | Luminar Holdco, Llc | Dynamically scanning a field of regard using a limited number of output beams |
US10976417B2 (en) | 2017-03-29 | 2021-04-13 | Luminar Holdco, Llc | Using detectors with different gains in a lidar system |
US9989629B1 (en) | 2017-03-30 | 2018-06-05 | Luminar Technologies, Inc. | Cross-talk mitigation using wavelength switching |
US10401481B2 (en) | 2017-03-30 | 2019-09-03 | Luminar Technologies, Inc. | Non-uniform beam power distribution for a laser operating in a vehicle |
US10241198B2 (en) | 2017-03-30 | 2019-03-26 | Luminar Technologies, Inc. | Lidar receiver calibration |
US10295668B2 (en) | 2017-03-30 | 2019-05-21 | Luminar Technologies, Inc. | Reducing the number of false detections in a lidar system |
US10663564B2 (en) | 2017-03-30 | 2020-05-26 | Luminar Technologies, Inc. | Cross-talk mitigation using wavelength switching |
US10684360B2 (en) | 2017-03-30 | 2020-06-16 | Luminar Technologies, Inc. | Protecting detector in a lidar system using off-axis illumination |
US11022688B2 (en) | 2017-03-31 | 2021-06-01 | Luminar, Llc | Multi-eye lidar system |
US10094925B1 (en) | 2017-03-31 | 2018-10-09 | Luminar Technologies, Inc. | Multispectral lidar system |
US11808891B2 (en) | 2017-03-31 | 2023-11-07 | Velodyne Lidar Usa, Inc. | Integrated LIDAR illumination power control |
US10677897B2 (en) | 2017-04-14 | 2020-06-09 | Luminar Technologies, Inc. | Combining lidar and camera data |
US11204413B2 (en) | 2017-04-14 | 2021-12-21 | Luminar, Llc | Combining lidar and camera data |
US11703569B2 (en) | 2017-05-08 | 2023-07-18 | Velodyne Lidar Usa, Inc. | LIDAR data acquisition and control |
US10003168B1 (en) | 2017-10-18 | 2018-06-19 | Luminar Technologies, Inc. | Fiber laser with free-space components |
US10720748B2 (en) | 2017-10-18 | 2020-07-21 | Luminar Technologies, Inc. | Amplifier assembly with semiconductor optical amplifier |
US10211592B1 (en) | 2017-10-18 | 2019-02-19 | Luminar Technologies, Inc. | Fiber laser with free-space components |
US10211593B1 (en) | 2017-10-18 | 2019-02-19 | Luminar Technologies, Inc. | Optical amplifier with multi-wavelength pumping |
US10663585B2 (en) | 2017-11-22 | 2020-05-26 | Luminar Technologies, Inc. | Manufacturing a balanced polygon mirror |
US10451716B2 (en) | 2017-11-22 | 2019-10-22 | Luminar Technologies, Inc. | Monitoring rotation of a mirror in a lidar system |
US10324185B2 (en) | 2017-11-22 | 2019-06-18 | Luminar Technologies, Inc. | Reducing audio noise in a lidar scanner with a polygon mirror |
US10502831B2 (en) | 2017-11-22 | 2019-12-10 | Luminar Technologies, Inc. | Scan sensors on the exterior surfaces of a vehicle |
US10310058B1 (en) | 2017-11-22 | 2019-06-04 | Luminar Technologies, Inc. | Concurrent scan of multiple pixels in a lidar system equipped with a polygon mirror |
US10571567B2 (en) | 2017-11-22 | 2020-02-25 | Luminar Technologies, Inc. | Low profile lidar scanner with polygon mirror |
US11567200B2 (en) | 2017-11-22 | 2023-01-31 | Luminar, Llc | Lidar system with polygon mirror |
US11933895B2 (en) | 2017-11-22 | 2024-03-19 | Luminar Technologies, Inc. | Lidar system with polygon mirror |
US11294041B2 (en) | 2017-12-08 | 2022-04-05 | Velodyne Lidar Usa, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
US11885916B2 (en) * | 2017-12-08 | 2024-01-30 | Velodyne Lidar Usa, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
US20230052333A1 (en) * | 2017-12-08 | 2023-02-16 | Velodyne Lidar Usa, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
US10324170B1 (en) | 2018-04-05 | 2019-06-18 | Luminar Technologies, Inc. | Multi-beam lidar system with polygon mirror |
US10578720B2 (en) | 2018-04-05 | 2020-03-03 | Luminar Technologies, Inc. | Lidar system with a polygon mirror and a noise-reducing feature |
US11029406B2 (en) | 2018-04-06 | 2021-06-08 | Luminar, Llc | Lidar system with AlInAsSb avalanche photodiode |
US10348051B1 (en) | 2018-05-18 | 2019-07-09 | Luminar Technologies, Inc. | Fiber-optic amplifier |
