US5623405A - Accounting system and method for asynchronous transfer mode network - Google Patents
Accounting system and method for asynchronous transfer mode network Download PDFInfo
- Publication number
- US5623405A US5623405A US08/235,136 US23513694A US5623405A US 5623405 A US5623405 A US 5623405A US 23513694 A US23513694 A US 23513694A US 5623405 A US5623405 A US 5623405A
- Authority
- US
- United States
- Prior art keywords
- atm
- accounting
- cell
- information
- field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012546 transfer Methods 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 19
- 230000004044 response Effects 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 description 32
- 238000013500 data storage Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000011664 signaling Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/14—Charging, metering or billing arrangements for data wireline or wireless communications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/12—Accounting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/14—Charging, metering or billing arrangements for data wireline or wireless communications
- H04L12/1425—Charging, metering or billing arrangements for data wireline or wireless communications involving dedicated fields in the data packet for billing purposes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/14—Charging, metering or billing arrangements for data wireline or wireless communications
- H04L12/1485—Tariff-related aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/32—Specific management aspects for broadband networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/04—Selecting arrangements for multiplex systems for time-division multiplexing
- H04Q11/0428—Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
- H04Q11/0478—Provisions for broadband connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5601—Transfer mode dependent, e.g. ATM
- H04L2012/5638—Services, e.g. multimedia, GOS, QOS
- H04L2012/5639—Tariffs or charging
Definitions
- the present invention generally relates to an ATM (Asynchronous Transfer Mode) network, and more particularly to an accounting system and method suitable for an ATM network.
- ATM Asynchronous Transfer Mode
- the ATM network is capable of transferring various types of information (media). Examples of the media transferred are digitized speech signals having low bit rates, and data having high bit rates, such as image data, facsimile data and still picture data. It is necessary to charge users for communications services provided by the ATM network.
- the ATM network has not yet been practically used, and attractive accounting systems have not yet been proposed.
- FIG. 1 shows a part of a switch in a conventional ATM network equipped with the above accounting system.
- the switch shown in FIG. 1 comprises a buffer 12, a signaling device 13, a header conversion circuit 14, a cell counting circuit 15, an accounting data memory 16, a call control device 17, and a conversion table 18.
- a call setup procedure is carried out between calling and called terminals (not shown) and the signaling device 13.
- the call control device 17 determines a route directed to a destination at which the call will terminate. Cells transmitted by the calling terminal after the route is determined are successively stored in the buffer 12.
- FIG. 1 shows one input cell having information and a header 10.
- the header 10 contains a VCI (Virtual Channel Identifier) assigned to the subscriber line (input or incoming line) via which the above call is transferred.
- the VCI of the input cell shown in FIG. 1 has a value of "a".
- the header conversion circuit 14 detects the VCI value of the input cell.
- the call control device 17 has assigned another VCI value to the route directed to the destination determined in the above-mentioned manner, and has written the above VCI value into the conversion table 18 provided in the header conversion circuit 14.
- a VCI value " ⁇ " has been assigned to the route and has been written into the conversion table 18.
- the input cell is written into the buffer 12 and the header 10 of the input cell is copied and written into the header conversion circuit 14.
- the header conversion circuit 14 accesses the conversion table 18 by the VCI value "a”, and obtains the VCI value " ⁇ " assigned to the route directed to the destination. Then, the header conversion circuit 14 writes the VCI value " ⁇ " in the buffer 12.
- the cell with the VCI value " ⁇ " is read from the buffer 12 and output to an output highway (outgoing line).
- the header conversion circuit 14 outputs a signal to the cell counting circuit 15 each time it receives the cell.
- the cell counting circuit 15 increases the count value for each VCI value each time the signal from the header conversion circuit 14 is received.
- the count value of the cell counting circuit 15 obtained for each VCI value is written into the accounting data memory 16. The charge for each VCI value can be calculated using the respective count value.
- a speech signal has a bit rate of, for example, 64 Kbps and an image signal has a bit rate of, for example, 100 Mbps.
- the number of cells containing image data is approximately 1000 times the number of cells containing speech data.
- the charging of money is carried out for each VCI value. Since the charging rate is determined based on one cell, in the above case, the charge for transfer of the image signal is approximately 1000 times that for transfer of the speech signal. However, this is not reasonable and practical. If the charging rate is determined based on a cell for the transfer of speech, the charge for transfer of image data is extremely expensive. On the other hand, if the charging rate is determined based on a cell for transfer of image data, the charge for transfer of speech data is extremely cheap.
- a more specific object of the present invention is to provide an accounting system capable of flexibly charging users for communications services on the basis of the types of media (information type).
- an accounting system for an ATM network comprising first means for detecting a VCI (Virtual Channel Identifier) in an ATM cell and an information type contained in the ATM cell, the information type indicating the type of information contained in the ATM cell, second means, coupled to the first means, for outputting an accounting coefficient related to the information type detected by the first means, and third means, coupled to the first and second means, for generating a cell arrival signal in response to the arrival of each ATM cell having an identical VCI value and for generating accounting data by using the accounting coefficient and the cell arrival signal.
- VCI Virtual Channel Identifier
- Another object of the present invention is to provide an accounting method capable of flexibly charging users for communications services on the basis of the types of information which are transmitted.
- an accounting method for an ATM network comprising the steps of (a) detecting a VCI (Virtual Channel Identifier) in an ATM cell and information type data contained in the ATM cell, the information type data indicating the type of information contained in the ATM cell; (b) outputting an accounting coefficient related to the information type detected by step (a), (c) generating a cell arrival signal in response to arrival of each ATM cell having an identical VCI value; and (d) generating accounting data using the accounting coefficient and the cell arrival signal.
- VCI Virtual Channel Identifier
- Yet another object of the present invention is to provide an ATM network capable of flexibly charging users for communications services on the basis of the types of information which are transmitted.
- an ATM network comprising a plurality of terminals and an ATM switch selectively connecting the terminals to each other, the ATM switch comprising an accounting system, each of the terminals generating an ATM cell containing information type data indicating the type of information contained in the ATM cell, the accounting system comprising, first means for detecting a VCI (Virtual Channel Identifier) and the information type data contained in the ATM cell; second means, coupled to the first means, for outputting an accounting coefficient related to the information type detected by the first means, and third means, coupled to the first and second means, for generating a cell arrival signal in response to arrival of each ATM cell having an identical VCI value and for generating accounting data using the accounting coefficient and the cell arrival signal.
- VCI Virtual Channel Identifier
- FIG. 1 is a block diagram of an ATM switch using a conventional accounting system
- FIG. 2 is a block diagram showing an overview of the present invention
- FIG. 3 is a diagram of an ATM cell format
- FIG. 4 is a block diagram of an embodiment of the present invention.
- FIG. 5 is a block diagram showing the details of the configuration shown in FIG. 4;
- FIG. 6 is a block diagram showing an alternative configuration of a cell multiplier circuit shown in FIG. 5;
- FIG. 7 is a diagram of a terminal coupled to an ATM switch
- FIG. 8 is a diagram showing a sequence of a transfer of signals.
- FIG. 9 is a flowchart of a process for realizing the sequence shown in FIG. 8.
- FIG. 2 shows an overview of an accounting system installed in an ATM switch.
- An accounting system according to the present invention comprises a coefficient change circuit 140, an accounting data generation circuit 150, and an accounting data storage device 160.
- an input cell 100 shown in FIG. 2 comprises a 5-octet ATM header and a 48-octet information field in which information to be transferred is stored, as defined in the CCITT Recommendations I.361 and I.363, the disclosure of which is hereby incorporated by reference.
- the input cell 100 comprises a media information field (also referred to as an information type field) MED, which is formed in the ATM header or in a payload field in the information field.
- the information type field includes data that indicates the type of information in the information field (information type data).
- the information type field MED comprises of, for example, four bits.
- the input cell 100 transferred via an input highway (line) is written into a buffer 120, and the ATM header thereof is applied to a header conversion circuit 130.
- the header conversion circuit 130 detects the VCI value and the information type data, and determines a VCI value of a route directed to a destination. Then, the header conversion circuit 130 outputs the VCI value of the above route and the information type data to the coefficient change circuit 140. Further, the header conversion circuit 130 outputs a cell arrival signal to the accounting data generation circuit 150.
- the information type field is formed in the payload field in the information field, the information type field is formed at a fixed position in the cell and the ATM header is output to the header conversion circuit 130.
- the coefficient change circuit 140 stores a table in which accounting coefficients for the respective types of information are defined.
- the coefficient conversion circuit 140 outputs, together with the ATM header, the accounting coefficient related to the information type to the accounting data generation circuit 150.
- the accounting data generation circuit 150 In response to receipt of the ATM header and the accounting coefficient, the accounting data generation circuit 150 generates, for the VCI value of the input cell, accounting data using the accounting coefficient. Then, the accounting coefficient is output to the accounting data storage device 160, which stores accounting data for each VCI value. It is possible to store accounting data for each VCI value for each of the information types.
- the accounting data generation circuit 150 generates accounting data using the accounting coefficient each time a cell arrives. Alternatively, the accounting data generation circuit 150 generates accounting data each time a predetermined number of cells related to the same VCI value is received. In this case, the accounting data is obtained by multiplying the predetermined number of cells by the related accounting coefficient.
- the accounting coefficient can be obtained by, for example, dividing the bit rate of each of the information types by 48 bytes forming the information field. For example, when a speech signal has a bit rate of 64 Kbps, the accounting coefficient for the 64 Kbps speech signal is equal to 64 Kbps/48 bytes. When a data signal has a bit rate of 1.5 Mbps, the accounting coefficient for the 1.5 Mbps data signal is equal to 1.5 Mbps/48 bytes. When an image signal has a bit rate of 150 Mbps, the accounting coefficient for the 150 Mbps image signal is equal to 150 Mbps/48 bytes. Further, it is possible to use weighted accounting coefficients.
- the accounting unit for speech is equal to 1 when 64 Kbps communications take place for three minutes in total (64 Kbps ⁇ 3 minutes)
- the accounting unit for data is equal to 0.5 when 1.5 Mbps communications take place for three minutes in total
- the accounting unit for image data is equal to 2 when 150 Mbps communications take place for three minutes in total.
- the accounting coefficients for data and image are weighted so that the above relation can be satisfied.
- FIG. 4 shows an essential part of an ATM switch in which an accounting system according to an embodiment of the present invention is installed.
- the accounting system shown in FIG. 4 comprises a coefficient change circuit 24, a cell multiplier circuit 25 and an accounting data storage circuit 26.
- the ATM switch shown in FIG. 4 further comprises a buffer 21, a signaling device 22, a header conversion circuit 23, and a call control device 27.
- the call setup information is transferred between the signaling device 22 and both the calling and the called terminals, and hence a route directed to a destination terminal is determined in the conventional manner.
- the header conversion circuit 23 stores a conversion memory as shown in FIG. 1.
- the call control device 27 writes new VCI values respectively assigned to the VCI values contained in the input cells beforehand.
- the coefficient change circuit 24 stores accounting coefficients defined for the respective information types, which are output by the call control device 27. For example, the accounting coefficients for transfer of speech, data, and image are equal to 1, 0.1 and 0.001, respectively. It is possible to change the accounting coefficients with respect to various factors, such as subscribers and time ranges.
- the coefficient change circuit 24 outputs the accounting coefficient and the input VCI value to the cell multiplier circuit 25. If the header conversion circuit 23 generates the cell arrival signal each time one cell is received, 1 (which corresponds to the cell arrival signal and indicates one cell) is multiplied by the accounting coefficient. In this case, the accounting coefficient itself functions as accounting data.
- the accounting data thus generated is output to the accounting data storage circuit 26, which has a storage area assigned to the input VCI value.
- the accounting data is added to the integrated accounting data related to the VCI value being considered, so that the accounting data is updated.
- the cell multiplier circuit 25 it is also possible for the cell multiplier circuit 25 to read the integrated accounting data from the accounting data storage circuit 26 and to add the accounting coefficient to the readout integrated accounting data. The accounting data updated in the above manner is then written into the corresponding storage area in the accounting data storage circuit 26.
- the cell multiplier circuit 25 multiplies the predetermined number of cells by the related accounting coefficient.
- FIG. 5 shows the details of the structure shown in FIG. 4.
- a distribution circuit 29 is provided as shown in FIG. 5.
- the distribution circuit 29 allows the input cell to be transferred to the buffer 21, and outputs the VCI value and the information type MED to the header conversion circuit 23.
- a line indicated by "A” denotes an address bus
- a line indicated by "D” denotes a data bus.
- the buffer 21 comprises a memory (MEM) 21a and a driver 21b.
- An address signal generated by the driver 21b is applied to the memory 21a via the address bus A.
- the new VCI value of the route determined by the header conversion circuit 23 is applied to the memory 21a via the data bus D between the header conversion circuit 23 and the driver 21b and the data bus D between the driver 21b and the memory 21a.
- the header conversion circuit 23 comprises a memory (MEM) 23a, a driver 23b, an arbitration circuit 23c, and a driver 23d.
- the driver 23b receives the input VCI value from the distribution circuit 29 and outputs it to the memory 23a via the address bus A.
- the driver 23d receives an address signal and a VCI value related to an input VCI value via the address and data buses A and D from the call control device 27, respectively, and writes the VCI value into a storage area of the memory 23a specified by the address. In this manner, the VCI values of routes with respect to the respective input VCI values are written into the memory 23a.
- the arbitration circuit 23c prevents the drivers 23b and 23d from concurrently accessing the memory 23a.
- the coefficient change circuit 24 comprises a memory (MEM) 24a, a driver 24b, an arbitration circuit 24c and a driver 24d.
- the driver 24d receives an address signal and an accounting coefficient via the address and data buses A and D from the call control device 27, respectively, and writes the accounting coefficient into a storage area of the memory 24a specified by the address signal. In this manner, all the accounting coefficients related to the respective information types are written into the memory 24a.
- the driver 24b receives the information type data MED transferred via the driver 23b, and reads the accounting coefficient related to the received information type data MED.
- the readout accounting coefficient, labeled K is then applied to the cell multiplier circuit 25.
- the arbitration circuit 24c prevents the drivers 24b and 24d from concurrently accessing the memory 24a.
- the cell multiplier circuit 25 comprises a pulse generator 25a, and an operation unit 25b including an adder.
- the pulse generator 25a generates the cell arrival signal each time it receives a pulse signal from the memory 23a. This pulse signal is generated each time the VCI value is read from the memory 23a.
- the operation unit 25b multiplies 1 (the pulse signal) by the accounting coefficient K, and adds the multiplication result to the integrated accounting data read from the accounting data storage circuit 26. The result of this addition is written into the accounting data storage circuit 26.
- the accounting data storage circuit 26 comprises a memory 26a, a driver 26b, an arbitration circuit 26c and a driver 26d.
- the driver unit 26b receives the input VCI value via the driver 23b and accesses the memory 26a using the input VCI value.
- the integrated accounting data stored in a storage area specified by the input VCI value is read therefrom and applied to the operation unit 25b.
- the updated integrated accounting data from the operation unit 25b is written into the same storage area specified by the input VCI value.
- the call control device 27 outputs an address signal via the driver 26d, and reads the accounting data from the storage area specified by the address signal.
- the cell multiplier circuit 25 configured as shown in FIG. 6.
- a counter 25c and an AND gate 25d are added to the configuration of the cell multiplier circuit 25 shown in FIG. 5.
- the call control device 27 writes a predetermined number n of cells into the counter 25c.
- the counter 25c changes its counter value each time the pulse signal from the pulse circuit 25a is applied to the counter 25c.
- the counter 25c counts the predetermined number n of cells, it outputs a signal to the AND gate 25d.
- the pulse signal generated by the cell multiplier circuit 25 passes through the AND gate 25d.
- the pulse signal is applied to the operation circuit 25b each time the number n of cells is received.
- the operation circuit 25b multiplies the number of pulses indicated by the pulse signal by the accounting coefficient, and adds the result of this multiplication to the readout accounting data.
- FIG. 7 is a block diagram of a terminal in the ATM network.
- the terminal shown in FIG. 7 has the function of transmitting speech, data and image signals as well as that of receiving these signals.
- the terminal shown in FIG. 7 comprises a transmitter unit 30, a receiver unit 34, an ATM header addition circuit 38, a header eliminating circuit 39, a signaling device 40, and a microprocessor 41.
- the transmitter unit 30 comprises A/D converters 31a and 31b, an interface (IF) circuit 31c, cell assembling circuits 32a, 32b and 32c, and a multiplexer 33.
- the A/D converter 31a converts an analog speech signal from a microphone (not shown) into a digital signal.
- the A/D converter 31b converts an analog image signal from, for example, a camera into a digital signal.
- the IF circuit 31c converts an analog data signal from, for example, a keyboard into a digital signal.
- the cell assembling circuits 32a, 32b and 32c assemble 48-byte cells from the respective digital signals.
- the mutiplexer 33 selects one of the 48-byte cells from the cell assembling circuits 32a-32c, and outputs the selected 48-byte cell to the ATM header addition circuit 38.
- the ATM header addition circuit 38 adds the 5-byte ATM header having a VCI value to the 48-byte cell, and outputs a 53-octet ATM cell.
- the signaling device 40 sends control signals to the ATM network and receives control signals from the ATM network in order to execute the call setup procedure and other procedures.
- the ATM header eliminating circuit 39 eliminates the ATM headers from cells received from the ATM network.
- the receiver unit 34 comprises a demultiplexer 37, cell disassembling circuits 36a, 36b and 36c, and D/A converters 35a and 35b and an interface circuit (IF) 35c.
- the demultiplexer 37 distributes the cells to the cell disassembling circuits 36a, 36b and 36c.
- the cell disassembling circuits 36a, 36b and 36c disassemble the cells to generate the original digital signals, which are converted into the original analog signals by means of the D/A converters 35a, 35b and 35c, respectively.
- the D/A converter 35a generates the original speech signal
- the D/A converter 35b generates the original image signal.
- the interface circuit 35c generates the original data signal.
- the microprocessor 41 controls the entire operation of the terminal.
- the signaling device 40 communicates with the ATM network using predetermined control signals, so that a call from the terminal is accepted by the ATM network and a VCI value (together with a VPI (Virtual Path Identifier) value) is determined. If the terminal has a request for transfer of speech and image, analog speech and image signals are converted into digital speech and image signals by means of the A/D converters 31a and 31b, respectively. Then, the cell assembling circuit 32a assembles cells containing speech information, and the cell assembling circuit 32b assembles cells containing image information.
- These cells are stored in a buffer built in the multiplexer 33, and read therefrom with a ratio dependent on how frequently speech and image signals are respectively generated.
- the microprocessor 41 is notified of data showing the type of the signal selected.
- the microprocessor 41 understands the type of information output from the multiplexer 33.
- the microprocessor 41 outputs VPI/VCI information and data indicating the information type to be written into the information type field MED.
- the header addition circuit 38 adds the above information from the microprocessor 41 to the cell being considered. Then, the cell, with the ATM header added thereto, is sent to the ATM network.
- FIG. 8 shows a sequence of transfer of signals among calling and called terminals and the ATM switch
- FIG. 9 is a flowchart of a process for realizing the above sequence by means of an ATM switch.
- the calling terminal sends a call setup message SETUP to the ATM switch (step S11).
- the ATM switch analyzes the call setup message SETUP (step S12), and determines whether or not there is a problem (step S13). When it is determined that there is no problem, the ATM switch sends back a call proceeding message CALL PROC (step S14). Then, the ATM switch sends a call setup message SETUP to the called terminal (step S15).
- the called terminal accepts the call setup message SETUP (step S16), and sends back an alerting message ALERT to the ATM switch (step S17). Then, the ATM network sends an alerting message ALERT to the calling terminal (step S18). Then, the called terminal is called (step S19). In response to an offhooking operation in the called terminal, the called terminal sends a connect message CONN to the ATM switch (step S20). In response to receipt of the connect message CONN, the ATM switch determines a path (route) connecting the calling terminal and the called terminal in the aforementioned manner (step S21), and determines the accounting coefficient value in the aforementioned manner (step S22).
- the ATM switch sends a connect acknowledgement message CONN-ACK to the called station and sends a connect signal CONN to the calling terminal (step S23).
- the calling terminal and the called terminal can communicate with each other (step S24).
- the calling terminal sends a disconnect message DISC to the ATM switch (step S25), and the ATM switch sends a disconnect message DISC to the called terminal.
- the accounting data is read from the accounting data storage device 26 under the control of the call control device 27 (step S26).
- the called terminal sends a release message REL to the ATM switch, and the ATM switch sends a release message REL to the calling terminal (step S27). Then, the path is released and disconnected (step S28).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- Technology Law (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Meter Arrangements (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/235,136 US5623405A (en) | 1991-07-24 | 1994-04-28 | Accounting system and method for asynchronous transfer mode network |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3184282A JPH0530132A (ja) | 1991-07-24 | 1991-07-24 | Atm網における課金方式 |
JP3-184282 | 1991-07-24 | ||
US91626192A | 1992-07-21 | 1992-07-21 | |
US08/235,136 US5623405A (en) | 1991-07-24 | 1994-04-28 | Accounting system and method for asynchronous transfer mode network |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US91626192A Continuation | 1991-07-24 | 1992-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5623405A true US5623405A (en) | 1997-04-22 |
Family
ID=16150595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/235,136 Expired - Lifetime US5623405A (en) | 1991-07-24 | 1994-04-28 | Accounting system and method for asynchronous transfer mode network |
Country Status (5)
Country | Link |
---|---|
US (1) | US5623405A (fr) |
EP (1) | EP0525632B1 (fr) |
JP (1) | JPH0530132A (fr) |
CA (1) | CA2074413C (fr) |
DE (1) | DE69222815T2 (fr) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5748629A (en) | 1995-07-19 | 1998-05-05 | Fujitsu Networks Communications, Inc. | Allocated and dynamic bandwidth management |
US5748905A (en) | 1996-08-30 | 1998-05-05 | Fujitsu Network Communications, Inc. | Frame classification using classification keys |
US5854783A (en) * | 1995-07-10 | 1998-12-29 | Nec Corporation | Cell interval determination apparatus for usage parameter control |
US5894475A (en) * | 1996-06-28 | 1999-04-13 | At&T Corp. | Switched voice and data ATM network with billing system |
US5898671A (en) | 1995-09-14 | 1999-04-27 | Fujitsu Network Communications, Inc. | Transmitter controlled flow control for buffer allocation in wide area ATM networks |
NL1007702C2 (nl) * | 1997-12-05 | 1999-06-08 | Koninkl Kpn Nv | Werkwijze en inrichting voor communicatie. |
US5953334A (en) * | 1995-09-25 | 1999-09-14 | Fujitsu Limited | ATM switching system |
US5991298A (en) | 1996-01-16 | 1999-11-23 | Fujitsu Network Communications, Inc. | Reliable and flexible multicast mechanism for ATM networks |
US6005844A (en) * | 1994-10-03 | 1999-12-21 | Fujitsu Limited | Information collection device and method for use with communications networks |
US6058375A (en) * | 1996-10-21 | 2000-05-02 | Samsung Electronics Co., Ltd. | Accounting processor and method for automated management control system |
US6331982B1 (en) * | 1995-08-31 | 2001-12-18 | Fujitsu Limited | Connection control system and method in a switch |
US6338046B1 (en) * | 1997-10-06 | 2002-01-08 | Nokia Telecommunications, Oy | System and method for determining charges for usage of a network connection |
US6374307B1 (en) * | 1999-02-12 | 2002-04-16 | Steve A. Ristau | Non-intrusive DWDM billing system |
US20030002500A1 (en) * | 2001-06-26 | 2003-01-02 | Nec Corporation | Accounting method and system in a packet communication network |
US20040071138A1 (en) * | 1992-01-16 | 2004-04-15 | Fujitsu Limited | Cell multiplexing apparatus handling multiple items of information |
WO2005117343A1 (fr) * | 2004-05-25 | 2005-12-08 | Vodafone Group Plc | Reseaux de communications |
US7050409B1 (en) * | 1997-11-14 | 2006-05-23 | Wireless Facilities, Inc. | Wireless T/E transceiver frame and signaling controller |
US7466657B1 (en) * | 1998-06-08 | 2008-12-16 | Koninklijke Kpn N.V. | System for charging the use of a packet-based telecommunication network |
TWI702253B (zh) * | 2015-02-25 | 2020-08-21 | 同和電子科技股份有限公司 | 磁性化合物、天線及電子機器 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09238133A (ja) * | 1996-02-29 | 1997-09-09 | Fujitsu Ltd | 交換機およびデータ交換網料金即知方法 |
JP3230671B2 (ja) | 1999-01-14 | 2001-11-19 | 日本電気株式会社 | パケット課金装置 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4163254A (en) * | 1977-02-14 | 1979-07-31 | Block Robert S | Method and system for subscription television billing and access |
US4450477A (en) * | 1982-03-31 | 1984-05-22 | Lovett Bruce E | Television information system |
US4964119A (en) * | 1988-04-06 | 1990-10-16 | Hitachi, Ltd. | Method and system for packet exchange |
US5007043A (en) * | 1989-02-03 | 1991-04-09 | Koninklijke Ptt Nederland N.V. | Method for transmitting, via a plurality of asynchronously time-divided transmission channels, a flow of data cells, the state of a counter for each transmission channel being kept up to date in accordance with the number of data cells per unit of time |
US5007048A (en) * | 1987-09-30 | 1991-04-09 | U.S. Philips Corporation | Circuit arrangement for avoiding overload in a wideband switching system |
US5014260A (en) * | 1988-10-28 | 1991-05-07 | Telefonaktiebolaget L M Ericsson | Method and apparatus for preventing transmission of data packets with a greater intensity than a predetermined value on any one of a number of channels on a common transmission link |
US5050213A (en) * | 1986-10-14 | 1991-09-17 | Electronic Publishing Resources, Inc. | Database usage metering and protection system and method |
US5070498A (en) * | 1989-08-04 | 1991-12-03 | Fujitsu Limited | Call control system in atm switch |
US5119369A (en) * | 1989-07-05 | 1992-06-02 | Hitachi, Ltd. | Packet switch communication network using packet having virtual channel identifier |
US5153578A (en) * | 1989-06-22 | 1992-10-06 | Fujitsu Limited | Apparatus and method for establishing identical data in dual atm switches |
US5224092A (en) * | 1989-09-05 | 1993-06-29 | Koninklijke Ptt Nederland N.V. | Method for controlling a flow of data cells into a plurality of asynchronously time-divided transmission channels with a single admission switch for transmission in the channels with reference to the state of a plurality of count values |
US5247575A (en) * | 1988-08-16 | 1993-09-21 | Sprague Peter J | Information distribution system |
US5282207A (en) * | 1991-03-28 | 1994-01-25 | Sprint International Communications Corp. | Frame compression in integrated services networks |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3435139A1 (de) * | 1984-09-25 | 1986-04-03 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zum uebertragen von der verkehrserfassung dienenden erfassungssignalen und von signalisierungsinformationen |
ATE149069T1 (de) * | 1989-09-29 | 1997-03-15 | Siemens Ag | Schaltungsanordnung zum ermitteln der einer atm- vermittlungsanlage im zuge von virtuellen verbindungen jeweils zugeführten nachrichtensignalmenge und zur überprüfung der einhaltung festgelegter bitraten |
-
1991
- 1991-07-24 JP JP3184282A patent/JPH0530132A/ja not_active Withdrawn
-
1992
- 1992-07-22 CA CA002074413A patent/CA2074413C/fr not_active Expired - Fee Related
- 1992-07-23 EP EP92112572A patent/EP0525632B1/fr not_active Expired - Lifetime
- 1992-07-23 DE DE69222815T patent/DE69222815T2/de not_active Expired - Fee Related
-
1994
- 1994-04-28 US US08/235,136 patent/US5623405A/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4163254A (en) * | 1977-02-14 | 1979-07-31 | Block Robert S | Method and system for subscription television billing and access |
US4450477A (en) * | 1982-03-31 | 1984-05-22 | Lovett Bruce E | Television information system |
US5050213A (en) * | 1986-10-14 | 1991-09-17 | Electronic Publishing Resources, Inc. | Database usage metering and protection system and method |
US5007048A (en) * | 1987-09-30 | 1991-04-09 | U.S. Philips Corporation | Circuit arrangement for avoiding overload in a wideband switching system |
US4964119A (en) * | 1988-04-06 | 1990-10-16 | Hitachi, Ltd. | Method and system for packet exchange |
US5247575A (en) * | 1988-08-16 | 1993-09-21 | Sprague Peter J | Information distribution system |
US5014260A (en) * | 1988-10-28 | 1991-05-07 | Telefonaktiebolaget L M Ericsson | Method and apparatus for preventing transmission of data packets with a greater intensity than a predetermined value on any one of a number of channels on a common transmission link |
US5007043A (en) * | 1989-02-03 | 1991-04-09 | Koninklijke Ptt Nederland N.V. | Method for transmitting, via a plurality of asynchronously time-divided transmission channels, a flow of data cells, the state of a counter for each transmission channel being kept up to date in accordance with the number of data cells per unit of time |
US5153578A (en) * | 1989-06-22 | 1992-10-06 | Fujitsu Limited | Apparatus and method for establishing identical data in dual atm switches |
US5119369A (en) * | 1989-07-05 | 1992-06-02 | Hitachi, Ltd. | Packet switch communication network using packet having virtual channel identifier |
US5070498A (en) * | 1989-08-04 | 1991-12-03 | Fujitsu Limited | Call control system in atm switch |
US5224092A (en) * | 1989-09-05 | 1993-06-29 | Koninklijke Ptt Nederland N.V. | Method for controlling a flow of data cells into a plurality of asynchronously time-divided transmission channels with a single admission switch for transmission in the channels with reference to the state of a plurality of count values |
US5282207A (en) * | 1991-03-28 | 1994-01-25 | Sprint International Communications Corp. | Frame compression in integrated services networks |
Non-Patent Citations (2)
Title |
---|
U.S. Ser. No. 07/779,178, Oct. 18, 1991, Tatsuo Tachibana et al. (Parent), Fujitsu Limited. * |
U.S. Ser. No. 08/119,599, Filing Date Sep. 13, 1993, Tatsuo Tachibana et al. (FWC), Fujitsu Limited. * |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040071138A1 (en) * | 1992-01-16 | 2004-04-15 | Fujitsu Limited | Cell multiplexing apparatus handling multiple items of information |
US6005844A (en) * | 1994-10-03 | 1999-12-21 | Fujitsu Limited | Information collection device and method for use with communications networks |
US5854783A (en) * | 1995-07-10 | 1998-12-29 | Nec Corporation | Cell interval determination apparatus for usage parameter control |
US5982776A (en) | 1995-07-19 | 1999-11-09 | Fujitsu Network Communications, Inc. | Multipoint-to-point arbitration in a network switch |
US5850395A (en) | 1995-07-19 | 1998-12-15 | Fujitsu Network Communications, Inc. | Asynchronous transfer mode based service consolidation switch |
US5822540A (en) | 1995-07-19 | 1998-10-13 | Fujitsu Network Communications, Inc. | Method and apparatus for discarding frames in a communications device |
US5982771A (en) | 1995-07-19 | 1999-11-09 | Fujitsu Network Communications, Inc. | Controlling bandwidth allocation using a pace counter |
US5983260A (en) | 1995-07-19 | 1999-11-09 | Fujitsu Network Communications, Inc. | Serial control and data interconnects for coupling an I/O module with a switch fabric in a switch |
US5862137A (en) | 1995-07-19 | 1999-01-19 | Fujitsu Network Communications, Inc. | Point-to-multipoint arbitration |
US5867663A (en) | 1995-07-19 | 1999-02-02 | Fujitsu Network Communications, Inc. | Method and system for controlling network service parameters in a cell based communications network |
US5870538A (en) | 1995-07-19 | 1999-02-09 | Fujitsu Network Communications, Inc. | Switch fabric controller comparator system and method |
US5872769A (en) | 1995-07-19 | 1999-02-16 | Fujitsu Network Communications, Inc. | Linked list structures for multiple levels of control in an ATM switch |
US5889956A (en) | 1995-07-19 | 1999-03-30 | Fujitsu Network Communications, Inc. | Hierarchical resource management with maximum allowable allocation boundaries |
US6426957B1 (en) | 1995-07-19 | 2002-07-30 | Fujitsu Network Communications, Inc. | Asynchronous transfer mode based service consolidation switch |
US5896511A (en) | 1995-07-19 | 1999-04-20 | Fujitsu Network Communications, Inc. | Method and apparatus for providing buffer state flow control at the link level in addition to flow control on a per-connection basis |
US6256674B1 (en) | 1995-07-19 | 2001-07-03 | Fujitsu Network Communications, Inc. | Method and apparatus for providing buffer state flow control at the link level in addition to flow control on a per-connection basis |
US5905729A (en) | 1995-07-19 | 1999-05-18 | Fujitsu Network Communications, Inc. | Mapping a data cell in a communication switch |
US5909427A (en) | 1995-07-19 | 1999-06-01 | Fujitsu Network Communications, Inc. | Redundant switch system and method of operation |
US6236655B1 (en) | 1995-07-19 | 2001-05-22 | Fujitsu Network Communications, Inc. | Port and link identification |
US6167452A (en) | 1995-07-19 | 2000-12-26 | Fujitsu Network Communications, Inc. | Joint flow control mechanism in a telecommunications network |
US5917805A (en) | 1995-07-19 | 1999-06-29 | Fujitsu Network Communications, Inc. | Network switch utilizing centralized and partitioned memory for connection topology information storage |
US5933429A (en) | 1995-07-19 | 1999-08-03 | Fujitsu Network Communications, Inc. | Multipoint-to-multipoint echo processing in a network switch |
US5948067A (en) | 1995-07-19 | 1999-09-07 | Fujitsu Network Communications, Inc. | Converting between an internal cell and multiple standard asynchronous transfer mode cells |
US6141346A (en) | 1995-07-19 | 2000-10-31 | Fujitsu Network Communications, Inc. | Point-to-multipoint transmission using subqueues |
US5956342A (en) | 1995-07-19 | 1999-09-21 | Fujitsu Network Communications, Inc. | Priority arbitration for point-to-point and multipoint transmission |
US5978359A (en) | 1995-07-19 | 1999-11-02 | Fujitsu Network Communications, Inc. | Allocated and dynamic switch flow control |
US5748629A (en) | 1995-07-19 | 1998-05-05 | Fujitsu Networks Communications, Inc. | Allocated and dynamic bandwidth management |
US6115748A (en) | 1995-07-19 | 2000-09-05 | Fujitsu Network Communications, Inc. | Prioritized access to shared buffers |
US5787086A (en) * | 1995-07-19 | 1998-07-28 | Fujitsu Network Communications, Inc. | Method and apparatus for emulating a circuit connection in a cell based communications network |
US5790770A (en) | 1995-07-19 | 1998-08-04 | Fujitsu Network Communications, Inc. | Method and apparatus for reducing information loss in a communications network |
US5996019A (en) | 1995-07-19 | 1999-11-30 | Fujitsu Network Communications, Inc. | Network link access scheduling using a plurality of prioritized lists containing queue identifiers |
US6002667A (en) | 1995-07-19 | 1999-12-14 | Fujitsu Network Communications, Inc. | Minimum guaranteed cell rate method and apparatus |
US5781533A (en) | 1995-07-19 | 1998-07-14 | Fujitsu Network Communications, Inc. | Link buffer sharing method and apparatus |
US6088736A (en) | 1995-07-19 | 2000-07-11 | Fujitsu Network Communications, Inc. | Joint flow control mechanism in a telecommunications network |
US6076112A (en) | 1995-07-19 | 2000-06-13 | Fujitsu Network Communications, Inc. | Prioritized access to shared buffers |
US6331982B1 (en) * | 1995-08-31 | 2001-12-18 | Fujitsu Limited | Connection control system and method in a switch |
US5898671A (en) | 1995-09-14 | 1999-04-27 | Fujitsu Network Communications, Inc. | Transmitter controlled flow control for buffer allocation in wide area ATM networks |
US5953334A (en) * | 1995-09-25 | 1999-09-14 | Fujitsu Limited | ATM switching system |
US5991298A (en) | 1996-01-16 | 1999-11-23 | Fujitsu Network Communications, Inc. | Reliable and flexible multicast mechanism for ATM networks |
US5894475A (en) * | 1996-06-28 | 1999-04-13 | At&T Corp. | Switched voice and data ATM network with billing system |
US5748905A (en) | 1996-08-30 | 1998-05-05 | Fujitsu Network Communications, Inc. | Frame classification using classification keys |
US6058375A (en) * | 1996-10-21 | 2000-05-02 | Samsung Electronics Co., Ltd. | Accounting processor and method for automated management control system |
US6338046B1 (en) * | 1997-10-06 | 2002-01-08 | Nokia Telecommunications, Oy | System and method for determining charges for usage of a network connection |
US20060268775A1 (en) * | 1997-11-14 | 2006-11-30 | O'scolai Cathal | Wireless T/E transceiver frame and signaling controller |
US7050409B1 (en) * | 1997-11-14 | 2006-05-23 | Wireless Facilities, Inc. | Wireless T/E transceiver frame and signaling controller |
US7990918B2 (en) | 1997-11-14 | 2011-08-02 | Yoshimi Ltd., Limited Liability Company | Wireless T/E transceiver frame and signaling controller |
WO1999030476A1 (fr) * | 1997-12-05 | 1999-06-17 | Koninklijke Kpn N.V. | Procede et dispositif de paiement des communications sur la base d'un protocole de reservation des ressources |
US6907050B1 (en) | 1997-12-05 | 2005-06-14 | Koninklijke Kpn N.V. | Method and device for charging communications based on RSVP protocol |
NL1007702C2 (nl) * | 1997-12-05 | 1999-06-08 | Koninkl Kpn Nv | Werkwijze en inrichting voor communicatie. |
US7466657B1 (en) * | 1998-06-08 | 2008-12-16 | Koninklijke Kpn N.V. | System for charging the use of a packet-based telecommunication network |
US6374307B1 (en) * | 1999-02-12 | 2002-04-16 | Steve A. Ristau | Non-intrusive DWDM billing system |
US7406541B2 (en) | 2001-06-26 | 2008-07-29 | Nec Corporation | Accounting method and system in a packet communication network |
US20030002500A1 (en) * | 2001-06-26 | 2003-01-02 | Nec Corporation | Accounting method and system in a packet communication network |
WO2005117343A1 (fr) * | 2004-05-25 | 2005-12-08 | Vodafone Group Plc | Reseaux de communications |
TWI702253B (zh) * | 2015-02-25 | 2020-08-21 | 同和電子科技股份有限公司 | 磁性化合物、天線及電子機器 |
Also Published As
Publication number | Publication date |
---|---|
CA2074413C (fr) | 1995-12-12 |
EP0525632A2 (fr) | 1993-02-03 |
EP0525632B1 (fr) | 1997-10-22 |
DE69222815D1 (de) | 1997-11-27 |
EP0525632A3 (en) | 1993-11-03 |
CA2074413A1 (fr) | 1993-01-25 |
JPH0530132A (ja) | 1993-02-05 |
DE69222815T2 (de) | 1998-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5623405A (en) | Accounting system and method for asynchronous transfer mode network | |
AU634930B2 (en) | Logical channel setting system for atm network | |
EP0530680B1 (fr) | Système et dispositif d'assemblage et de désassemblage de cellules à ATM | |
EP0763960B1 (fr) | Système de communication pour des services interactifs avec un canal d'interaction de commutation de paquets | |
US6282197B1 (en) | ATM switching apparatus and ATM communications network | |
JPH11205350A (ja) | Atm基盤のアクセス網における既存網との連動装置 | |
US6788684B2 (en) | Cell bridge apparatus and cell bridging method as well as information transmission system having cell bridge apparatus | |
JPH10500545A (ja) | 通信システム | |
US5844901A (en) | Asynchronous bit-table calendar for ATM switch | |
US6038237A (en) | Voice signal transmitting method and exchange system using this | |
EP1067737B1 (fr) | Appareil de mise en forme du trafic acceptant des cellules de maintenance sans causer de gigue ou du délai | |
US7120114B1 (en) | Call admission control method and system | |
US5920559A (en) | Voice information service system to be connected to ATM network | |
EP1065908B1 (fr) | Méthode pour générer des cellules ATM pour des applications à faible débit | |
JP3881102B2 (ja) | 混在網における変換回路 | |
RU2134024C1 (ru) | Устройство и способ обработки элементов данных режима асинхронной передачи в системе коммутации режима асинхронной передачи | |
US6628659B1 (en) | ATM cell switching system | |
KR100223298B1 (ko) | 광대역 종합 정보 통신망의 터미널 정합 장치 | |
US20020172202A1 (en) | Apparatus and method for operating a timer of communication system | |
US6111856A (en) | Switching element particularly for ATM cells implementing probabilistic priorities associated with the cells | |
KR960003225B1 (ko) | 서비스 품질(qos)등급에 따른 atm 셀 다중화 처리 장치 | |
JPH0927808A (ja) | セル組立分解装置 | |
Luetchford et al. | Applications of ATM in global networks | |
KR0169906B1 (ko) | Atm망에서 셀 분해기의 다중 프레임 판독방법 | |
JP2790077B2 (ja) | 電子交換機のセル組立/分解装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |