US5544804A - Capillary designs and process for fine pitch ball bonding - Google Patents
Capillary designs and process for fine pitch ball bonding Download PDFInfo
- Publication number
- US5544804A US5544804A US08/255,582 US25558294A US5544804A US 5544804 A US5544804 A US 5544804A US 25558294 A US25558294 A US 25558294A US 5544804 A US5544804 A US 5544804A
- Authority
- US
- United States
- Prior art keywords
- bore
- capillary
- pairs
- sectors
- bond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/002—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
- B23K20/004—Wire welding
- B23K20/005—Capillary welding
- B23K20/007—Ball bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
- H01L24/78—Apparatus for connecting with wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
- H01L2224/05554—Shape in top view being square
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49171—Fan-out arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/7825—Means for applying energy, e.g. heating means
- H01L2224/78268—Discharge electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/7825—Means for applying energy, e.g. heating means
- H01L2224/783—Means for applying energy, e.g. heating means by means of pressure
- H01L2224/78301—Capillary
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/7825—Means for applying energy, e.g. heating means
- H01L2224/783—Means for applying energy, e.g. heating means by means of pressure
- H01L2224/78301—Capillary
- H01L2224/78302—Shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/7825—Means for applying energy, e.g. heating means
- H01L2224/783—Means for applying energy, e.g. heating means by means of pressure
- H01L2224/78301—Capillary
- H01L2224/78302—Shape
- H01L2224/78305—Shape of other portions
- H01L2224/78307—Shape of other portions outside the capillary
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/788—Means for moving parts
- H01L2224/78821—Upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
- H01L2224/78822—Rotational mechanism
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85009—Pre-treatment of the connector or the bonding area
- H01L2224/8503—Reshaping, e.g. forming the ball or the wedge of the wire connector
- H01L2224/85035—Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
- H01L2224/85045—Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8512—Aligning
- H01L2224/85148—Aligning involving movement of a part of the bonding apparatus
- H01L2224/85169—Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
- H01L2224/8518—Translational movements
- H01L2224/85181—Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/852—Applying energy for connecting
- H01L2224/85201—Compression bonding
- H01L2224/85205—Ultrasonic bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01039—Yttrium [Y]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20752—Diameter ranges larger or equal to 20 microns less than 30 microns
Definitions
- This invention relates to capillaries and the design thereof for use in conjunction with wire bonding to the bond pads of semiconductor devices and a method of forming the bond.
- Ball bonding is a widely used technique in semiconductor fabrication to connect the internal semiconductor die to the external leads.
- a fine gold wire usually about 25 ⁇ m (0.0010 inch) to about 30 ⁇ m (0.0013 inch) is fed down through a ceramic capillary, generally alumina, having an entry aperture at the top and an exit aperture at the opposite end of a bore therein.
- a ball is formed external to the exit aperture by an electronic flame off (EFO) mechanism that melts a small portion of the wire remaining after the previous bond.
- EFO electronic flame off
- the ball is formed at the end of the wire by an electric discharge spark.
- the capillary is relatively far from the ball (millimeters distant).
- the wire is restrained from moving by a tensioner until the ball is centered in the chamfer diameter of the capillary and is forced downward by the continued motion of the capillary toward the bond pad on the die.
- the ball is placed on a bond pad of the semiconductor device being assembled and the capillary end then forces the ball against the pad to provide the bond in conjunction with thermosonic energy.
- the above described ball bonding step presents a major obstacle to gold wire ball bonding in integrated circuits with the bond pads closer than approximately 100 ⁇ m (0.0039 inch) due to the diameter of the capillary.
- Current fine-pitch gold ball bonding uses a fine pitch or "bottlenose" capillary that allows finer pitch bonding than is possible with a standard capillary. However, it is not possible to shrink the capillary diameter sufficiently to produce bond pitches below approximately 90 ⁇ m (0.0035 inch) without causing stitch bond strength degradation.
- the above described problems inherent in prior art capillaries is minimized by taking advantage of the geometry of a typical bond in that the ball bond is placed on a pad along an edge of the die with bond angles between 45° and 90° to the edge of the die.