US11609329B2 (en) | 2018-07-10 | 2023-03-21 | Luminar, Llc | Camera-gated lidar system |
US10591601B2 (en) | 2018-07-10 | 2020-03-17 | Luminar Technologies, Inc. | Camera-gated lidar system |
US10627516B2 (en) | 2018-07-19 | 2020-04-21 | Luminar Technologies, Inc. | Adjustable pulse characteristics for ground detection in lidar systems |
US10551501B1 (en) | 2018-08-09 | 2020-02-04 | Luminar Technologies, Inc. | Dual-mode lidar system |
US10340651B1 (en) | 2018-08-21 | 2019-07-02 | Luminar Technologies, Inc. | Lidar system with optical trigger |
US11971507B2 (en) | 2018-08-24 | 2024-04-30 | Velodyne Lidar Usa, Inc. | Systems and methods for mitigating optical crosstalk in a light ranging and detection system |
US11796648B2 (en) | 2018-09-18 | 2023-10-24 | Velodyne Lidar Usa, Inc. | Multi-channel lidar illumination driver |
US11082010B2 (en) | 2018-11-06 | 2021-08-03 | Velodyne Lidar Usa, Inc. | Systems and methods for TIA base current detection and compensation |
US11885958B2 (en) | 2019-01-07 | 2024-01-30 | Velodyne Lidar Usa, Inc. | Systems and methods for a dual axis resonant scanning mirror |
US12061263B2 (en) | 2019-01-07 | 2024-08-13 | Velodyne Lidar Usa, Inc. | Systems and methods for a configurable sensor system |
US11774561B2 (en) | 2019-02-08 | 2023-10-03 | Luminar Technologies, Inc. | Amplifier input protection circuits |
US11906670B2 (en) | 2019-07-01 | 2024-02-20 | Velodyne Lidar Usa, Inc. | Interference mitigation for light detection and ranging |
Also Published As
Publication number | Publication date |
---|---|
EP1308693A1 (de) | 2003-05-07 |
US20030080285A1 (en) | 2003-05-01 |
DE50208943D1 (de) | 2007-01-25 |
EP1308693B1 (de) | 2006-12-13 |
ATE348316T1 (de) | 2007-01-15 |
DE10153270A1 (de) | 2003-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6710324B2 (en) | Optoelectronic distance measuring device | |
US10739445B2 (en) | Parallel photon counting | |
US9995820B2 (en) | Distance-measuring sensor and method for detecting and determining the distance of objects | |
US6392747B1 (en) | Method and device for identifying an object and determining its location | |
US7667598B2 (en) | Method and apparatus for detecting presence and range of a target object using a common detector | |
US20240361456A1 (en) | Adaptive Multiple-Pulse LIDAR System | |
KR20220145845A (ko) | 솔리드 스테이트 LiDAR용 잡음 필터링 시스템 및 방법 | |
JP5798202B2 (ja) | 光電センサおよび監視領域内の物体の検出方法 | |
US11567181B2 (en) | Method for detecting a functional impairment of a laser scanner, laser scanner, and motor vehicle | |
US20030066977A1 (en) | Optoelectronic distance measuring device | |
US20230194665A1 (en) | Method for ascertaining an optical crosstalk of a lidar sensor and lidar sensor | |
US10514447B2 (en) | Method for propagation time calibration of a LIDAR sensor | |
US10754013B2 (en) | Method and control unit for controlling an emitted light output of a light source of an optical sensor system | |
US20200041651A1 (en) | System and method for improving range resolution in a lidar system | |
EP3929618A1 (de) | Erweiterter dynamikbereich für flugzeit-lidar-systeme | |
US4134677A (en) | Cloud altitude measuring apparatus | |
JP3146838B2 (ja) | 測距センサーヘッド | |
US6492652B2 (en) | Opto-electronic distance sensor and method for the opto-electronic distance measurement | |
CN111164458B (zh) | 确定lidar传感器的最大范围 | |
KR102690760B1 (ko) | 거리 측정 방법 | |
KR20190116102A (ko) | 펄스 광 탐지 및 거리 측정 장치, 펄스 광 탐지 및 거리 측정 시스템에서 오브젝트의 탐지 및 거리 측정 시스템 및 방법 | |
US4121889A (en) | Cloud altitude measuring means | |
CN115769104A (zh) | 用于识别激光雷达传感器的防护屏上的污染的方法和设备 | |
US20220276357A1 (en) | Lidar noise removal apparatus and method thereof | |
US20230152462A1 (en) | Lidar sensor, in particular a vertical flash lidar sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SICK AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HIPP, JOHANN;REEL/FRAME:013655/0231 Effective date: 20021109 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |