US5256369A - Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof - Google Patents
Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof Download PDFInfo
- Publication number
- US5256369A US5256369A US07/880,743 US88074392A US5256369A US 5256369 A US5256369 A US 5256369A US 88074392 A US88074392 A US 88074392A US 5256369 A US5256369 A US 5256369A
- Authority
- US
- United States
- Prior art keywords
- superplastic
- alloy
- titanium
- temperature
- base alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
Definitions
- the invention relates to the field of metallurgy and particularly to the field of titanium base alloys having excellent formability and method of making thereof and method of superplastic forming thereof.
- Titanium alloys are widely used as aerospace materials, e.g., in aeroplanes and rockets since the alloys possess tough mechanical properties and are comparatively light.
- Superplasticity is the phenomena in which materials under certain conditions, are elongated up to from several hundred to one thousand percent, in some case, over one thousand percent, without necking down.
- One of the titanium alloys wherein the superplastic forming is performed is Ti-6Al-4V having the microstructure with the grain size of 5 to 10 micron meter.
- this alloy contains 6 wt. % Al as in Ti-6Al-4V alloy, which causes the hot workability in rolling or forging, being deteriorated.
- a titanium alloy is provided with approximately 4 wt. % Al and 2.5 wt. % V with below 0.15 wt. % O as contributing element to the enhancement of the mechanical properties, and 0.85 ⁇ 3.15 wt. % Mo, and at least one element from the group of Fe, Ni, Co, and Cr, as beta stabilizer and contributing element to the lowering of beta transus, with a limitation of the following, 0.85 wt. % ⁇ Fe wt. %+Ni wt. %+Co wt. %+0.9 ⁇ Cr wt. % ⁇ 3.15 wt. %, 7 wt. % ⁇ 2 ⁇ Fe wt. %+2 ⁇ Ni wt. %+2 ⁇ Co wt. %+1.8 ⁇ Cr wt. %+1.5 ⁇ V+Mo wt. % ⁇ 13 wt. %.
- a titanium alloy is provided with approximately 4 wt. % Al and 2.5 wt. % V, with below 0.15 wt. % O as contributing element to the enhancement of the mechanical properties, and 0.85 ⁇ 3.15 wt. % Mo, and at least one element from the group of Fe, Ni, Co, and Cr, as beta stabilizer and contributing element to the lowering of beta transus, with a limitation of the following, 0.85 wt. % ⁇ Fe wt. %+Ni wt. %+Co wt. %+0.9 ⁇ Cr wt. % ⁇ 3.15 wt. %, 7 wt. % ⁇ 2 ⁇ Fe wt.
- a titanium base alloy with approximately 4 wt. % Al and 2.5 wt. % V, with below 0.15 wt. % O as contributing element to the enhancement of the mechanical properties, and 0.85 ⁇ 3.15 wt. % Mo, and at least one element from the group of Fe, Ni, Co, and Cr, as beta stabilizer and contributing element to the lowering of beta transus, with a limitation of the following, 0.85 wt. % ⁇ Fe wt. %+Ni wt. %+Co wt. %+0.9 ⁇ Cr wt. % ⁇ 3.15 wt. %, 7 wt. % ⁇ 2 ⁇ Fe wt. %+2 ⁇ Ni wt. %+2 ⁇ Co wt. %+1.8 ⁇ Cr wt. %+1.5 ⁇ V+Mo wt. % ⁇ 13 wt. %.
- a titanium base alloy with approximately 4 wt. % Al and 2.5 wt. % V, with below 0.15 wt. % O as contributing element to the enhancement of the mechanical properties, and 0.85 ⁇ 3.15 wt. % Mo, and at least one element from the group of Fe, Ni, Co, and Cr, as beta stabilizer and contributing element to the lowering of beta transus, with a limitation of the following, 0.85 wt. % ⁇ Fe wt. %+Ni wt. %+Co wt. %+0.9 ⁇ Cr wt. % ⁇ 3.15 wt. %, 7 wt. % ⁇ 2 ⁇ Fe wt. %+2 ⁇ Ni wt. %+2 ⁇ Co wt. %+1.8 ⁇ Cr wt. %+1.5 ⁇ V+Mo wt. % ⁇ 13 wt. %.
- FIG. 1 shows the change of the maximum superplastic elongation of the titanium alloys with respect to the addition of Fe, Ni, Co, and Cr to Ti-Al-V-Mo alloy.
- the abscissa denotes Fe wt. %+Ni wt. %+Co wt. %+0.9 ⁇ Cr wt. %, and the ordinate denotes the maximum superplastic elongation.
- FIG. 2 shows the change of the maximum superplastic elongation of the titanium alloys with respect to the addition of V, Mo, Fe, Ni, Co, and Cr to Ti-Al alloy.
- the abscissa denotes 2 ⁇ Fe wt. %+2 ⁇ Ni wt. %+2 ⁇ Co wt. %+1.8 ⁇ Cr wt. %+1.5 ⁇ V wt. %+Mo wt. %, and the ordinate denotes the maximum superplastic elongation.
- FIG. 3 shows the change of the maximum superplastic elongation of the titanium alloys, having the same chemical composition with those of the invented alloys, with respect to the change of the grain size of ⁇ -crystal thereof.
- the abscissa denotes the grain size of ⁇ -crystal of the titanium alloys, and the ordinate denotes the maximum superplastic elongation.
- FIG. 4 shows the influence of Al content on the maximum cold reduction ratio without edge cracking.
- the abscissa denotes Al wt. %, and the ordinate denotes the maximum cold reduction ratio without edge cracking.
- FIG. 5 shows the relationship between the hot reduction ratio and the maximum superplastic elongation.
- the abscissa denotes the reduction ratio and the ordinate denotes the maximum superplastic elongation.
- the inventors find the following knowledge concerning the required properties.
- the superplastic properties can be improved; the increase of the superplastic elongation and the decrease of the deformation resistance, and the strength thereof can be enhanced.
- the superplastic properties can be improved; the increase of the superplastic elongation and the lowering of the temperature wherein the superplasticity is realized, and the strength thereof can be enhanced.
- the invention is:
- a titanium base alloy consisting essentially of about 3.0 to 5.0 wt. % Al, 2.1 to 3.7 wt. % V, 0.85 to 3.15 wt. % Mo, 0.01 to 0.15 wt. % O, at least one element from the group of Fe, Ni, Co, and Cr, and balance titanium, satisfying the following equations;
- X wt. % 2 ⁇ Fe wt. %+2 ⁇ Ni wt. %+2 ⁇ Co wt. %+1.8 ⁇ Cr wt. %+1.5 ⁇ V+Mo wt. %.
- a titanium base alloy for superplastic forming consisting essentially of about 3.0 to 5.0 wt. % Al, 2.1 to 3.7 wt. % V, 0.85 to 3.15 wt. % Mo, 0.01 to 0.15 wt. % O, at least one element from the group of Fe, Ni, Co, and Cr, and balance titanium, satisfying the following equations;
- X wt. % 2 ⁇ Fe wt. %+2 ⁇ Ni wt. %+2 ⁇ Co wt. %+1.8 ⁇ Cr wt. %+1.5 ⁇ V+Mo wt. %;
- a method of making a titanium base alloy for superplastic forming comprising the steps of;
- a titanium base alloy for superplastic forming consisting essentially of about 3.0 to 5.0 wt. % Al, 2.1 to 3.7 wt. % V, 0.85 to 3.15 wt. % Mo. 0.01 to 0.15 wt. % O, at least one element from the group of Fe, Ni, Co, and Cr, and balance titanium, satisfying the following equations;
- X wt. % 2 ⁇ Fe wt. %+2 ⁇ Ni wt. %+2 ⁇ Co wt. %+1.8 ⁇ Cr wt. %+1.5 ⁇ V+Mo wt. %;
- a method of superplastic forming of a titanium base alloy for superplastic forming comprising the steps of;
- a titanium base alloy for superplastic forming consisting essentially of about 3.0 to 5.0 wt. % Al, 2.1 to 3.7 wt. % V, 0.85 to 3.15 wt. % Mo, 0.01 to 0.15 wt. % O, at least one element from the group of Fe, Ni, Co, and Cr, and balance titanium, satisfying the following equations;
- X wt. % 2 ⁇ Fe wt. %+2 ⁇ Ni wt. %+2 ⁇ Co wt. %+1.8 ⁇ Cr wt. %+1.5 ⁇ V+Mo wt. %;
- Titanium alloys are produced ordinarily by hotforging and/or hot rolling. However, when the temperature of the work is lowered, the deformation resistance is increased, and defects such as crack are liable to generate, which causes the lowering of workability.
- the workability has a close relationship with Al content.
- Al is added to titanium as ⁇ -stabilizer for the ⁇ + ⁇ -alloy, which contributes to the increase of mechanical strength.
- the Al content is below 3 wt. %, sufficient strength aimed in this invention can not be obtained, whereas in case that the Al content exceeds 5 wt. %, the hot deformation resistance is increased and cold workability is deteriorated, which leads to the lowering of the productivity.
- Al content is determined to be 3.0 to 5.0% wt. %, and more preferably 4.0 to 5.0% wt. %.
- the micro-structure of the alloy should have fine equi-axed ⁇ crystal, and the volume ratio of the ⁇ crystal should range from 40 to 60%.
- At least one element from the group of Fe, Ni, Co, Cr, and Mo should be added to the alloy to lower the ⁇ transus compared with Ti-6Al-4V alloy.
- Fe, Ni, Co, and Cr are added to titanium as ⁇ -stabilizer for the ⁇ + ⁇ -alloy, and contribute to the enhancement of superplastic properties, that is, the increase of superplastic elongation, and the decrease of resistance of deformation, by lowering of ⁇ -transus, and to the increase of mechanical strength by constituting a solid solution in ⁇ -phase.
- the volume ratio of ⁇ -phase is increased, and the resistance of deformation is decreased in hot working the alloy, which leads to the evading of the generation of the defects such as cracking.