- the term "bond angle" is the angle that the wire makes with the edge of the chip after the bond of the wire to the pad is made and the wire is then drawn out through the capillary and bonded to a lead finger.
- a capillary having reduced width in two of the opposing ones of four sectors relative to a standard capillary is provided.
- the four sectors can be but need not be quadrants in that one pair of opposing sectors can be larger than the other pair of opposing sectors. This is preferably accomplished by removal of a part of the outer portion of one pair of opposing sectors, yet leaving a sufficiently thick wall in each of those opposing sectors to withstand the pressures to be applied to those walls.
- the preferred shape of the capillary tip portion is that of a bow tie.
- a desired property of the capillary tip shape is that the thick sectors of the capillary tip should be shaped to fit at least partially around the ball bond previously formed on an adjacent bond pad and spaced therefrom.
- Two capillaries are used, one with its major axis parallel (longitudinal orientation) to the ultrasonic energy (Y direction with respect to the leadframe), the other with its major axis perpendicular (transverse orientation) to the ultrasonic energy (X direction with respect to the leadframe).
- Dual-head bonders such as, for example, the TI ABACUS AIIISR, have an advantage over single head bonders since they can be set up with the longitudinally oriented capillary in one bond head and the transversely oriented capillary in the other bond head. Therefore, with the dual-head bonder, each device can be bonded in a single pass through the bonder.
- Single headed bonders can use this approach by making a pass with the capillary set in one orientation and then changing the orientation of the capillary on that bonder before making a second pass or, alternatively, by using another bonder to make a second pass with the capillary set at the other orientation.
- Two single head bonders can be physically linked to automatically transport the leadframe being bonded from the first to the second bonder to eliminate manual handling of the leadframe strips between bonders and producing higher quality, more reliable product.
- wires with bond angles close to 90° to the edge of the die produce stitch bonds substantially identical to bonds made with standard capillaries. However, as bond angles move toward 45°, the face presented to the wire during stitch bonding appears modified. Degradation in key bond characteristics can be minimal and acceptable for producing high quality, reliable bonds in most applications.
- This embodiment of the invention is particularly suitable for orthogonal fine pitch bonding, bond angles near 90°.
- a modification of the capillary from that having flattened opposing sides in the thinned sectors to a bow tie configuration minimizes and possibly eliminates this effect by presenting a uniformly wide bond face and larger outside radius that produces stitch bonds substantially identical to those produced by a standard capillary.
- the bow tie configuration can produce the smallest ball bond pitch possible.
- FIG. 1 is a vertical cross-section of the tip portion 1 of a standard prior art capillary with a wire and ball;
- FIG. 2 is a vertical cross-section as in FIG. 1 after the ball has been bonded to a bond pad;
- FIG. 3 is a cross-sectional view of the tip portion of a capillary in accordance with a first embodiment of the invention
- FIG. 4 is a cross-sectional view of the tip portion of a capillary in accordance with a second embodiment of the invention.
- FIG. 5 is a schematic representation of important capillary positions required to realize the full potential of the capillary design and bond process.
- FIG. 6 is a diagram showing capillary oriented to avoid contacting a previously formed ball bond while the capillary is making a bond at a pad thereunder.
- FIG. 1 there is shown a vertical cross-section of the tip portion 1 of a standard prior art capillary which is generally circular in horizontal cross-section and has a central bore 3.
- a gold wire 5 is disposed in the bore and has formed into a ball 7 which is disposed in a chamfer at the bottom portion of the bore 3.
- a bond is made as shown in FIG. 2 by lowering the ball 7 of FIG. 1 against the pad 9 of the die 11 and applying an ultrasonic pulse and pressure from the capillary tip impinging on the ball to cause the ball to be flattened against and bond to the die pad.
- the capillary is then lifted away from the die pad and travels to the next wire bonding position.
- the capillary dimensions can be such to cause the capillary to interfere with the bonds on an adjacent bond pad.
- FIG. 3 wherein the horizontal cross-section of the capillary tip is altered so that an opposing pair of sectors 21 and 23, assuming four sectors, is flattened while the same dimension as provided in the prior art capillaries is retained in the unflattened direction. Accordingly, the dimensions between walls 21 and 23 is much smaller than the dimension of a diameter between circular portions 25 and 27.
- FIG. 4 there is shown a bow-tie configuration wherein the wall 31 and 33 of the portion of the opposing pair of sectors that has been removed is somewhat circular in nature.
- the geometry of the walls 31 and 33 can be of any shape, it merely being necessary that the walls 35 and 37 be capable of fitting at least partially around and spaced from a previously bonded ball on an adjacent bond pad. The degree of such fit required will depend upon the dimensions of the capillary and the distance between bond pads.
- the second embodiment of the invention is shown in typical bonding positions in FIG. 5.
- the positions A, B and C show the capillary in the longitudinal orientation while positions D and E show the capillary in the transverse orientation.
- the capillary places ball bonds 48 on bond pads 46 and 47 which are located on the surface of the silicon die 49. Bond wires 50 are shown running between bond pads 48 and package leads (not shown).
- a ball bond is placed on the bond pad in capillary position A.
- the capillary is moved by the bond head of the bonder to a position similar to and adjacent to capillary position B, where a stitch bond is made to a package lead.
- Capillary position B represents a case where the bond angle is close to 90 degrees with respect to the edge of die 49. In this case, both embodiments of this invention produce high quality ball and stitch bonds.
- Capillary position C represents a case where the bond angle is close to 45 degrees. In this case, the second embodiment of this invention, the bow tie configuration, produces superior stitch bonds with respect to the first embodiment of the invention.
- Capillary position D represents a case where the ball bond is made on a side of the die 49, perpendicular to ball bonds placed by the capillary in position A.
- Capillary position E represents a stitch bond along the side of the die 49 perpendicular to the stitch bonds made in capillary positions B and C. It is the intention that this bonding process continue along each edge of the die 49 until all bonds are completed. All bonds along the side represented by capillary position A and the side opposite this side are accomplished by the capillary oriented as in position A. Likewise, all bonds along the side represented by capillary position D and the side opposite this side are accomplished by the capillary oriented as in position D.
- FIG. 6 there is shown how a capillary 51 is oriented to avoid contacting a previously formed ball bond 53 while the capillary 51 is making a bond at a pad thereunder.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Wire Bonding (AREA)
- Packages (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/255,582 US5544804A (en) | 1994-06-08 | 1994-06-08 | Capillary designs and process for fine pitch ball bonding |
TW083112353A TW322594B (enrdf_load_stackoverflow) | 1994-06-08 | 1994-12-30 | |
MYPI95001479A MY112624A (en) | 1994-06-08 | 1995-06-06 | Improved capillary designs and process for fine pitch ball bonding |
EP95304001A EP0686454A1 (en) | 1994-06-08 | 1995-06-07 | Capillary and method of bonding |
SG1995000608A SG30400A1 (en) | 1994-06-08 | 1995-06-07 | Improved capillary designs and process for fine pitch ball bonding |
JP14066995A JP3996216B2 (ja) | 1994-06-08 | 1995-06-07 | 改良されたキャピラリおよび細かいピッチのボールボンディング法 |
KR1019950015042A KR960002769A (ko) | 1994-06-08 | 1995-06-08 | 미세 피치 볼 본딩용 개선된 모세관 구조 설계 및 처리 방법 |
US08/865,630 US5979743A (en) | 1994-06-08 | 1997-05-29 | Method for making an IC device using a single-headed bonder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/255,582 US5544804A (en) | 1994-06-08 | 1994-06-08 | Capillary designs and process for fine pitch ball bonding |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US68375696A Continuation | 1994-06-08 | 1996-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5544804A true US5544804A (en) | 1996-08-13 |
Family
ID=22968961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/255,582 Expired - Lifetime US5544804A (en) | 1994-06-08 | 1994-06-08 | Capillary designs and process for fine pitch ball bonding |
Country Status (6)
Country | Link |
---|---|
US (1) | US5544804A (enrdf_load_stackoverflow) |
EP (1) | EP0686454A1 (enrdf_load_stackoverflow) |
JP (1) | JP3996216B2 (enrdf_load_stackoverflow) |
KR (1) | KR960002769A (enrdf_load_stackoverflow) |
MY (1) | MY112624A (enrdf_load_stackoverflow) |
TW (1) | TW322594B (enrdf_load_stackoverflow) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5927587A (en) * | 1996-12-19 | 1999-07-27 | Texas Instruments Incorporated | Capillary holder for wire bonding capillary |
US5934543A (en) * | 1997-12-16 | 1999-08-10 | Texas Instuments Incorporated | Wire bonding capillary having alignment features |
US5938105A (en) * | 1997-01-15 | 1999-08-17 | National Semiconductor Corporation | Encapsulated ball bonding apparatus and method |
US5944249A (en) * | 1996-12-12 | 1999-08-31 | Texas Instruments Incorporated | Wire bonding capillary with bracing component |
US5954260A (en) * | 1996-12-17 | 1999-09-21 | Texas Instruments Incorporated | Fine pitch bonding technique |
US5979743A (en) * | 1994-06-08 | 1999-11-09 | Texas Instruments Incorporated | Method for making an IC device using a single-headed bonder |
US5996877A (en) * | 1996-12-19 | 1999-12-07 | Texas Instruments Incorporated | Stepwise autorotation of wire bonding capillary |
US6006977A (en) * | 1996-12-19 | 1999-12-28 | Texas Instruments Incorporated | Wire bonding capillary alignment display system |
US6065663A (en) * | 1997-12-18 | 2000-05-23 | Texas Instruments Incorporated | Alignment apparatus for wire bonding capillary |
US6065667A (en) * | 1997-01-15 | 2000-05-23 | National Semiconductor Corporation | Method and apparatus for fine pitch wire bonding |
US6080651A (en) * | 1997-03-17 | 2000-06-27 | Kabushiki Kaisha Shinkawa | Wire bonding method |
US6089443A (en) * | 1998-10-26 | 2000-07-18 | Texas Instruments Incorporated | Balancing of x and y axis bonding by 45 degree capillary positioning |
US6112972A (en) * | 1996-12-19 | 2000-09-05 | Texas Instruments Incorporated | Wire bonding with capillary realignment |
US6112973A (en) * | 1997-10-31 | 2000-09-05 | Texas Instruments Incorporated | Angled transducer-dual head bonder for optimum ultrasonic power application and flexibility for tight pitch leadframe |
US6155474A (en) * | 1997-12-16 | 2000-12-05 | Texas Instruments Incorporated | Fine pitch bonding technique |
US6158647A (en) * | 1998-09-29 | 2000-12-12 | Micron Technology, Inc. | Concave face wire bond capillary |
US6180891B1 (en) * | 1997-02-26 | 2001-01-30 | International Business Machines Corporation | Control of size and heat affected zone for fine pitch wire bonding |
US6354479B1 (en) * | 1999-02-25 | 2002-03-12 | Sjm Technologies | Dissipative ceramic bonding tip |
US6563226B2 (en) | 2001-05-23 | 2003-05-13 | Motorola, Inc. | Bonding pad |
US6651864B2 (en) | 1999-02-25 | 2003-11-25 | Steven Frederick Reiber | Dissipative ceramic bonding tool tip |
US20050109814A1 (en) * | 1999-02-25 | 2005-05-26 | Reiber Steven F. | Bonding tool with resistance |
US20050218188A1 (en) * | 2004-04-02 | 2005-10-06 | Chippac, Inc. | Wire bond capillary Tip |
US20050242155A1 (en) * | 1999-02-25 | 2005-11-03 | Reiber Steven F | Flip chip bonding tool and ball placement capillary |
US20060071050A1 (en) * | 1999-02-25 | 2006-04-06 | Reiber Steven F | Multi-head tab bonding tool |
US20060261132A1 (en) * | 1999-02-25 | 2006-11-23 | Reiber Steven F | Low range bonding tool |
US20070085085A1 (en) * | 2005-08-08 | 2007-04-19 | Reiber Steven F | Dissipative pick and place tools for light wire and LED displays |
US20070131661A1 (en) * | 1999-02-25 | 2007-06-14 | Reiber Steven F | Solder ball placement system |
US7389905B2 (en) | 1999-02-25 | 2008-06-24 | Reiber Steven F | Flip chip bonding tool tip |
US20080197172A1 (en) * | 1999-02-25 | 2008-08-21 | Reiber Steven F | Bonding Tool |
US20090091006A1 (en) * | 2007-10-04 | 2009-04-09 | Rex Warren Pirkle | Dual Capillary IC Wirebonding |
US20100009499A1 (en) * | 2002-04-22 | 2010-01-14 | Gann Keith D | Stacked microelectronic layer and module with three-axis channel t-connects |
US20110045635A1 (en) * | 2002-04-22 | 2011-02-24 | Keith Gann | Vertically stacked pre-packaged integrated circuit chips |
US8242613B2 (en) | 2010-09-01 | 2012-08-14 | Freescale Semiconductor, Inc. | Bond pad for semiconductor die |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54128271A (en) * | 1978-03-29 | 1979-10-04 | Hitachi Ltd | Capillary of wire bonder |
JPH0428241A (ja) * | 1990-05-23 | 1992-01-30 | Seiko Epson Corp | 半導体装置の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63239959A (ja) * | 1987-03-27 | 1988-10-05 | Toshiba Corp | ワイヤボンデイング用キヤピラリ |
US4786860A (en) * | 1987-04-08 | 1988-11-22 | Hughes Aircraft Company | Missing wire detector |
JPH01282825A (ja) * | 1988-05-09 | 1989-11-14 | Nec Corp | ワイヤボンディング用キャピラリ |
US5172851A (en) * | 1990-09-20 | 1992-12-22 | Matsushita Electronics Corporation | Method of forming a bump electrode and manufacturing a resin-encapsulated semiconductor device |
US5485949A (en) * | 1993-04-30 | 1996-01-23 | Matsushita Electric Industrial Co., Ltd. | Capillary for a wire bonding apparatus and a method for forming an electric connection bump using the capillary |
-
1994
- 1994-06-08 US US08/255,582 patent/US5544804A/en not_active Expired - Lifetime
- 1994-12-30 TW TW083112353A patent/TW322594B/zh not_active IP Right Cessation
-
1995
- 1995-06-06 MY MYPI95001479A patent/MY112624A/en unknown
- 1995-06-07 EP EP95304001A patent/EP0686454A1/en not_active Withdrawn
- 1995-06-07 JP JP14066995A patent/JP3996216B2/ja not_active Expired - Fee Related
- 1995-06-08 KR KR1019950015042A patent/KR960002769A/ko not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54128271A (en) * | 1978-03-29 | 1979-10-04 | Hitachi Ltd | Capillary of wire bonder |
JPH0428241A (ja) * | 1990-05-23 | 1992-01-30 | Seiko Epson Corp | 半導体装置の製造方法 |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5979743A (en) * | 1994-06-08 | 1999-11-09 | Texas Instruments Incorporated | Method for making an IC device using a single-headed bonder |
US5944249A (en) * | 1996-12-12 | 1999-08-31 | Texas Instruments Incorporated | Wire bonding capillary with bracing component |
US5954260A (en) * | 1996-12-17 | 1999-09-21 | Texas Instruments Incorporated | Fine pitch bonding technique |
US6112972A (en) * | 1996-12-19 | 2000-09-05 | Texas Instruments Incorporated | Wire bonding with capillary realignment |
US5927587A (en) * | 1996-12-19 | 1999-07-27 | Texas Instruments Incorporated | Capillary holder for wire bonding capillary |
US5996877A (en) * | 1996-12-19 | 1999-12-07 | Texas Instruments Incorporated | Stepwise autorotation of wire bonding capillary |
US6006977A (en) * | 1996-12-19 | 1999-12-28 | Texas Instruments Incorporated | Wire bonding capillary alignment display system |
US6065667A (en) * | 1997-01-15 | 2000-05-23 | National Semiconductor Corporation | Method and apparatus for fine pitch wire bonding |
US5938105A (en) * | 1997-01-15 | 1999-08-17 | National Semiconductor Corporation | Encapsulated ball bonding apparatus and method |
US6180891B1 (en) * | 1997-02-26 | 2001-01-30 | International Business Machines Corporation | Control of size and heat affected zone for fine pitch wire bonding |
US6080651A (en) * | 1997-03-17 | 2000-06-27 | Kabushiki Kaisha Shinkawa | Wire bonding method |
US6112973A (en) * | 1997-10-31 | 2000-09-05 | Texas Instruments Incorporated | Angled transducer-dual head bonder for optimum ultrasonic power application and flexibility for tight pitch leadframe |
US6182882B1 (en) * | 1997-10-31 | 2001-02-06 | Texas Instruments Incorporated | Angled transducer-dual head bonder for optimum ultrasonic power application and flexibility for tight pitch leadframe |
US6155474A (en) * | 1997-12-16 | 2000-12-05 | Texas Instruments Incorporated | Fine pitch bonding technique |
US5934543A (en) * | 1997-12-16 | 1999-08-10 | Texas Instuments Incorporated | Wire bonding capillary having alignment features |
US6065663A (en) * | 1997-12-18 | 2000-05-23 | Texas Instruments Incorporated | Alignment apparatus for wire bonding capillary |
US6966480B2 (en) | 1998-09-29 | 2005-11-22 | Micron Technology, Inc. | Concave face wire bond capillary and method |
US6311890B1 (en) * | 1998-09-29 | 2001-11-06 | Micron Technology, Inc. | Concave face wire bond capillary |
US7677429B2 (en) | 1998-09-29 | 2010-03-16 | Micron Technology, Inc. | Concave face wire bond capillary and method |
US6439450B1 (en) | 1998-09-29 | 2002-08-27 | Micron Technology, Inc. | Concave face wire bond capillary |
US20080302862A1 (en) * | 1998-09-29 | 2008-12-11 | Micron Technology, Inc. | Concave face wire bond capillary and method |
US6595406B2 (en) | 1998-09-29 | 2003-07-22 | Micron Technology, Inc. | Concave face wire bond capillary and method |
US6158647A (en) * | 1998-09-29 | 2000-12-12 | Micron Technology, Inc. | Concave face wire bond capillary |
US7416107B2 (en) | 1998-09-29 | 2008-08-26 | Micron Technology, Inc. | Concave face wire bond capillary and method |
US20040056072A1 (en) * | 1998-09-29 | 2004-03-25 | Chapman Gregory M. | Concave face wire bond capillary and method |
US20060032888A1 (en) * | 1998-09-29 | 2006-02-16 | Chapman Gregory M | Concave face wire bond capillary and method |
US6089443A (en) * | 1998-10-26 | 2000-07-18 | Texas Instruments Incorporated | Balancing of x and y axis bonding by 45 degree capillary positioning |
US6651864B2 (en) | 1999-02-25 | 2003-11-25 | Steven Frederick Reiber | Dissipative ceramic bonding tool tip |
US7389905B2 (en) | 1999-02-25 | 2008-06-24 | Reiber Steven F | Flip chip bonding tool tip |
US20050242155A1 (en) * | 1999-02-25 | 2005-11-03 | Reiber Steven F | Flip chip bonding tool and ball placement capillary |
US6935548B2 (en) | 1999-02-25 | 2005-08-30 | Steven-Frederick Reiber | Dissipative ceramic bonding tool tip |
US20050109814A1 (en) * | 1999-02-25 | 2005-05-26 | Reiber Steven F. | Bonding tool with resistance |
US20060071050A1 (en) * | 1999-02-25 | 2006-04-06 | Reiber Steven F | Multi-head tab bonding tool |
US7032802B2 (en) | 1999-02-25 | 2006-04-25 | Reiber Steven F | Bonding tool with resistance |
US7124927B2 (en) | 1999-02-25 | 2006-10-24 | Reiber Steven F | Flip chip bonding tool and ball placement capillary |
US20060261132A1 (en) * | 1999-02-25 | 2006-11-23 | Reiber Steven F | Low range bonding tool |
US6354479B1 (en) * | 1999-02-25 | 2002-03-12 | Sjm Technologies | Dissipative ceramic bonding tip |
US20070131661A1 (en) * | 1999-02-25 | 2007-06-14 | Reiber Steven F | Solder ball placement system |
US20040046007A1 (en) * | 1999-02-25 | 2004-03-11 | Steven-Frederick Reiber | Dissipative ceramic bonding tool tip |
US20080197172A1 (en) * | 1999-02-25 | 2008-08-21 | Reiber Steven F | Bonding Tool |
US6563226B2 (en) | 2001-05-23 | 2003-05-13 | Motorola, Inc. | Bonding pad |
US20100009499A1 (en) * | 2002-04-22 | 2010-01-14 | Gann Keith D | Stacked microelectronic layer and module with three-axis channel t-connects |
US20110045635A1 (en) * | 2002-04-22 | 2011-02-24 | Keith Gann | Vertically stacked pre-packaged integrated circuit chips |
US8012803B2 (en) | 2002-04-22 | 2011-09-06 | Aprolase Development Co., Llc | Vertically stacked pre-packaged integrated circuit chips |
US7407080B2 (en) * | 2004-04-02 | 2008-08-05 | Chippac, Inc. | Wire bond capillary tip |
US20050218188A1 (en) * | 2004-04-02 | 2005-10-06 | Chippac, Inc. | Wire bond capillary Tip |
US20070085085A1 (en) * | 2005-08-08 | 2007-04-19 | Reiber Steven F | Dissipative pick and place tools for light wire and LED displays |
US20090091006A1 (en) * | 2007-10-04 | 2009-04-09 | Rex Warren Pirkle | Dual Capillary IC Wirebonding |
US8008183B2 (en) * | 2007-10-04 | 2011-08-30 | Texas Instruments Incorporated | Dual capillary IC wirebonding |
US8225982B2 (en) | 2007-10-04 | 2012-07-24 | Texas Instruments Incorporated | Dual capillary IC wirebonding |
US8242613B2 (en) | 2010-09-01 | 2012-08-14 | Freescale Semiconductor, Inc. | Bond pad for semiconductor die |
Also Published As
Publication number | Publication date |
---|---|
MY112624A (en) | 2001-07-31 |
JPH07335688A (ja) | 1995-12-22 |
TW322594B (enrdf_load_stackoverflow) | 1997-12-11 |
KR960002769A (ko) | 1996-01-26 |
EP0686454A1 (en) | 1995-12-13 |
JP3996216B2 (ja) | 2007-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5544804A (en) | Capillary designs and process for fine pitch ball bonding | |
US6439450B1 (en) | Concave face wire bond capillary | |
US7500590B2 (en) | Multi-part capillary | |
US6715658B2 (en) | Ultra fine pitch capillary | |
KR100855548B1 (ko) | 감쇠 제어식 캐필러리 | |
US7004369B2 (en) | Capillary with contained inner chamfer | |
KR100749691B1 (ko) | 와이어 본딩용 모세관 | |
US4911350A (en) | Semiconductor bonding means having an improved capillary and method of using the same | |
US6155474A (en) | Fine pitch bonding technique | |
JP2733418B2 (ja) | 半導体装置の製造方法 | |
US6131792A (en) | Balancing of x and y axis bonding by 45 degree capillary positioning | |
KR20040086064A (ko) | 반도체 팩키지의 와이어 본딩 방법 및, 그에 의해 제조된반도체 팩키지 | |
JP2848344B2 (ja) | 半導体装置および半導体装置の製造方法 | |
JPS62256447A (ja) | ワイヤボンデイング用キヤピラリチツプ | |
JPH05267382A (ja) | キャピラリィ | |
HK1069482A (en) | Ultra fine pitch capillary | |
JPH03171743A (ja) | 半導体装置の製造方法 | |
HK1061823B (en) | Controlled attenuation capillary |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TEST, HOWARD R.;VINSON, MICHAEL R.;KUCKHAHN, ALBERT H.;REEL/FRAME:007090/0411;SIGNING DATES FROM 19940728 TO 19940731 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |