US5981291A - Estrogen marker system - Google Patents
Estrogen marker system Download PDFInfo
- Publication number
- US5981291A US5981291A US08/855,590 US85559097A US5981291A US 5981291 A US5981291 A US 5981291A US 85559097 A US85559097 A US 85559097A US 5981291 A US5981291 A US 5981291A
- Authority
- US
- United States
- Prior art keywords
- body fluid
- estrogen
- free
- molar
- anthocyanin pigment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229940011871 estrogen Drugs 0.000 title claims abstract description 141
- 239000000262 estrogen Substances 0.000 title claims abstract description 141
- 239000003550 marker Substances 0.000 title claims description 14
- 210000001124 body fluid Anatomy 0.000 claims abstract description 69
- 239000010839 body fluid Substances 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims abstract description 53
- 241001465754 Metazoa Species 0.000 claims abstract description 8
- 239000000049 pigment Substances 0.000 claims description 56
- 229930002877 anthocyanin Natural products 0.000 claims description 50
- 235000010208 anthocyanin Nutrition 0.000 claims description 50
- 239000004410 anthocyanin Substances 0.000 claims description 50
- 150000004636 anthocyanins Chemical class 0.000 claims description 50
- 230000004044 response Effects 0.000 claims description 37
- 210000003296 saliva Anatomy 0.000 claims description 33
- 230000003287 optical effect Effects 0.000 claims description 21
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 claims description 19
- 229960005309 estradiol Drugs 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 210000002966 serum Anatomy 0.000 claims description 8
- 159000000007 calcium salts Chemical class 0.000 claims description 7
- 241000124008 Mammalia Species 0.000 claims description 6
- 241000282414 Homo sapiens Species 0.000 claims description 5
- 210000003722 extracellular fluid Anatomy 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 229930182478 glucoside Natural products 0.000 claims description 4
- 150000008131 glucosides Chemical class 0.000 claims description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- -1 polyethylene Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 2
- 241000283073 Equus caballus Species 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 229920006395 saturated elastomer Polymers 0.000 claims 1
- 239000002904 solvent Substances 0.000 claims 1
- 238000012384 transportation and delivery Methods 0.000 description 16
- 238000002835 absorbance Methods 0.000 description 12
- 229930182833 estradiol Natural products 0.000 description 12
- 241000283690 Bos taurus Species 0.000 description 10
- 230000035935 pregnancy Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 229920002678 cellulose Polymers 0.000 description 7
- 239000001913 cellulose Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 210000001672 ovary Anatomy 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000032696 parturition Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 241000506680 Haemulon melanurum Species 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000035558 fertility Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000009245 menopause Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- RDFLLVCQYHQOBU-GPGGJFNDSA-O Cyanin Natural products O([C@H]1[C@H](O)[C@H](O)[C@H](O)[C@H](CO)O1)c1c(-c2cc(O)c(O)cc2)[o+]c2c(c(O[C@H]3[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O3)cc(O)c2)c1 RDFLLVCQYHQOBU-GPGGJFNDSA-O 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- RDFLLVCQYHQOBU-ZOTFFYTFSA-O cyanin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC(C(=[O+]C1=CC(O)=C2)C=3C=C(O)C(O)=CC=3)=CC1=C2O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 RDFLLVCQYHQOBU-ZOTFFYTFSA-O 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000008175 fetal development Effects 0.000 description 3
- 229930182470 glycoside Natural products 0.000 description 3
- 150000002338 glycosides Chemical group 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- PROQIPRRNZUXQM-UHFFFAOYSA-N (16alpha,17betaOH)-Estra-1,3,5(10)-triene-3,16,17-triol Natural products OC1=CC=C2C3CCC(C)(C(C(O)C4)O)C4C3CCC2=C1 PROQIPRRNZUXQM-UHFFFAOYSA-N 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000011575 calcium Chemical class 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- PROQIPRRNZUXQM-ZXXIGWHRSA-N estriol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H]([C@H](O)C4)O)[C@@H]4[C@@H]3CCC2=C1 PROQIPRRNZUXQM-ZXXIGWHRSA-N 0.000 description 2
- 229960001348 estriol Drugs 0.000 description 2
- 230000012173 estrus Effects 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000002431 hydrogen Chemical group 0.000 description 2
- 238000000424 optical density measurement Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010340 saliva test Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 201000005670 Anovulation Diseases 0.000 description 1
- 206010002659 Anovulatory cycle Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 201000009273 Endometriosis Diseases 0.000 description 1
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 1
- 206010018852 Haematoma Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 244000181025 Rosa gallica Species 0.000 description 1
- 235000000533 Rosa gallica Nutrition 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 231100000552 anovulation Toxicity 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 150000001768 cations Chemical group 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 150000002159 estradiols Chemical class 0.000 description 1
- 229960003399 estrone Drugs 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 210000002149 gonad Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 208000025661 ovarian cyst Diseases 0.000 description 1
- 230000027758 ovulation cycle Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 238000012207 quantitative assay Methods 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 210000004994 reproductive system Anatomy 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
- G01N33/743—Steroid hormones
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/689—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to pregnancy or the gonads
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/805—Test papers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/806—Fertility tests
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/97—Test strip or test slide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/815—Test for named compound or class of compounds
- Y10S436/817—Steroids or hormones
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/906—Fertility tests
Definitions
- the present invention is directed to a method for determining the capacity of a body fluid to hold "free” estrogens using a unique marker system that is sensitive to changes in the solubility of estrogens in body fluids. More specifically the present invention is directed to a simple, quick and non-invasive and easy to use system which can monitor changes in the body's capacity to hold "free" estrogens in order to permit for screening and early identification of physiological changes and conditions that are estrogen dependant.
- Estrogens include a group steroid hormones essential for normal development and for the healthy functioning of the reproductive system. Three of these estrogens include 17 ⁇ estradiol, estriol, and estrone. Evaluation of "free" estrogen levels can have diagnostic importance in screening for abnormal patterns of changes in estrogen solubility levels such as is observed in the growths of certain estrogen dependent tumors, occurrence of cystic ovaries, and the development of possible endometriosis in the reproductive organs of females. In some female mammals changes in concentration of "free" estrogens are known to occur at the time of implantation and before the onset of parturition. It is also known that "free" estrogen levels vary at different times of the life span of a mammal.
- estriol which is produced by the adrenal glands of the fetus.
- estriol one estrogen form called estriol.
- Prior to delivery estrogen levels increase significantly in serum and saliva of different species of pregnant mammals. After delivery, estrogen levels fall rapidly in the mother and babies have low levels of "free" estrogens.
- estrogen levels increase significantly in girls before they reach puberty. As women age, their ability to produce estrogen decreases after the onset of menopause and "free" estrogen levels reach very low levels between 70 and 80 years. Estrogen levels also fall when ovaries are removed from all animal species.
- the body has a system to regulate the total amount of "free" estrogens at any given time.
- An ovulating woman can absorb at least 9 picograms of free estrogen in her saliva.
- a woman who is about to deliver a baby will be able to absorb at least 200 picograms of "free” estrogen in her saliva.
- An old woman who is menopausal will have only 1-2 picograms of "free” estrogen in her saliva.
- the body is able to recognize when the capacity to have "free” estrogens is reached. Excess estrogens become bound to other components in the body fluids thus preventing these excess estrogens from acting as hormones.
- a system that can evaluate whether or not the body has reached its capacity to hold "free” estrogens can have many useful applications and can have considerable clinical value and importance as a tool for screening for various conditions affected by changes in "free” estrogen levels. This is especially true in females. It can be used to evaluate when a body fluid is increasing its capacity to hold "free” estrogens such as is observed in serum and saliva prior to parturition. It can also be used by menopausal women to monitor how the body is absorbing estrogen therapy. It can further evaluate imbalances in "free” estrogen levels such as observed in ovarian cysts. It can track estrogen level changes in the normal development of an individual such as in the last stages of fetal development, the onset of puberty, menopause, and other estrogen dependent events.
- anthocyanins pigments as a fertility evaluation medium is known and is described in U.S. Pat. No. 4,358,288 to Goldman.
- This patent describes evaluating fertility in females by contacting a mucin-containing body fluid such as saliva with a fertility evaluation medium comprising an anthocyanin pigment and a substrate which facilitates generation of a color response in this pigment in the presence of a vaginal fluid or substance similar to those found in vaginal fluids.
- This patent does not, however, suggest that observed color changes in anthocyanin pigments under certain specific conditions can be correlated with the capacity of body fluids to hold free, unbound estrogens and can be used to screen for estrogen dependent physiological changes in the body that do not include fertility evaluation.
- a given body fluid such as saliva, serum, or interstitial fluid
- Yet another object of the invention is to provide a simple yet effective method to quantitatively determine what is the additional capacity for "free" estrogens in a body fluid such as saliva, serum, or interstitial fluids.
- a method to identify changes in the capacity to hold "free" estrogens in the body fluids of animals which comprises providing a marker that is sensitive to estrogen solubility, which is an anthocyanin pigment on a substrate that facilitates color change or other optical response in the pigment when contacted with an estrogen containing body fluid such as saliva, serum or interstitial fluid in the presence of dilute solutions of calcium salts.
- anthocyanin pigment that, upon contact with a body fluid, give a color response or other measurable optical response that correlates with the capacity of the body fluid to hold "free” estrogens.
- This system involves a color response that occurs when saliva or some other body fluid (such as serum or interstitial fluid having pH values between 5.8 and 7.3) are contacted with a defined concentration of certain anthocyanin pigments in the presence of a dilute solution of calcium salts. If maximum levels for "free" estrogen already exist in the body, the anthocyanin pigments will show a strong blue response and any added concentrations of "free” estrogens to this body fluid will cause the blue color to increase in intensity.
- saliva or some other body fluid such as serum or interstitial fluid having pH values between 5.8 and 7.3
- body fluid samples that need small amounts of the added estrogen to achieve this color change are close to their limit.
- Body fluid samples that can absorb large amounts of an added estrogen have larger limits in their capacity to hold "free" estrogens.
- the anthocyanin system for evaluating the capacity to hold "free" estrogens in a body fluid has a composition comprising an anthocyanin pigment that is mounted onto a substrate which provides for a color response when this treated substrate comes in contact with body fluids that are at pH values between pH 5.8 and 7.2 and are also in contact with a dilute solution of calcium salt.
- kits to evaluate the free estrogen capacity of any given body fluid which includes a substrate such as transparent sheets or strips of glass, acetate, or polyethylene or acrylic or containers or cuvettes made of similar transparent materials that are coated or sprayed with defined concentrations of an anthocyanin pigment, a second component such as a wick made of cotton or cellulose or a molecular sieve that can filter components greater than 20,000 Daltons out of the body fluid, a third component including dilute aqueous solutions of calcium salts preferably in concentrations between 10 -2 to 10 - molar, and a fourth component comprising a color comparison chart for comparing color responses produced in the test to colors provided by the chart that reflect defined levels of maximum capacity for "free" estrogens.
- a substrate such as transparent sheets or strips of glass, acetate, or polyethylene or acrylic or containers or cuvettes made of similar transparent materials that are coated or sprayed with defined concentrations of an anthocyanin pigment
- a second component such as a wick made of cotton or cellulose or a
- the "free" estrogen capacity evaluation kit may optionally include standardized units of a certain estrogen concentration which can be used for a quantitative assay to evaluate the additional capacity of body fluid to hold "free” estrogens, and a final component comprising written instructions in assisting the user on how to use the kit and interpret the results in order to screen for physiological changes that are estrogen dependent.
- the present invention provides many advantages over current technology to evaluate changes in unbound "free" estrogen levels in animals. First, it is non-invasive and requires small amounts of sample to register a color change. Second, it is simple and easy to prepare. Third, it is quick and easy to read. Fourth, it is accurate and can identify changes in estrogen capacity within +/-2 picograms of a certain type of estrogen per milliliter.
- the anthocyanin estrogen solubility marker method of the present invention offers many benefits to current estrogen evaluation processes. First this method can be done at home, on a farm, or in a zoo using body fluids that can be obtained in a non-invasive manner. Additionally, small samples of body fluid (between 10 microliters and 150 microliters) are sufficient to give accurate results. Furthermore, this method can be done quickly. Saliva can be exposed to the estrogen solubility marker system in less than 30 seconds and immediately a clearly defined color response gives feedback about the body's capacity to hold "free" estrogens. A simple, easy to read, estrogen solubility marker system offers new opportunities to make early screening for many physiological conditions that are estrogen dependant.
- an estrogen marker system that is sensitive to changes in the solubility of estrogens has practical value in anticipating parturition in livestock and in humans. Frequently, there is a great deal of guess work about whether a pregnant female is in labor or not. Sometimes parturition is induced when it is too early and sometimes it is postponed because not enough information is available to indicate the appropriate time.
- a simple test that measures one parameter of events that are known to be part of the physiological process involved in parturition can improve the guess work and have diagnostic value as well as help individuals to be better prepared for the actual birthing process.
- clinics and research institutions may have need for a practical non-invasive device that allows for quick measurement of maximum levels of free estrogens as a routine diagnostic tool to monitor certain aspects of fetal development or to evaluate certain physiological conditions that are estrogen dependant.
- a measurement which relies on body fluids such as saliva avoids painful blood samples and cuts down on potential infections and other problems that can develop from measuring estrogen solubility levels from blood samples.
- FIG. 1 is a graph illustrating the measurement of Rf values of saliva exposed to anthocyanin pigments extracted from red roses
- FIG. 2 is a graph similar to that of FIG. 1 for saliva samples taken from a woman one year after her ovaries had been removed;
- FIG. 3 is a graph comparing color readings on anthocyanins pigments from a woman six weeks after her ovaries had been removed;
- FIG. 4 is a graph illustrating color values of saliva from a woman with no ovaries after having been on estrogen therapy
- FIG. 5 is a graph illustrating absorbance values for saliva from a woman
- FIG. 6 is a graph illustrating optical density versus estradiol
- FIG. 7 is a graph illustrating the optical density values for distilled water over time.
- FIG. 8 is a graph comparing optical density values for saliva incubated with estradiol.
- the anthocyanins used in the estrogen solubility marker system of the present invention have the following general formula which is based on an equilibrium ratio of two anhydrobase forms of the anthocyanin pigment as they exist at pH vales between 5.5 to 7.5.
- the pigment structure varies between ##STR1## wherein R 1 is selected from the group consisting of hydrogen, and C 1 -C 4 alkoxy; R 2 is selected from a group consisting of hydrogen, hydroxy, and C 1 -C 4 alkoxy, and R 3 is glycoside selected from a group of glucosides and R 5 is either a hydrogen or a glycoside selected from the group consisting of glucosides and X is a cation.
- the concentration of the pigment must fall within the following ranges. 5 ⁇ 10 -5 molar to 1 ⁇ 10 -3 molar. This range is very important because molar concentrations above 1 ⁇ 10 -3 do not give clear definable results and molar concentrations below 1 ⁇ 10 -5 do not give accurate optical density measurements. At pH levels between 5.8 and 7.2 a molar concentration between 8.0 ⁇ 10 -5 and 2.0 ⁇ 10 -4 gives best results.
- the tested medium must be between the pH ranges of 5.0 and 7.5 preferably between 5.8 and 7.2.
- the following form of the anthocyanin pigment is favored in the equilibrium ratio when the "free" estrogen capacity is at its maximum levels. ##STR2##
- optical absorbance values are best read between 560 nm and 580 nm.
- the absorbance values would range between 0.1 and 1.0 for concentrations of anthocyanin pigments between 8 ⁇ 10 -5 molar and 2 ⁇ 10 -4 molar and the visible color would be blue or purple depending on the type of anthocyanin pigment used and the actual molar concentration of the pigment.
- the absorbance values read between 550 nm and 580 nm.
- the range of absorbance readings would be below 0.2 and rapidly approach values less than 0.09 and the visible color would range between purple and pale purple or clear.
- anthocyanin pigments that have 3,5 glucosides.
- Anthocyanin pigments that have a glycoside on the 7 position do not give intelligible results.
- the preferred anthocyanin for estrogen solubility determination has been documented to be malividin 3,5 diglucoside. Pelagorian 3,5 diglucoside gives good results. Petuidin 3,5 diglucoside also give definable results. Preparations from cyanidin 3,5 diglucoside do not give as well defined results because of the greater instability of cyanidin 3,5 diglucoside in the conditions necessary for these procedures.
- the body fluid that is to be tested should come in contact with the cotton wick or cellulose first.
- the body fluid travels up the wick about 1 mm to 10 mm and the wicked wet body fluid comes in contact with the dried pigment that has been laid onto a non-cellulose transparent surface such as acetate or glass.
- the body fluid should be kept at temperature between 36 and 90 Fahrenheit. This range is important because it has been observed that heating the body fluid over 100 Fahrenheit destroys the ability to evaluate changes.
- Anthocyanin pigments are prepared in certain molar concentrations in methanol sprayed or painted onto the surface of the plastic or glass to cover a certain surface area in a given period of time.
- Small plastic beads are coated with anthocyanin pigments and these are placed either behind a piece of cellulose or inside a membrane that separates particles greater than 20,000 Daltons outside and allows for particles less than 20,000 to enter inside the membrane where there is contact with the anthocyanin pigments.
- the method to determine if the body fluid contains maximum levels of soluble "free" estrogens involves taking a sample of defined volume of the body fluid and exposing this sample to a given concentration of anthocyanin pigment.
- Method 1 A defined volume of body fluid between 1 microliter and 10 microliters is put onto a piece of chromatographic paper that is in contact with a bead or surface that has 1 microliter to 10 microliters of a given concentration of anthocyanin pigment and this treated chromatographic paper is put into a chromatographic bath and exposed fluid is allowed to migrate up the chromatography paper for a given amount of time.
- the body fluid comes in contact with the anthocyanin pigment and the combination of the pigment and the body fluid continues migrating with the chromatographic bath fluid up the chromatographic paper at different rates.
- the exposed chromatographic paper is removed and allowed to dry at room temperature.
- this chromatographic paper is sprayed with a dilute ammonia solution and measurements are made for the distance that the chromatography solution travels. This value is called the Rf value. If the Rf value is greater than 0.4 then the body fluid is approaching its maximum capacity to absorb more "free" estrogens. If the Rf value is from 0.1 to 0.36 then the body fluid is far from it maximum capacity to hold "free" estrogens, as best shown in FIGS. 1 through 4.
- Method 2 About 1 microliter to 20 microliters of body fluid sample is exposed to a cotton wick or filter paper that absorbs the body fluid like a wick and this body fluid travels along the wick to a plate that has previously been sprayed or dipped with a given concentration of anthocyanin pigment and then dried at room temperature. When the wet body fluid comes in contact with the dried pigment, a color response is observed that is either dark blue, purple, or clear. If dark blue is observed, the maximum level to absorb estrogen has been reached. If a clear color is observed or a pale pink color is observed, then the body fluid is able to increase its capacity to hold more estrogen.
- Method 3 One to 3 ml. of body fluid sample is filtered to remove large particles of preferably greater than 20,000 Daltons and 150 microliters suprernatent or filtered sample is put into a container with a liquid preparation of the anthocyanin pigment at a given molar concentration and a color evaluation can be made. If a dark blue color occurs, the sample is near its maximum capacity to hold free estrogen. If little or no color response is observed, the sample has the capacity to absorb more free estrogen. In like manner, these filtered body fluid samples can also be evaluated with a spectrophotometric machine that evaluates optical density at a given wavelength.
- a molar concentration of an anthocyanin pigment at 2 ⁇ 10 -4 moles/ml that is read at a wavelength of 560 nm, that gives an absorbance value of less than 0.09 means that the capacity to absorb more estrogen is not at its maximal level.
- An absorbance value for the same molar concentration and read at the same wavelength that is between 1.0 and 2.0 means that the body fluid has maximum level of estrogen capacity and added amounts above a certain concentration of estrogen will result in increased absorbance values as best shown in FIG. 5.
- An absorbance value between 0.1 and 1.0 means that capacity is somewhere between the maximum level and the minimum level 0.1 being closer to the minimum level and 0.9 being closer to the maximum level).
- Method 4 In certain body fluids such as plasma or the saliva of certain animals such as ungulates, it has been observed that it is necessary to add dilute amounts of calcium salts in order to observe these color changes.
- This method involves mixing the body fluid with the anthocyanin pigment as described in any of the procedures presented above as in steps 1, 2 or 3 and then after the body fluid has been exposed to the anthocyanin pigment according to the prescribed procedure, a defined unit of dilute concentration of 1 ⁇ 10 -2 molar Ca Cl 2 or any Ca salt solution is added to this combination. If the resulting color of this procedure is blue or has a high absorbance value as measured in a spectrophotometer, then the body fluid is close to or at its maximum level of "free" estrogen capacity. If the resulting color response is pink than the capacity to absorb more "free" estrogen is not at its maximum level.
- a system to determine what is the additional capacity of the saliva to absorb more "free” estrogen can be done by adding given concentrations of "free” estrogens such as a prepared concentration of 17 ⁇ estradiol and counting how many units of this estradiol concentration are needed to cause the color response to change or the absorbance value to decrease. When the color response turn back to blue or the absorbance value goes up, then the maximum capacity has been reached and the number of units of estradiol need to achieve this state become additional capacity that the body fluid has to absorb more estrogen.
- FIG. 6 shows how optical density values change for saliva from a 90 year old man who does not have gonads.
- the initial optical density value for the given concentration of anthocyanin added to saliva sample was 0.303 and the color response was purple. This value indicates that the saliva capacity to hold free estrogen was not at its maximum and not at its minimum.
- Adding increments of 6 pg/ml of free estradiol up to 27 pg/ml showed a constant decreased-optical density value of about 0.06.
- the optical density began to increase and continued to increase up to 135 pg/ml.
- Another application of this invention has been to anticipate the onset of labor in pregnant women. About two weeks prior to delivery in full term pregnancies, there is a color shift in the saliva test as used on the cellulose wick exposed anthocyanins extracted from rose pigments. (During most of pregnancy, the color response is blue or purple blue). Two weeks prior to delivery the color response shifts to pink or no blue. This color response remains until the day labor begins when it shifts to a clear, pale blue response about 6 hours prior to delivery as observed in eight spontaneous deliveries of full term pregnancies. This patter of color changes has also been observed in induced deliveries which were observed to shift from blue to purple within 20 minutes to 2 hours after induction was initiated and then proceed to delivery within 4 to 12 hours after the purple color response was observed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- General Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Gynecology & Obstetrics (AREA)
- Pregnancy & Childbirth (AREA)
- Reproductive Health (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Endocrinology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/913,758 US5922613A (en) | 1995-03-23 | 1996-03-25 | Method for evaluating estrogen dependent physiological conditions |
US08/855,590 US5981291A (en) | 1995-03-23 | 1997-05-13 | Estrogen marker system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40896695A | 1995-03-23 | 1995-03-23 | |
US08/855,590 US5981291A (en) | 1995-03-23 | 1997-05-13 | Estrogen marker system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US40896695A Continuation | 1995-03-23 | 1995-03-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/913,758 Continuation-In-Part US5922613A (en) | 1995-03-23 | 1996-03-25 | Method for evaluating estrogen dependent physiological conditions |
Publications (1)
Publication Number | Publication Date |
---|---|
US5981291A true US5981291A (en) | 1999-11-09 |
Family
ID=23618494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/855,590 Expired - Lifetime US5981291A (en) | 1995-03-23 | 1997-05-13 | Estrogen marker system |
Country Status (6)
Country | Link |
---|---|
US (1) | US5981291A (ja) |
EP (1) | EP0817970A1 (ja) |
JP (1) | JPH11506535A (ja) |
AU (1) | AU5526296A (ja) |
CA (1) | CA2215958C (ja) |
WO (1) | WO1996029606A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100267003A1 (en) * | 2006-04-03 | 2010-10-21 | Dorothee Goldman | Methods and kit for endometriosis screening |
WO2012024095A2 (en) | 2010-08-20 | 2012-02-23 | Oratel Diagnostics, Llc | Estrous cycle monitoring by color response |
DE102012002929A1 (de) * | 2012-02-14 | 2013-08-14 | Jürgen Lewald | Minimalinvasives Verfahren für die Diagnose und die Therapieverlaufskontrolle der Endometriose |
US8841130B2 (en) | 2011-07-11 | 2014-09-23 | Oratel Diagnostics, Llc | Methods and kit for endometriosis diagnosis |
WO2022194862A1 (en) | 2021-03-16 | 2022-09-22 | Breedsense As | Method for predicting the likelihood of pregnancy in female mammals which experience an estrous cycle |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2215958C (en) * | 1995-03-23 | 2009-09-15 | Dorothee Goldman | Method and apparatus for evaluating estrogen dependent physiological conditions |
EP2821071A1 (en) | 2013-07-04 | 2015-01-07 | Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) | Compounds for breast cancer treatment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4320009A (en) * | 1977-07-25 | 1982-03-16 | Frito-Lay, Inc. | Processed anthocyanin pigment extracts |
US4358288A (en) * | 1981-09-16 | 1982-11-09 | Goldman Dorothee F E | Fertility indicator system containing anthocyanin pigment |
US4772554A (en) * | 1985-01-24 | 1988-09-20 | Wisconsin Alumni Research Foundation | Ova fertilization assay |
WO1996029606A1 (en) * | 1995-03-23 | 1996-09-26 | Goldman Dorothee F E | Method and apparatus for evaluating estrogen dependent physiological conditions |
-
1996
- 1996-03-25 CA CA002215958A patent/CA2215958C/en not_active Expired - Fee Related
- 1996-03-25 EP EP96912450A patent/EP0817970A1/en not_active Withdrawn
- 1996-03-25 JP JP8528652A patent/JPH11506535A/ja active Pending
- 1996-03-25 AU AU55262/96A patent/AU5526296A/en not_active Abandoned
- 1996-03-25 WO PCT/US1996/004007 patent/WO1996029606A1/en not_active Application Discontinuation
-
1997
- 1997-05-13 US US08/855,590 patent/US5981291A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4320009A (en) * | 1977-07-25 | 1982-03-16 | Frito-Lay, Inc. | Processed anthocyanin pigment extracts |
US4358288A (en) * | 1981-09-16 | 1982-11-09 | Goldman Dorothee F E | Fertility indicator system containing anthocyanin pigment |
US4772554A (en) * | 1985-01-24 | 1988-09-20 | Wisconsin Alumni Research Foundation | Ova fertilization assay |
WO1996029606A1 (en) * | 1995-03-23 | 1996-09-26 | Goldman Dorothee F E | Method and apparatus for evaluating estrogen dependent physiological conditions |
Non-Patent Citations (6)
Title |
---|
Kirkish et al. "Plasma Estriol . . . " Clin. Chem. 24/10, 1830-1832, 1978. |
Kirkish et al. Plasma Estriol . . . Clin. Chem. 24/10, 1830 1832, 1978. * |
Markaverich et al., "Bioflavonoid Interaction With Rat Uterine Type II Binding Sites and Cell Growth Inhibition," Journal of Steroid Biochemistry, 30 (1-6): 71-78, 1988. |
Markaverich et al., Bioflavonoid Interaction With Rat Uterine Type II Binding Sites and Cell Growth Inhibition, Journal of Steroid Biochemistry, 30 (1 6): 71 78, 1988. * |
Osawa et al. "Studies on Phenolic Steroids . . . " Steroids 15/1 73-88, 1970. |
Osawa et al. Studies on Phenolic Steroids . . . Steroids 15/1 73 88, 1970. * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100267003A1 (en) * | 2006-04-03 | 2010-10-21 | Dorothee Goldman | Methods and kit for endometriosis screening |
US8722349B2 (en) | 2006-04-03 | 2014-05-13 | Oratel Diagnostics, Llc | Methods and kit for endometriosis screening |
WO2012024095A2 (en) | 2010-08-20 | 2012-02-23 | Oratel Diagnostics, Llc | Estrous cycle monitoring by color response |
WO2012024095A3 (en) * | 2010-08-20 | 2012-05-03 | Oratel Diagnostics, Llc | Estrous cycle monitoring by color response |
US8420398B2 (en) | 2010-08-20 | 2013-04-16 | Oratel Diagnostics, Llc | Estrous cycle monitoring by color response |
US8841130B2 (en) | 2011-07-11 | 2014-09-23 | Oratel Diagnostics, Llc | Methods and kit for endometriosis diagnosis |
DE102012002929A1 (de) * | 2012-02-14 | 2013-08-14 | Jürgen Lewald | Minimalinvasives Verfahren für die Diagnose und die Therapieverlaufskontrolle der Endometriose |
WO2022194862A1 (en) | 2021-03-16 | 2022-09-22 | Breedsense As | Method for predicting the likelihood of pregnancy in female mammals which experience an estrous cycle |
Also Published As
Publication number | Publication date |
---|---|
WO1996029606A1 (en) | 1996-09-26 |
CA2215958C (en) | 2009-09-15 |
EP0817970A1 (en) | 1998-01-14 |
CA2215958A1 (en) | 1996-09-26 |
JPH11506535A (ja) | 1999-06-08 |
AU5526296A (en) | 1996-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3485587A (en) | Protein indicator | |
DE69522831T2 (de) | Assays und vorrichtungen zum nachweis von extrahepatischer biliäreratresie | |
US4952517A (en) | Positive step immunoassay | |
US8722349B2 (en) | Methods and kit for endometriosis screening | |
DE69427131T2 (de) | Siebtest zur früherkennung von kolorektalen neoplasien | |
Dirks et al. | The protein concentration in the proximal tubule of the dog | |
Finkelstein et al. | Estimation of Steroid Estrogens by Fluorimetry. | |
US3968011A (en) | Test implement and test method for colorimetrically determining whether a female is fertile or pregnant | |
US5470750A (en) | Detection of appendicitis by measurement of orthohydroxyhippuric acid | |
Hamamah et al. | 1H nuclear magnetic resonance studies of seminal plasma from fertile and infertile men | |
BELL et al. | Factors affecting the binding of lectins to normal human skin | |
US5981291A (en) | Estrogen marker system | |
US4358288A (en) | Fertility indicator system containing anthocyanin pigment | |
US4719181A (en) | Free flowing granular indicator material for peroxidase-like activity | |
US3699005A (en) | Method and article for detecting the fertile period | |
US20110065139A1 (en) | diagnostic device for identifying rupture of membrane during pregnancy | |
US5922613A (en) | Method for evaluating estrogen dependent physiological conditions | |
WO1996029606A9 (en) | Method and apparatus for evaluating estrogen dependent physiological conditions | |
US20130177485A1 (en) | Diagnostic device for identifying rupture of membrane during pregnancy | |
WO2009050711A2 (en) | A diagnostic device for identifying rupture of membrane during pregnancy | |
US5695929A (en) | Substitute saliva standard | |
EP0028644A1 (en) | Impending ovulation test | |
Rupe et al. | An improved test for phenylketonuria | |
Achilles et al. | Crystal growth of calcium oxalate in urine of stone-formers and normal controls | |
Blain et al. | Peroxidase in human cervical mucus during the menstrual cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: ORATEL DIAGNOSTICS, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOLDMAN, DOROTHEE;REEL/FRAME:021570/0834 Effective date: 20080828 |
|
FPAY | Fee payment |
Year of fee payment: 12 |