- this contribution is insufficient in case that the content of these elements is below 0.1 wt. %, whereas in case that the content exceed 3.15 wt. %, these elements form brittle intermetallic compounds with titanium, and generate a segregation phase called "beta fleck" in melting and solidifying of the alloy, which leads to the deterioration of the mechanical properties, especially ductility.
- the content of at least one element from the group of Fe, Ni, Co, Cr is determined to be from 0.1 to 3.15 wt. %.
- a more preferred range is from 1.0 to 2.5 wt. %.
- Fe wt. % +Ni wt. % +Co wt. % +0.9 ⁇ Cr wt. % is an index for the stability of ⁇ -phase which has a close relationship with the superplastic properties of titanium alloys, that is, the lowering of the temperature wherein superplasticity is realized and the deformation resistance in superplastic forming.
- the alloy loses the property of low temperature wherein the superplastic properties is realized which is the essence of this invention, or the resistance of deformation thereof in superplastic forming is increased when the above mentioned temperature is low.
- this index exceeds 3.15 wt. %, Fe, Ni, Co, and Cr form brittle intermetallic compounds with titanium, and generates a segregation phase called "beta fleck" in melting and solidifying of the alloy, which leads to the deterioration of the mechanical properties, especially ductility at room temperature. Accordingly, this index is determined to be 0.85 to 3.15 wt. %, and more preferably 1.5 to 2.5 wt. %.
- Mo is added to titanium as ⁇ -stabilizer for the ⁇ + ⁇ -alloy, and contributes to the enhancement of superplastic properties, that is, the lowering of the temperature wherein the superplasticity is realized, by lowering of ⁇ -transus as in the case of Fe, Ni, Co, and Cr.
- Mo content is below 0.85 wt. %, whereas in case that Mo content exceeds 3.15 wt. %, Mo increases the specific weight of the alloy due to the fact that Mo is a heavy metal, and the property of titanium alloys as high strength/weight material is lost. Moreover Mo has low diffusion rate in titanium, which increases the deformation stress. Accordingly, Mo content is determined as 0.85 ⁇ 3.15 wt. %, and a more preferable range is 1.5 to 3.0 wt. %.
- V is added to titanium as ⁇ -stabilizer for the ⁇ + ⁇ -alloy, which contributes to the increase of mechanical strength without forming brittle intermetallic compounds with titanium. That is, V strengthens the alloy by making a solid solution with ⁇ phase.
- the fact wherein the V content is within the range of 2.1 to 3.7 wt. %, in this alloy, has the merit in which the scrap of the most sold Ti-6Al-4 V can be utilized. However in case that V content is below 2.1 wt. %, sufficient strength aimed in this invention can not be obtained, whereas in case that V content exceeds 3.7 wt. %, the superplastic elongation is decreased, by exceedingly lowering of the ⁇ transus.
- V content is determined as 2.1 ⁇ 3.7 wt. %, and a more preferable range is 2.5 to 3.7 wt. %.
- O contributes to the increase of mechanical strength by constituting a solid solution mainly in ⁇ -phase. However in case that O content is below 0.01 wt. %, the contribution is not sufficient, whereas in case that the O content exceeds 0.15 wt. %, the ductility at room temperature is deteriorated. Accordingly, the O content is determined to be 0.01 to 0.15 wt. %, and a more preferable range is 0.06 to 0.14.
- 2 ⁇ Fe wt. % +2 ⁇ Ni wt. % +2 ⁇ Co wt. % +1.8 ⁇ Cr wt. % +1.5 ⁇ V+Mo wt. % is an index showing the stability of ⁇ -phase, wherein the higher the index the lower the ⁇ transus and vice versa.
- the most pertinent temperature for the superplastic forming is those wherein the volume ratio of primary ⁇ -phase is from 40 to 60 percent. The temperature has close relationship with the ⁇ -transus. When the index is below 7 wt. %, the temperature wherein the superplastic properties are realized, is elevated, which diminishes the advantage of the invented alloy as low temperature and the contribution thereof to the enhancement of the room temperature strength. When the index exceeds 13 wt.
- 2 ⁇ Fe wt. % +2 ⁇ Ni wt. % +2 ⁇ Co wt. % +1.8 ⁇ Cr wt. % +1.5 ⁇ V+Mo wt. % is determined to be 7 to 13 wt. %, and a more preferable range is 9 to 11 wt. %.
- the grain size of the ⁇ is, preferred to be below 5 ⁇ m.
- the grain size of the ⁇ -crystal has a close relationship with the superplastic properties, the smaller the grain size the better the superplastic properties.
- the superplastic elongation is decreased and the resistance of deformation is increased.
- the superplastic forming is carried out by using comparatively small working force, e.g. by using low gas pressure. Hence smaller resistance of deformation is required.
- the grain size of ⁇ -crystal is determined as below 5 ⁇ m, and a more preferable range is below 3 ⁇ m.
- the titanium alloy having the chemical composition specified in I is formed by hot forging, hot rolling, or hot extrusion, after the cast structure of the alloy is broken down by forging or slabing and the structure is made uniform.
- the reheating temperature of the work is below ⁇ transus minus 250° C.
- the deformation resistance becomes excessively large or the defects such as crack may be generated.
- the temperature exceeds ⁇ -transus, the grain of the crystal becomes coarse which causes the deterioration of the hot workability such as generation of crack at the grain boundary.
- the reheating temperature at the stage of working is to be from ⁇ -transus minus 250° C. to ⁇ -transus, and the reduction ratio is at least 50%, and more preferably at least 70%.
- This process is required for obtaining the equi-axed fine grain structure in the superplastic forming of the alloy.
- the temperature of the heat treatment is below ⁇ -transus minus 250° C., the recrystalization is not sufficient, and equi-axed grain cannot be obtained.
- the temperature exceeds ⁇ -transus the micro-structure becomes ⁇ -phase, and equi-axed ⁇ -crystal vanishes, and superplastic properties are not obtained. Accordingly the heat treatment temperature is to be from ⁇ -transus minus 250° C. to ⁇ -transus.
- This heat treatment can be done before the superplastic forming in the forming apparatus.
- Tables 1, 2, and 3 show the chemical composition, the grain size of ⁇ -crystal, the mechanical properties at room temperature, namely, 0.2% proof stress, tensile strength, and elongation, the maximum cold reduction ratio without edge cracking, and the superplastic properties, namely, the maximum superplastic elongation, the temperature wherein the maximum superplastic deformation is realized, the maximum stress of deformation at said temperature and the resistance of deformation in hot compression at 700° C., of invented titanium alloys; A1 to A28, of conventional Ti-6Al-4 V alloys; B1 to B4, of titanium alloys for comparison; C1 to C20. These alloys are molten and worked in the following way.
- the ingots are molten in an arc furnace under argon atmosphere, which are hot forged and hot rolled into plates with thickness of 50 mm.
- the reheating temperature is of the ⁇ + ⁇ dual phase and the reduction ratio is 50 to 80%.
- the samples are treated by a recrystalization annealing in the temperature range of the ⁇ + ⁇ dual phase.
- the test results of resistance of deformation in hot compression are shown in Table 3.
- Table 3 The test results are evaluated by the value of true stress when the samples are compressed with the reduction ratio of 50%.
- the invented alloys have the value of below 24 kgf/mm 2 which is superior to those of the conventional alloy, Ti-4V-6Al and the alloys for comparison.
- FIGS. 1 to 5 are the graph of the test results.
- FIG. 1 shows the change of the maximum superplastic elongation of the titanium alloys with respect to the addition of Fe, Ni, Co, and Cr to Ti-Al-V-Mo alloy.
- the abscissa denotes Fe wt. %+Ni wt. %+Co wt. %+0.9 ⁇ Cr wt. %
- the ordinate denotes the maximum superplastic elongation.
- the maximum superplastic elongation of over 1500% is obtained in the range of 0.85 to 3.15 wt. % of the value of Fe wt. %+Ni wt. %+Co wt. %+0.9 ⁇ Cr wt. %, and higher values are observed in the range of 1.5 to 2.5 wt. %.
- FIG. 2 shows the change of the maximum superplastic elongation of the titanium alloys with respect to the addition of V, Mo, Fe, Ni, Co, and Cr to Ti-Al alloy.
- the abscissa denotes 2 ⁇ Fe wt. %+2 ⁇ Ni wt. %+2 ⁇ Co wt. %+1.8 ⁇ Cr wt. %+1.5 ⁇ V wt. %+Mo wt. %
- the ordinate denotes the maximum superplastic elongation.
- the maximum superplastic elongation of over 1500% is obtained in the range of 7 to 13 wt. % of the value of 2 ⁇ Fe wt. %+2 ⁇ Ni wt.
- FIG. 3 shows the change of the maximum superplastic elongation of the titanium alloys, having the same chemical composition with those of the invented alloys, with respect to the change of the grain size of ⁇ -crystal thereof.
- the abscissa denotes the grain size of ⁇ -crystal of the titanium alloys, and the ordinate denotes the maximum superplastic elongation.
- FIG. 4 shows the influence of Al content on the maximum cold reduction ratio without edge cracking.
- the abscissa denotes Al wt. %, and the ordinate denotes the maximum cold reduction ratio without edge cracking.
- the cold rolling with the cold reduction ratio of more than 50% is possible, when the Al content is below 5 wt. %.
- the tensile properties of the invented alloys A1 to A28 are 92 kgf/mm 2 or more in tensile strength, 13% or more in elongation, and the alloys possess the tensile strength and the ductility equal to or superior to Ti-6Al-4V alloys.
- the invented alloys can be cold rolled with the reduction ratio of more than 50%.
- the temperature wherein the maximum superplastic elongation is realized is as low as 800° C., and the maximum superplastic elongation at the temperature is over 1500%, whereas in case of the alloys for comparison, the superplastic elongation is around 1000% or less, or 1500% in C15, however, the temperature for the realization of superplasticity in C15 is 850° C. Accordingly, the invented alloys are superior to the alloys for comparison in superplastic properties.
- the hot working and heat treatment are carried out according to the conditions specified in Table 5, and the samples are tested as for the superplastic tensile properties, cold reduction test, and hot workability test.
- the method of the test as for the superplastic properties and the cold reduction without edge cracking is the same with that shown in Example 1.
- the hot workability test is carried out with cylindrical specimens having the dimensions; 6 mm in diameter, 10 mm in height with a notch pararell to the axis of the cylinder having the depth of 0.8 mm, at the temperature of about 700° C., compressed with the reduction of 50%.
- the criterion of this test is the genaration of crack.
- FIG. 5 shows the relationship between the hot reduction ratio and the maximum superplastic elongation.
- the abscissa denotes the reduction ratio and the ordinate denotes the maximum superplastic elongation.
- the samples are reheated to the temperature between the ⁇ -transus minus 250° C. and ⁇ -transus.
- the samples having the reduction ratio of at least 50% possesses the maximum superplastic elongation of over 1500%, and in case of the ratio of at least 70%, the elongation is over 1700%.
- the results are also shown in Table 5.
- Table 7 shows the results of the deformation resistance of hot compression of the invented and conventional alloys with the chemical composition specified in Table 6.
- the stress values of the invented alloy are smaller than those of the conventional alloy by 30 to 50%, both at higher strain rate, 1 s -1 and at lower strain rate, 10 -3 s -1 , and both at 600° C. and 800° C., which proves the invented alloy having the superior workability not only in superplastic forming but in iso-thermal forging and ordinary hot forging.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
A Titanium base alloy with improved superplastic, hot workability, cold workability, and mechanical properties is provided. The alloy has about 4% Al and 2.5% V, with below 0.15% O, with 2% Fe and 2% Mo, 0.85˜3.15 wt. % Mo, and at least one element from the group of Fe, Ni, Co, and Cr as beta stabilizing elements, and as contributing elements to the lowering of beta transus, finally to the improvement of the superplastic properties, and hot and cold workability, with the grain size of below 5 μm. A method of making thereof is provided with the reheating temperature between beta transus minus 250° C. and beta transus.
A method of superplastic forming thereof is provided with the heat treating temperature between beta transus minus 250° C. and beta transus.
Description
This is a continuation of application Ser. No. 07/719,663 filed Jun. 24, 1991, now U.S. Pat. No. 5,124,121, issued Jun. 23, 1992, which is a continuation of application Ser. No. 07/547,924 filed Jul. 3, 1990 (abandoned).
1. Field of the Invention
The invention relates to the field of metallurgy and particularly to the field of titanium base alloys having excellent formability and method of making thereof and method of superplastic forming thereof.
2. Description of the Related Art
Titanium alloys are widely used as aerospace materials, e.g., in aeroplanes and rockets since the alloys possess tough mechanical properties and are comparatively light.
However the titanium alloys are difficult material to work. When finished products have a complicated shape, the yield in terms of weight of the product relative to that of the original material is low, which causes a significant increase in the production cost.
In case of the most widely used titanium alloy, which is Ti-6Al-4V alloy, when the forming temperature becomes below 800° C., the resistance of deformation increases significantly, which leads to the generation of defects such as cracks.
To avoid the disadvantage of high production cost, a new technology called superplastic forming which utilizes superplastic phenomena, has been proposed.
Superplasticity is the phenomena in which materials under certain conditions, are elongated up to from several hundred to one thousand percent, in some case, over one thousand percent, without necking down.
One of the titanium alloys wherein the superplastic forming is performed is Ti-6Al-4V having the microstructure with the grain size of 5 to 10 micron meter.
However, even in case of the Ti-6Al-4V alloy, the temperature for superplastic forming ranges from 875° to 950° C., which shortens the life of working tools or necessitates costly tools. U.S. Pat. No. 4,299,626 discloses titanium alloys in which Fe, Ni, and Co are added to Ti-6Al-4V to improve superplastic properties having large superplastic elongation and small deformation resistance.
However even with the alloy described in U.S. Pat. No. 4,299,626, which is Ti-6Al-4V--Fe--Ni--Co alloy developed to lower the temperature of the superplastic deformation of Ti-6Al-4V alloy, the temperature can be lowered by only 50° to 80° C. compared with that for Ti-6Al-4V alloy, and the elongation obtained at such a temperature range is not sufficient.
Moreover, this alloy contains 6 wt. % Al as in Ti-6Al-4V alloy, which causes the hot workability in rolling or forging, being deteriorated.
It is an object of the invention to provide a titanium alloy having improved superplastic properties.
It is an object of the invention to provide a high strength titanium alloy with improved superplastic properties compared with aforementioned Ti-6Al-4V alloy and Ti-6Al-4V--Fe--Ni--Co alloy, having large superplastic elongation and small resistance of deformation in superplastic deformation and excellent hot workability in the production process, and good cold workability.
It is an object of the invention to provide a method of making the above-mentioned titanium alloy.
It is an object of the invention to provide a method of superplastic forming of the above-mentioned titanium alloy.
(a) According to the invention a titanium alloy is provided with approximately 4 wt. % Al and 2.5 wt. % V with below 0.15 wt. % O as contributing element to the enhancement of the mechanical properties, and 0.85˜3.15 wt. % Mo, and at least one element from the group of Fe, Ni, Co, and Cr, as beta stabilizer and contributing element to the lowering of beta transus, with a limitation of the following, 0.85 wt. %≦Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %≦3.15 wt. %, 7 wt. %≦2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V+Mo wt. %≦13 wt. %.
(b) According to the invention a titanium alloy is provided with approximately 4 wt. % Al and 2.5 wt. % V, with below 0.15 wt. % O as contributing element to the enhancement of the mechanical properties, and 0.85˜3.15 wt. % Mo, and at least one element from the group of Fe, Ni, Co, and Cr, as beta stabilizer and contributing element to the lowering of beta transus, with a limitation of the following, 0.85 wt. %≦Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %≦3.15 wt. %, 7 wt. %≦2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V+Mo wt. %≦13 wt. %, and having alpha crystals with the grain size of at most 5 micron meter.
(c) According to the invention a method of making a titanium base alloy is provided comprising the steps of;
reheating the titanium base alloy specified below to a temperature in the temperature range of from β transus minus 250° C. to β transus;
a titanium base alloy with approximately 4 wt. % Al and 2.5 wt. % V, with below 0.15 wt. % O as contributing element to the enhancement of the mechanical properties, and 0.85˜3.15 wt. % Mo, and at least one element from the group of Fe, Ni, Co, and Cr, as beta stabilizer and contributing element to the lowering of beta transus, with a limitation of the following, 0.85 wt. %≦Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %≦3.15 wt. %, 7 wt. %≦2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V+Mo wt. %≦13 wt. %.
hot working the heated alloy with the reduction ratio of at least 50%.
(d) According to the invention a superplastic forming of a titanium base alloy is provided comprising the steps of;
heat treating the titanium base alloy specified below to a temperature in the temperature range of from β transus minus 250° C. to β transus;
a titanium base alloy with approximately 4 wt. % Al and 2.5 wt. % V, with below 0.15 wt. % O as contributing element to the enhancement of the mechanical properties, and 0.85˜3.15 wt. % Mo, and at least one element from the group of Fe, Ni, Co, and Cr, as beta stabilizer and contributing element to the lowering of beta transus, with a limitation of the following, 0.85 wt. %≦Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %≦3.15 wt. %, 7 wt. %≦2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V+Mo wt. %≦13 wt. %.
superplastic forming the above heat treated alloy.
These and other objects and features of the present invention will be apparent from the following detailed description.
FIG. 1 shows the change of the maximum superplastic elongation of the titanium alloys with respect to the addition of Fe, Ni, Co, and Cr to Ti-Al-V-Mo alloy. The abscissa denotes Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %, and the ordinate denotes the maximum superplastic elongation.
FIG. 2 shows the change of the maximum superplastic elongation of the titanium alloys with respect to the addition of V, Mo, Fe, Ni, Co, and Cr to Ti-Al alloy.
The abscissa denotes 2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V wt. %+Mo wt. %, and the ordinate denotes the maximum superplastic elongation.
FIG. 3 shows the change of the maximum superplastic elongation of the titanium alloys, having the same chemical composition with those of the invented alloys, with respect to the change of the grain size of α-crystal thereof. The abscissa denotes the grain size of α-crystal of the titanium alloys, and the ordinate denotes the maximum superplastic elongation.
FIG. 4 shows the influence of Al content on the maximum cold reduction ratio without edge cracking. The abscissa denotes Al wt. %, and the ordinate denotes the maximum cold reduction ratio without edge cracking.
FIG. 5 shows the relationship between the hot reduction ratio and the maximum superplastic elongation.
The abscissa denotes the reduction ratio and the ordinate denotes the maximum superplastic elongation.
The bold curves denote those within the scope of the invention. The dotted curves denote those without the scope of the invention.
The inventors find the following knowledge concerning the required properties.
(1) By adding a prescribed quantity of Al, the strength of titanium alloys can be enhanced.
(2) By adding at least one element selected from the group of Fe, Ni, Co, and Cr to the alloy, and prescribe the value of Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. % in the alloy, the superplastic properties can be improved; the increase of the superplastic elongation and the decrease of the deformation resistance, and the strength thereof can be enhanced.
(3) By adding the prescribed quantity of Mo, the superplastic properties can be improved; the increase of the superplastic elongation and the lowering of the temperature wherein the superplasticity is realized, and the strength thereof can be enhanced.
(4) By adding the prescribed quantity of V, the strength of the alloy can be enhanced.
(5) By adding the prescribed quantity of O, the strength of the alloy can be enhanced.
(6) By prescribing the value of a parameter of beta stabilizer, 2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V wt. %+Mo wt. %, a sufficient superplastic elongation can be imparted to the alloy and the room temperature strength thereof can be enhanced.
(7) By prescribing the grain size of the α-crystal, the superplastic properties can be improved.
(8) By prescribing the temperature and the reduction ratio in making the alloy, the superplastic properties can be improved.
(9) By prescribing the reheating temperature in heat treating of the alloy prior to the superplastic deformation thereof, the superplastic properties can be improved.
This invention is based on the above knowledge and briefly explained as follows.
The invention is:
(1) A titanium base alloy consisting essentially of about 3.0 to 5.0 wt. % Al, 2.1 to 3.7 wt. % V, 0.85 to 3.15 wt. % Mo, 0.01 to 0.15 wt. % O, at least one element from the group of Fe, Ni, Co, and Cr, and balance titanium, satisfying the following equations;
0.85 wt. %≦Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %≦ 3.15 wt. %,
7 wt. %≦X wt. %≦13 wt. %,
X wt. %=2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V+Mo wt. %.
(2) A titanium base alloy for superplastic forming consisting essentially of about 3.0 to 5.0 wt. % Al, 2.1 to 3.7 wt. % V, 0.85 to 3.15 wt. % Mo, 0.01 to 0.15 wt. % O, at least one element from the group of Fe, Ni, Co, and Cr, and balance titanium, satisfying the following equations;
0.85 wt. %≦Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %≦3.15 wt. %,
7 wt. %≦X wt. %≦13 wt. %,
X wt. %=2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V+Mo wt. %;
and having primary alpha crystals with the grain size of at most 5 micron meter.
(3) A method of making a titanium base alloy for superplastic forming comprising the steps of;
reheating the titanium base alloy specified below to a temperature in the temperature range of from β transus minus 250° C. to β transus;
a titanium base alloy for superplastic forming consisting essentially of about 3.0 to 5.0 wt. % Al, 2.1 to 3.7 wt. % V, 0.85 to 3.15 wt. % Mo. 0.01 to 0.15 wt. % O, at least one element from the group of Fe, Ni, Co, and Cr, and balance titanium, satisfying the following equations;
0.85 wt. %≦Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %≦3.15 wt. %,
7 wt. %≦X wt. %≦13 wt. %,
X wt. %=2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V+Mo wt. %; and
hot working the heated alloy with the reduction ratio of at least 50%.
(4) A method of superplastic forming of a titanium base alloy for superplastic forming comprising the steps of;
heat treating the titanium base alloy specified below to a temperature in the temperature range of from β transus minus 250° C. to β transus;
a titanium base alloy for superplastic forming consisting essentially of about 3.0 to 5.0 wt. % Al, 2.1 to 3.7 wt. % V, 0.85 to 3.15 wt. % Mo, 0.01 to 0.15 wt. % O, at least one element from the group of Fe, Ni, Co, and Cr, and balance titanium, satisfying the following equations;
0.85 wt. %≦Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %≦3.15 wt. %,
7 wt. %≦X wt. %≦13 wt. %,
X wt. %=2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V+Mo wt. %; and
superplastic forming of the heat treated alloy.
The reason of the above specification concerning the chemical composition, the conditions of making and superplastic forming of the alloy is explained as below:
I. Chemical composition
(1) Al
Titanium alloys are produced ordinarily by hotforging and/or hot rolling. However, when the temperature of the work is lowered, the deformation resistance is increased, and defects such as crack are liable to generate, which causes the lowering of workability.
The workability has a close relationship with Al content.
Al is added to titanium as α-stabilizer for the α+β-alloy, which contributes to the increase of mechanical strength. However in case that the Al content is below 3 wt. %, sufficient strength aimed in this invention can not be obtained, whereas in case that the Al content exceeds 5 wt. %, the hot deformation resistance is increased and cold workability is deteriorated, which leads to the lowering of the productivity.
Accordingly, Al content is determined to be 3.0 to 5.0% wt. %, and more preferably 4.0 to 5.0% wt. %.
(2) Fe, Ni, Co, and Cr
To obtain a titanium alloy having high strength and excellent superplastic properties, the micro-structure of the alloy should have fine equi-axed α crystal, and the volume ratio of the α crystal should range from 40 to 60%.
Therefore, at least one element from the group of Fe, Ni, Co, Cr, and Mo should be added to the alloy to lower the β transus compared with Ti-6Al-4V alloy.
As for Mo, explanation will be given later. Fe, Ni, Co, and Cr are added to titanium as β-stabilizer for the α+β-alloy, and contribute to the enhancement of superplastic properties, that is, the increase of superplastic elongation, and the decrease of resistance of deformation, by lowering of β-transus, and to the increase of mechanical strength by constituting a solid solution in β-phase. By adding these elements the volume ratio of β-phase is increased, and the resistance of deformation is decreased in hot working the alloy, which leads to the evading of the generation of the defects such as cracking. However this contribution is insufficient in case that the content of these elements is below 0.1 wt. %, whereas in case that the content exceed 3.15 wt. %, these elements form brittle intermetallic compounds with titanium, and generate a segregation phase called "beta fleck" in melting and solidifying of the alloy, which leads to the deterioration of the mechanical properties, especially ductility.
Accordingly, the content of at least one element from the group of Fe, Ni, Co, Cr is determined to be from 0.1 to 3.15 wt. %.
As far as Fe content is concerned, a more preferred range is from 1.0 to 2.5 wt. %.
(3) Fe wt. % +Ni wt. % +Co wt. % +0.9×Cr wt. %
Fe wt. % +Ni wt. % +Co wt. % +0.9×Cr wt. % is an index for the stability of β-phase which has a close relationship with the superplastic properties of titanium alloys, that is, the lowering of the temperature wherein superplasticity is realized and the deformation resistance in superplastic forming.
In case that this index is below 0.85 wt. %, the alloy loses the property of low temperature wherein the superplastic properties is realized which is the essence of this invention, or the resistance of deformation thereof in superplastic forming is increased when the above mentioned temperature is low.
In case that this index exceeds 3.15 wt. %, Fe, Ni, Co, and Cr form brittle intermetallic compounds with titanium, and generates a segregation phase called "beta fleck" in melting and solidifying of the alloy, which leads to the deterioration of the mechanical properties, especially ductility at room temperature. Accordingly, this index is determined to be 0.85 to 3.15 wt. %, and more preferably 1.5 to 2.5 wt. %.
(4) Mo
Mo is added to titanium as β-stabilizer for the α+β-alloy, and contributes to the enhancement of superplastic properties, that is, the lowering of the temperature wherein the superplasticity is realized, by lowering of β-transus as in the case of Fe, Ni, Co, and Cr.
However this contribution is insufficient in case that Mo content is below 0.85 wt. %, whereas in case that Mo content exceeds 3.15 wt. %, Mo increases the specific weight of the alloy due to the fact that Mo is a heavy metal, and the property of titanium alloys as high strength/weight material is lost. Moreover Mo has low diffusion rate in titanium, which increases the deformation stress. Accordingly, Mo content is determined as 0.85˜3.15 wt. %, and a more preferable range is 1.5 to 3.0 wt. %.
(5) V
V is added to titanium as β-stabilizer for the α+β-alloy, which contributes to the increase of mechanical strength without forming brittle intermetallic compounds with titanium. That is, V strengthens the alloy by making a solid solution with β phase. The fact wherein the V content is within the range of 2.1 to 3.7 wt. %, in this alloy, has the merit in which the scrap of the most sold Ti-6Al-4 V can be utilized. However in case that V content is below 2.1 wt. %, sufficient strength aimed in this invention can not be obtained, whereas in case that V content exceeds 3.7 wt. %, the superplastic elongation is decreased, by exceedingly lowering of the β transus.
Accordingly, V content is determined as 2.1˜3.7 wt. %, and a more preferable range is 2.5 to 3.7 wt. %.
(6) O
O contributes to the increase of mechanical strength by constituting a solid solution mainly in α-phase. However in case that O content is below 0.01 wt. %, the contribution is not sufficient, whereas in case that the O content exceeds 0.15 wt. %, the ductility at room temperature is deteriorated. Accordingly, the O content is determined to be 0.01 to 0.15 wt. %, and a more preferable range is 0.06 to 0.14.
(7) 2×Fe wt. % +2×Ni wt. % +2×Co wt. % +1.8×Cr wt. % +1.5×V+Mo wt. %
2×Fe wt. % +2×Ni wt. % +2×Co wt. % +1.8×Cr wt. % +1.5×V+Mo wt. % is an index showing the stability of β-phase, wherein the higher the index the lower the β transus and vice versa. The most pertinent temperature for the superplastic forming is those wherein the volume ratio of primary α-phase is from 40 to 60 percent. The temperature has close relationship with the β-transus. When the index is below 7 wt. %, the temperature wherein the superplastic properties are realized, is elevated, which diminishes the advantage of the invented alloy as low temperature and the contribution thereof to the enhancement of the room temperature strength. When the index exceeds 13 wt. %, the temperature wherein the volume ratio of primary α-phase is from 40 to 60 percent becomes too low, which causes the insufficient diffusion and hence insufficient superplastic elongation. Accordingly, 2×Fe wt. % +2×Ni wt. % +2×Co wt. % +1.8×Cr wt. % +1.5×V+Mo wt. % is determined to be 7 to 13 wt. %, and a more preferable range is 9 to 11 wt. %.
II. The grain size of α-crystal
When superplastic properties are required, the grain size of the α is, preferred to be below 5 μm.
The grain size of the α-crystal has a close relationship with the superplastic properties, the smaller the grain size the better the superplastic properties. In this invention, in the case that the grain size of α-crystal exceeds 5 μm, the superplastic elongation is decreased and the resistance of deformation is increased. The superplastic forming is carried out by using comparatively small working force, e.g. by using low gas pressure. Hence smaller resistance of deformation is required.
Accordingly, the grain size of α-crystal is determined as below 5 μm, and a more preferable range is below 3 μm.
III. The conditions of making the titanium alloy
(1) The conditions of hot working
The titanium alloy having the chemical composition specified in I is formed by hot forging, hot rolling, or hot extrusion, after the cast structure of the alloy is broken down by forging or slabing and the structure is made uniform. At the stage of the hot working, in case that the reheating temperature of the work is below β transus minus 250° C., the deformation resistance becomes excessively large or the defects such as crack may be generated. When the temperature exceeds β-transus, the grain of the crystal becomes coarse which causes the deterioration of the hot workability such as generation of crack at the grain boundary.
When the reduction ratio is below 50%, the sufficient strain is not accumulated in the α-crystal, and the fine equi-axed micro-structure is not obtained, whereas the α-crystal stays elongated or coarse. These structures are not only unfavorable to the superplastic deformation, but also inferior in hot workability and cold workability. Accordingly, the reheating temperature at the stage of working is to be from β-transus minus 250° C. to β-transus, and the reduction ratio is at least 50%, and more preferably at least 70%.
(2) Heat treatment
This process is required for obtaining the equi-axed fine grain structure in the superplastic forming of the alloy. When the temperature of the heat treatment is below β-transus minus 250° C., the recrystalization is not sufficient, and equi-axed grain cannot be obtained. When the temperature exceeds β-transus, the micro-structure becomes β-phase, and equi-axed α-crystal vanishes, and superplastic properties are not obtained. Accordingly the heat treatment temperature is to be from β-transus minus 250° C. to β-transus.
This heat treatment can be done before the superplastic forming in the forming apparatus.
Tables 1, 2, and 3 show the chemical composition, the grain size of α-crystal, the mechanical properties at room temperature, namely, 0.2% proof stress, tensile strength, and elongation, the maximum cold reduction ratio without edge cracking, and the superplastic properties, namely, the maximum superplastic elongation, the temperature wherein the maximum superplastic deformation is realized, the maximum stress of deformation at said temperature and the resistance of deformation in hot compression at 700° C., of invented titanium alloys; A1 to A28, of conventional Ti-6Al-4 V alloys; B1 to B4, of titanium alloys for comparison; C1 to C20. These alloys are molten and worked in the following way.
TABLE 1 __________________________________________________________________________ Chemical Composition (wt. %) (Balance: Ti) Grain Size of Test Fe + Ni + 2Fe + 2Ni + 2Co α-Crystal Nos. Al V Mo O Fe Ni Co Cr Co + 0.9Cr 1.8Cr + 1.5V (μm) __________________________________________________________________________ Alloys of Present Invention A1 4.65 3.30 1.68 0.11 2.14 -- -- -- 2.14 10.9 2.3 A2 3.92 3.69 3.02 0.12 0.96 -- -- -- 0.96 10.5 1.9 A3 4.03 2.11 0.88 0.09 3.11 -- -- -- 3.11 10.3 3.7 A4 4.93 2.17 2.37 0.03 0.91 -- -- -- 0.91 7.1 2.8 A5 3.07 2.82 1.17 0.13 1.79 -- -- -- 1.79 9.0 3.3 A6 3.97 2.97 2.02 0.08 1.91 -- -- -- 1.91 10.3 2.1 A7 3.67 2.54 0.97 0.05 2.81 -- -- -- 2.81 10.4 4.6 A8 4.16 3.50 1.65 0.04 2.90 -- -- -- 2.90 12.7 2.8 A9 3.42 3.26 1.76 0.07 2.53 -- -- -- 2.53 11.7 3.0 A10 4.32 2.99 2.03 0.09 -- 1.71 -- -- 1.77 10.1 3.7 A11 3.97 3.14 1.86 0.12 -- 1.94 -- -- 1.94 10.5 4.0 A12 4.03 3.27 2.29 0.06 -- -- -- 0.99 0.89 9.0 4.2 A13 4.37 3.11 2.15 0.10 -- -- -- 1.87 1.68 10.2 3.3 A14 4.02 2.76 2.07 0.08 -- -- -- 2.24 2.02 10.2 3.0 A15 4.03 2.85 2.21 0.07 -- -- -- 2.75 2.48 9.0 3.8 A16 3.54 3.17 2.27 0.07 0.86 -- -- 1.56 2.26 11.6 3.2 A17 4.23 3.43 2.31 0.08 1.66 -- -- 0.96 2.52 12.5 2.2 A18 3.97 2.67 1.86 0.07 1.21 -- -- 1.06 2.16 10.2 3.5 A19 3.72 3.04 1.77 0.09 -- 0.32 -- 2.62 2.68 11.7 3.6 A20 4.36 3.11 2.04 0.11 1.74 -- 0.74 -- 2.48 11.7 2.5 A21 4.21 2.56 2.27 0.06 -- -- 0.97 2.32 3.06 12.2 2.9 A22 3.67 2.86 2.31 0.05 0.96 0.62 -- -- 1.58 9.8 3.4 A23 4.11 3.07 2.17 0.08 -- 0.82 0.97 -- 1.79 10.4 3.6 A24 3.82 2.77 1.96 0.12 0.76 0.27 -- 0.42 1.41 8.9 4.1 A25 4.40 2.96 1.83 0.09 1.21 -- 0.41 0.67 2.22 10.7 3.9 A26 3.96 2.57 2.06 0.04 0.67 0.31 0.87 1.06 2.80 11.5 3.6 A27 4.61 3.97 2.11 0.08 1.07 -- -- -- 1.07 10.2 6.8 A28 4.32 2.99 1.07 0.09 1.06 -- -- -- 1.06 7.7 9.0 Prior Art Alloys B1 6.03 4.25 -- 0.17 0.25 -- -- -- 0.25 6.9 6.2 B2 6.11 4.07 -- 0.12 0.08 -- -- -- 0.08 6.3 6.7 B3 6.17 4.01 -- 0.19 1.22 -- 0.91 -- 2.13 6.0 3.5 B4 6.24 3.93 -- 0.19 0.22 0.93 0.88 -- 2.03 10.0 4.1 Alloys for Comparison C1 2.96 3.01 0.87 0.06 0.91 -- -- -- 0.91 7.2 5.3 C2 5.27 3.17 1.78 0.12 1.69 -- -- -- 1.69 9.9 3.2 C3 4.21 2.78 0.82 0.07 1.03 -- -- -- 1.03 7.1 6.2 C4 3.17 2.21 3.21 0.08 2.99 -- -- -- 2.99 12.5 3.9 C5 3.06 2.99 1.18 0.09 0.81 -- -- -- 0.81 7.3 4.8 C6 3.66 2.11 3.00 0.11 3.27 -- -- -- 3.27 12.7 2.7 C7 3.21 2.01 2.25 0.06 0.87 -- -- -- 0.87 7.0 3.7 C8 4.67 3.82 1.79 0.07 2.44 -- -- -- 2.44 12.4 4.6 C9 4.57 3.91 1.34 0.16 1.78 -- -- -- 1.78 10.8 5.0 C10 3.07 2.11 2.75 0.11 0.92 -- -- -- 0.92 7.8 5.6 C11 4.87 2.69 0.86 0.07 0.90 -- -- -- 0.90 6.7 4.6 C12 3.21 4.05 2.40 0.10 2.46 -- -- -- 2.46 13.4 3.7 C13 4.17 3.08 1.21 0.08 -- -- -- 0.65 0.59 7.0 4.9 C14 3.76 2.14 2.76 0.10 -- -- -- 3.85 3.47 12.9 3.2 C15 3.86 2.76 1.96 0.13 0.13 -- -- 0.42 0.51 7.1 4.4 C16 4.10 2.11 0.96 0.11 -- 3.43 -- -- 3.43 11.0 6.0 C17 3.95 2.24 1.07 0.08 -- -- 3.52 -- 3.52 11.5 5.5 C18 4.08 3.06 1.79 0.07 2.14 -- -- 1.52 3.51 13.4 4.8 C19 4.13 2.61 1.43 0.13 0.11 0.14 0.13 0.11 0.48 6.3 5.8 C20 3.87 3.31 2.04 0.08 1.76 0.86 0.72 0.31 3.62 14.2 3.0 __________________________________________________________________________
TABLE 2 ______________________________________ Tensil Properties at Room Temperature Test 0.2% PS TS EL Nos. (kgf/mm.sup.2) (%) ______________________________________ Alloys of Present Invention A1 94.5 98.0 20.0 A2 93.1 96.3 20.9 A3 90.3 93.6 21.8 A4 95.1 99.0 17.8 A5 88.7 92.0 21.9 A6 93.6 96.8 20.7 A7 94.7 97.9 19.6 A8 96.7 100.4 17.2 A9 95.0 98.3 17.8 A10 93.9 97.1 19.8 A11 94.3 97.3 18.9 A12 90.3 94.1 21.7 A13 94.1 97.6 20.6 A14 92.3 94.9 21.1 A15 93.6 96.2 20.5 A16 95.1 98.5 17.1 A17 96.7 100.5 17.2 A18 92.8 96.2 21.3 A19 92.9 96.4 20.8 A20 95.1 98.7 17.2 A21 95.4 99.0 17.0 A22 94.4 97.3 20.0 A23 95.0 98.0 19.0 A24 91.9 95.7 22.5 A25 93.9 97.5 21.0 A26 94.0 97.2 21.0 A27 98.2 104.0 13.7 A28 94.6 99.6 19.4 Prior Art Alloys B1 85.9 93.3 18.9 B2 82.7 90.1 20.2 B3 104.2 108.5 17.4 B4 102.5 106.8 21.0 Alloys for Comparison C1 85.3 89.7 22.0 C2 98.7 105.7 12.7 C3 83.7 88.6 20.5 C4 101.9 107.6 11.7 C5 86.1 89.9 20.6 C6 100.6 110.4 13.2 C7 93.7 97.4 20.1 C8 96.4 103.4 16.7 C9 99.6 106.3 16.1 C10 90.5 94.7 21.4 C11 85.6 90.7 19.0 C12 103.6 107.9 14.2 C13 92.7 96.4 17.1 C14 102.1 104.7 8.7 C15 90.4 93.7 21.1 C16 103.1 104.9 4.6 C17 102.9 105.0 5.1 C18 103.7 106.1 8.3 C19 90.7 93.3 21.1 C20 103.6 105.7 6.0 ______________________________________
TABLE 3 __________________________________________________________________________ Deformation Stress at Cold Reduction Maximum Temperature, Temperature, Deformation Ratio without Superplastic at which Maximum at which Maximum Stress in Hot Test Edge Cracking Elongation Elongation is Shown Elongation is Shown Compression Test Nos. (%) (%) (°C.) (kgf/mm.sup.2) (kgf/mm.sup.2) __________________________________________________________________________ Alloys of Present Invention A1 55 2040 775 1.45 24 A2 65 2250 750 1.61 22 A3 60 1680 775 1.38 21 A4 50 1970 800 1.08 24 A5 70 or more 1750 775 1.39 20 A6 60 1860 775 1.44 23 A7 65 1710 775 1.47 21 A8 55 1690 775 1.26 24 A9 65 1855 750 1.58 22 A10 55 1700 775 1.36 23 A11 60 1800 775 1.32 21 A12 70 or more 1610 800 1.30 22 A13 50 1720 775 1.43 24 A14 60 2010 775 1.39 22 A15 55 2000 775 1.37 22 A16 65 1850 775 1.28 21 A17 50 1900 750 1.25 24 A18 60 2050 800 1.10 23 A19 60 1760 750 1.48 23 A20 50 1810 775 1.22 24 A21 55 1630 750 1.47 23 A22 70 or more 1820 800 1.07 20 A23 60 1650 775 1.33 24 A24 70 or more 1750 800 1.11 23 A25 55 1890 775 1.32 24 A26 65 1580 750 1.43 23 A27 50 1310 775 1.62 24 A28 55 970 775 1.69 24 Prior Art Alloys B1 10 or less 982 875 1.25 37 B2 10 or less 925 900 1.03 35 B3 10 or less 1328 825 1.07 30 B4 10 or less 1385 825 1.02 31 Alloys for Comparison C1 70 or more -- -- -- -- C2 30 -- -- -- 29 C3 50 -- -- -- 25 C4 45 750 750 2.27 27 C5 70 or more -- -- -- -- C6 40 700 750 2.31 28 C7 60 1220 775 1.45 26 C8 20 -- -- -- -- C9 10 or less -- -- -- -- C10 60 1320 775 1.52 25 C11 30 1625 850 1.07 28 C12 70 or less 1225 750 2.01 27 C13 60 1250 850 1.00 28 C14 10 or less -- -- -- -- C15 55 1500 850 1.08 28 C16 30 -- -- -- -- C17 30 -- -- -- -- C18 40 1050 750 2.22 27 C19 50 1250 850 1.12 29 C20 20 -- -- -- -- __________________________________________________________________________
The ingots are molten in an arc furnace under argon atmosphere, which are hot forged and hot rolled into plates with thickness of 50 mm. At the working stage, the reheating temperature is of the α+β dual phase and the reduction ratio is 50 to 80%. After the reduction, the samples are treated by a recrystalization annealing in the temperature range of the α+β dual phase.
The samples from these plates are tested concerning the mechanical properties at room temperature, namely, 0.2% proof stress, tensile strength, and elongation, as shown in Table 2.
As for the tensile test for superplasticity, samples are cut out of the plates with dimensions of the pararell part; 5 mm width by 5 mm length by 4 mm thickness and tested under atmospheric pressure of 5.0×10-6 Torr. The test results are shown in Table 3, denoting the maximum superplastic elongation, the temperature wherein the maximum superplastic elongation is realized, the maximum deformation stress at said temperature, and the deformation resistance in hot compression at 700° C. of the samples shown in Table 1. The maximum deformation stress is obtained by dividing the maximum test load by original sectional area.
The test results of resistance of deformation in hot compression are shown in Table 3. In this test cylindrical specimens are cut out from the hot rolled plate. The specimens are hot compressed at 700° C. under vacuum atmosphere. The test results are evaluated by the value of true stress when the samples are compressed with the reduction ratio of 50%. The invented alloys have the value of below 24 kgf/mm2 which is superior to those of the conventional alloy, Ti-4V-6Al and the alloys for comparison.
This hot compression test was not carried out for the alloys for comparison C1, C3, and C5 since the values of the tensile test at room temperature are below 90 kgf/mm2 which is lower than those of Ti-6Al-4V, and not for the alloys for comparison, C2, C8, C9, C14, C16, C17, and C20 since the maximum cold reduction ratio without edge cracking is below 30% which is not in the practical range.
FIGS. 1 to 5 are the graph of the test results.
FIG. 1 shows the change of the maximum superplastic elongation of the titanium alloys with respect to the addition of Fe, Ni, Co, and Cr to Ti-Al-V-Mo alloy.
The abscissa denotes Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %, and the ordinate denotes the maximum superplastic elongation. As is shown in FIG. 1, the maximum superplastic elongation of over 1500% is obtained in the range of 0.85 to 3.15 wt. % of the value of Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %, and higher values are observed in the range of 1.5 to 2.5 wt. %.
FIG. 2 shows the change of the maximum superplastic elongation of the titanium alloys with respect to the addition of V, Mo, Fe, Ni, Co, and Cr to Ti-Al alloy. The abscissa denotes 2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V wt. %+Mo wt. %, and the ordinate denotes the maximum superplastic elongation. As shown in FIG. 2, the maximum superplastic elongation of over 1500% is obtained in the range of 7 to 13 wt. % of the value of 2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V wt. %+Mo wt. %, and higher values are observed in the range of 9 to 11 wt. %. When the index is below 7 wt. %, the temperature wherein the maximum superplastic elongation is realized, is 850° C.
FIG. 3 shows the change of the maximum superplastic elongation of the titanium alloys, having the same chemical composition with those of the invented alloys, with respect to the change of the grain size of α-crystal thereof. The abscissa denotes the grain size of α-crystal of the titanium alloys, and the ordinate denotes the maximum superplastic elongation.
As shown in the FIG. 3, large elongations of over 1500% are obtained in case that the grain size of α-crystal is 5 μm or less, and higher values are observed below the size of 3 μm.
FIG. 4 shows the influence of Al content on the maximum cold reduction ratio without edge cracking. The abscissa denotes Al wt. %, and the ordinate denotes the maximum cold reduction ratio without edge cracking.
As shown in the FIG. 4, the cold rolling with the cold reduction ratio of more than 50% is possible, when the Al content is below 5 wt. %.
As shown in Tables 2 and 3, the tensile properties of the invented alloys A1 to A28 are 92 kgf/mm2 or more in tensile strength, 13% or more in elongation, and the alloys possess the tensile strength and the ductility equal to or superior to Ti-6Al-4V alloys. The invented alloys can be cold rolled with the reduction ratio of more than 50%.
Furthermore, in case of the invented alloys A1 to 26 having the grain size of the crystal of below 5 μm, the temperature wherein the maximum superplastic elongation is realized is as low as 800° C., and the maximum superplastic elongation at the temperature is over 1500%, whereas in case of the alloys for comparison, the superplastic elongation is around 1000% or less, or 1500% in C15, however, the temperature for the realization of superplasticity in C15 is 850° C. Accordingly, the invented alloys are superior to the alloys for comparison in superplastic properties.
In case of the alloys for comparison C1, C3, and C5, the superplastic tensile test is not carried out since the result of the room temperature tensile test thereof is 90 kgf/mm2 which is inferior to that of Ti-6Al-4V alloy.
In case of the alloys for comparison C2, C8, C9, C14, C16, C17, and C20, the superplastic tensile test is not carried out since the maximum cold reduction ratio without edge cracking thereof is below 30%, and out of the practical range.
For the titanium alloys D1, D2, and D3 with the chemical composition shown in Table 4, the hot working and heat treatment are carried out according to the conditions specified in Table 5, and the samples are tested as for the superplastic tensile properties, cold reduction test, and hot workability test.
TABLE 4 ______________________________________ Chemical Composition (wt. %) (Balance: Ti) Al V Mo O Fe Ni Co Cr ______________________________________ D1 4.65 3.30 1.68 0.11 2.14 -- -- -- D2 4.02 2.76 2.07 0.08 -- -- -- 2.24 D3 3.82 2.77 1.96 0.12 0.76 0.27 -- 0.42 ______________________________________ Chemical Composition (wt. %) (Balance: Ti) Fe + Ni + 2Fe + 2Ni + 2Co + Co + 0.9 Cr 1.8Cr + 1.5V + Mo ______________________________________ D1 2.14 10.9 D2 2.02 10.2 D3 1.41 8.9 ______________________________________
TABLE 5 __________________________________________________________________________ Final Hot Working Temperature Maximum Hot Heating Reduc- of Heat Superplastic Work- β-Transus Temp. tion Treatment Elongation ability (°C.) (°C.) Ratio Crack (°C.) (%)Test __________________________________________________________________________ D1 1 915 600 4 Crack -- -- -- 2 800 4 No Crack 775 2040 NoCrack 3 1100 4 Crack -- -- -- 4 800 1.5 No Crack 775 1450Crack 5 800 4 NoCrack 1000 500Crack D2 1 910 650 4 Crack -- -- -- 2 850 4 No Crack 775 2010 NoCrack 3 850 4 No Crack 950 600 NoCrack D3 1 920 850 4 No Crack 800 1750 NoCrack 2 850 1.8 No Crack 800 1250Crack 3 850 4 No Crack 600 1450 NoCrack 4 850 4 NoCrack 1000 700 Crack __________________________________________________________________________
The method of the test as for the superplastic properties and the cold reduction without edge cracking is the same with that shown in Example 1. The hot workability test is carried out with cylindrical specimens having the dimensions; 6 mm in diameter, 10 mm in height with a notch pararell to the axis of the cylinder having the depth of 0.8 mm, at the temperature of about 700° C., compressed with the reduction of 50%. The criterion of this test is the genaration of crack.
The heat treatment and the superplastic tensile test and the other tests are not carried out as for the samples D1-1, D1-3, and D2-1, since cracks are generated on these samples after the hot working.
FIG. 5 shows the relationship between the hot reduction ratio and the maximum superplastic elongation.
The abscissa denotes the reduction ratio and the ordinate denotes the maximum superplastic elongation.
In this figure the samples are reheated to the temperature between the β-transus minus 250° C. and β-transus. The samples having the reduction ratio of at least 50% possesses the maximum superplastic elongation of over 1500%, and in case of the ratio of at least 70%, the elongation is over 1700%. The results are also shown in Table 5.
As shown in Table 5, as for the samples of which reheating temperature is within the range of from β-transus minus 250° C. to β-transus and of which reduction ratio exceeds 50%, heat treatment condition being from β-transus minus 200° C. to β-transus in reheating temperature, the value of the maximum superplastic elongation exceeds 1500%, and the maximum cold reduction ratio without edge cracking is at least 50%. As for the samples of which conditions are out of the above specified range, the value of the maximum superplastic elongation is below 1500%, and cracks are generated on the notched cylindrical specimens for evaluating the hot workability, or the maximum cold reduction ratio without edge cracking is below 50%.
Table 7 shows the results of the deformation resistance of hot compression of the invented and conventional alloys with the chemical composition specified in Table 6.
TABLE 6 ______________________________________ (wt. %) (balance Ti) Al V Mo O Fe Cr ______________________________________ E1 4.65 3.30 1.68 0.11 2.14 -- Alloys of the E2 3.97 2.67 1.68 0.07 1.21 1.06 Present Invention E3 6.11 4.07 -- 0.12 0.08 -- Conventional Alloy ______________________________________
TABLE 7 ______________________________________ Temperature 600° C. 800° C. Strain Rate 10.sup.-3 (S.sup.-1) 1(S.sup.-1) 10.sup.-3 (S.sup.-1) 1(S.sup.-1) ______________________________________ E1 Deformation 20.0 38.8 3.2 15.0 E2 Stress 19.5 36.9 3.0 14.6 E3 (kgf/mm.sup.2) 32.1 62.1 7.6 22.0 ______________________________________
The samples with the dimensions; 8 mm in diameter and 12 mm in height, are tested by applying compressive force thereon under vacuum atmosphere, and the true strain true stress curves are obtained. The values shown in Table 7 are the stresses at the strain of 50%.
The stress values of the invented alloy are smaller than those of the conventional alloy by 30 to 50%, both at higher strain rate, 1 s-1 and at lower strain rate, 10-3 s-1, and both at 600° C. and 800° C., which proves the invented alloy having the superior workability not only in superplastic forming but in iso-thermal forging and ordinary hot forging.
Claims (17)
1. A titanium base alloy consisting of about 3.42 to 5.0 wt. % Al, 2.1 to 3.7 wt. % V, 0.85 to 3.15 wt. % Mo, at least 0.01 wt. % O, at least one element selected from the group consisting of Fe, Ni, Co, and Cr, and the balance being titanium, and satisfying the following equations;
0.85 wt. %≦X wt. %≦3.15 wt. %,
7 wt. %≦Y wt. %≦13 wt. %,
X wt. %=Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %,
Y wt. %=2×Fe wt. %+2×Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V wt. %+Mo wt. %.
2. A titanium base alloy of claim 1 wherein the X wt. % and Y wt. % are specified as follows;
0.85 wt. %≦X wt. %<1.5 wt. %,
7 wt. %≦Y wt. %<9 wt. %.
3. A titanium base alloy of claim 1 wherein the X wt. % and Y wt. % are specified as follows;
1.5 wt. %≦X wt. %≦2.5 wt. %,
9 wt. %≦Y wt. %≦11 wt. %.
4. A titanium base alloy of claim 1 wherein the X wt. % and Y wt. % are specified as follows;
2.5 wt. %<X wt. %≦3.15 wt. %,
11 wt. %<Y wt. %≦13 wt. %.
5. A titanium base alloy of claim 2 wherein the Al wt. % is specified as follows;
4.0 wt. %≦Al≦5.0 wt. %.
6. A titanium base alloy of claim 3 wherein the Al wt. % is specified as follows;
4.0 wt. %≦Al≦5.0 wt. %.
7. A titanium base alloy of claim 4 wherein the Al wt. % is specified as follows;
4.0 wt. %≦Al≦5.0 wt. %.
8. A titanium base alloy consisting of about 4 to 5 wt. % Al, 2.5 to 3.7 wt. % V, 1.5 to 3 wt. % Mo, at least 0.01 wt. % O, at least one element selected from the group consisting of Fe, Ni, Co and Cr, and the balance being titanium, and satisfying the following equations;
0.85 wt. %≦X wt. %≦3.15 wt. %,
7 wt. %≦Y wt. %≦13 wt. %,
X wt. %=Fe wt. %+Ni wt. %+Co wt. %+0.9×Cr wt. %,
Y wt. %=2×Fe wt. %+2 X Ni wt. %+2×Co wt. %+1.8×Cr wt. %+1.5×V wt. %+Mo wt. %.
9. A titanium base alloy of claim 8 wherein the grain size of alpha crystal is at most 3 micron meter.
10. A titanium base alloy of claim 8 wherein the X wt. % and Y wt. % are specified as follows;
0.85 wt. %≦X wt. %<1.5 wt. %,
7 wt. %≦Y wt. %<9 wt. %.
11. A titanium base alloy of claim 8 wherein the X wt. % and Y wt. % are specified as follows;
1.5 wt. %≦X wt. %≦2.5 wt. %,
9 wt. %≦Y wt. %≦11 wt. %.
12. A titanium base alloy of claim 8 wherein the X wt. % and Y wt. % are specified as follows;
2.5 wt. %<X wt. %≦3.15 wt. %,
11 wt. %<Y wt. %≦13 wt. %.
13. A titanium base alloy of claim 10 wherein the Al wt. % is specified as follows;
4.0 wt. %≦Al≦5.0 wt. %.
14. A titanium base alloy of claim 11 wherein the Al wt. % is specified as follows;
4.0 wt. %≦Al≦5.0 wt. %.
15. A titanium base alloy of claim 12 wherein the Al wt. % is specified as follows;
4.0 wt. %≦Al≦5.0 wt. %.
16. A titanium alloy consisting essentially of about 4 to 5 wt. % Al, 2.5 to 3.7 wt. % V, 1.5 to 3 wt. % Mo, 1 to 2.5 wt. % Fe and 0.06 to 0.14% wt. O.
17. A titanium alloy consisting essentially of about 4 to 5 wt. % Al, 2.5 to 3.7 wt. % V, 1.5 to 3 wt. % Mo, 1 to 2.5 wt. % Fe and at least 0.01 wt. % O.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/880,743 US5256369A (en) | 1989-07-10 | 1992-05-08 | Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof |
US08/170,672 US5362441A (en) | 1989-07-10 | 1993-12-20 | Ti-Al-V-Mo-O alloys with an iron group element |
US08/292,617 US5411614A (en) | 1989-07-10 | 1994-08-18 | Method of making Ti-Al-V-Mo alloys |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-177759 | 1989-07-10 | ||
JP17775989 | 1989-07-10 | ||
JP4499390 | 1990-02-26 | ||
JP2-044993 | 1990-02-26 | ||
US54792490A | 1990-07-03 | 1990-07-03 | |
US07/719,663 US5124121A (en) | 1989-07-10 | 1991-06-24 | Titanium base alloy for excellent formability |
US07/880,743 US5256369A (en) | 1989-07-10 | 1992-05-08 | Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/719,663 Continuation US5124121A (en) | 1989-07-10 | 1991-06-24 | Titanium base alloy for excellent formability |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US9572493A Division | 1989-07-10 | 1993-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5256369A true US5256369A (en) | 1993-10-26 |
Family
ID=27522441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/880,743 Expired - Fee Related US5256369A (en) | 1989-07-10 | 1992-05-08 | Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof |
Country Status (1)
Country | Link |
---|---|
US (1) | US5256369A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1076104A1 (en) * | 1999-08-12 | 2001-02-14 | The Boeing Company | Titanium alloy having enhanced notch toughness and method of producing same |
US20040191154A1 (en) * | 2003-03-31 | 2004-09-30 | Valery Shklover | Quasicrystalline alloys and their use as coatings |
WO2016114956A1 (en) * | 2015-01-12 | 2016-07-21 | Ati Properties, Inc.; | Titanium alloy |
US9523137B2 (en) | 2004-05-21 | 2016-12-20 | Ati Properties Llc | Metastable β-titanium alloys and methods of processing the same by direct aging |
US9616480B2 (en) | 2011-06-01 | 2017-04-11 | Ati Properties Llc | Thermo-mechanical processing of nickel-base alloys |
US9624567B2 (en) | 2010-09-15 | 2017-04-18 | Ati Properties Llc | Methods for processing titanium alloys |
US9765420B2 (en) | 2010-07-19 | 2017-09-19 | Ati Properties Llc | Processing of α/β titanium alloys |
US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US9796005B2 (en) | 2003-05-09 | 2017-10-24 | Ati Properties Llc | Processing of titanium-aluminum-vanadium alloys and products made thereby |
US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
WO2018199791A1 (en) * | 2017-04-25 | 2018-11-01 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Titanium alloy-based sheet material for low-temperature superplastic deformation |
US10337093B2 (en) | 2013-03-11 | 2019-07-02 | Ati Properties Llc | Non-magnetic alloy forgings |
US10435775B2 (en) | 2010-09-15 | 2019-10-08 | Ati Properties Llc | Processing routes for titanium and titanium alloys |
US10471503B2 (en) | 2010-04-30 | 2019-11-12 | Questek Innovations Llc | Titanium alloys |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
RU2744837C2 (en) * | 2017-10-19 | 2021-03-16 | Зе Боинг Компани | Titanium-based alloy and method for producing titanium-based alloy component through additive manufacturing technologies |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
US11780003B2 (en) | 2010-04-30 | 2023-10-10 | Questek Innovations Llc | Titanium alloys |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4067734A (en) * | 1973-03-02 | 1978-01-10 | The Boeing Company | Titanium alloys |
US4299626A (en) * | 1980-09-08 | 1981-11-10 | Rockwell International Corporation | Titanium base alloy for superplastic forming |
US4842653A (en) * | 1986-07-03 | 1989-06-27 | Deutsche Forschungs-Und Versuchsanstalt Fur Luft-Und Raumfahrt E.V. | Process for improving the static and dynamic mechanical properties of (α+β)-titanium alloys |
US4867807A (en) * | 1985-12-05 | 1989-09-19 | Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry | Method for superplastic warm-die and pack forging of high-strength low-ductility material |
US4944914A (en) * | 1988-12-24 | 1990-07-31 | Nkk Corporation | Titanium base alloy for superplastic forming |
-
1992
- 1992-05-08 US US07/880,743 patent/US5256369A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4067734A (en) * | 1973-03-02 | 1978-01-10 | The Boeing Company | Titanium alloys |
US4299626A (en) * | 1980-09-08 | 1981-11-10 | Rockwell International Corporation | Titanium base alloy for superplastic forming |
US4867807A (en) * | 1985-12-05 | 1989-09-19 | Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry | Method for superplastic warm-die and pack forging of high-strength low-ductility material |
US4842653A (en) * | 1986-07-03 | 1989-06-27 | Deutsche Forschungs-Und Versuchsanstalt Fur Luft-Und Raumfahrt E.V. | Process for improving the static and dynamic mechanical properties of (α+β)-titanium alloys |
US4944914A (en) * | 1988-12-24 | 1990-07-31 | Nkk Corporation | Titanium base alloy for superplastic forming |
Non-Patent Citations (8)
Title |
---|
A. I. Khorev, "Complex Alloying of Titanium Alloys", Metallovedenie i Termicheskaya Obrabotka Mctallov, No. 8, pp. 58-63, Aug. 1975. |
A. I. Khorev, Complex Alloying of Titanium Alloys , Metallovedenie i Termicheskaya Obrabotka Mctallov, No. 8, pp. 58 63, Aug. 1975. * |
Ghosh et al, "Influences of Material Parameters and Microstructure on Superplastic Forming", Mettalurgical Transactions 13A, May 1982, p. 733. |
Ghosh et al, Influences of Material Parameters and Microstructure on Superplastic Forming , Mettalurgical Transactions 13A, May 1982, p. 733. * |
Leader et al, "The Effect of Alloying Additions on the Superplastic Properties of Ti-6 Pct A1-4 Pct V", Metallurgical Transactions, vol. 17A, Jan. 1986, p. 93. |
Leader et al, The Effect of Alloying Additions on the Superplastic Properties of Ti 6 Pct A1 4 Pct V , Metallurgical Transactions, vol. 17A, Jan. 1986, p. 93. * |
Wert et al, "Enhanced Superplasticity and Strength in Modified Ti-6A1-4V Alloys", Metallurgical Transactions, vol. 14A, Dec. 1983, p. 2535. |
Wert et al, Enhanced Superplasticity and Strength in Modified Ti 6A1 4V Alloys , Metallurgical Transactions, vol. 14A, Dec. 1983, p. 2535. * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6454882B1 (en) | 1999-08-12 | 2002-09-24 | The Boeing Company | Titanium alloy having enhanced notch toughness |
EP2172576A1 (en) * | 1999-08-12 | 2010-04-07 | The Boeing Company | Titanium alloy having enhanced notch toughness and method of producing same |
EP1076104A1 (en) * | 1999-08-12 | 2001-02-14 | The Boeing Company | Titanium alloy having enhanced notch toughness and method of producing same |
US20040191154A1 (en) * | 2003-03-31 | 2004-09-30 | Valery Shklover | Quasicrystalline alloys and their use as coatings |
US7060239B2 (en) * | 2003-03-31 | 2006-06-13 | Alstom Technology Ltd. | Quasicrystalline alloys and their use as coatings |
US9796005B2 (en) | 2003-05-09 | 2017-10-24 | Ati Properties Llc | Processing of titanium-aluminum-vanadium alloys and products made thereby |
US9523137B2 (en) | 2004-05-21 | 2016-12-20 | Ati Properties Llc | Metastable β-titanium alloys and methods of processing the same by direct aging |
US10422027B2 (en) | 2004-05-21 | 2019-09-24 | Ati Properties Llc | Metastable beta-titanium alloys and methods of processing the same by direct aging |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US10471503B2 (en) | 2010-04-30 | 2019-11-12 | Questek Innovations Llc | Titanium alloys |
US11780003B2 (en) | 2010-04-30 | 2023-10-10 | Questek Innovations Llc | Titanium alloys |
US9765420B2 (en) | 2010-07-19 | 2017-09-19 | Ati Properties Llc | Processing of α/β titanium alloys |
US10144999B2 (en) | 2010-07-19 | 2018-12-04 | Ati Properties Llc | Processing of alpha/beta titanium alloys |
US9624567B2 (en) | 2010-09-15 | 2017-04-18 | Ati Properties Llc | Methods for processing titanium alloys |
US10435775B2 (en) | 2010-09-15 | 2019-10-08 | Ati Properties Llc | Processing routes for titanium and titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
US9616480B2 (en) | 2011-06-01 | 2017-04-11 | Ati Properties Llc | Thermo-mechanical processing of nickel-base alloys |
US10287655B2 (en) | 2011-06-01 | 2019-05-14 | Ati Properties Llc | Nickel-base alloy and articles |
US10570469B2 (en) | 2013-02-26 | 2020-02-25 | Ati Properties Llc | Methods for processing alloys |
US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
US10337093B2 (en) | 2013-03-11 | 2019-07-02 | Ati Properties Llc | Non-magnetic alloy forgings |
US10370751B2 (en) | 2013-03-15 | 2019-08-06 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
US20200024696A1 (en) * | 2015-01-12 | 2020-01-23 | Ati Properties Llc | Titanium alloy |
CN112813304A (en) * | 2015-01-12 | 2021-05-18 | 冶联科技地产有限责任公司 | Titanium alloy |
RU2703756C2 (en) * | 2015-01-12 | 2019-10-22 | ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи | Titanium alloy |
US11851734B2 (en) | 2015-01-12 | 2023-12-26 | Ati Properties Llc | Titanium alloy |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
US10619226B2 (en) | 2015-01-12 | 2020-04-14 | Ati Properties Llc | Titanium alloy |
CN107109541B (en) * | 2015-01-12 | 2021-01-12 | 冶联科技地产有限责任公司 | Titanium alloy |
WO2016114956A1 (en) * | 2015-01-12 | 2016-07-21 | Ati Properties, Inc.; | Titanium alloy |
CN107109541A (en) * | 2015-01-12 | 2017-08-29 | 冶联科技地产有限责任公司 | Titanium alloy |
US10808298B2 (en) | 2015-01-12 | 2020-10-20 | Ati Properties Llc | Titanium alloy |
CN112813304B (en) * | 2015-01-12 | 2023-01-10 | 冶联科技地产有限责任公司 | Titanium alloy |
US11319616B2 (en) | 2015-01-12 | 2022-05-03 | Ati Properties Llc | Titanium alloy |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
WO2018199791A1 (en) * | 2017-04-25 | 2018-11-01 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Titanium alloy-based sheet material for low-temperature superplastic deformation |
US11486025B2 (en) | 2017-10-19 | 2022-11-01 | The Boeing Company | Titanium-based alloy and method for manufacturing a titanium-based alloy component by an additive manufacturing process |
RU2744837C2 (en) * | 2017-10-19 | 2021-03-16 | Зе Боинг Компани | Titanium-based alloy and method for producing titanium-based alloy component through additive manufacturing technologies |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5124121A (en) | Titanium base alloy for excellent formability | |
US5256369A (en) | Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof | |
JP5442857B2 (en) | High-strength near β-type titanium alloy and method for producing the same | |
US5226985A (en) | Method to produce gamma titanium aluminide articles having improved properties | |
EP3791003B1 (en) | High strength titanium alloys | |
JPH10306335A (en) | Alpha plus beta titanium alloy bar and wire rod, and its production | |
US4716020A (en) | Titanium aluminum alloys containing niobium, vanadium and molybdenum | |
JPH0823053B2 (en) | High-strength titanium alloy with excellent workability, method for producing the alloy material, and superplastic forming method | |
US5362441A (en) | Ti-Al-V-Mo-O alloys with an iron group element | |
US5417781A (en) | Method to produce gamma titanium aluminide articles having improved properties | |
US11920231B2 (en) | Creep resistant titanium alloys | |
JP2586023B2 (en) | Method for producing TiA1-based heat-resistant alloy | |
EP0379798B1 (en) | Titanium base alloy for superplastic forming | |
EP0476043B1 (en) | Improved nickel aluminide alloy for high temperature structural use | |
JP2669004B2 (en) | Β-type titanium alloy with excellent cold workability | |
US5417779A (en) | High ductility processing for alpha-two titanium materials | |
US4935069A (en) | Method for working nickel-base alloy | |
JPH06228685A (en) | High strength and high ductility tial intermetallic compound and its production | |
JP3065782B2 (en) | Hydrogen treatment method for titanium alloy | |
JPH0819503B2 (en) | Titanium alloy excellent in superplastic workability, method for producing the same, and superplastic workability method for titanium alloy | |
JPH0819502B2 (en) | Titanium alloy excellent in superplastic workability, its manufacturing method, and superplastic working method of titanium alloy | |
Paprocki et al. | Investigation of some niobium-base alloys | |
JP2532752B2 (en) | Gamma-titanium-aluminum alloy modified by chromium and tungsten and its manufacturing method | |
JPH03197631A (en) | Intermetallic compound tial-cr base alloy | |
JPH0192332A (en) | High strength titanium alloy having excellent superplastic plastic workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CC | Certificate of correction | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19971029 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |